
ENHANCING MANAGEABILITY OF EXECUTION AND DATA FOR

GPGPU COMPUTING

A Thesis
Presented to

The Academic Faculty

by

Anshuman Goswami

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
May 2017

Copyright © 2017 by Anshuman Goswami

ENHANCING MANAGEABILITY OF EXECUTION AND DATA FOR

GPGPU COMPUTING

Approved by:

Dr. Matthew Wolf, Committee Chair
Computer Science and Mathematics
Division
Oak Ridge National Laboratory

Prof. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Prof. Karsten Schwan, Advisor
School of Computer Science
Georgia Institute of Technology

Prof. Ling Liu
School of Computer Science
Georgia Institute of Technology

Prof. Richard Vuduc
School of Computational Science and
Engineering
Georgia Institute of Technology

Prof. Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: December 9, 2016

To Susmita.

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude and appreciation to my adviser Prof

Karsten Schwan. His trust in me was the most important factor leading to the completion of

this thesis. I sorely miss his presence today but will remember him always to be the perfect

guide for me, as a student. Next, I would like to thank Dr Matthew Wolf, my co-adviser and

committee chair, for his immense support in guiding me through the tumultuous phase after

the passing away of Professor Schwan and help me reach the end of my PhD journey without

giving up. His technical inputs as well as his genuine concern in the forward progress of my

academic and professional career is something that I will remain ever indebted for. Besides,

I want to thank Dr Jeffrey Young, Dr Greg Eisenhauer and Prof Ada Gavrilovska for their

immensely useful feedback in shaping much of the research that has gone into this thesis.

Next, I would like to thank the members of my thesis committee, Prof Ling Liu, Prof

Sudhakar Yalamanchili, Prof Richard Vuduc and Prof Hyesoon Kim, for sparing their valu-

able time and serve as the committee members. The constructive feedback and comments

they have provided have gone a long way into refining the content of the thesis as well

as stimulate future research directions worth pursuing. I must mention the support and

guidance I have received from Prof Venkateswaran as the PhD program coordinator whom

I could go to for advice under any situation. I should also mention that the contribution of

this thesis has been significantly influenced by my experiences at three different internships

for which I would like to thank my mentors, Dr Zhikui Wang and Dr Antonio Lain, at

Hewlett Packard Labs; Jonathan Pearce at Intel; and Dr Inam Rahman at Apple.

During my time at Georgia Tech, I was fortunate to have made some very good friends

who have become a part of my life. I would like to mention Chang-chih Chen, Pranith

Kumar, Nagesh Lakshminarayana, Mohammad Hosaain, Dushmanta Mohapatra, Minsung

Jang, Jai Dayal, Alexander Merritt and Dipanjan Sengupta among my past and present

labmates who have made this journey so much more enojoyable. A special mention for my

iv

undergrad friends from JU, Ayan Paul and Sudipto Dolui, who have been the ever available

support system that I could fall back on during every crisis. Any success would be as much

a joy for them as it would be to me.

Finally, I would like to thank my wife for her constant support and unwavering patience

through every high and low during my PhD. I have always admired her level of enthusiasm

to see me succeed and this has been a key driving force for me to continue striving whatever

the situation be. I would like to dedicate this thesis to her without whom I could not have

come this far.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Managing performance isolation . 1

1.2 Enforcing predictable sharing . 2

1.3 Supervizing low-level scheduling . 3

1.4 Enabling distributed computing . 3

1.5 Thesis Statement . 4

1.6 Contributions . 4

1.7 Dissertation Structure . 6

II RELATED WORK . 7

III LANDRUSH : RETHINKING IN SITU ANALYSIS FOR GPGPU WORK-

FLOWS . 10

3.1 Motivation . 12

3.1.1 How Much of The GPU Is Left Unused? 12

3.1.2 Why Offload Analysis Computations to GPUs? 13

3.1.3 What About Moving Data? . 14

3.1.4 How to Restrict Analysis Tasks’ GPU Use to Idle Cycles? 14

3.2 Landrush System Design and Implementation 15

3.2.1 Monitoring Usage . 15

3.2.2 Communicating opportunity triggers 16

3.2.3 Managing analysis’ kernel launch calls 18

3.2.4 Multi-context kernel scheduling by the GPU driver 20

3.2.5 Enforcing analysis kernels to fit inside gaps 21

3.3 Evaluation . 21

vi

3.3.1 Idle Period Analysis . 22

3.3.2 Improvement in ‘Time to Answer’ with Gap-aware Co-location . . 27

3.3.3 Discussion . 33

3.4 Chapter Summary . 34

IV GPUSHARE: FAIR-SHARING OF GPU CLOUD 35

4.1 Background . 37

4.1.1 Programming Model, Host Application and Runtime 37

4.1.2 Driver . 37

4.1.3 Hardware Scheduling of Thread Blocks 38

4.2 Motivation . 38

4.3 Design . 41

4.3.1 Profiling . 41

4.3.2 Prediction . 41

4.3.3 Yielding . 42

4.3.4 Central Scheduling . 43

4.4 Evaluation . 43

4.4.1 Metric to measure fair sharing . 44

4.4.2 Fair sharing between two tenants 45

4.4.3 Overhead . 46

4.4.4 Scalability . 51

4.5 Chapter Summary . 52

V SYMPHONY : A SOFTWARE-SUPERVISED, MULTI-KERNEL SCHED-

ULER FOR IN SITU GPU WORKFLOWS 53

5.1 Motivation for GPU-resident Coscheduling of Analytics 54

5.2 Design . 57

5.2.1 Warp-level vs Thread block-level abstraction 58

5.2.2 Hardware thread block scheduling - ignored or software supervised? 58

5.2.3 Dynamic vs static resource allocation 59

5.2.4 Additional offload APIs vs more compiler directives 59

5.3 Implementation . 60

5.3.1 Deployer . 60

vii

5.3.2 Orchestrater . 62

5.3.3 Consolidater . 63

5.3.4 Limitations of the Symphony Approach 64

5.4 Evaluation . 64

5.4.1 Setup . 65

5.4.2 Throughput . 66

5.4.3 Overhead . 68

5.5 Chapter Summary . 72

VI GPUCOFLOW : SIMULATING THE DATA TRANSFER CHALLENGES

OF NEXT-GENERATION GPU CLUSTERS 74

6.1 Background . 76

6.1.1 Motivation . 80

6.2 Simulator Design . 84

6.2.1 Workload generation . 85

6.2.2 Assignment of jobs to machines . 87

6.2.3 Aggregation and broadcast scheme 89

6.2.4 State machine to track job progress 90

6.2.5 Scheduling Policies for bandwidth sharing 92

6.3 Designing GPU coflow middleware . 94

6.3.1 Multi tenancy vs. single job per machine 94

6.3.2 Manager per job vs. manager per machine 95

6.3.3 Overlapping vs. spread out inter-rack traffic 96

6.4 Experimental Evaluation . 96

6.5 Chapter Summary . 99

VII CONCLUSIONS, RECOMMENDATIONS AND FUTURE DIRECTIONS

101

REFERENCES . 105

VITA . 117

viii

LIST OF TABLES

1 GPU Use in Representative Scientific Applications 13

2 ANNs with high number of (>50M) weights to train 97

3 ANNs with low number of (<50M) weights to train 98

ix

LIST OF FIGURES

1 Landrush Components and Gap-Aware Co-Location 15

2 Actions on kernel launch call . 17

3 Actions on asynchronous memcpy calls . 17

4 Actions on other asynchronous calls . 18

5 Actions on synchronous calls . 18

6 Gaps in one time step of Lammps Lennard Jones Potential 22

7 Lammps Lennard Jones Potential gaps across 64 nodes 22

8 Gaps in one time step of GTC-P . 23

9 GTC-P gaps across 64 nodes . 24

10 Gaps in one time step of PIConGPU . 25

11 PIConGPU gaps across 64 nodes . 26

12 Co-location Performance with Convolution : GTC-P 28

13 Co-location Performance with Convolution : PIConGPU 28

14 Co-location Performance with Convolution : LAMMPS 29

15 Co-location Performance with Histogram : LAMMPS 30

16 Co-location Performance with Histogram : PIConGPU 31

17 Co-location Performance with Histogram : GTC-P 31

18 Co-location Performance with Scan : LAMMPS 32

19 Co-location Performance with Scan : PIConGPU 32

20 Co-location Performance with Scan : GTC-P 33

21 Granularity of time slicing with GPUShare 40

22 Interworking of different components of GPUShare 41

23 NNForge and PageRank . 46

24 NNForge and BFS . 47

25 BFS and PageRank . 47

26 Local Only Yield : Slowdown at different yield intervals 47

27 Breakdown of yield overhead . 48

28 Neural Net Training on Imagenet : Slowdown at different yield intervals and
arbitration epochs . 49

x

29 Pagerank on SocLiveJournal : Slowdown at different yield intervals and ar-
bitration epochs . 50

30 Breadth-first-search on SocLiveJournal : Slowdown at different yield intervals
and arbitration epochs . 50

31 More than two Tenants (3 and 4) . 52

32 Impact of available SMs on throughput of two well-known PIC codes 55

33 Utilization of available SMs for histogram analysis 56

34 Processing cores and scheduling hardware in modern GPUs 57

35 Software-supervised thread block scheduling : Responsiveness vs Overhead 61

36 SM scaled throughput of PIConGPU and Histogram workflow 66

37 SM scaled throughput of GTC-P and Histogram workflow 67

38 Scaling throughput of LAMMPS Lennard Jones with Cutoff and Nearest
Neighbor workflow . 68

39 Software scheduling overhead of PIConGPU 69

40 Software scheduling overhead of GTC-P . 70

41 Software scheduling overhead of LAMMPS 71

42 Effect of batching on atomics and total overhead in GTC-P 72

43 Effect of batching on atomics and total overhead in LAMMPS 72

44 Distributed ANN training : Model Parallelism 76

45 Distributed ANN training : Data Parallelism 77

46 Distributed ANN Nomenclature . 78

47 Distributed ANN : Throughput v/s Accuracy 79

48 Distributed ANN : Limits on Weak Scaling 81

49 GPU utilization : Without software pipelining 83

50 GPU utilization : With software pipelining - GPUs never idle 83

51 GPU utilization : With software pipelining - GPUs idle for less time 84

52 Always spread across racks . 87

53 First compacted then spread . 87

54 Compacted or bounded spread . 88

55 Aggregation and broadcast using a tree . 89

56 Aggregation and broadcast using a pipeline 90

57 Components of a job to process a single batch of training data 91

xi

58 GPUCoflow controllers . 95

59 LRBF throughput : Mix of ANNs with low and high number of weights . . 97

60 LASF throughput : Mix of ANNs with only high number of weights 98

61 LASF throughput : Mix of ANNs with low and high FLOPs to compute . . 99

62 LASF throughput : Mix of ANNs with high and high FLOPs to compute . 99

xii

SUMMARY

With hardware accelerators like GPUs becoming increasingly common in high end

scientific computing environment, new opportunities arise to co-locate scientific simulations

and online analysis performed on the scientific data generated by the simulations. However,

the offload-driven nature of scheduling of kernels on GPU and the limited context-switching

capabilities on the GPU pose challenges to co-locating all the desired tasks.

Additionally, many new cloud-focused applications such as deep learning and graph ana-

lytics have started to rely on the high computing throughput of GPUs, but cloud providers

cannot currently support fine-grained time-sharing on GPUs to enable multi-tenancy for

these types of applications. Instead, scheduling is performed by the GPU driver in combi-

nation with a hardware thread dispatcher to maximize utilization. However, when multiple

applications with contrasting kernel running times and high-utilization of the GPU need to

be co-located, this approach unduly favors one or more of the applications at the expense

of others.

This work brings together these two use cases to show how agile coscheduling of separate

tasks can be achieved. Through a careful orchestration of compute, memory and network

bandwidth resources, the techniques presented in this thesis demonstrate that it is possible

to high performance and multi-tenancy in a number of usage and hardware scenarios.

xiii

CHAPTER I

INTRODUCTION

A decade ago[91], the Compute Unified Device Architecture (CUDA) API[89] was an-

nounced and Nvidia came out shortly after with compatible GPUs and software to sup-

port computing on GPUs. Abruptly, this shifted many assumptions about the relative

bottlenecks between FLOPs and memory accesses. Other GPU vendors followed suit[63]

by adapting their hardware and providing software to enable their GPUs for computing

that extends much beyond the domain of graphics and media. Over these ten years, many

classes of applications have been adopted to leverage the immense computing potential

of GPUs. The HPC community, with a focus on scientific computation, were the early

adopters of GPU computing. In recent times, enterprise computing has experienced a sud-

den burst of GPU use with the growth of computationally intensive analytics in today’s era

of the big data. Even so, there still exists some fundamental technical and macro-economic

barriers in extending modern operating systems, which have evolved based on traditional

CPU architectures, to manage GPUs. In particular, the persistent divide between regular

schedulable cores and “device” management of GPUs poses issues for users and develop-

ers alike. Clearly, there exist opportunites for further pushing the envelope in terms of

the performance perceived by the applications while enforcing superior resource utilization.

This thesis introduces four different scenarios where there exist opportunities to push the

state-of-the-art in GPU computing along with the associated challenges involved, which we

detail in the following subsections.

1.1 Managing performance isolation

Accelerators, particularly GPUs, have become the dominant computational engines of to-

day’s high-end machines, and this has been recognized and is being exploited by a wide vari-

ety of scientific applications, including adaptation of existing ones such as LAMMPS([111])

and GTC-P([137]) and evolution of new ones, such as, PIConGPU([22]). This changing

1

landscape creates new possibilities for running in situ analysis using heterogeneous compute

node resources like GPUs. Such in situ workflows are of significant interest as applications

and middleware developers look towards exascale computing, as it offers a way to deal with

the significant imbalance between compute capacity and I/O bandwidth by reducing and

refactoring data before it exits the machine. Sharing GPUs between long-running scien-

tific simulations and in situ analysis, however, must ensure performance isolation for the

execution of the scientific simulations. For simulations that offload some or all of their

computation tasks to GPUs, stealing idle GPU cycles presents a different set of challenges.

For CPUs, when the co-running analysis task do not completely fit inside gaps, their rapid

preemption immediately returns resources back to the simulation process([143]). But such

is not the case for GPUs. This makes performance isolation much more challenging with

GPUs restricting context switches to kernel boundaries.

1.2 Enforcing predictable sharing

GPUs are being used for more data-rich applications in cloud computing environments than

ever before ([81], [134]), and kernels in these applications have increasingly become longer

in terms of running time due to larger and larger input datasets. However, in a cloud

computing environment like Amazon’s EC2[9], long-running kernels on GPUs can hinder

scheduling flexibility and fairness for multiple-tenant scheduling. This lack of scheduling

granularity and flexibility for discrete GPUs drives up the cost of using GPUs in a cloud

computing environment due to limited multi-tenancy and subsequent skews in fair sharing.

It also doesn’t allow for fair usage of GPU resources that can currently be guaranteed for

CPU-based virtualized systems.

All this points to the need for more fine-grained context-switching of GPU kernels that

can be done in a manner that is both transparent to the user and improves fairness between

multi-tenant kernels. A hybrid scheduling approach is called for which is software-based for

managing long-running kernels delegating short-running kernels to the existing hardware

scheduler for ensuring utilization remains high.

2

1.3 Supervizing low-level scheduling

HPC environments, where in situ analysis of data generated from scientific applications

provide significant advantages, expose the limitations of the GPU hardware scheduler[10]

that is responsible for the thread blocks of compute kernels running on the GPU. The

GPU’s native assignment policies for thread blocks in several scenarios are not suitable for

the execution needs of all components in the overall worklow. As such, valuable scheduling

opportunities may be lost. One approach would be to only allow analysis to be scheduled

in the gaps of the main scientific application’s use of the GPU. Being left only to using the

gaps, light-weight, scalable data analysis tasks may not get the necessary amount of GPU

cycles to make desired progress.

To address the above challenges, fine-grained and flexible scheduling control of execution

on the GPU is necessary to effectively manage in situ analysis of scientific worklows on

GPU supercomputers. Software supervized scheduling can combine the existing hardware-

based thread block scheduling mechanism with traditional software synchronization-based

multi-core CPU scheduling techniques to balance between the conflicting needs of good

performance for data-parallel GPU kernels and multi-tenancy on the GPU.

1.4 Enabling distributed computing

Finally we address an emerging opportunity due to changes in hardware. Future supercom-

puters ([106], [75]) as well as data center clusters[87] with GPUs are likely going to have

“dense” configurations where each node will have multiple GPUs with a fewer total number

of nodes in the cluster. The majority of workloads for such systems would rely primarily on

the GPUs for their computing needs. Examples of applications ready for this transition are

ones like fully GPU-based plasma simulations[22] or neural network training for advanced

analytics[88]. The on-node bandwidth available for data transfers between GPUs is already

much higher with PCIe compared to the cross-node bandwidth from commodity Ethernet

switches. For specialized networking hardware like Infiniband, the gap is less. However,

the difference is set to widen with latest interconnect technologies like NVLink[95]. So,

transferring data between nodes is likely to remain a very significant challenge to enable

3

distributed GPU computing compared to data movement inside a node.

As such, the network bandwidth of dense GPU clusters is going to be the scarce resource

that needs to be carefully managed to maximize the overall performance achieved as well as

meet the individual needs of user applications. Traditional network scheduling algorithms

from the software-defined networking community, like [6], are geared towards maximiz-

ing the bisection bandwidth obtained from the network. However, such an optimization

objective may fail to consider the criticality of bandwidth allocation perceived from an

application’s standpoint. Taking inspiration from the coflow[25] scheduling paradigm pro-

posed for CPU-centric distributed workloads like Spark[141] and Pregel[76], an equivalent

approach is necessary to effectively schedule network traffic across co-running distributed

applications that rely primarily on the GPU for their computing requirements.

1.5 Thesis Statement

GPUs have become the primary computational engine in supercomputers ([105] and [104])

and datacenter machines ([87]) that house discrete GPU cards. Individual kernels of appli-

cations running on such systems are usually hand-tuned to extract maximum performance

from the GPU hardware. However, there exists pressing need for mechanisms to co-run

kernels from multiple applications on the GPU. On one hand, it enables in situ analysis

of data generated from scientific simulations running on supercomputers. On the other, it

reduces cost to run long tasks like neural network training on datacenter GPUs through

fair-sharing. Moreover, distributed GPU computing over bandwidth-constrained clusters is

going to define the next wave of GPU computing riding on machine learning. To address

the above needs, this thesis proposes novel mechanisms to achieve effective multi-tenant

scheduling of kernels on the GPU as well as application-aware network bandwidth sharing

responsive to GPU use. The proposed mechanisms and policies provide flexibility to address

different performance goals as well as meet the target levels of resource utilization.

1.6 Contributions

The key contributions of the thesis are the testing and evaluation of set of mechanisms

and policies to address the aforementioned gaps in performance and functionality of the

4

state-of-the-art in management of GPUs. Specifically, we make the following contributions

to validate our thesis.

• Landrush. We present a detailed analysis of GPU utilization of multiple state-of-the-

art science workflows to demonstrate the opportunities that exist for in situ analysis.

We design and implement a low-overhead runtime for scavenging idle cycles on the

GPU to run data analysis in situ with scientific simulations resulting in lower time to

answer.

• GPUShare. We characterize the inability of the hardware scheduler in GPUs to

achieve fair-sharing across co-running GPU intensive applications with long runnning

kernels, a common scenario in the datacenter environment. We present the design

trade-offs for such a system and provide an implementation of a low-overhead fair-

share scheduling runtime for co-locating compute-intensive analytics jobs.

• Symphony. We investigate the scaling limits of individual kernels of well-known sci-

entific workflows to show that top-of-the-line GPU hardware is often over-provisioned

even for highly optimized HPC codes. To exploit such scaling bottlenecks for in situ

analysis, we design and implement a CPU-like scheduling library to supervize the fully

hardware thread block scheduling of GPUs. As a result, the combined throughput

gets improved while incurring minimal overhead during standalone execution.

• GPUCoflow. We present a qualitative assessment of execution characteristics of

deep learning workloads in a dense GPU computing environment, observing that

the efficient sharing of bandwidth would be the most critical consideration to max-

imize overall throughput of clusters running such workloads. We build a simulator

to study scheduling policies for interconnect bandwidth sharing in such an environ-

ment demonstrating that “coflow” aware scheduling policies perform much better than

application-agnostic fair-sharing policies across different workload mixes. Finally, we

present a detailed discussion on the design tradeoffs for implementing such a system.

5

1.7 Dissertation Structure

The rest of the dissertation is organized as follows.

Chapter 2 presents the design and implementation of the Landrush system along with

evaluation of the system to demonstrate its effectiveness in enabling in situ analysis on the

GPU with reduced time to answer.

Chapter 3 presents the design and implementation of the GPUShare system to enfore

fair-sharing among long-running analytics applications in a GPU cloud environment sub-

stantiated by evaluation results to prove improvements in fair sharing as well as the degree

of slowdown due to overhead.

Chapter 4 presents the design and implementation of the Symphony system that exploits

the scaling limitations of scientific codes on state-of-the-art GPU hardware to further stretch

the possibilities for in situ analysis on the GPU. Accompanying evaluation is provided to

validate the claim with reduced time to answer at reasonable overhead.

Chapter 5 presents the implementation of GPUCoflowSim, a simulator to study the

scheduling policies for controlling network traffic, and use it study application-aware band-

width sharing policies for distributed deep learning workloads that are effective in improving

the overall throughput of the cluster compared to SDN-centric policies that focus on max-

imizing the bisection bandwidth through the network.

Chapter 6 discusses the wealth of existing research that has preceeded the contributions

of ths thesis to show how that has inspired the scientific enquiries into in situ analysis, multi

tenancy and bandwidth sharing that this thesis has contributed.

Finally, chapter 7 concludes the thesis spelling out some of the future directions to

continue research.

6

CHAPTER II

RELATED WORK

Previous work such as [40] has demonstrated that in situ analytics are important for large

GPU clusters like Titan and can also provide important power savings. In addition, research

that investigates causes of low GPU utilization([23], [5]) demonstrates that even well-tuned

scientific codes leave resources idle. Past work on contention detection and response mecha-

nisms to mitigate interference when applications share resources have focused on CPU and

memory interference ([78], [77], [130] and [131]).

Lack of preemption support in GPUs today, makes it difficult to provide performance

isolation guarantees. [116] explores preemption-based scheduling but is limited by the

GPU programming model and the hardware, with preemption being only possible at kernel

boundaries. Pai ei al.[108], building on mcuda[126], provide software-controlled elasticity

in the physical resources consumed by a kernel enabling consolidation of kernels that alone

do not fully utilize the available SMs on a GPU. Similar ideas were proposed by [19], [45]

and [68]. Scientific and production-ready dataceneter applications are already well-tuned

to fully utilize the GPU hardware are not likely to benefit from such mechanisms.

Concerning software stacks, the earliest entirely user-level solutions were gvim[46], vcuda[121],

gvirtus[41], and rcuda[38]. More recent work([118], [110], [16], [113]) including vendor-

supported libraries[97] have tried to exploit hardware improvements such as multiple hard-

ware queues to improve utilization. All of these mechanisms rely on scheduling actions after

kernels have already run limiting their effectiveness for long-running kernels. Other solu-

tions, RGEM[60], timegraph[61], gdev[62], Basaran et al.[15], Menychtas et al.[82], Tian et

al. [132] and gpuvm[127], replace the vendor-provided software stacks in order to promote

GPUs to first-class schedulable entities in the OS and/or hypervisor, but unfortunately they

also rely on reactive scheduling actions similar to other user-level middleware.

Hardware solutions[4] to support spatial multitasking on GPUs have been proposed.

7

Two preemption mechanisms, namely, context switching and SM draining, are proposed

in Tanasic et al. [129]. Context switching can provide response-time guarantees, but has

prohibitive overhead. SM draining does not dispatch new thread blocks and preempts

only when the currently executing ones complete. Chimera [109] builds on the above by

combining the low latency of context switching with the high utilization of SM draining,

into a single mechanism called SM flushing. Assumptions are that kernels are idempotent

and if not, they distinguish between global memory writes and overwrites. As hardware

changes were proposed, evaluations were performed on simulators[13], making it difficult to

gauge if real application kernels would benefit from such mechanisms.

PTask[114], Dandelion[115] and GEMTC[66] offer alternative programming models that

give the OS sufficient visibility about an application’s use of the GPU, thus permitting it to

provide isolation and fairness guarantees. Moving existing GPU applications to such new

models would require significant effort. Low-level GPU-side profiling tools are available

now like SASSI ([125]) that enable high fidelity GPU code instrumentation. Some of the

contributions in this thesis have explored profile-guided execution on the GPU.

The fundamental premise of many of the contributions of this thesis is based on the

seminal work on realtime scheduling by Liu and Layland[74]. There has been a good deal

of work focused on scheduling for a hybrid system of CPUs, GPUs, [73] and other accelera-

tors [17] but little work on coscheduling applications within a set of GPU accelerators. Both

AMD and NVIDIA support hardware virtualization and have projects to support varying

levels of user scheduling, but most of this development is focused on improving the perfor-

mance of graphics-intensive workloads. Previous work on CPU “core pinning” techniques

[65] are also relevant.

The parameter server approach for distributed machine learning[71] has been shown to

scale well across thousands of nodes with multi-core CPUs. But, artificial neural network

training were not among the algorithms evaluated. Given that ANN training is characterized

by higher FLOPs to bytes ratio, their performance sensitivity to the use of network resources

needs careful consideration. Large-scale deep learning on thousands of machines[31] using

the CPU cores have been shown to work. But there is growing evidence[87] that they can

8

be matched by the processing power of merely tens of machines where each machine hosts

multiple GPUs.

Recent work[28] has shown distributed deep learning using GPUs can achieve very

good speedup. While speedup of individual training jobs are definitely important, over-

all throughput from a cluster shared by many such jobs is becoming critical as most of

these jobs are going to run on shared infrastructure. Other work on intra-node bandwidth

sharing over the PCIe[79] (or in future, NVLink) complement some of the contributions in

this thesis.

Coflow scheduling([25],[26],[142]) has attracted a lot of research in the last few years

due to growing prominence of several big data frameworks([32],[141],[76]) that could benefit

from it. MPI has been the distributed programming model of choice for the scientific

community and CUDA-aware[93] versions have been around for a while. Whatever be

the communication API, coflow aware scheduling holds great promise for distributed GPU

computing.

9

CHAPTER III

LANDRUSH : RETHINKING IN SITU ANALYSIS FOR GPGPU

WORKFLOWS

The evolution of high-end computing has allowed scientific simulations to run at higher and

higher fidelity, which in turn generates massive amounts of data. This makes infeasible

the traditional approach to I/O in which data is written to disk for subsequent post-hoc

analysis. Running analysis where and when data is generated, often referred as “in situ”

analytics’, becomes a necessity rather than an option, particularly for the exascale era [37].

Previous work ([3], [2], [144], [143], [18], [133]) has demonstrated and explored a

wide range of solutions for in situ data analysis, ranging from early work on “data staging”

to recent work in which scientific simulation and analysis tasks efficiently time-share the

CPU resources of compute nodes.

An issue not considered in such prior work is the rapid evolution of node architectures

from previously homogeneous, CPU-only platforms to richly heterogeneous machines with

accelerators and complex memory hierarchies. Accelerators, particularly GPUs, have be-

come the dominant computational engines of today’s high-end machines, and this has been

recognized and is being exploited by a wide variety of scientific applications, including adap-

tation of existing ones such as LAMMPS [111] and GTC-P [137], [54] and evolution of new

ones, such as, PIConGPU [22].

This changing landscape creates new possibilities for running in situ analysis using

heterogeneous compute node resources like GPUs. Sharing GPUs between long-running

scientific simulations and in situ analysis, however, must ensure performance isolation for

the execution of the scientific simulations. [143] showed that CPU sharing on compute

nodes can be done inobtrusively and effectively, by stealing cycles during the serial phases

(MPI communication and I/O) of scientific simulations. However, for simulations that

offload some or all of their computation tasks to GPUs, stealing idle GPU cycles presents

10

a different set of challenges. Programming models for today’s high-end discrete GPUs are

specialized to utilize their high numbers of processing cores and to deal with the latency of

offloading over the PCIe bus. Consequently, the task of identifying idle cycles on the GPU

has to account for availability of both compute and data transfer resources. Even when such

idle gaps are identified, the penalties for mis-predicting them is higher on GPUs than CPUs.

This is because on CPUs, an analysis process may run during the idle gaps created by serial

phases in the simulation process. If the co-running analysis task does not completely fit in

the gap, its rapid preemption immediately returns resources back to the simulation process.

In contrast, GPUs restrict context-switch to kernel (parallel programs running on GPUs)

boundaries which is a far cry from the instruction-level precise interruption that system

designers are used to in the CPU world, thus making performance isolation a much more

challenging task([116], [129]).

In this work, we seek to unlock the GPU resources present on high-end machines for use

in running in situ analysis. The advantage of such resource sharing is multi-fold, including

(i) the ability to operate on scientific data without moving it to staging nodes thereby

reducing network traffic and energy cost, (ii) the accelerated execution of analysis tasks on

energy-efficient hardware accelerators, and (iii) the efficient use of all resources present on

compute nodes – CPUs and GPUs – to run scientific applications and associated analysis

routines.

To this end, we have designed a runtime system, termed Landrush 1, for enabling GPU

sharing while also ensuring that GPU sharing does not unduly perturb a scientific simula-

tion’s execution. The Landrush solution makes the following technical contributions:

• We characterize the GPU activities for three different types of high-end scientific

simulations, demonstrating the feasibility of task co-location using spare GPU cycles.

• We show a reduction in the total ‘time-to-answer’ seen by end users, by recognizing

GPU idle gaps for executing analysis tasks.

• We study the effects of co-locating different complexities of analysis tasks with various

1’Landrush’ is the chaos that ensues from opening previously restricted territory to new uses.

11

scientific simulations, leading to a better understanding of the GPU sharing charac-

teristics of (simulation, analysis) pairs.

The Landrush approach is evaluated with three state-of-the-art scientific simulation

applications, LAMMPS, GTC-P, and PIConGPU, on the Titan [105] supercomputer hosted

at Oak Ridge National Laboratory (ORNL). Experimental results demonstrate that up to

90% (!) of the GPU cycles are available over timesteps spanning 100-200 ms that can be used

for analysis task co-location. Compared to naive co-location relying on scheduling by the

GPU driver and the hardwired thread dispatcher, reductions in time-to-answer range from

8% to 33% across different combinations of co-location with nearly uniform performance

from very small (4 nodes) up to very large scales (1024 nodes).

3.1 Motivation

We seek opportunities for sharing the GPU resources on high-end machines between sci-

entific applications and representative analysis applications that consume the generated

scientific data.

This requires answering the following questions:

1. How much of the GPU is left unused by scientific applications?

2. Why offload analysis computations to GPUs?

3. What about moving data to/from the GPU?

4. How can we restrict analysis tasks’ resource usage to idle cycles?

3.1.1 How Much of The GPU Is Left Unused?

A survey of existing HPC applications [102] provides basic information about their use of

GPUs. For applications not using the GPU (first row in Table 1), the GPU is idle for the

entire duration of the scientific application. For applications using the GPU (second and

third rows in Table 1), our analysis results in Section 3.3.1 show considerable variability of

GPU idle cycles for a constant problem size of analysis tasks and at the strongest scaled

point of simulation. The GPU is idle in LAMMPS (Lennard Jones potential) for 88% and

12

in GTC-P for 15%. Even an application like PIConGPU, which has been written to perform

all of its computations on the GPU, exhibits idle gaps between GPU activities on a subset

of the nodes running the application. These gaps result because it is difficult to eliminate

all serial phases for applications using the GPUs and also because data movement between

nodes cannot be fully overlapped with computation (due to complex transfers from the

GPU to the host memory and then to the network device).

Table 1: GPU Use in Representative Scientific Applications

GPU Use Applications

Not used Tinker, Dirac, RedMD, GTS,
Pixie3D and many legacy codes

Partially used GROMACS, LAMMPS, NAMD,
MILC, NWChem, ENZO, GTC-P,
CP2K, Octopus

Fully used HOOMD-Blue, S3D, PIConGPU

3.1.2 Why Offload Analysis Computations to GPUs?

Enabling in situ analysis requires harvesting resources whenever and wherever they are

available. [143] exploits the benefit of co-running analysis when idle cycles on CPUs are

available. With accelerators like GPUs becoming more prevalent on HPC machines and

with end users demanding ever richer online analysis pipelines for processing scientific data,

it is imperative to run them on the “fast” resources available on high end machines as

opposed to simply delegating them to be run on CPUs. This is particularly the case for

computationally intensive codes, i.e., those with small gaps on CPUs or GPUs, for which

analysis computation tasks should be run wherever they run fastest.

As evidence, we reference the published performance reports for standard kernels [57],

[96] that constitute common analysis tasks, running on CPUs vs. GPUs. Even when

compared across state-of-the-art hardware (for both CPUs and GPUs), highly optimized

(MKL and TBB for CPUs; cuFFT and Thrust for GPUs) versions of the same algorithms

clearly perform best when run on the GPU with problem sizes that are similar to scientific

output data. The speedups in computation time range from 2-5x for reduction, sorting and

FFT in that order.

13

3.1.3 What About Moving Data?

A known challenge with using powerful, discrete GPUs (over less powerful, integrated GPUs)

is the need to transfer data from system memory to GPU memory over the PCIe link

connecting them. Note that this is also a problem for running analysis tasks on idle CPU

cores. Our study of high end scientific applications shows that the GPU’s DMA engines

are not heavily used by the scientific simulation: the percentage of DMA use in LAMMPS

(Lennard Jones potential), GTC-P and PIConGPU constitutes only 1.4%, 4.5%, and 0.2%

of their running times.

Moreover, programming support like CUDA’s inter-process communication (IPC) has

further reduced the cost of data movement between memories. IPC allows for sharing buffers

between different GPU contexts, and Landrush uses this functionality to efficiently co-locate

analysis applications that are node-local and to reduce intra-GPU memory transfers.

3.1.4 How to Restrict Analysis Tasks’ GPU Use to Idle Cycles?

Precise interrupts are not supported by the hardware for GPUs. It is difficult to store the

context when interrupting more than a hundred concurrently running hardware threads

of execution (orders of magnitude higher than the degree of hardware multi-threading in

CPUs). Moreover, GPGPU kernels are written to mostly preserve a uniform control flow to

make best use of the SIMD execution model. In most situations, there is little to gain from

interrupting a GPU thread block (CUDA terminology for a group of threads that share a

software managed cache with hardware synchronization) before completion.

However, GPU programming models expose a batching parameter for kernel launches

that goes beyond the granularity of execution of a GPU thread block. An application may

choose to launch several thread blocks when it makes a kernel launch call. For analysis

kernels, it may be the case that the running time of a few (but not all) thread blocks fits

inside gaps on the GPU.

In Landrush, analysis kernels are instrumented with an availability check at the start to

allow early completion in case a kernel from the scientific application is launched while the

analysis kernel is still running. So it is possible to emulate finer-grained software interruption

14

capability despite lack of hardware support for context switch in GPUs.

3.2 Landrush System Design and Implementation

To enable GPU sharing between co-located scientific simulation and analysis, Landrush

functionality includes:

• monitoring GPU calls from the scientific simulation and kernel running times on the

GPU for both the simulation and the analysis applications

• informing analysis-side Landrush about opportunities to use (or defer use of) the GPU

• managing kernel launch calls from analysis based on four availability heuristics

• scheduling simulation and analysis kernels using the GPU driver

• restricting analysis’ use of compute cycles to within the gaps.

The overall architecture of Landrush is shown in Figure 1 which depicts how the above

functionalities interact. They are described in more detail below.

Simulation Analytics

CUDA Wrapper

Kernel Launcher

CUDA Wrapper

Launch Tracker

with Gap Selector
Gap Listener

Gap info

Kernel Launcher

GPU Driver

time

An Un-usable Gap

A Usable Gap

Concurrent Kernel Execution

Simulation Kernel

Analytics Kernel

Compute Node CPU Side GPU Side

Figure 1: Landrush Components and Gap-Aware Co-Location

3.2.1 Monitoring Usage

Landrush is implemented as a library that resides within the address space of both the sci-

ence and the analysis applications. It operates by intercepting either’s GPU kernel launch

15

calls via wrapper APIs. Kernel launch calls from both the scientific and the analysis ap-

plications are accounted and passed to the GPU driver. Analysis kernel launch calls are

passed to the driver directly only if no science kernels are waiting to run, otherwise they

are deferred.

To track the start and completion of every single kernel execution on the GPU as they

occur, “events” exposed by GPU programming models have to be used. But to do this

asynchronously, additional threads have to be run to poll for such events which adds a lot of

overhead as the number of events increase. Therefore, Landrush relies on an asynchronous

but repeated supply of kernel start and end timestamps by asking the GPU runtime to

deliver the necessary profiling information[99].

GPGPU calls made by an application are detected by Landrush as they occur by using

a wrapper around the runtime. Besides kernel launch calls, Landrush intercepts all data

transfer, event and queue 2 related calls from the scientific application. Some of these calls

are synchronous, while others are asynchronous. The profiling information sent from the

scientific applications consist of (1) the timestamps of the above GPGPU calls, and (2)

the GPU use and idle interval data alongwith the kernel(s) corresponding to each such

interval. The GPU runtime delivers (2) asynchronously to Landrush which is then sent to

the analysis-side component using a light-weight messaging library called nanomsg[85].

On the analysis side, Landrush only tracks GPU execution start and end intervals (but

not idle intervals) alongwith the corresponding analysis kernels. It tries to ensure that the

science application receive execution time on the GPU whenever it launches a kernel. It

also runs an additional thread on the analysis-side to receive the profiling data which also

acts as a listener for messages that indicate upcoming gaps on the GPU to run analysis

kernels, described next.

3.2.2 Communicating opportunity triggers

In order for the Landrush component on the analysis side to be aware of gaps on the

GPU, there needs to be a constant supply of up-to-date GPGPU interactions made by the

2Queue (command queue or stream) is another type of logical object exposed by GPGPU programming
models that can be used to increase concurrency of execution on the GPU.

16

Hardware dispatcher

latency (< 1 us) – In use
Analysis kernel

launched

Sim kernel launch

CPU thread

Break in simulation’s GPU

use (> 1 ms) – Usable gap

GPU cores idle/use

Last waiting sim

kernel completes

Figure 2: Actions on kernel launch call

Usable gap left

unused

Sim async memcpy to GPU

Analysis kernel

launch deferred

Last sim kernel in

critical path

completes

CPU thread
GPU cores idle/use

Analysis kernel

launched

Figure 3: Actions on asynchronous memcpy calls

scientific application. Communication is triggered whenever a GPGPU interaction occurs

and is deemed to convey new information. But, this consolidated profiling data is not

current but from the recent past. Information about current usage of the GPU by the

scientific application is necessary to decide on gaps.

When several simulation kernels are launched in quck succession (no idle time on GPU

for a while), sending a message on each such launch can cause an unacceptable slowdown

compared to standalone running time. To address this problem, a message is only sent when

the last in a batch of kernels are launched or a subsequent data transfer is requested. Such

message limiting is enforced by starting a timer (of 1 ms or the context switch interval on

the GPU) after every message is send out and then waiting for the timer to expire before

sending a new message consolidating all GPGPU interactions that occur during the interval.

17

Sim async query or marker

Usable gap

brought forward

Analysis kernel launch

immediate

Last sim kernel in

critical path completes

CPU thread GPU cores idle/use

Figure 4: Actions on other asynchronous calls

Sim sync memcpy to GPU

Sim sync marker

Analysis OpenMP kernel

launched

CPU thread GPU dma idle/use

Figure 5: Actions on synchronous calls

3.2.3 Managing analysis’ kernel launch calls

A kernel launch from the analysis application is intercepted by Landrush, and a decision

algorithm is run to determine gap availability on the GPU. Even if a single gap is not large

enough to fit the analysis kernel but the aggregate of multiple gaps are, the GPU is still

used. Only if the aggregate of available gaps on the GPU fall short, the analysis kernel is

run on the CPU. This is due to the much superior performance (at least faster by 2x) of

the analysis kernels when run on the GPU compared to the CPU for the size of output data

produced by the studied scientific simulations.

A gap on the GPU is detected if a period of no GPU activity exceeding 1 us is found

as that is considered sufficiently larger than the maximum overhead to schedule the next

kernel on the GPU if one was available. But, a gap is considered usable if it is estimated to

be more than 1 ms, the context switch interval enforced by the GPU driver. On the CPU

side, a gap is considered to be an interval of busy-wait or sleep of 100 ms or more, an order

of magnitude more than the maximum scheduling latency of the OS. Gaps on CPU are only

18

considered when the aggregate of usable gaps on the GPU is less than the analysis kernels’

total running time as determined from the most recent profiling information.

The decision engine operates on the basis of three heuristics in determining gaps. If the

last message is a kernel launch call, it looks up the most recent profiling data identifying the

most recent occurrence of this kernel launch and the corresponding usable gap immediately

succeeding it. A timer is started to wait for the interval until the next “usable” gap.

If a previous record is unavailable, the analysis kernel is allowed to run right after the

current kernel completes execution. Otherwise, the analysis kernel is allowed to run after

the expiration of the timer as shown in Figure 2.

If the last message is an asynchronous query or GPU-side synchronization (event or

queue) or an asynchronous memory copy (GPU to system memory), the decision engine

interprets that as an indication that the kernels that need to complete as directed by the

last interaction, cannot be deferred. It uses this information to check if the timer expiration

could be brought forward by deferring kernels not indicated to be in the critical path. This

allows analysis kernels to run before those simulation kernels, as shown in Figure 4. On

the other hand, asynchronous memory copy message in the other direction (system to GPU

memory) or between buffers on the GPU delays the timer expiration interval by adding the

running times of all kernels which are potential consumers of this data movement, as shown

in Figure 3.

If gaps on the GPU are not enough as determined from the most recent profiling data,

a synchronized memory copy (system to GPU memory or between buffers on the GPU) is

used to transfer simulation’s output data from the GPU to the system memory. Thereafter,

a busy-waiting GPU-side synchronization (on event or queue) is used to run analysis tasks

on the CPU. This is shown in Figure 5. Note that this is more generalized than [143]

which restricts CPU core use by in situ analysis to never use the core(s) used by the science

application. In this case, as the CPU-side application thread is in a busy-waiting or sleep

state, it is not necessary to measure interference caused by co-locating an analysis thread on

the same core. Synchronous memory copy messages (GPU to system memory), currently

unused, presents opportunities to transfer analyzed data back to the GPU memory if a

19

multi-stage analysis workflow is used.

3.2.4 Multi-context kernel scheduling by the GPU driver

Two different GPU contexts cannot time/space share the GPU. This prevents even low

footprint analysis kernels from executing on the GPU concurrently with other low footprint

kernels from the scientific simulations. By running microbenchmark kernels busy-wait on

the GPU for variable intervals of time, we deconstructed the behavior of the driver when

trying to simultaneously run kernels from more than one context (in our case, the scientific

and the analysis applications).

One of two things happen when an analysis kernel is launched and the GPU is idle.

(1) If no other kernel launched by the scientific simulation is in the queue, the analysis

kernel can utilize the GPU before the next simulation kernel is launched. If the analysis

kernel completes inside the gap, then co-locating analysis works out to be better than

running serially. (2) If there are simulation kernels waiting to run, the driver schedules

the kernels on the GPU in a round-robin manner with a context-switch interval of 1 ms

or when an executing kernel completes. Multiple kernels from a context gets to run until

their cumulative running time exceeds 1 ms, at which point, kernels from another context,

if waiting, gets to run. If there are no other kernels waiting from other contexts, the same

context can keep using the GPU because of the driver’s work-conserving scheduling policy.

The above policy breaks down when execution times are near tens or hundreds of mil-

liseconds (which is the case for problem sizes corresponding to the generated scientific output

data). The effective context switch interval is reduced to a long running kernel’s execution

time and explicit scheduling of analysis kernels (not relying completely on the GPU driver)

is needed.

In Landrush, analysis kernels are scheduled inside gaps when kernels from the scientific

applications are not using the GPU. At any given time, it is ensured that analysis kernels

are passed to the GPU driver only when there are no “kernels in the critical path” from the

scientific application already waiting to run.

20

3.2.5 Enforcing analysis kernels to fit inside gaps

In Landrush, analysis kernels are instrumented to insert an availability flag check that runs

at the start of each thread block and determines if the GPU is still available to use. Any

thread block only runs to completion, if the GPU is still available. The availability flag is

stored in the GPU memory and is updated by the gap availability decision engine. Once

one or more thread blocks detect the GPU to be unavailable, the remaining thread blocks

return early using mechanisms described in [68]. Since the thread block dispatch is done

in hardware, the overhead is negligible even for very large number of thread blocks. The

same analysis kernel is next resumed to execute from the first thread block that was skipped

in the last launch and allowed to run until the availability check fails, with each “round”

completing more of the analysis kernel’s overall grid of thread blocks, until it is complete.

On the CPU, analysis kernels are run during gaps created by the busy-waiting episodes of

the scientific application, and POSIX signals (from the OS) are used to interrupt execution

beyond the gaps and revoke resource from the analysis tasks.

3.3 Evaluation

All experimental evaluations are performed on the Titan supercomputer at ORNL. Titan

consists of 18,688 compute nodes. Each compute node contains a 16-core 2.2GHz AMD

Opteron 6274 processor and 32GB of RAM. Two nodes share a Gemini high-speed inter-

connect router. The resulting partition contains 299,008 traditional processor cores, and

587TB of memory. Each compute node is also equipped with an NVIDIA Kepler K20 GPU

accelerator [92] with 6GB of DDR5 memory. Experiments broadly evaluate two questions:

1. What idle time is available on the GPU for each of the science codes (LAMMPS,

PIConGPU, GTC-P), usable for co-running analysis?

2. To what degree does co-running some given analysis with a scientific simulation on

the GPU lead to reduction in the total time to answer seen by the end user?

21

Figure 6: Gaps in one time step of Lammps Lennard Jones Potential

0.6

0.7

0.8

0.9

0 100 200 300 400 500

Timestep #

%
 o

f
ti
m

e
s
te

p
 i
d

le
 (

m
in

,
m

a
x
,

m
e

a
n

)

Figure 7: Lammps Lennard Jones Potential gaps across 64 nodes

3.3.1 Idle Period Analysis

Extensive characterizations of the GPU usage of LAMMPS, GTC-P, and PIConGPU demon-

strate substantial variability in the extent to which they use the GPU for offloading parallel

execution phases, both in terms of occupancy on the GPU and the regularity in their usage

patterns.

3.3.1.1 LAMMPS

LAMMPS (or Large-scale Atomic/Molecular Massively Parallel Simulator) is a well-known

molecular dynamics simulation with both OpenMP based CPU and CUDA based GPU

acceleration. The version of LAMMPS run in our experiments is configured to perform

22

0 20 40 60 80 100 120 140 160 180 200

Time from the start of a timestep (in ms)

Push & Shift Extract Shift Append & Charge Idle

Figure 8: Gaps in one time step of GTC-P

Lennard Jones Potential calculation using GPU acceleration with the core GPU package of

LAMMPS (other user contributed GPU packages are available but they are not officially

supported by LAMMPS). The input data size used is 2.1 million atoms per GPU requiring

3 gigabytes of memory on a K20 on Titan with a memory capacity of 6 GB. The run

configuration consists of 500 steps of dynamics with the velocity-Verlet integrator across 64

nodes (one GPU per node).

Two kernels run on the GPU when LAMMPS is configured with the above parame-

ters: one performs the pair-wise force computations, in each time step, while the other

re-calculates neighbors to be used for the force computations, once every twenty steps. For

the given input size, the force computation kernel runs for around 17 ms. For 86% of the

running time when neighbor calculation is not being performed, the GPU activity consti-

tutes 9% of the average length of a time step. The remaining 14% of the running time are

constituted by longer time steps due to the neighbor calculation taking around 146 ms. But

even during these steps, the GPU use is only around 33%. This is shown in Figure 6. This is

due to fact that the force field computations for Lennard Jones are performed on the CPU.

The GPU is idle for nearly 88% of the application’s running time. Also, the idle periods

appearing in a time step remain nearly constant over the course of the simulation as does

their distribution across nodes, shown in Figure 7. To summarize, LAMMPS configured to

run Lennard Jones Potential using the GPU, exhibits a low but regular GPU usage.

23

0.10

0.15

0.20

0.25

0.30

0 250 500 750 1000

Timestep #

%
 o

f
ti
m

e
s
te

p
 i
d

le
 (

m
in

,
m

a
x
,

m
e

a
n

)

Figure 9: GTC-P gaps across 64 nodes

3.3.1.2 GTC-P

GTC-P (or Gyrokinetic Toroidal Code - Princeton) is a physics simulation evolved from

GTC that uses the GPU. It is a solver for the gyrokinetic equation employing a 2-D domain

decomposition in the radial and toroidal dimensions respectively. We use a constant toroidal

dimension of 4 and vary the radial dimension to achieve weak scaling. The input data size

is 12.9 million particles per GPU, resulting in a GPU memory footprint of 2.7 GB which

is the highest problem size that can be fit on the K20 GPUs on Titan. GTC-P is run for

500 steps across 64 nodes with each step consisting of 2 sub steps, one for each stage of the

Runge-Kutta algorithm that advances simulation time.

There are four main GPU operations that constitute the bulk of GTC-P’s GPU usage,

viz., push, shift(both toroidal and radial directions) and charge. Some other operations like

smoothing, field and poisson calculations are performed on the CPU using OpenMP for

parallel phases. As shown in Figure 8, this creates a window of 115 ms, for the above input

size, during which the the GPU is left unused by the science application which accounts for

nearly 15% of a time step. Moreover, these gaps repeat in every time step and are observed

on all nodes running the simulation. This is shown in Figure 9. Thus, GTC-P exhibits high

use of the GPU with regularly occurring windows of idleness in each timestep.

24

0 100 200 300 400 500 600 700 800

Time from the start of a timestep (in ms)

Push Particles, Update E Field Core

Update E Field Border, Compute Current, Apply Current To Fields Core

Apply Current To Fields Border, Update B Field Core

UpdateB Field Border

Idle

Figure 10: Gaps in one time step of PIConGPU

3.3.1.3 PIConGPU

PIConGPU (or particle-in-cell on GPU) is another physics simulation implementing the

PIC (particle-in-cell) method that computes the fully relativistic motion of electrons and

ions in the presence of electric and magnetic fields governed by Maxwell’s Equations. We

configure PIConGPU to simulate a Kelvin-Helmholtz Instability (KHI), where the particles

are placed in grids using 44.2 million particles per GPU, requiring a minimum of 2 GB of

memory on the GPU. PIConGPU uses a GPU-resident memory allocator, called mallocMC,

that pre-allocates most of the available GPU memory and then services runtime allocation

requests from GPU kernels. PIConGPU is run for 500 time steps across 64 nodes.

There are four main phases in a time step (shown in Figure 10), each of which run

several kernels on the GPU. In the first phase, particles (ions and electrons) are pushed

based on the current field, lasting for 15% of the length of a time step. Fields at the border

of a grid depend on neighboring grids located on other nodes. So, field towards the center

of the grid are updated while waiting for data from other nodes to arrive. The delay in

arrival of data from other nodes shows up as the first idle window, idle 1. The current

computation phase, is the longest, constituting around 75% of the time step; it is also the

busiest with practically no gap on the GPU. The computed current is applied to the fields

during the third phase. Similar to the update of fields after particles are pushed to new

positions, this phase also involves updating the field based on the newly computed current

values. Like before, this also involves waiting for data from other nodes, resulting in, idle

25

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500

Timestep #

%
 o

f
ti
m

e
s
te

p
 i
d

le
 (

m
in

,
m

a
x
,

m
e

a
n

)

Figure 11: PIConGPU gaps across 64 nodes

2 (nearly 4% in the time step), shown. The first gap, idle 1, only appear when the overlap

between push particles and field update does not hide all data dependencies. The second

gap, idle2, occurs when the computed currents have been used to update the field towards

the center but fields from borders of neighboring grids have not been received yet. As the

field data is much less than the particle data, sufficient computation task is not available

to hide the communication latency and results in the only usable gap during a time step of

PIConGPU.

As shown in Figure 11, there is some variation in the length of this idle period across 64

nodes but the maximum idle period for any node is under 5% of a time step. Landrush in its

current form is a local scheduling entity. It would be intersting to look at the utility of multi-

node management frameworks [30] in aggregating such idle information and scheduling

varying amounts of insitu work based on a node’s load, if the data movement cost can be

compensated. To sum up, PIConGPU is characterized by very high GPU usage, affording

only modest co-location for 0(N) analysis (like scan, minmax, mean etc) on the GPU with

the CPU serving as the main available resource for performing more compute-intensive

insitu analysis.

26

3.3.2 Improvement in ‘Time to Answer’ with Gap-aware Co-location

In this section, we discuss the performance implications if a scientific simulation’s GPU idle

periods are used to run some analysis codes useful for the produced scientific data. We

use three commonly used analysis algorithms run on scientific data: Convolution, Scan and

Histogram.

We have shown in the previous sections that different scinetific codes exhibit varying gap

amounts on the GPU. We next compare the effects of co-location and serialized execution

(Serialized) on the time-to-answer expressed as the % increase in running time over the

running time of a standalone execution of a scientific simulation. Two co-location strategies

are used: one naively co-locates analysis tasks (Naive) on the GPU relying on the driver and

the internal HW threadblock dispatcher, unaware of any contention that may arise; the other

(Landrush) co-locates analysis during gaps in the execution of the scientific simulation when

the GPU is idle. 100 time steps are executed for the three scientific simulations - LAMMPS,

GTC-P, and PIConGPU. The input data size for the analysis application is chosen to be

the largest allocated single buffer in the co-running simulation application. Weak scaling is

performed at three scales, viz., 4, 64 and 1024 nodes. Due to the limit on atom indices in

the Lennard Jones configuration of LAMMPS, the highest scale was limited to 512 nodes.

3.3.2.1 Convolution

Convolution is a fundamental analysis subroutine used by several other higher-level analysis

algorithms, most notably, FFT or Fast Fourier Transform. We used a 2-dimensional con-

volution algorithm where the x- and the y- dimensions are separable using an intermediate

buffer. Two kernels are run one for each dimension. The filter co-efficients are stored in

constant memory on the GPU to enable fast access.

Experimental results with running convolution in situ are shown in Figures 12, 13 and

14. At a weak scaling of 4 nodes, both serialized and naive configurations co-locate really

badly causing slowdowns between 23 and 61%. For the same configuration, the highest

slowdown with Landrush is less than 3%.

At 64 and 1024 nodes, the slowdown becomes more tolerable for GTC-P and PIConGPU

27

0.0

0.4

0.8

1.2

4 64 1024

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 12: Co-location Performance with Convolution : GTC-P

0.0

0.5

1.0

1.5

4 64 1024

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 13: Co-location Performance with Convolution : PIConGPU

28

0.0

0.5

1.0

1.5

2.0

4 64 512

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 14: Co-location Performance with Convolution : LAMMPS

(as shown in Figure 12 and Figure 13) lying between 8 and 15% but Landrush is still much

better keeping slowdowns under 1% for these configurations. But at 64 and 1024 nodes,

serialized and naive approaches give very high slowdowns for LAMMPS lying between 76

and 91%.

Although, the slowdown for these configurations using the Landrush approach is not

insignificant (4 and 11%), it is within tolerable limits to consider in situ over in-transit.

This is shown in Figure 14. Overall using Landrush to run separable convolution over two

dimensions, the average speedup seen is 33% compared to the best of the other approaches.

3.3.2.2 Histogram

The histogram algorithm we chose for this work performs a sparse histogram over 64 bins.

An intermediate buffer is used to stage partial histograms generated by individual thread

blocks running on the GPU using the shared memory to compute smaller histograms with

much faster data access. Two kernels are run on the GPU with the first one generating the

partial histograms and the second one merging them.

We show the performance results of running histogram in situ in Figure 15, 16 and 17.

Co-location causes very high slowdowns (between 20 and 60%) at all scales for LAMMPS

and PIConGPU. This is shown in Figure 15 and 16. In contrast, the worst slowdown is

29

0.0

0.5

1.0

1.5

4 64 512

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 15: Co-location Performance with Histogram : LAMMPS

8.5% when using Landrush.

With GTC-P, slowdown is more tolerable using the serialized or the naive approach

(3 to 14%) because timesteps in GTC-P are longer for larger runs (64 and 1024 runs), as

shown in Figure 17. Overall using Landrush to run a sparse histogram in situ, the average

speedup seen is 17% compared to the best of the other approaches.

3.3.2.3 Scan

Scan (or prefix-sum) is another fundamental algorithm with running time and space require-

ments similar to moving average computation (that is, O(N)). It is used as a subroutine

in many widely used post-processing algorithms, e.g, stream compaction. We have used a

divide-and-conquer version of the scan algorithm which runs three kernels on the GPU, a

basic inclusive scan, an exclusive scan and a final merge step.

The performance results for co-running scan (or prefix-sum) with different scientific

simulations are shown in Figure 18, 19 and 20, with the average speedup being 10%.

When the network communication delays are the smallest (that is, for 4 nodes), the

Landrush approach is clearly shown to be useful giving speedups between 9 and 27%. For

larger runs on 64 and 1024 nodes, LAMMPS and PIConGPU continue to benefit from using

Landrush. This is shown in Figure 18 and 19.

30

0.0

0.5

1.0

4 64 1024

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 16: Co-location Performance with Histogram : PIConGPU

0.0

0.3

0.6

0.9

4 64 1024

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 17: Co-location Performance with Histogram : GTC-P

31

0.00

0.25

0.50

0.75

1.00

1.25

4 64 512

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 18: Co-location Performance with Scan : LAMMPS

0.0

0.5

1.0

4 64 1024

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 19: Co-location Performance with Scan : PIConGPU

32

0.0

0.3

0.6

0.9

4 64 1024

Num of compute nodes

S
lo

w
d

o
w

n
 w

rt
 r

u
n

n
in

g
 s

ta
n

d
a

lo
n

e

InsituMethod Landrush Naive Serial

Figure 20: Co-location Performance with Scan : GTC-P

In contrast, for GTC-P, the savings diminish due to the higher running time per time

step with weak scaling. This is shown in Figure 20.

3.3.3 Discussion

The average speedup obtained with using Landrush to run analysis in situ is 22, 20 and 18

% respectively at 4, 64 and 1024 nodes. This shows that longer communication episodes

at higher scale-out does not diminish the importance of Landrush-style co-location of in

situ analysis. Naive co-location or serialized execution is not good enough even if there is

more slack. It is necessary to carefully place analysis kernels inside gaps when the science

application is not using the GPU and that is what Landrush enables.

The average speedup obtained for the three scientific simulations by running analysis in

situ using Landrush is 8, 19 and 33 % for GTC-P, PIConGPU and LAMMPS respectively.

GTC-P scales the least linearly (running time per timestep increases for larger runs) dimin-

ishing the benefits at 64 and 1024 nodes. For PIConGPU, running analysis only inside the

gaps on GPU (at most 4%, see section 3.3.1.1) is not enough. After the analysis kernels have

run on the gaps on the GPU, data is moved from the GPU memory to the system memory,

and limited busy-waits on the CPU limits the speedup for this application. The LAMMPS

configuration used in this study has the shortest running time per timestep, but it also

33

exhibits the highest idleness on the GPU. The highest average speedup obtained for this

application shows the importance of Landrush-style scheduling even if the GPU resource is

not heavily used, like it is for LAMMPS Lennard Jones. Misplacement of analysis kernels

on GPU, even if there are large gaps, can cause heavy slowdown due to the jitter caused on

other application phases especially MPI communication episodes.

3.4 Chapter Summary

This work explores the implications of sharing the GPU resources on high-end machines

hosting scientific simulations, to run analysis in situ. Its studies of representative high end

codes demonstrate the presence of regular and usable gaps during which the GPU is unused,

providing opportunities for co-running a significant amount of representative GPU-based

analysis tasks on those shared resources. The positive outcome is reductions in the ‘time-

to-answer’ seen by end users, compared to running analysis serially, when the simulation

completes and/or after certain simulation time steps. Landrush, with its ability to co-locate

analysis in “gaps”, is shown to be superior to naive co-location that relies only on scheduling

by the GPU driver.

34

CHAPTER IV

GPUSHARE: FAIR-SHARING OF GPU CLOUD

Following on from the scenarios in Chapter 3, GPUs are being used for more data-rich

applications in cloud computing environments than ever before, and kernels in these ap-

plications have increasingly become longer in terms of running time. For example, newer

machine learning kernels can run for around 100 ms vs. 637 us for the longest-running kernel

across workloads evaluated in previous work([82]). Machine learning[58], graph analytics

[134] and other graphics-oriented applications [90] exhibit similar long-running characteris-

tics. However, in a cloud computing environment like Amazon’s EC2, long-running kernels

on GPUs can hinder scheduling flexibility and fairness for multiple-tenant scheduling be-

cause (i) GPU kernels typically run to completion and (ii) the standard mechanisms (GPU

hardware schedulers and techniques like OpenCL grid offsets) don’t provide the same kind

of scheduling and context switching granularity as CPU threading and preemption models.

This lack of scheduling granularity and flexibility for discrete GPUs drives up the cost of

using GPUs in a cloud computing environment due to limited multi-tenancy and subse-

quent skews in fair sharing. It also doesn’t allow for fair usage of GPU resources that can

currently be guaranteed for CPU-based virtualized systems.

Integrated CPU/GPU systems [56] or accelerated processing units [11] have benefited

from optimizations like coherent memory access with page fault handling [51] to allow for

more flexibility and granularity in scheduling, but these techniques have not been fully

migrated to discrete GPU environments. Previous attempts like Strings [118], disengaged

scheduling [82], and elastic kernels [108] have tried to solve this problem for discrete GPU

environments. However, these approaches make several assumptions that may not apply

to newer, longer-running GPU kernels with high GPU resource utilization. Techniques

like elastic kernels partition GPU resources such as registers and caches. However, they

assume that multiple tenants are complementary, with a mix of low- and high-resource

35

usage kernels. Strings and disengaged scheduling use runtimes that rely on making reactive

scheduling decisions based on previously completed kernels. In the case of long-running

kernels, these approaches do not provide a flexible enough solution to manage kernels from

different applications in a way that both maximizes GPU utilization and also provides

fairness for multiple tenants.

Our approach to providing fair, granular sharing of GPUs, GPUShare, builds on previous

GPU-related scheduling and middleware work and adds a “software-only yield” instrumen-

tation to existing kernels to enable more granular context-switching in a manner that is

both transparent to the user and that improves fairness between multi-tenant kernels. In

addition, GPUShare differentiates between scheduling short- and long-running kernels in a

way that previous work has not by providing a hybrid scheduling approach where software-

based, user-level scheduling is used for managing long-running kernels and short-running

kernels are handled by the existing hardware scheduler. This hybrid approach provides more

opportunities for increasing fair sharing of the GPU while also ensuring the utilization loss

remains low.

Our software-based middleware for fine-grained control over GPU scheduling has the

following design and performance properties, which we will further elaborate in the coming

sections:

• GPUShare recognizes that a distinction is necessary in scheduling short- and long-

running kernels on the GPU leaving the driver to schedule the former and only inter-

vening with scheduling actions for the latter.

• GPUShare implements and demonstrates a “software-only yield” mechanism to en-

able fine-grained context-switching on GPUs to enable fair-sharing over scheduling

windows determined at runtime, as opposed to previous solutions that were limited

in such dynamic control.

• Our experimental evaluation shows that GPUShare improves fairness in GPU use

among tenants by up to 92%, incurs a maximum overhead of 12% due to context-

switching in software, and scales to at least four tenants per GPU (where scalability

36

is limited only by the lack of memory oversubscription support in hardware).

4.1 Background

This section presents a quick refresher on how the application kernels are scheduled on the

GPU by the driver and the thread management hardware. We also provide qualitative

insights, wherever applicable, on how previous work on GPU scheduling fits in.

4.1.1 Programming Model, Host Application and Runtime

GPGPU programming models (CUDA and OpenCL) expose a two-level grouping of threads

: (1) a thread block in CUDA (or a work group in OpenCL) is a group of threads that

can communicate among each other using a software managed cache and can synchronize

using barriers, in some way, equivalent to a CPU SIMD group; (2) a grid in CUDA (or

an NDRange in OpenCL) is a group of thread blocks all of which run the same program

(called the kernel) by a single call to the runtime. (1) provides functionality critical to

any parallel programming model. It is necessary for data sharing and synchronization.

Meanwhile, (2) reduces the latency of accessing the GPU by using a common framework.

Grids help individual applications to maximize their GPU use but can be counterproductive

to multi-tenant scheduling in the event of long runtimes. One category of previous work

([47, 113, 118, 38, 41, 121]) has proposed scheduling middleware that uses a central scheduler

with “remoting” support on top of the runtime which gives good visibility of application

characteristics but can introduce inter-process communication overhead if used for all kernel

launches. GPUShare uses a combination of runtime profiling and prediction to delegate only

long-running kernels to such a central scheduler.

4.1.2 Driver

The driver is responsible for scheduling kernels from multiple processes onto the GPU

by choosing some context-switch interval. However, the scheduling actions of the driver

break down if the co-located processes start issuing long-running kernels that exceed this

context-switch interval. Previous work using prototype drivers([62],[82]) has tried to ad-

dress this problem by controlling GPU sharing over long time intervals by measuring and

37

reactively scheduling the GPU use of each co-located process. This approach can be used

without needing high-overhead IPC with a central scheduler, but driver-level solutions still

do not provide any control on thread-block scheduling, limiting their effectiveness when

long-running kernels are issued by the co-located applications.

4.1.3 Hardware Scheduling of Thread Blocks

The primary user-level control over a kernel’s execution time is in choosing the size of

the grid over which a kernel is launched. Once a kernel is launched with a certain grid

size, the GPU hardware assigns thread blocks to Streaming Multiprocessors (SMs - multi-

threaded execution units similar to CPU “cores”) until all thread blocks have run. Thus,

any scheduling control during the execution of a grid must reside inside the kernel and

requires interaction with the running thread blocks. Previous work in the architecture space

([129],[109],[4]) has explored mechanisms to control thread block dispatch in order to enable

context-switching before a grid completes execution, but this architecture support does not

exist on current hardware, and it would still require additional software to accomplish

higher-level scheduling objectives like fair sharing across multiple tenants. On the other

hand, software[108] can be leveraged on existing hardware to run a subset of thread blocks

to provide the basic mechanism for context-switching a grid. The key research challenge is

determining this subset at runtime, which is what GPUShare aims to address.

4.2 Motivation

The design of the GPU driver and HW thread block management hardware are optimized to

provide high GPU utilization if kernels are available to run, but this design does not address

fair GPU use between two or more contexts. To motivate our middleware GPUShare, we

present results from two microbenchmarks that illustrate how a tenant’s share of the GPU

depends on (1) the relative lengths of the running times of each tenant’s kernels (shown

here) and (2) if kernels are waiting to run when the driver can do a context switch.

To demonstrate point (1), we construct a microbenchmark in which the host application

is able to continuously launch a test kernel of configurable running times on the GPU. It

takes as input a sequence of running times and at each interval can launch a kernel with the

38

next specified running time. Figure 21 shows two instances of the above microbenchmark

co-located on the same GPU, where each is run with a different input sequence. We chose

the inputs such that the sum of the running times is same in both cases. The first four

kernels issued by Process A run for 10, 10, 10 and 40 ms respectively. On the other hand,

the first two kernels issued by Process B run for 50 and 20 ms respectively. Since all the

kernel running times are much greater than the context switch interval of the GPU hardware

(1ms), a context switch happens after each kernel execution, delaying the driver/hardware

from achieving fair sharing until 140 ms. Reactive middleware, like [118], attempts to

restore fair sharing earlier (for example, by allowing two kernels from Process A to execute

consecutively) but still remains dependent on kernel running times. As such, they fail in

this case to do any better than the driver/hardware. In order to achieve fine-grained fair

sharing, time slicing of long-running kernels are necessary (as shown by the execution of

the 50 ms long kernel from Process B getting sliced over four intervals) which is possible

with [108]. However, in order to reduce the overhead of time slicing, some dynamic control

is necessary over the time slicing interval (as shown by the last 20 ms time slice of the 50

ms kernel because a kernel from the other process, longer than 20 ms, was waiting to run).

In this work, we provide mechanisms to address the challenges involved in providing such

dynamic control.

Based on the above two experiments, we infer:

• Short-running kernels (i.e., shorter than the context switch interval) are not likely to

affect fair GPU use and are best scheduled directly by the driver. Previous user-space

scheduling middleware fails to make this distinction.

• Due to the reactive nature of the schedulers in previous work, the earliest corrective

action to restore fair GPU use cannot be taken until all co-located processes have had

a chance to run a kernel (in this case, after 60 ms). For long running kernels (tens or

hundreds of milliseconds), this can badly interfere with achieving fair sharing of GPU

across the co-located processes.

39

Unfair GPU use

Restoring
fairness

Limited context switching

again leads to unfairness

Process A Process B

Yielded runs

Fair GPU use throughout

Context switch after each

kernel execution

Unfair GPU use

Driver/HW

Reactive MW

Proactive MW

Figure 21: Granularity of time slicing with GPUShare

It is important to understand that GPUShare does not provide CPU-like context switch-

ing capability and it is still not possible to context switch at any arbitrary point during the

execution of a thread block, but only at its end. Such instruction-level context switch is

only possible with hardware support. In order to quantify this constraint on “yield-ing” a

long-running kernel, we define its Minimum Execution Interval (or MEI) as the mini-

mum interval of time for which the kernel runs on the GPU before it can be “yield-ed”. It

is equal to the interval to run a certain number of its thread blocks which is determined by

the minimum of the grid size with which the kernel is launched and the number of thread

blocks of the kernel that can fit on all the SMs of the GPU. If one or more of these thread

blocks run for an arbitrarily long time, GPUShare cannot “yield” the kernel to allow other

tenant kernels to run. In such cases, GPUShare allows more kernels from other tenants

to run thereby increasing the granularity of the time window over which it provides fair

sharing.

40

Profiling	

Local	 Predic/on	

Global	 Predic/on	

Central	 Scheduling	 So7ware	 Yield	

Control	

Original	

Kernel	

Instrumented	

Yield-‐able	 Kernel	

Per Tenant Library Central Scheduler Process

Short
running

kernel

GPU	

Driver	

Long running
kernel

Per	 Tenant	 Handling	

Send kernel
runtimes

Receive
timeslice

Send
timeslice

Receive
kernel

runtimes

Figure 22: Interworking of different components of GPUShare

4.3 Design

GPUShare’s design is shown in Figure 22. It consists of two parts: (1) a library linked with

each tenant, and (2) a central scheduler process to coordinate GPU use when long-running

kernels are issued. Inter-process communication is implemented using a light-weight mes-

saging library called nanomsg [85]. Within its two part division, the different components

of GPUShare broadly perform four functions as follows: (1) profiling, (2) prediction, (3)

yielding and (4) global scheduling.

4.3.1 Profiling

GPUShare profiles running times of kernels on the GPU in order to predict and track

running times of the same kernels when they are issued again and to distinguish short- and

long-running kernels. Short-running kernels are then directed to the central scheduler for

time slice allocation on the GPU. The running times of kernels are tracked for every set

of parameters they are launched with and a history is maintained both locally inside each

tenant process as well as inside the central scheduler. Relevant parameters for each kernel

launch like the name of the kernel, its grid and thread block sizes and its shared memory

use are stored in a “bin” object for each kernel.

4.3.2 Prediction

GPUShare uses profiling information to perform prediction at two places to manage schedul-

ing of kernels on the GPU. First, the library component of GPUShare inside every tenant

process predicts whether the running time of each kernel being issued is shorter or longer

41

than the driver’s context switch interval. Second, the central scheduler predicts the remain-

ing running time of long-running kernels waiting to use the GPU.

For the local (per-process) prediction, GPUShare uses the maximum running time from

the appropriate “bin” of matching previous kernel running times. If that bin is empty,

the kernel is treated as long-running, and the central scheduler is contacted. If a kernel is

yielded after running for some time and reissued, it is again treated as long-running.

The central scheduler maintains some extra information to distinguish running times

where all thread blocks ran to completion from those where software yielding occurred. For

kernels that have not been issued and “yield-ed” before, the most recent running time from

the appropriate bin is used to predict the running time. Otherwise, the running time is

predicted based on the previous running time, the number of thread blocks executed in the

last “yield-ed” run, the number of thread blocks remaining to complete and the allotted

time slice on the GPU.

4.3.3 Yielding

When a kernel is launched with a specific grid size, all thread blocks in the grid are scheduled

by the GPU hardware before control returns to software. There are two ways to slice up the

total running time of the grid. (i) By sending a smaller grid consisting of a lesser number of

thread blocks to run. (ii) By sending the same grid but enabling the thread blocks to finish

early, if required. GPUShare uses (ii) because it gives the flexibility to choose the timeslice

after a grid has been issued to the hardware. Even if all thread blocks do not take uniform

time to run, (ii) is effective in controlling the desired timeslice where (i) fails.

The basic mechanism for finishing a thread block early is by executing a return statement

before control reaches any of the original instructions in the kernel. The main challenge

is in dynamically determining that a timeslice has expired and that the remaining thread

blocks should finish early. SMs in Nvidia GPUs are clocked from different sources. With

the number of SMs increasing, this may be the case with all discrete GPUs going forward.

As such, the first thread block assigned to any SM sets the start timestamp for that SM.

Thereafter, all the thread blocks assigned to that SM update the end timestamp for that

42

SM. As soon as the timeslice expiration occurs on any SM, all remaining thread blocks

finish early. In this way, GPUShare is able to “yield” a grid and free up the GPU just after

the end of a timeslice giving much more flexibility to the central scheduler to ensure fair

GPU use.

4.3.4 Central Scheduling

The central scheduler works on the basis of (i) GPU use of both short- and long-running

kernels received through profiling data from each of the co-located processes, and (ii) pre-

diction of running times of long-running kernels issued and waiting to run. GPUShare’s

central scheduler takes into account per process use over the previous profiling epoch when

allocating GPU timeslices to a long-running kernel where several scheduling epochs may

elapse inside one profiling epoch.

For high-utilization workloads like the ones used in this work, one or more process is

usually waiting to run a long-running kernel in any scheduling epoch. GPUShare limits

fair-share accounting within a scheduling epoch by calculating aggregate use only at the

end of a profiling epoch and then giving appropriate credit to each process for the next

profiling epoch.

The GPU driver is work conserving and schedules kernels from the same process succes-

sively if others have not issued kernels in the meantime. Due to this, during each scheduling

epoch, GPUShare provides a “slack window” if any process does not have a long-running

kernel waiting. This guards against unfairness that may arise when some process is slightly

delayed in issuing kernels, possibly due to some short-running kernel that needs to finish

before it can issue the next long-running kernel. Even though the GPU use of processes

with such kernel issue characteristics is nearly the same, they would fail to secure fair share

of the GPU without this “slack window”.

4.4 Evaluation

We ask and evaluate the following questions about the effectiveness of GPUShare:

1. Can GPUShare ensure fair GPU use between pairs of co-located tenants?

43

2. What is the overhead to yield a kernel?

3. Can GPUShare scale to support fair sharing for more than two co-located tenants?

Experiments were conducted on a Tesla K40 using the CUDA 7.0 toolchain and the

346.29 driver. The workloads chosen for the evaluation were nnForge[81] to run deep learn-

ing on the GPU and Gunrock [134] to run graph analytics on the GPU. Both have very high

GPU utilization and represent workloads that would benefit from running on cloud-hosted

GPU compute facilities. nnForge (referred to as NNF) was configured to train on two image

data sets - Imagenet or IN[33] (10M images and 10K+ categories) and German Traffic Sign

Recognition Benchmark or TS[50] (39K images and 43 categories). Gunrock was configured

to run four analytics functions - PageRank (PR)[21], Breadth-first Search (BFS), Maximal

Independent Sets (MIS) and Connected Components (CC) - also on two graph data sets

- LiveJournal social network graph (referred to as SLJ)[70] with 4M+ vertices and 68M+

edges and Kronecker Graph500 logn21 (K21) [69] with 2.1M vertices and 91M edges.

The different experiment configurations for co-location studies in sections 4.4.2 and 4.4.4

are (1) default (D), where the tenant applications run unmodified and without GPUShare

intervention; (2) local (L), where any tenant kernel predicted to have a running time longer

than 1ms is instrumented to yield at 1ms or the kernel’s minimum execution interval (MEI),

whichever is higher; and (3) global (G), where GPU use is mediated via GPUShare with

long-running kernels remoted to the backend daemon in order to enforce fair sharing. While

it would be interesting to benchmark GPUShare’s performance against “elastic kernels”[108]

or the prototype driver used by[82], the driver used by [82] is not publicly available and

“elastic kernels” requires the offline generation of a multi-threaded program for each co-

location scenario where each thread is in charge of executing one of the co-located processes.

For this reason, we compare against the standard CUDA runtime and hardware scheduler.

4.4.1 Metric to measure fair sharing

To measure sharing effects of GPUShare, we use a metric called total normalized skew

loss (or TNSL) adapted from the weighted shares potential delay minimization function

proposed in [80]. Instead of using the sum of weighted delays of all sharers, TNSL uses the

44

difference of the total number of sharers and the sum of the weighted delays. To achieve

fair sharing, this value should be maximized. This is slightly more intuitive when a provider

wants to distinguish users who suffered due to co-location (delay increased by more than

n) from those who did not (delay increased by less than n). From a service guarantee

standpoint, a provider’s financial loss is directly proportional to the overly delayed users,

and TNSL is intended to reflect this loss of service due to colocation. The upper bound

of TNSL depends on the number of sharers - for two, three and four sharers, it is half,

two-thirds and three-fourths, respectively.

4.4.2 Fair sharing between two tenants

In the first set of experiments, our goal is to evaluate the effectiveness of GPUShare in pro-

viding fair share of the GPU to two co-located tenants when they are sharing a single GPU.

We pair up different combinations of workloads with varying GPU usage characteristics.

But the one thing common is that all of the workloads have high utilization with hardly

any gaps in GPU use.

The three workloads are - (i) neural network training using nnForge (NNF), (ii) compute

PageRank (PR), and (iii) breadth-first traversal (BFS). ImageNet (IN) and German Traffic

Sign Recognition (TS) are the two image databases are used for (i). A subset of the Live-

Journal’s social network graph (SLJ) and a network graph generated using the Kronecker

product operation (K21) are used as inputs to (ii) and (iii). Fair-sharing of the GPU is

measured using TNSL and results are shown in Figures 23, 24 and 25. The co-location sce-

narios evaluated are - NNF-IN and NNF-TS with PR-SLJ (Fig. 23); NNF-IN and NNF-TS

with BFS-SLJ (Fig. 24); PR-SLJ and BFS-SLJ; and PR-K21 and BFS-K21 (Fig. 25).

The salient characteristics that affect sharing depend on both the workload and the

dataset. For example, TS is a smaller image database than IN the result of which means

that NNF does not issue any long-running kernels (>1 ms) when run using the TS data

set. As such, local-only yielding (config L) of co-located kernels is not enough to ensure

fair-sharing. Among the graph algorithms in the Gunrock library, BFS is a single traversal

algorithm with variability in its long-running kernels’ execution time. It has only one kernel

45

IN−D IN−L IN−G TS−D TS−L TS−G

PR skew loss

NNF skew loss

Dataset/Share Policy
T
o

ta
l
n

o
rm

a
liz

e
d

 s
k
e
w

 l
o

s
s

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 23: NNForge and PageRank

to be issued, which is not amenable to yielding because of a high MEI of 12 ms. In contrast,

PR is an iterative algorithm involving repeated issuing of long-running kernels and the

central scheduler in GPUShare is needed to enforce fair sharing (config G).

Config G is the most effective in all of the co-location scenarios to reduce TNSL ranging

from at least 68% (BFS and NNF-TS in Fig. 25) and going up to 92% (PR and NNF-IN in

Fig. 24) better than scheduling done by the driver and the hardware scheduler (config D).

If there are not many long-running kernels with MEI higher than 1ms, as is the case with

BFS and NNF (Fig. 24), fair sharing can be achieved just by yielding each kernel at 1 ms

without using the central scheduler (config G).

In summary, the local-only yielding of long-running kernels after 1 ms or the MEI is

not enough to ensure fair sharing whenever there are differences in MEI or number of long-

running kernels issued by tenants. In such cases, GPUShare’s central scheduler, which is

equipped with global profiling information, is necessary.

4.4.3 Overhead

Here we evaluate the overhead for using the GPUShare middleware versus the standard

NVIDIA hardware scheduler.

First, we look at the overhead incurred to yield a kernel at the boundary of a thread

block based on the expiration of an allotted time slice or yield interval. Figure 26 shows the

slowdown of NNF-IN, BFS-SLJ, and PR-SLJ for different yield intervals from 1ms up to

128ms, which is longer than any of the kernel runtimes. The highest overhead is observed

46

IN−D IN−L IN−G TS−D TS−L TS−G

BFS skew loss

NNF skew loss

Dataset/Share Policy

T
o

ta
l
n

o
rm

a
liz

e
d

 s
k
e
w

 l
o

s
s

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 24: NNForge and BFS

SLJ−D SLJ−L SLJ−G K21−D K21−L K21−G

PR skew loss

BFS skew loss

Dataset/Share Policy

T
o

ta
l
n

o
rm

a
liz

e
d

 s
k
e
w

 l
o

s
s

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 25: BFS and PageRank

0 1 2 3 4 5 6 7

0
.9

0
0

.9
5

1
.0

0
1

.0
5

1
.1

0
1

.1
5

Yield Interval in ms (Logarithmic Scale)

S
lo

w
d

o
w

n

Application/Dataset

NNF−IN

BFS−SLJ

PR−SLJ

Figure 26: Local Only Yield : Slowdown at different yield intervals

47

17 reissues of 1K blocks 3 reissues of 40K blocks

0

25

50

75

Complete Yield Complete Yield
Scheduling of grid

G
ri

d
 c

o
m

p
le

ti
o

n
 t

im
e

 (
in

 m
s
)

Overheads CPU−GPU data xfer Execution Launch

Figure 27: Breakdown of yield overhead

for the smallest yield interval of 1ms, which causes the maximum amount overhead for BFS-

SLJ and PR-SLJ at around 4% and 12% for NNF-IN. However, NNF-IN overhead drops

at the 2ms yield interval and actually becomes negative at 4ms-32ms due to the effect of

limiting the number of concurrently running thread blocks.

We further break down the total overhead in an attempt to segregate it into two parts:

1) the cost to reissue a yield-ed grid multiple times and 2) the cost of running the grid

in a time sliced fashion. We select two kernels launched with very different grid sizes and

number of reissues needed to complete the respective grids with the yield interval set to

1ms. The “advance” kernel in the “pagerank” workload is launched with a grid size of

only 1024 thread blocks and has to be reissued 17 times, while the “filter” kernel in the

“connected components” workload is launched with a grid of nearly 40K thread blocks and

gets reissued only 3 times. As Figure 27 shows, the overhead due to (1) launch (ie yield

and reissue) and (2) data transfer for time slice and progress data is relatively small when

compared to the (3) execution time of kernel, and larger grids (ie, the filter kernel in CC)

do not show longer execution overhead. Both of these results demonstrate that the yield

overhead is reasonably small. Inspection of these results have also shown that execution

time overhead is mostly tied to lost cache locality for reissues.

Next, we look at the combined effect of yield intervals and the latency of communicating

48

0 1 2 3 4 5

1
.0

1
.2

1
.4

1
.6

1
.8

Yield Interval in ms (Logarithmic Scale)
S

lo
w

d
o
w

n

Arbitration Interval (in ms)

1

2

4

8

16

32

Figure 28: Neural Net Training on Imagenet : Slowdown at different yield intervals and
arbitration epochs

with a central scheduler and how these factors affect a tenant application’s overall running

time. The number of messages between the global daemon and a tenant is controlled by the

choice of yield interval for a kernel. In this set of experiments, we vary the yield intervals

starting from 1ms going up to 32ms, in powers of 2 while the central scheduler’s arbitration

epoch varies from 1ms up to the length of the yield interval.

Figure 28 summarizes the results for NNF-IN. When the arbitration epoch and the yield

interval are both short (1ms), the overhead is very high (1.7x slowdown) due to the large

number of messages between the central scheduler and the tenant process. But for short

arbitration epochs (1ms), messages can be reduced by increasing the yield interval so that

the application is blocked less often. For example, an 8ms yield interval only has 5.6%

overhead.

On the other hand, arbitration epochs any longer than 4ms need very high yield intervals,

which in turn affects fairness, as shown in the high performance sensitivity for PR-SLJ with

a yield interval of 16 ms (Figure 29). This slowdown is due to the unequal decrease in

number of skipped thread blocks going from an yield interval of 8 ms to 16 ms compared

to going from 4 ms to 8 ms. BFS-SLJ (results in Figure 30) issues a smaller number of

long-running kernels than NNF-IN and PR-SLJ over the same interval of time and thus has

less communication with the central scheduler and flat overhead for varied yield intervals.

To summarize, a yield interval of 4 to 8 ms is necessary for tenants that issue many

long-running kernels in order to limit the number of messages to/from the central scheduler.

49

0 1 2 3 4 5

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

Yield Interval in ms (Logarithmic Scale)

S
lo

w
d

o
w

n

Arbitration Interval (in ms)

1

2

4

8

16

32

Figure 29: Pagerank on SocLiveJournal : Slowdown at different yield intervals and arbi-
tration epochs

0 1 2 3 4

1
.0

1
.5

2
.0

2
.5

Yield Interval in ms (Logarithmic Scale)

S
lo

w
d

o
w

n

Arbitration Interval (in ms)

1

2

4

8

16

1−Long Only

2−Long Only

4−Long Only

8−Long Only

16−Long Only

BFS/SLJ Global Arbitration with Yield Overhead

Figure 30: Breadth-first-search on SocLiveJournal : Slowdown at different yield intervals
and arbitration epochs

50

This avoids slowing down tenant processes too much. It is also observed that the central

scheduler’s arbitration epoch can’t be more than the selected yield interval if latency of

response from the scheduler needs to be overlapped.

4.4.4 Scalability

To test the scalability of our middleware, we study the effect of co-locating three and four

tenants together on the same GPU. The main constraint to increasing the number of co-

located tenants further is the amount of on-board device memory and the current lack of

support for paging of GPU memory.

The worst-case TNSL for any of three tenants is 0.66 while it is 0.75 for four tenants.

While not worst-case, Figure 31 demonstrates that many configurations with the default

scheduler suffer from high TNSL (all cases except BCM-D where BFS, CC, and MIS are

colocated by the default hardware scheduler). This is because PR (PageRank of LiveJournal

graph) is one of the tenants in each of the remaining cases. Due to PR’s continuous supply

of long-running kernels, it always ends up with greater share of the GPU at the expense of

the other tenants.

The local-only yield policy (config L) is very effective at improving TNSL when fair

sharing is impacted due to long-running kernels with low MEI (such as in PR). By each

tenant yielding locally, the wait times of other tenants that were previously blocked by the

long-running kernels of PR are reduced and the TNSL improves between 32% and 89%.

The only case where this doesn’t work is for BCM-L because each of BFS, CC and MIS

have long-running kernels with high MEIs which differ.

Using GPUShare’s central scheduler to do global arbitration (config G) helps to improve

TNSL by 23% to 78% over local-only yield and by 61% to 76% over the default hardware

scheduler. Global knowledge of MEIs helps to compensate for the difference in MEIs of

kernels issued by BFS, CC and MIS which fixes the TNSL for BCM-G. Central scheduling

fails to improve TNSL when kernels with lower MEIs have longer running times because it

adds extra overhead to such tenants for sending/receiving messages. This is why the TNSL

deteriorates for PCM-G (PR, CC and MIS) compared to PCM-L.

51

BCM−DLG BPC−DLG BPM−DLG PCM−DLG BPCM−DLG

MIS

CC

PR

BFS

Tenants/Share Policy
T
o

ta
l
n

o
rm

a
liz

e
d

 s
k
e
w

 l
o

s
s

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Figure 31: More than two Tenants (3 and 4)

4.5 Chapter Summary

The present approach to GPU multitasking defers all context switches to kernel boundaries,

but this technique does not enable fair sharing and SLO guarantees for big-data applications

running in multi-tenant datacenter environments, which increases the costs of using GPUs

in a cloud environment. GPUShare improves on the state-of-the-art by offering fine-grained

context-switch functionality (at thread-block boundaries instead of kernel boundaries) via a

low-overhead instrumentation of GPU kernels, a middleware wrapper layer, and a software-

emulated yield of processing cores. It also offers a hybrid scheduling method for long- and

short-running kernels to reduce overhead.

52

CHAPTER V

SYMPHONY : A SOFTWARE-SUPERVISED, MULTI-KERNEL

SCHEDULER FOR IN SITU GPU WORKFLOWS

High-performance computing (HPC) machines that use GPUs for compute acceleration are

currently burdened with the challenge of balancing bandwidth needs between the CPU,

GPU and the I/O systems. This limited bandwidth motivates the use of on-GPU in situ

analysis for scientific simulations to reduce data movement over PCI Express (PCIe) and

to improve the overall performance of combined simulation and analysis runs for scientific

applications[42]. While in situ analysis provides significant advantages in reducing time to

completion, it requires the ability to co-schedule compute kernels from multiple applications

on the same GPU.

For the current generation of GPUs, scheduling of thread blocks inside compute kernels

is done by a hardware scheduler, which minimizes scheduling overhead but also limits the

flexibility of the generated schedule. Current GPUs focus on scheduling kernels so that they

complete in the shortest amount of time, but the GPU hardware scheduler’s policy might

hurt the combined progress of a co-running application by requiring added data movement

when switching between simulation and in situ analysis kernels. In addition, current GPU

hardware schedulers typically can not predict opportunities to interleave in situ kernels

with simulation kernels or to reuse existing data on the GPU for in situ analysis. These

limitations prevent effective usage of the GPU for in situ analysis.

The majority of previous work focusing on GPU multi-tenancy of compute kernels has

looked into data center-like sharing environments where per-requester performance instead

of overall workflow performance characteristics was considered ([118], [82], [132], [127]).

There has been more recent work that has considered HPC workflows ([145]) but even in

such work, the hardware scheduler in the GPU limits the flexibility of such mechanisms.

To address the problem of effecting co-scheduling simulation and analysis on GPUs, we

53

have developed a system called Symphony, a software-supervised, multi-kernel, thread block

scheduler for GPUs, and evaluated it. Specifically, the contributions of this work are the

following-

• We propose a GPU-resident software scheduler to schedule thread blocks of compute

kernels from multiple applications, specifically to improve time to answer for scientific

applications and related in situ analytics. To the best of our knowledge, this is the

first work to propose GPU-resident scheduling of threads as opposed to host-based

software scheduling. These resident threads are similar to operating system threads

running on CPU cores in that they can be used to run application code on demand.

• Our evaluation of this approach demonstrates that different application and analytics

combinations have different amounts of “headroom”, and we use these experiments

to reason about the scenarios when in situ analysis is most beneficial, how much

resources are needed to schedule analysis on the GPU in relation to a given scientific

simulation, and what types of analysis match best with the given specific application.

• Finally, our approach shows that the time to solution is improved by Symphony in the

range of 15% to 30% for three common scientific codes and relevant analytics routines.

Overhead of scheduling in software is reasonably low ranging from a speedup for one

of the scientific codes (of 8%) to a slowdown of 18%. We also show that overheads

can be mitigated by using batching to reduce the frequency of software intervention.

This work focuses on NVIDIA GPU hardware (as used in systems like ORNL’s Titan[105]

and Summit[106] supercomputers), but the proposed technique applies equally well to other

discrete GPUs.

5.1 Motivation for GPU-resident Coscheduling of Analytics

GPUs currently schedule computation at the granularity of kernels, and when a scientific

application launches a GPU kernel, the GPU driver and hardware-based scheduler allocate

all of the device’s cores (symmetric multiprocessors or SMs in Nvidia terminology) to the

kernel. Unlike CPU schedulers, GPUs are designed with the goal of keeping the device

54

0	

2	

4	

6	

8	

10	

12	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	

S
lo
w
d
o
w
n
	

#	 of	 SMs	 unavailable	

PIConGPU	

GTCP	

Figure 32: Impact of available SMs on throughput of two well-known PIC codes

busy with highly parallel tasks in order to achieve best performance on a single kernel

and high utilization by eliminating software intervention during the kernel’s execution. For

this reason, GPU applications typically launch a much larger number of SIMD groups of

threads or a “batch” of thread blocks (a SIMD group of threads in Nvidia terminology)

than the available physical cores on the GPU in order to amortize the latency of launching

a kernel. One result of this batch-based model of execution of kernels on GPUs, is the

inevitable head-of-the-line blocking that occurs when a very large batch (a “grid” in Nvidia

terminology) is scheduled to run and enjoys exclusive access to the GPU for a relatively

long period of time. This is quite common for GPU kernels in scientific simulations that

operate on large amounts of data resulting in big “grids”.

This model of granting exclusive access to a single kernel severely affects the amount of

time available to do useful in situ analytics, particularly when the co-running science code

is characterized by many such large “grids” that have very high utilization of the GPU.

Ideally, we would like to allow for a scheduler that can make scheduling decisions “during”

a GPU kernel’s execution in addition to scheduling points only “after” the execution of the

kernel that is possible today.

We perform a characterization of two particle-in-cell (PIC) plasma simulations, PICon-

GPU [22] and GTC-P[137], both of which use the GPU for computing the most compute-

intensive kernel, current deposition. During the current deposition phase, particle (ions and

electrons) properties remain static or consistent and are good candidates for in situ analysis.

Our characterization looks at the effect of available HW parallelism on the throughput of

55

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1	 2	 3	

U
"
li
z
a
"
o
n
	 o
f	
a
v
a
il
a
b
le
	 S
M
s
	

#	 of	 SMs	 available	

PIConGPU	

GTCP	

Figure 33: Utilization of available SMs for histogram analysis

the two scientific applications, which can be indirectly controlled by limiting the number

of SMs that kernels from PIConGPU or GTC-P run on the GPU. The resultant slowdown

versus number of SMs allocated per application is shown in Fig 32. Although these two

simulation kernels differ greatly in implementation, they exhibit strikingly similar scaling

characteristics with a sublinear slowdown for the first few SMs. In other words, the frac-

tional performance loss of the simulation kernels running on a few SMs less than normal is

quite reasonable for both tested applications. With up to 3 SMs limited or “revoked”, the

slowdown observed is within 15% of the “hardware-scheduled” application running on all

SMs.

We also characterize the performance of a GPU histogram analysis application that runs

on the particle data of PIConGPU and GTC-P using up to three SMs. Here we assume that

these SMs have been revoked from the respective simulations and allocated to the histogram

application’s kernels. We measure the running time of histogram normalized to the charge

deposition time intervals in the related simulation code. The rationale is that the charge

deposition interval is the maximum time available for the histogram analysis operation to

complete while the particle data remains consistent. If the normalized running time is

greater than one, it implies that the simulation needs to be stalled for analysis to finish

after the charge deposition has completed. Fig. 33 shows that for both the simulations,

it is possible to run the histogram analysis on the GPU simultaneously with the charge

deposition phase without causing any stall and by using fewer than three SMs. These simple

experiments demonstrate that even the parallel efficiency of optimized HPC applications

56

4x Warp
Scheduler

4x32x
ALU

32x SFU

32x LD/

STU

15 SM

Thread Block Dispatch
GPU Core (SM)

GPU Core (SM)

Figure 34: Processing cores and scheduling hardware in modern GPUs

cannot fully leverage the large number of SMs in GPUs on high-end machines. As a result,

there is some slack available to schedule in situ analysis kernels on the GPU that can run

during windows when the data to be analyzed remains read-only.

5.2 Design

Fig 34 shows the HW components of a GPU core and the scheduling function present inside

most common GPUs today. In terms of ALU hardware, symmetric multiprocessors (or

SMs in Nvidia terminology) are similar to SSE-enabled CPU cores with hyper-threading.

The key difference arises in the way a SIMD thread’s state is managed during its lifetime.

The GPU manages it entirely in hardware using the warp scheduler whereas the operating

system/thread library is in charge for the CPU. Thread stop/resume/migrate decisions on

the CPU occur due to I/O requests from executing threads and/or OS scheduling events.

CPU threads in a system do not often increase in excess of available processing cores, but

an SM on the GPU mostly operates in an oversubscribed state with upto sixteen times more

SIMD threads than available cores. The warp scheduler’s job is to quickly switch out SIMD

threads waiting on long-latency load/store requests with others that have ALU operations

to run. The thread block scheduler operates at a level higher where it balances load across

the SMs feeding SIMD threads into each of the warp schedulers.

It is important to observe that all these HW resources on the GPU are available to a

single kernel launched from a single application context for the duration of execution of the

kernel. For single-application usage scenarios on GPU, the hardware-managed approach

works perfectly. However, to support fine-grained sharing of GPU cores across applications

for in situ analysis, SMs need to be independently schedulable entities. We intend to achieve

this with Symphony, a software layer on the GPU similar to the OS scheduler/threading

57

library that mediates execution of different application kernels. Presented below are some

of the design considerations in implementing such a system.

5.2.1 Warp-level vs Thread block-level abstraction

Abstracting scheduling control at the level of warps can provide great flexibility but may

turn out to be counter-productive due to the extremely low-level monitoring information

needed to schedule efficiently. For example, heavy instrumentation is required to identify

long latency load and store requests. Symphony, thus, focuses on abstracting scheduling

control at the granularity of thread blocks of application kernels. To eliminate the effects of

destructive interference as far as possible, we have chosen to use a homogeneous distribution

of thread blocks among the available SMs where any given SM only runs thread blocks on

a given SM are from the same application kernel.

5.2.2 Hardware thread block scheduling - ignored or software supervised?

Today, the hardware thread block scheduler in GPUs is not a directly programmable unit

that can be reconfigured during the execution of an application kernel. For the sake of

argument, even if that is implemented in the future, we believe that a software entity on

the GPU-side needs to exist to manage the reconfiguration to best adapt to co-running ap-

plications’ performance goals. The device driver approach of the host operating system will

simply not scale to support such fine-grained control without incurring a huge amount of

overhead. In Symphony, we have used the software supervisor approach where a supervisor

kernel cooperates with the hardware thread block scheduler to schedule application kernels

on the SMs. Due to current hardware limitations, the hardware thread block scheduler’s

role is reduced to starting the supervisor kernel(s). Thereafter, the rest of the schedul-

ing responsibility is undertaken by the supervisor kernel without any assistance from the

hardware thread block scheduler. However, it is possible that a future version of the super-

visor kernel could delegate scheduling responsibility to a compatible hardware thread block

dispatcher momentarily to avoid the overhead of software control.

58

5.2.3 Dynamic vs static resource allocation

As previous work[43] has shown, it is possible to allocate kernels to the GPU in conservative

steps that are known statically. By launching no more thread blocks than the occupancy of

a given kernel on a particular GPU, it is possible to ensure much better fairness in sharing

the GPU across multiple application kernels. However, this approach does not provide any

response time guarantees because the issued grid of thread blocks across all SMs may take

an arbitrarily long time to release the GPU. Even if there are some thread blocks that have

completed execution, those SMs do not become available for use by other application kernels.

Symphony is designed so that it can utilize such thread block idling because it manages

application kernels at the granularity of individual thread blocks instead of complete grids.

5.2.4 Additional offload APIs vs more compiler directives

Some of the basic interactions between an application and Symphony have to rely on the

offload API provided by the GPU vendor (for example, CUDA in case of Nvidia GPUs).

For example, bootstrapping the supervisor kernel or getting application kernels through

to the supervisor kernel, requires the device driver’s intervention. But more fine-grained

scheduling hints are better inserted in the form of compiler directives similar to existing

standards like pragmas with OpenACC[107]. For example, Symphony supervisor kernels are

shape-preserving with respect to the shape of the thread blocks of the application kernels

they run. Scheduling hints could be used to assist libraries like Symphony in supporting

multiple supervisor kernels with compatible shapes of the application kernels that have been

communicated via device code or compiler directives. In addition, some or all thread blocks

in a given application kernel might be marked as shape invariant such that they could be

executed by different supervisor kernels, which would offer greater scheduling flexibility.

While the current version of Symphony does not support these compiler directives yet, this

is a future research area for improving the co-location of different kernels.

59

5.3 Implementation

Symphony adds software supervision to the hardware-only thread block scheduler of GPUs

by delegating the hardware to schedule only a small number of thread blocks and using

software to schedule the rest. For large scientific applications and their associated analytics

operations, most of the GPU running time is composed of a few long-running kernels. Thus,

performance can be influenced to a large extent by the software scheduling decisions and the

hardware scheduler can be leveraged, when necessary, to minimize the overhead. Symphony

consists of three components - (1) the deployer is responsible for deciding resource parti-

tioning between science and analysis kernels and setting up software supervision for their

GPU execution; (2) the orchestrator performs the actual supervised scheduling of thread

blocks once simulation and analysis kernels have been deployed; and (3) the consolidator

takes care of reassigning SMs as they become available when one of the kernels completes

execution and the deploy-time allocation becomes stale.

5.3.1 Deployer

The deployer block resides entirely in the application’s host-side user space. Symphony im-

plements a wrapper layer around the CUDA runtime/driver to intercept application kernel

launches to the GPU. It uses a simple heuristic based on the CUDA occupancy calculator

API to determine if the issued kernel will be long-running and software supervision is nec-

essary. If the size of the grid is 10 times more than the occupancy, Symphony considers

the kernel to be long-running and deploys a supervisor kernel by wrapping the original

application kernel with Symphony scheduling code. Any long-running kernel needs to be

JIT-compiled just once to make it Symphony aware, and then it can be cached for sub-

sequent use. Symphony also uses the CUPTI profiling API to continuously monitor GPU

kernel execution times of the scientific simulation and the analysis application, so it can

identify other long-running kernels with smaller grids that were previously not considered by

Symphony’s heuristic for supervised scheduling. Symphony follows a conservative approach

for co-scheduling analysis by using software supervision for all kernels except ones with a

grid size less than or equal to the occupancy determined by the occupancy calculator. The

60

Static schedule Schedule updated after
every n(>1) thread

blocks

Schedule updated
after each thread

block

Responsiveness
increases

Scheduling overhead
decreases

Figure 35: Software-supervised thread block scheduling : Responsiveness vs Overhead

module loading API in the CUDA driver wrapper of Symphony can also be used to point

to only the kernels that a given user wants to be scheduled with software supervision.

Once an application kernel is identified by Symphony to be scheduled with software

supervision, a shape-preserving supervisor kernel is launched with identically shaped thread

blocks and a grid size equal to the occupancy of the kernel determined by the occupancy

calculator API. The supervisor kernel runs the first N thread blocks of the application kernel

where N is the occupancy. Symphony follows a 1:1 mapping where each supervisor kernel

thread block executes a single application kernel thread block. This is followed by launching

progressively smaller supervisor kernels of grid sizes N(M-1)/M, N(M-2)/M... etc. that are

allowed to run on (M-1)/M, (M-2)/M... etc where M is the total number of available SMs.

In other words, a linear search is performed to determine the number of SMs that yields the

best value of resource scale down (number of SMs used/total number of SMs) to slowdown

(running time using the allotted SMs/running time using all the SMs). Symphony stops

the linear search as soon as the resource to slowdown ratio decreases or the number of SMs

allocated to the scientific application is half of the total SMs. For the analysis kernels, the

search is carried out in the reverse direction, and the search is stopped once the speedup to

resource scale up ratio decreases or the number of SMs allocated is equal to the leftover SMs

from the simulation kernel’s search. Once a supervisor kernel is deployed, the orchestrator

embedded into the corresponding Symphony-aware application kernel gets notified of the

number of completed thread blocks that it took to determine the SM allocation.

61

5.3.2 Orchestrater

The orchestrator resides on the GPU-side and consists of two components. The first compo-

nent is a kernel-embedded fixup code for grid size and thread block identifier, which preserves

the application’s semantics wherever any assumptions about grid size and thread block iden-

tifier are made. This prevents existing applications from breaking when application-specific

grids are altered and resulting thread blocks are scheduled by Symphony. The second com-

ponent is the scheduling logic that resides inside each supervisor kernel for executing the

science kernel and the co-scheduled analysis kernel(s).

The main challenge in the implementation of the fixup code is the degree of pointer

aliasing used in the application kernel. For the very few kernels with pointer aliasing

(none in the HPC applications tested here), we manually instrument the kernel source for

Symphony support. We believe pointer aliasing of grid size and thread block identifier in

kernel sources are avoidable without performance penalty such that the compiler can enforce

needed checks to prevent issues with the fixup code.

Symphony provides scheduling flexibility through supervisor kernels which can schedule

thread blocks using a wide range of scheduling policies. In this work, we have focused

on the frequency of software intervention and how it can be used to trade off scheduling

overhead against combined simulation/analysis throughput. However, a supervisor kernel

can be imagined as a distributed scheduler consisting of multiple thread blocks running on

one or more SMs where each supervisor kernel thread block runs some number of thread

blocks of the application kernel. The scheduling questions we attempt to answer are - (1)

what is the mapping of application thread blocks to supervisor kernel thread blocks?, and

(2) how is the mapping arrived upon?

(1) involves exploration of a huge index space for even moderately sized grids because

the GPU programming model does not impose any restriction on the order in which thread

blocks of a grid are scheduled. However, data locality characteristics between thread blocks

and nearby indices for most application kernels motivates us to start with a strided as-

signment of application thread blocks across SMs. For (2), a static mapping might lead to

better performance than the hardware-only thread block scheduler because a few supervisor

62

kernel thread blocks have to be scheduled instead of many application kernel thread blocks.

However, there is a potential load imbalance between supervisor kernel threads where a

static quota of blocks might result in idle cores. A runtime decision where each supervisor

kernel thread block contends for the thread block to run can make the scheduling policy

highly responsive to load imbalance, but serialization for a supervisor to decide on the next

thread block can inflate overhead. This trade off is shown in Fig.35. Symphony take the

middle ground by supporting a batch assignment where a supervisor kernel thread block

can choose N application kernel thread blocks to run at each contention point. N can be

large when the original application kernel grid size is also large and vice versa.

5.3.3 Consolidater

The consolidater component of Symphony exists on both the host and the GPU. On the

host, the consolidater’s task is to launch a scaled up supervisor kernel as a result of SMs

becoming available due to the simulation or the analysis kernel completing early. We in-

tentionally implemented the consolidater as separate from the deployer. In principle, it

should be possible to launch additional supervisor kernels from the GPU using CUDA dy-

namic parallelism[94] or OpenCL device-side enqueue[64]. Future GPUs might expose SM

allocation control to software making multi-kernel SM sharing easier to manage. If so, the

consolidater could exist entirely on the GPU.

There are two situations that could arise once simulation and analysis supervisor kernels

have been deployed. In one scenario, the analysis kernel may finish execution early in which

case SMs become available for the simulation kernel to use. In the other scenario, the

simulation kernel may be done while the analysis kernel is still running and subsequent

simulation kernels have to be scheduled. When there is data consistency issue by letting

other simulation kernels run, the analysis kernel should scale up to use the available SMs

in order to complete quickly. However, when that is not the case, a paritioning decision is

necessary to allocate the SMs that became available. Symphony does not recalculate SM

distribution but simply allocates the freed SMs to the next simulation kernel. For all cases

where the remaining time to run the analysis kernel is less, the overhead of recalculation

63

can be avoided.

The supervisor kernel to be scaled up is stopped by mimicking a software mailbox.

Whichever supervisor completes first posts to the mailbox. The mailbox is checked by

each thread block of a supervisor (in this case, the one that is still running) during batch

assignment. So, large batches can cause some delay in effecting the consolidation. There-

after, a new supervisor kernel is launched which runs on all available SMs. State is shared

between the consolidater and the orchestarter to checkpoint where in the grid did the con-

solidation occur. Also, the fixup code gets updated information necessary to guarantee

launch-dependent application semnatics.

5.3.4 Limitations of the Symphony Approach

Symphony allocates computation resources to supervisor kernels at the granularity of SMs,

but warps in Nvidia GPUs and wavefronts in AMD GPUs are actually the lowest granularity

at which hardware resources can be assigned to software. When the kernel’s thread block

size is larger than the size of a warp, allocation at the granularity of a warp presents

multiple performance challenges in the current hardware. In particular, the faster access

shared memory cannot be used for most access patterns, and software barriers are required

for syncthreads, which would otherwise be handled in hardware. For this reason, Symphony

currently schedules only at SM-sized granularities.

Also, kernel sources need to be available in order to schedule them using Symphony due

to the need to slightly modify launch parameters to work with a superkernel launch. Al-

though most HPC codes are open source, some important analysis kernels like FFT routines

in CUDA [101] are distributed as binaries. However, it should be noted that performant

open-source libraries are also available([136], [55]) which could be used to leverage the

advantages of Symphony.

5.4 Evaluation

In evaluating Symphony, we ask the following questions:

1. Is it able to improve the overall throughput of scientific and analytic workflows?

64

2. How much is the overhead compared to the HW scheduler when in situ analysis on

the GPU is not used?

5.4.1 Setup

To evaluate Symphony, we look at three common scientific applications (PIConGPU, GTC-

P, and LAMMPS) and related analysis tasks (Histogram, Nearest-Neighbor) that can be

run in situ on a GPU with the co-located scientific application using Symphony to manage

scheduling. While some single node testing and debugging is run using an NVIDIA K40

GPU, these application and analytics routines are primarily tested using Titan with 64-node

jobs where each node has an AMD CPU and an NVIDIA K20 GPU spanning over 1024

CPU cores and 793 symmetric multiprocessors. We have used a high-performance GPU

library, called ArrayFire [140], to build the analysis workloads that are co-scheduled with

scientific simulations.

PIConGPU is a particle-in-cell (PIC) plasma simulation where all computation runs

on the GPU. A small number of CPU cores (1 out of 16 on Titan) are used for launching

kernels on the GPU, moving data to/from the GPU memory and exchanging data with MPI

processes. This limited use of CPU cores leaves them available for analysis, but limited PCIe

bandwidth becomes a bottleneck when the simulation is run with problem sizes that come

close to filling GPU memory.

GTC-P is similar to PIConGPU in that it is also a particle-in-cell plasma simulation,

and the data consistency property of the particle data during the charge deposition phase

can be similarly exploited to run analysis on the particle data. However, it differs greatly

from PIConGPU in its implementation with a mix of parallel compute running on the CPU

cores and the GPU. Similar to PIConGPU, the charge deposition phase of GTC-P also runs

off the GPU and constitutes around 65% of the running time in any given time step. In the

context of this work, we investigate the effects of co-running analysis kernels on the GPU.

LAMMPS or Large Scale Atomic/Molecular Massively Parallel Simulator represents

another important class of scientific simulation, namely, molecular dynamics. We configure

LAMMPS to simulate Lennard Jones potential using a cutoff distance. This configuration

65

-‐0.8	

-‐0.6	

-‐0.4	

-‐0.2	

0	

0.2	

0.4	

0.6	

14,1	 13,2	 12,3	 11,4	 10,5	 9,6	 8,7	 7,8	 6,9	 5,10	 4,11	

S
p
e
e
d
u
p
	

SM	 par**oning	 (PIConGPU,	 Histogram)	

12.5M	

25M	

50M	

100M	

Figure 36: SM scaled throughput of PIConGPU and Histogram workflow

has multiple applications, such as simulating cracking and melting of materials. We use the

USER-CUDA package in LAMMPS (as opposed to the LAMMPS GPU package) due to

its higher GPU utilization, which makes co-location of analysis kernels on the GPU more

challenging.

5.4.2 Throughput

In the first set of experiments, we test the effectiveness of the space sharing capabilities

of Symphony in providing improved throughput for different scientific workflows exhibiting

diverse GPU execution characteristics.

5.4.2.1 PIConGPU and Histogram

For PIConGPU, the particle data constitutes the bulk of the memory requirement of this

simulation, and histogram is a frequently used analysis performed on various particle at-

tributes like particle energy etc. A time step in PIConGPU consists of charge deposition

which constitutes 70% of the running time. During this interval, the particle data is not

updated. This implicitly provides data consistency so that read-only analysis can be run. If

the histogram calculation does not complete inside the time it takes for charge deposition to

finish, PIConGPU is stalled. Alternatively, Symphony also enables the analysis calculation

to be halted and the results to be discarded.

Fig 36 shows the variation of throughput when sweeping across the available SMs,

allocating a fraction to Histogram and the rest to PIConGPU. A scaling of the input size

is also performed starting from 12.5 million particles going up to 100 million particles. As

66

-‐0.5	

-‐0.4	

-‐0.3	

-‐0.2	

-‐0.1	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	

S
p
e
e
d
u
p
	

SM	 par**oning	 (GTCP,	 Hitogram)	

12M	

3M	

750K	

Figure 37: SM scaled throughput of GTC-P and Histogram workflow

the charge deposition calculation in PIConGPU is more compute-intensive than histogram

calculation for the same problem size, the combined throughput starts to drop sharply if

more than 4 out of 15 SMs in Titan’s K20 GPUs are allocated to histogram. This is even

more so as the problem size gets bigger (shown by the sharper slowdown for 50M and 100M).

Overall, Symphony provides 30% better throughput than the HW scheduler for all problem

sizes allocating anywhere between 2 to 4 SMs to histogram.

5.4.2.2 GTC-P and Histogram

Fig 37 shows the throughput characterization with a SM partitioning sweep for the GTC-

P and Histogram workflow. The scaling is limited for GTC-P (6 million and 12 million

particles) due to the memory capacity of 6 gigabytes on Titan’s K20 GPUs and the problem

size increasing by 4x due to quadratic dependency on radial and toroidal dimensions of the

GTC-P simulation structure. The charge deposition calculation in GTC-P is nearly 2x

slower (4x when normalizing to the input size) than that of PIConGPU. As a result, even

with 1 SM allocated to histogram, it completes before charge deposition finishes. Thus

allocating any more SMs to histogram only serves to reduce the overall throughput. In this

case, Symphony provides 15% better throughput than the HW scheduler by allocating 1

SM to histogram.

5.4.2.3 LAMMPS and Nearest Neighbor

The scaling study varied the number of atoms per GPU from 1 million to 8 million. The two

most compute-intensive phases during a time step for the above configuration of LAMMPS

67

-‐1.8	

-‐1.6	

-‐1.4	

-‐1.2	

-‐1	

-‐0.8	

-‐0.6	

-‐0.4	

-‐0.2	

0	

0.2	

0.4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

N
o
rm

a
li
ze
d
	 S
p
e
e
d
u
p
	

SM	 par00oning	 (LAMMPS	 Lennard	 Jone	 Cutoff,	 Nearest	 Neighbor)	

1M	

2M	

4M	

8M	

Figure 38: Scaling throughput of LAMMPS Lennard Jones with Cutoff and Nearest Neigh-
bor workflow

is the neighbor list calculation and pair-wise force calculation, both of which run entirely on

the GPU. In fact, similar to PIConGPU, this configuration of LAMMPS with the USER-

CUDA package runs all computation on the GPU, including the two above steps and the

time integration (NVE or micro-canonical ensemble). The pair-wise force calculation that

occurs during each time step constitutes 75-80% of the running time. The neighbor list

construction is 3x more compute-intensive than pair-wise force calculation but only occurs

once every 20 steps in the chosen configuration. As a result, it only constitutes 10% of the

overall running time. For this workflow, data consistency of atom data is automatically

ensured during the force calculation phase.

Fig 38 shows the throughput characterization with SM partitioning sweep for the LAMMPS

Lennard Jones with cutoff and Nearest Neighbor workflow. In this case, Symphony provides

20% better throughput than the HW scheduler by allocating 4 SMs to the nearest neighbor

analysis.

5.4.3 Overhead

In the second set of experiments, we study the cost we pay for adding fine-grained time-

slicing and SM-level space sharing capabilities to simulation kernels via added atomic op-

erations. Kernels equipped with such functionality can dynamically scale up or scale down

their SM usage and can react to the needs for running in situ analysis on the GPU. However,

it is important to understand the overhead incurred to have such functionality available.

68

-‐0.7	

-‐0.6	

-‐0.5	

-‐0.4	

-‐0.3	

-‐0.2	

-‐0.1	

0	

1	 2	 4	 8	 16	 32	

N
o
rm

a
li
ze
d
	 S
p
e
e
d
u
p
	

Batch	 Size	 (in	 #	 of	 thread	 blocks	 before	 atomics)	

100M	

50M	

25M	

12.5M	

Figure 39: Software scheduling overhead of PIConGPU

5.4.3.1 PIConGPU

PIConGPU is the most well-tuned of all the scientific codes evaluated in this work. The

current deposition phase in PIConGPU is similar to the other PIC code, GTC-P, in that the

particle data is not modified and it constitutes 60-70% of the time spent in any time step

of the simulation. However, PIConGPU performs fine-grained management of computation

and data movement by launching many kernels which each handle a subset of the data. In

this way, it is possible to move data around the boundary that is needed by two or more

MPI ranks of the simulation running on different machines, before the last of the current

deposition kernels have run. As a result, the current deposition kernel now runs over much

shorter grids and load imbalance and idle cycles can be more of an issue between different

supervisor kernels.

The overhead without batching for the smaller problem sizes (12.5 and 25 million parti-

cles) are low (1.5 to 3.7%) for small problem sizes but are higher (14.8 to 17.8%) for larger

problem sizes (50 and 100 million particles). Serialization starts to occur at batch sizes of

2, 4, 8 and 16 for the problem sizes of 12.5, 25, 50 and 100 million particles, respectively.

Even before the batch size is large enough to start causing serialization, performance starts

to degrade due to the increased cost of calculating the next range of thread blocks for the

3-dimensional grid of the current deposition kernel. Overall, batching does not provide any

benefits to the current deposition kernel of PIConGPU due to the small grid sizes over

which it is launched and the higher cost of 3-dimensional thread block index calculation

with increasing batch sizes. The overhead characteristics with different batch sizes starting

69

-‐1	

-‐0.9	

-‐0.8	

-‐0.7	

-‐0.6	

-‐0.5	

-‐0.4	

-‐0.3	

-‐0.2	

-‐0.1	

0	

1	 2	 4	 8	 16	 32	 64	

N
o
rm

a
li
ze
d
	 S
p
e
e
d
u
p
	

Batch	 Size	 (in	 #	 of	 thread	 blocks)	

12M	

3M	

750K	

Figure 40: Software scheduling overhead of GTC-P

from no batching is shown in Fig 39.

5.4.3.2 GTC-P

Like PIConGPU, GTC-P invokes a single charge deposition kernel which constitutes 60-70%

of the running time of one time step. In GTC-P the grid size of the charge deposition kernel

is just over 3000 blocks since thread blocks operate on more particles. As explained earlier,

small grids can quickly serialize when the batch size is increased. However, GTC-P uses a

1-D array for particle data, which lowers the cost of calculating the next thread block index

in the supervisor kernel when compared to PIConGPU.

The charge deposition kernel in GTC-P has a large register footprint (182-189 registers

per thread), and increasing the batch size degrades performance slightly (6-16%) before the

serialization effect starts to take over at batch sizes of 4 and 16 for problem sizes of 0.75 and

3 million particles respectively. Although, we did not expect serialization to occur before a

batch size of 64 for the largest problem size of 12 million particles, the performance starts

to degrade from 16 and at 64, there is a sharp decrease, as shown in Fig 40.

5.4.3.3 LAMMPS

The LAMMPS Lennard Jones kernel computation takes up about 75-80% of the duration

of an average time step, and is accompanied by a compute-heavy (3x longer than the pair-

wise force computation) kernel that performs the neighbor list computation for each pair of

atoms after a set number of time steps (20 for the default setting for 10% of the runtime).

Due to the size of the pair-wise computation’s application grid (hundreds of thread blocks),

70

-‐3.8	

-‐3.3	

-‐2.8	

-‐2.3	

-‐1.8	

-‐1.3	

-‐0.8	

-‐0.3	

0.2	

0.7	

1	 2	 4	 8	 16	 32	 64	 128	 256	 512	 1K	 2K	 4K	

N
o
rm

a
li
ze
d
	 S
p
e
e
d
u
p
	

Batch	 size	 (#	 of	 thread	 blocks	 between	 atomics)	

1M	

8M	

Figure 41: Software scheduling overhead of LAMMPS

this simulation is a good candidate for batching to reduce the number of Symphony atomics.

In addition, the pair-wise kernel is 2-D. We observe that the performance for the largest

problem size (8 million atoms) starting with no batching steadily improves up to a batch size

of 512 thread blocks capping off at 38% (for 128 threads) as shown in Figure 41. However,

when the problem size is smaller (1 million atoms), the benefit of batching gets diminished

due to a smaller grid coupled with the higher cost of thread block calculation reaching

serialization quickly around a batch size of 128.

5.4.3.4 Effect of batching

To understand the effects of batching on overhead, we measured three CUPTI metrics and

events for GTC-P and LAMMPS. We looked at three key metrics, gld requested throughput,

gst requested throughput and atomic transactions. GTC-P does not see any positive effects

from batching while LAMMPS shows some benefit over a range of batch sizes until serial-

ization takes over. In both cases, the global load (and store) throughput follows the overall

performance of each application indicating the overhead is due to memory bottleneck. The

store throughput pattern is very similar to load throughput, so we have only shown load

throughput in Figures 42 and 43.

In addition to being limited by memory bottlenecks, batching does not dramatically

reduce the number of atomic transactions when compared to the existing number of atomics

in kernels like charge deposition for GTC-P. By measuring atomic throughput, we see that

it closely follows gld requested throughput (not shown in Figure 42 due to scale). As batch

71

280	

282	

284	

286	

288	

290	

292	

294	

0	

2	

4	

6	

8	

10	

12	

14	

H
W
	
SW
	

B2
	

B4
	

B8
	

B1
6	

B3
2	

B6
4	

B1
28
	

M
il
li
o
n
	

G
B
/s
	

HW/SW	 -‐	 without/with	 batching	 (size	 in	 #	 of	 thread	 blocks)	

Global	 Load	

throughput	

#	 of	 Atomic	

TransacDons	

Figure 42: Effect of batching on atomics and total overhead in GTC-P

0	

20	

40	

60	

80	

100	

120	

140	

0	

5	

10	

15	

20	

25	

HW	 B2	 B8	 B32	 B128	 B512	 B2K	

T
h
o
u
sa
n
d
s	

G
B
/s
	

HW/SW	 -‐	 without/with	 batching	 (size	 in	 #	 of	 thread	 blocks)	

Global	 Load	

Throughput	

#	 of	 Atomic	

TransacDons	

Figure 43: Effect of batching on atomics and total overhead in LAMMPS

size increases, more thread blocks generate more atomics, which eventually causes them to

be serialized and increase overhead.

In contrast to GTC-P, LAMMPS does not use any atomic transactions. As a result,

scheduling it with Symphony creates a sharp increase in atomic transactions that steadily

goes down as the batch size is increased. This is shown in Figure 43. It can be inferred

from the measurement of gld requested throughput that the most of the overhead for larger

batches is caused by a memory bottleneck and not by the added atomics for Symphony.

5.5 Chapter Summary

In this work, we present Symphony, a software scheduler for running in situ analytics jointly

with scientific applications on many-core SIMD architectures, like GPUs. The key insight

provided in this work is that even well-tuned GPU kernels of mission-critical scientific

applications do not scale linearly to use all available cores, which allows for a valuable

opportunity to co-locate analytics on a few reserved SMs.

72

The benefits of this approach are two-fold. On one hand, the total time to answer,

which involves both running the scientific simulation and then analyzing the output data,

can be significantly improved. Our approach accomplishes this by avoiding stalls in the

progress of simulation due to co-scheduled analytics. Secondly, valuable cycles for transfer-

ring data back and forth between the system and GPU memory can be avoided by using

the characteristics of the workflow to ensure data consistency and still allow for read-only

analytics.

We also looked at mechanisms such as batching to reduce overhead of software scheduling

when grid sizes are very large. In fact, unless the grid size is on the order of tens of thousands

of thread blocks, batching is not necessary. This result shows that the overhead of thread

block index calculation in Symphony is comparable to that of the hardware scheduler,

which incurs the overhead of creating and destroying thread blocks several times more than

Symphony. In summary, when the grid size is large, batching is shown to be beneficial.

Future work with Symphony will work to create a combined superkernel for co-scheduling,

and further research will be done to enable and characterize the use of more varied analytics

routines.

73

CHAPTER VI

GPUCOFLOW : SIMULATING THE DATA TRANSFER

CHALLENGES OF NEXT-GENERATION GPU CLUSTERS

With the evolution of GPUs into more generic processing engines that can handle a wide

variety of data-parallel tasks, a variety of new uses and applications have arisen. Distributed

GPU computing is now seeing the advent of many new machine learning applications with

a push from large enterprises such as TensorFlow[1] (from Google) and CNTK[117] (from

Microsoft) that are written ground-up to run on the GPU. One of the most compute-

intensive tasks in machine learning is to train an artificial neural network (ANN)[20] and

that is where the GPU comes into play. By running across multiple GPUs, the time to train

a ANN can be reduced substantially. ANN training follows a pattern of computation and

communication similar to other bulk synchronous parallel (BSP)[135] models like Google

Pregel[76] and Apache Hama[119]. Distributed ANN training is characterized by periodic

aggregate and broadcast operations among all the GPUs. The communication episodes

are spaced out over relatively coarse-grained time intervals in the order of hundreds of

milliseconds involving tens to hundreds of megabytes of data to be transferred.

Typically, intra-node data transfer bandwidth between GPUs are faster than inter-node

bandwidth even with specialized interconnect such as those used in supercomputers. More-

over, new hardware interconnect technologies like NVLink[95] is likely to increase this band-

width gap. We also observe a related trend where GPU computing clusters are supporting

“dense” configurations, where individual nodes are provided with more than one GPUs.

The major GPU cloud computing offerings today (Amazon[83], Microsoft[84] and IBM[53])

as well as the upcoming ones (Google[7]) have upgraded their infrastructures to support

dense GPU boxes with up to eight GPUs. The latest DGX Saturn V supercomputer[103]

exemplifies the trend. Summit[106], the next GPU supercomputer at Oak Ridge National

Lab will also feature dense compute nodes.

74

Thus, the next challenge is to efficiently orchestrate both bandwidth and computation

when jobs have to scale to more GPUs than there are on a single instance of these dense

boxes. In the datacenter environment, the operators rely on TCP to enforce per-flow fair-

ness. In recent times, software-defined networking (SDN) has been increasingly used ([6],

[44]) to deal with congestion caused by long TCP flows conflicting on one or more links.

The situation is less standardized in the supercomputing environment with vendor-specific

network hardware and low-level communication libraries [8] that try to eliminate some of

the overhead in going through the operating system and TCP stack. However, the goal is

similar with each vendor trying to maximize the overall bisection bandwidth of the network.

Recent work has shown that “coflow”([25], [26], [112], [142]) or application-aware sharing

of network resources in computing clusters is much more effective than simpler flow-level

management. It can improve both the throughput of completed jobs as well as ensure

that a higher fraction of jobs complete inside their deadlines. As an example, distributed

ANN training can run for several hours. There is significant benefits to be had for users

and providers alike by coflow scheduling if it can speedup job completion times and/or

reduce fraction of jobs with missed deadlines, as the hourly rate for using these dense GPU

instances are quiet high.

We believe that experimental research on coflow scheduling of distributed GPU appli-

cations can benefit if software simulation models of dense GPU clusters are available that

model the network at a higher granularity than packet-level simulators such as ns-3[138].

The repetitive nature of the execution pattern of these workloads suggest that relatively

coarse-grained simulation models can produce quite accurate estimates of their actual exe-

cution characteristics, which can then be used to evaluate different scheduling algorithms for

various performance objectives. This work tries to address the above need and its specific

contributions are as follows -

• A simulator, gpucoflowsim, which can be used to model next-generation “dense” GPU

clusters and simulate the execution of bandwidth-sensitive jobs such as distributed

ANN training. In addition, multiple coflow scheduling policies to share network

bandwidth across different mixes of distributed ANN training jobs are presented. By

75

implementing these policies inside gpucoflowsim and comparing them with fair-share

bandwidth allocation, we show that coflow scheduling can significantly improve cluster

throughput by at least 38% for mix of jobs with low and high bandwidth requirements

and by at least 13% even when all jobs have high bandwidth requirements.

• A set of design considerations for implementing a GPU coflow frameowrk that can act

as a bridge between GPU cluster computing frameworks (like Tensorflow) and cluster

resource managers (like Mesos[49]) to enable coflow scheduling.

6.1 Background

The use of ANN for machine learning tasks such as image classification[58] and speech

recognition[12] have seen rapid growth in the last few years. Most of this has been fuelled

by the use of GPUs that provide much higher processing power (or FLOPs) per dollar than

CPUs today. Imagenet[33], considered to be the foremost visual recognition challenge in

the world, started in 2010 and have seen ANN entries winning the challenge every year since

2012. The 2012 winning entry called Alexnet[67] was the first model to demonstrate the

efficiency of GPUs in training ANN. Since then, models have evolved from training on single

GPUs to training on multiple GPUs on the same machine and eventually, to multi-GPU,

multi-machine, fully distributed GPU training (Microsoft’s winning entry from 2015[48]).

6.1.0.5 Parallelization Approaches

Layer	 1	

Layer	 2a	 Layer	 2b	

Layer	 3	

Layer	 2a	 Layer	 2b	

GPU 1 GPU 2 Data 1:N Data 1:N

Model too
large; split

across GPUs

Same data
used by both

GPUs
GPU 1 GPU 2

Exchange data

Exchange model

Figure 44: Distributed ANN training : Model Parallelism

There are multiple ways to parallelize ANN training. Figure 46 shows the nomenclature

76

for the different approaches used for distributed ANN training. Model parallelism[35] is

useful when the number of parameters in the model is very large and it cannot be fit into

the memory of a single GPU. As shown in Figure 44, a layer with many parameters, such

as Layer 2, can be split into multiple layers, Layers 2a and b, placing them on two different

GPUs. The same data samples coming out of the previous layer, Layer 1, are fed to both

the GPUs. Once the data samples have been processed by 2a and 2b, the output from both

GPUs have to be passed to the next layer, Layer 3. By updating only half the number

of parameters (for layer 2) on each GPU, the data transfer necessary to synchronize the

model parameters after processing a batch of data samples is also halved. Most of the ANN

models today are not large enough to fall into this category. However, it may become more

relevant in future for very large unsupervized learning task that involve many fine-grained

features.

Layer	 1	

Layer	 2	

Layer	 3	

Data 1:N Layer	 1	

Layer	 2	

Layer	 3	

Data N
+1:2N

GPU 1 GPU 2

Same model
used by both

GPUs

Data split
across GPUs

GPU 1 GPU 2
Exchange only

model

Figure 45: Distributed ANN training : Data Parallelism

Data parallelism[34], shown in Figure 45, is the more popular approach for doing dis-

tributed ANN training today. The complete training dataset is distributed uniformly across

all the GPUs participating in the training. The amount of memory on a single GPU deter-

mines how much of the input data can be trained on it before new training data is fetched

either from the system memory or from storage (which will cause a stall of a few seconds).

77

Distributed	 ANN	

Training	 	

Model	 Parallel	 Data	 Parallel	

Synchronous	

Averaging	

Asynchronous	

Gradient	 Descent	

Figure 46: Distributed ANN Nomenclature

So, larger the memory, lesser the effect of stall due to data loading/unloading. Data parallel

training implicitly assumes that all the parameters to describe the ANN can completely fit

into the GPU memory. This is true for most of the models in use today with the largest

models requiring less than a gigabyte of memory[122]. Each GPU starts off by reading

the input data on its local memory in a fixed granularity of number of samples, called

“minibatch”[72]. This data is used to update the parameters in the local copy of the NN

model residing on each GPU. At this point, the local copies go out of synch. The models

can be brought back in synch using one of two approaches, discussed next.

6.1.0.6 Synchronization Approaches

In the parameter averaging approach, the updated parameters from each GPU have to be

first averaged and then the averaged copy made available to all the GPUs. In other words,

parameter averaging approach is synchronous. After processing every N minibatches, the

local copies of the model on each GPU have to be synchronized. There is some “staleness”

when N is greater than 1 but there is a fixed upper bound on the “staleness”. The obvious

disadvantage is the reduction in throughput or number of input samples processed per

second due to potential stalling of useful computation for completing the synchronization

step.

78

Synchronous	

Averaging	

Asynchronous	

Gradient	 Descent	

Throughput (or number of samples processed
per second)

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

b
y
 t
ra

in
in

g

fo
r

a
 g

iv
e

n
 w

a
ll

c
lo

c
k
 t
im

e
 o

r
o

n

a
 g

iv
e

n
 n

u
m

b
e

r
o

f
in

p
u

t
s
a

m
p

le
s
)

Pipelined	

Update	

Bound	

Staleness	

Pull	 on	

demand	

System
techniques

Algorithm
techniques

Figure 47: Distributed ANN : Throughput v/s Accuracy

In the stochastic gradient descent [146] or the “update based” approach, the updates in

the parameters of the model in each copy is sent instead of the actual paramaters. This

makes it possible to eliminate transfer of parameters that have not changed. Moreover, the

updates can be send in an asynchronous manner without the need to stop computation on

all GPUs. As a result, the “asynchronous gradient” method can improve the throughput

significantly by temporarily allowing the local copies of the model on the GPUs to diverge.

Unlike the “synchronous averaging” method, there is no fixed upper bound on the staleness

of the gradients received by a given GPU from others. As a result, the running time to

reach a specified level of accuracy of prediction using the trained model, may increase.

In some cases, the desired accuracy may not be reached at all. Figure 47[123] shows the

tradeoff between accuracy and throughput going from the synchronous averaging approach

to the asynchronous gradient approach. There is active research[52] to find algorithms that

can tradeoff the two. Gradient descent is the approach that is more widely in use today

combined with optimizations to reduce the overhead of a completely synchronized update.

6.1.0.7 Bandwidth Slack

The different ANNs in use today can be broadly classified into two categories based on

their topology. Feed-forward[139] is the most commonly used ANN topology where signals

flow only in one direction. In feed-forward ANNs, the output of any layer of neurons do

79

not affect that layer. Convolutional Neural Networks (or CNNs) belong to this category.

CNNs are very well suited for image classification tasks. There are some popular CNNs that

are in wide use today like Alexnet[67], Googlenet[128], VGGnet[122] etc. All of them have

been extensively optimized to extract the best performance on the latest GPU hardware.

Residual ANNs[48] are another type that also belong to the feedforward category. Residual

ANNs typically have much larger FLOPs to byte ratio than convolutional ANNs and as a

result, they offer greater network bandwidth slack for distributed training.

On the other hand, with feedback ANNs, signals can travel in both directions due

to loops. As earlier signals computed by a given neuron layer can be fed back into it,

this category of ANNs have memory which make them very useful for time series data.

Recurrent Neural Networks (or RNNs)[39] are an example of feedback based ANNs used

for natural language processing tasks like speech transmission. There is a lot of ongoing

work to use GPUs for training RNNs (for example, DeepSpeech from Baidu[12]). RNNs

can potentially offer even more FLOPs to byte (due to cyclic execution) than CNNs and

Residual NNs making them suitable candidates for distributed training. However, standard

datasets and model specifications for RNNs are not yet as widely available to the research

community as they are for CNNs and Residual NNs. They represent an interesting point in

the design space where the network bandwidth can be oversubscribed more than they are

for other ANNs and/or slower networking infrastructure could be considered.

6.1.1 Motivation

Distributed ANN training is likely to be the primary consumer of GPU compute cluster

resources over the next few years. We think that their execution, communication and

scaling characteristics make them a compelling case to drive research and development of

application-aware network bandwidth management techniques that cater to GPU compute

clusters. Next, we analyze the characteristics of these workloads and argue how application

awareness in the network control plane can be used to exploit such properties.

80

6.1.1.1 Limited Scaling

For distributed ANN training using gradient descent, there are tradeoffs involved in choosing

the appropriate minibatch size. If the minibatch size is small, the gradient descent calculated

after each step is more precise. On the other hand, when the minbatch size is large, the

variations seen between two successive steps would be smaller. Finally, in terms of using

the FLOPs efficiency on GPUs, it is better to have larger minibatches upto the maximum

available FLOPs on the GPU. For modern GPUs that can support 10 Teraflops or more,

this gives quiet a large headroom for choosing a large enough minibatch. Due to the effect

of multiplying the minibatch size by the scaling factor (or the number of GPUs used), data

parallel distributed training ends up generating a much larger effective batch size. Due to

the tradeoffs associated with choosing a batch size, it is difficult to achieve weak scaling

beyond some point for these workloads. As supported by other studies in literature[27], we

would observe performance characteristics of throughput and total completion time similar

to the ones observed in a recent study on mini batch based ANN training shown in Figure48.

Figure 48: Distributed ANN : Limits on Weak Scaling

An epoch in ANN training is said to be completed when all the samples present in the

input dataset has been used once. Due to the use of an iterative optimization method

like stochatic gradient descent, usually it takes multiple epochs or multiple passes over the

complete input dataset to achieve a prediction accuracy that is useful. Increasing the batch

size is only effective upto the point when the number of epochs needed to meet the threshold

does not increase. This occurs around a batch size of 100 in the above study (see chart

81

on the left in Figure 48). The benefits of distributed ANN training in the data parallel

approach is derived from weak scaling. Distributing the samples from the input dataset

across multiple GPUs makes it possible to run through an epoch in less time. However,

the increased throughput is only going to translate into overall speedup if the number of

epochs to run remain constant. This does not hold when the number of GPUs are increased

beyond a certain number of GPUs and the effective batch size increases. Consequently, we

observe (see chart on the right in Figure 48) that the total running time decreases up to a

point and then starts to increase again. It does not make sense to scale a distributed ANN

training job beyond some number of GPUs. To the best of our knowledge, we are not aware

of distributed ANN training that have scaled to more than 128 GPUs[36]. In practice, the

scaling efficiency diminishes rapidly going beyond 32 GPUs[52]. It would be reasonable to

assume that a lesser number of “dense” (many GPU) nodes in a cluster is more suited for

than a large number of “light” (single GPU) nodes would be better suited for running this

type of workloads.

From a job placement consideration, this suggests that the bandwidth sharing effects

of these workloads can be limited to a few racks. Distributed dataflow workloads in the

CPU world, such as MapReduce[32] or Spark[141], can scale to hundreds of machines and

potentially affect the entire cluster. In contrast, a distributed ANN training job that would

run on a much fewer number of machines will interact with a relatively small set of other

jobs. Due to this, not only scheduling but placement too can play a crucial role in driving

overall performance.

6.1.1.2 GPU Utilization and Network Activity

For data-parallel, distributed ANN training, there are two key parameters that determine

how utilization of GPUs are going to be affected. They are (1) the number of parameters

or weights to express the ANN, and (2) the number of FLOPs to process an input sample

using the ANN (in practice, samples are processed in mini batch of size greater than one).

GPUs are unlikley to be shared among multiple training jobs due to many reasons (for

example, security). So, the time to train a batch only depends on (2) and is not influenced

82

1	 2	 3	 4	

1	 2	 3	 4	

Compute
Step i

GPU Idle

Compute
Step i + 1

Figure 49: GPU utilization : Without software pipelining

by other co-running jobs. The training can proceed in a completely synchronized approach

where a GPU does not start processing the next minibatch until the updated parameters

from processing the previous minibatch have been synchronized across all the GPUs. This is

shown in Figure 49 where a training job runs on four machines with some number of GPUs

on each. After the ith compute step, the updated local copy of the parameters from each

machine is sent to all other machines before the (i+1)th compute step can begin. In this

approach, the staleness from the gradient descent is minimum. But, depending on (1) and

the available bandwidth, there will always be idle cycles on the GPU during each “weights

synchronization” phase. Also, any bandwidth allocation to the job, will go unused during

the “weights update” phase. Bandwidth reallocation incurs some control overhead which

will increase in this case.

1	

1	

1’	 2’	 3’	 4’	

1’	 2’	 3’	 4’	

2	

2	

3	

3	

4	

4	

Compute
Step i

Communication
Step i

GPU never
idle

Compute
Step i + 1

Figure 50: GPU utilization : With software pipelining - GPUs never idle

Software pipelining can be used to overlap the “weights update” and the “weights syn-

chronization” phases of a training job as shown in Figure 50 and 51. Each GPU uses two

83

1	

1’	 2’	 3’	 4’	

1’	 2’	 3’	 4’	

2	 3	 4	 Compute
Step i

Communication
Step i

GPUs less idle

Compute
Step i + 1

1	 2	 3	 4	

Figure 51: GPU utilization : With software pipelining - GPUs idle for less time

buffers to store the weights of the ANN. The copy in one buffer is updated when processing

the current batch of input samples. In parallel, the other copy is sent out to the other

GPUs. Once both of these operations complete, the buffers are flipped. This increases the

staleness of the gradient descent as GPUs go out of synch by two batches instead of one.

But, when (2) is high and (1) is low, it may be possible to keep the GPUs busy at all times

by completely overlapping the “weights synchronization” and the “weights update” phases.

This is shown in Figure 50. For example, GoogleNet[128] requires 1.5 billion FLOPs to run

but has only 6.9 million parameters to transfer. Running on the latest GPU hardware, the

fastest GoogleNet implementation out there today[86] takes nearly 300 ms to run the 1.5

billion FLOPs on a batch of 128 images from the Imagenet database (each image is of size

224x224). That is around ten times longer than the 30 ms it takes to transfer the 6.9 mil-

lion parameters over a 10 gigabit ethernet link. In such cases, there would be intermittent

periods of network inactivity from a job. On the other hand, when (2) is not high enough

relative to (1), the “weights synchronization” phase cannot be completely overlapped. This

is shown in 51. But even then, the time for which GPUs are idle gets reduced.

So, GPU utilization and network activity could provide a good indication of whether a

job is getting its requested bandwidth, and such information can be used by the network

bandwidth scheduler to enfore better sharing.

6.2 Simulator Design

In this section, we will describe the detailed design of our Gpu Coflow simulator. It consists

of four primary functions which are -

84

1. Workload generation

2. Assignment of jobs to machines

3. Aggregation and broadcast scheme

4. State machine to track job progress

5. Scheduling policies for bandwidth sharing

6.2.1 Workload generation

This area of distributed ANN training is still in its infancy. Therefore, production traces

are hard to find unlike other distributed infrastructures such as Hadoop, Spark etc. But

with the rapid growth in the user base of deep learning frameworks like Tensorflow[1] and

their increased footprint on cloud computing resources, it is only a matter of time before

researchers would gain access to such production traces. Until then, statistically generated

traces have to be used. These jobs typically run for hours which gives some margin for

approximation as to when a particular job arrives. If new jobs continue to arrive and the

cluster size is fixed, there has to be admission control soon after the cluster is oversubscribed.

Due to their long running nature, it is not possible to meet any reasonable service guarantees

for individual jobs by oversubscribing the cluster too much. When the number of jobs are

low, it should be possible to consolidate resources in a way such that the operating state is

close to fully subscribed.

Due to the above characteristics, we have made the following two assumptions in our

simulation model. First, all the jobs have already arrived before the simulation starts.

Second, there are just enough jobs available to fully subscribe the available resources. The

situation that occurs when there are more jobs than available resources is interesting because

the jobs have to be cycled through alternating execution and waiting phases. There exists

a resource allocation problem in such a scenario where the choice of jobs to run together

could be critical to overall performance. This is a problem orthogonal to the scheduling

problem for efficient bandwidth sharing that we address in this work and so is out of scope.

85

For describing a workload in the simulator, we use an entity called job. A job is charac-

terized by three parameters, namely, (1) the number of FLOPs to process a batch of training

data, (2) the number of bytes to transfer for each batch processed, and (3) the number of

machines over which the training data is distributed. (1) depends on the GPU hardware

and the implementation of the ANN. Most (if not all) frameworks call into the GPU ven-

dor’s implementation of the numerical libraries (for example, cuDNN[100]) implementing

the underlying mathematical operations (namely, BLAS[98] and FFT[101]) tailored to the

requirements of standard deep learning algortihms. So the computation time to process a

batch, that is, the “weights update” phase with a given ANN primarily depends on the

GPU hardware. For a given cluster, the GPU hardware is fixed. (2) depends on the num-

ber of weights to represent the ANN. As the training process consists of processing several

batches of the same size, both (1) and (2) can be inferred from run-time profiling. Setting

up a distributed ANN training job requires application-dependent placement of input data

on the participating machines. There is ongoing effort[29] to integrate deep learning frame-

works with the Hadoop ecosystem which will enable system-level management of training

data using HDFS. In future, it may be possible that for a given job, the system chooses the

number of machines to run the distributed training on (that is, (3)). This gives the addi-

tional flexibility to dynamically scale tasks based on the demand for network bandwidth.

However, until such mechanisms become available, we assume that (3) would be specified

by the user. Due to the scaling limits of distributed ANN training jobs as discussed in

6.1.1.1, we assume that specified value of (3) is the upper limit.

Next we describe how the specification of the cluster is provided to the simulator. There

are four parameters - (a) the number of machines on a rack, (b) the intra-rack bandwidth,

(c) the number of racks, and (d) the inter-rack bandwidth. The intra-rack and inter-rack

networks are abstracted as fully-interconnected non-blocking switches. This simplifies the

implementation a great deal yet represents a reasonable approximation because we have

seen evidence that datacenter networks are evolving towards software-controlled topologies

like VL2[44] that can provide full bisection bandwidth between any two endpoints on the

network.

86

Job 2 spread

across 4 racks
Job 1 spread

across 3 racks

Figure 52: Always spread across racks

Job 1-4 first
compacted on

single racks

Job 5 spread
across 2 racks

Figure 53: First compacted then spread

6.2.2 Assignment of jobs to machines

There are two aspects to consider for placing jobs. First, how is a single job allocated

to machines and racks? Second, how are neighbors of a job chosen? Optimal placement

algorithms that give the best performance (for example, throughput) are unlikely to be of

polynomial complexity (rigorous proof is outside the scope of this paper). We provide a

qualitative discussion of the flavor of the different placement algorithms and their effect

on network bandwidth sharing. When a single job is allocated to machines and racks,

the always spread(Figure 6.2.2) and the first compact then spread(Figure 6.2.2) placement

policies represent two ends of the spectrum. In the always spread approach, each job is

spread over as many racks as possible. By doing this, intra-rack traffic due to this job

is minimum (or zero) while the inter-rack traffic is maximum. The downside is that any

effective scheduling algorithm requires a lot of global information.

On the other hand, in the first compact then spread approach, a job is assigned a rack

that has enough free machines, if possible. Otherwise, it is spread across the least number of

racks. In contrast to the always spread approach, this approach tries to minimize inter-rack

traffic. For jobs that are fully contained within a single rack, the scheduling algorithm can

function effectively using entirely local information. However, how spread out the other jobs

are depends on the the mix of how many machines each job needs. Again, it may involve a

87

Job 2-4 all spread
across 2 racks

Only first and last
jobs are

guaranteed to be
compact

Figure 54: Compacted or bounded spread

lot of global information exchange to effectively schedule some of the jobs.

As we have discussed earlier, distributed ANN training jobs are likely to scale out to

tens of GPUs but not hundreds (64 to 128 GPUs, at most). For dense nodes with 4 to 8

GPUs, that ranges between 8 and 32 machines. With the cooling capacity likely to be the

most critical factor in determining rack sizes (30 KW per rack), we anticipate that between

10 to 20 machines would be the limit a rack can accomodate[87]. Therefore, most jobs will

fit inside one rack with only a handful of jobs spanning to more than one rack. In view of

the above observations, we posit the compact or bounded spread(Figure 6.2.2) approach to

be a better fit where a rack is completely filled before another rack is chosen. By doing this,

inter-rack traffic due to any job spanning more than one rack, is intuitively lesser than the

first compact then spread approach. Effective scheduling algorithms for such a placement

strategy will require a constant amount of global communication between racks. A rigorous

proof is outside the scope of this work.

The order in which jobs are assigned to machines decides which jobs contend for the

bandwidth inside a rack and between racks. An optimal assignment is again a task that

is intuitively not of polynomial complexity. Again, we consider some of the policies and

how they would affect performance. If all jobs with the same type of ANN are ordered

together, all the jobs on a rack would have the same bandwidth requirement which renders

a scheduler pointless. To ensure the maximum diversity of traffic on each rack, we chose to

generate jobs by cycling in a round robin basis through all possible types of ANNs specified

as input to the simulator. A tradeoff between the two might follow a uniformly random

distribution for choosing the next job.

88

Node	

0	

Node	

1	

Node	

2	

Node	

3	

Node	

1	

Node	

3	

Aggregate

Broadcast

Level 1 of A/B tree

Level 2 of A/B tree

Log(# nodes)
levels in A/B

tree

Figure 55: Aggregation and broadcast using a tree

6.2.3 Aggregation and broadcast scheme

Based on the number of machines used for distributed training as well as number of weights

to represent the ANN, there exists multiple schemes to orchestrate the synchronization

across all the machines of a job. If a tree-like hierarchical synchronization is performed

across N machines, there would be logN levels of the tree. If the training is distributed to

a large number of machines and the number of weights of the ANN being trained is low,

the tree-based synchronization is very effective. To synchronize D bytes of weight across N

machines given a bandwidth of B, it requires logNx(D/B) units of time. This is shown in

Figure 6.2.3.

On the other hand, the value of N is likely to be low due to limited weak scaling property

of distributed ANN training. Also, the minimum number of weights in many of the standard

ANNs are hundreds of megabytes which makes the overhead of filling the pipeline a small

fraction of the total transfer time. To syncrhonize the same D bytes of weights among

N machines, transferring in units of d bytes each, it requires 2xNx(d/B) units of time to

fill up the aggregation pipeline at the start and empty the broadcast pipeline at the end

of the synchronization. Asssuming D is much larger than d, the (D-2d)/B units of time

required for the rest of the transfer dominates. Therefore, a pipelined synchronization is

more effective with not too many stages in the pipe to fill. This is shown in Figure 6.2.3.

The simulator models a pipelined data exchange. For all the machines of a job, the

weights are received from another machine in the same job that has the index one less than

the current machine’s index (except the machine with the least index). The received weights

are aggregated with the local weights on the machine. Then, the aggregated weights are

89

Node	

0	

Node	

1	

Node	

2	

Node	

3	

Node	

0	

Node	

1	

Node	

2	

Node	

3	

Node	

0	

Node	

1	

Node	

2	

Node	

3	

N steps of d
bytes each to

fill A pipe

N steps of d
bytes each to
empty B pipe

(D-2d)/B
steps of
pipelined

A/B transfers

Figure 56: Aggregation and broadcast using a pipeline

send to another machine which has the index one more than the current machine’s index

(except the machine with the highest index). In total, there are 2N - 2 aggregation traffic

flows for a job running on N machines. Once the weights have been aggregated by the

last machine, they need to be braodcasted back to every other machine. The broadcast

phase is carried out similar to the aggregation phase. Each machine (excluding the last

one) receives a broadcast from another machine with an index that is one higher than that

machine. At the same time, every machine (excluding the first one) sends a broadcast to

another machine with an index that is one lower than that machine. As a result, there

are also 2N - 2 broadcast flows. Furthermore, the aggregate and the broadcast phases can

be overlapped to exploit the full-duplex bandwidth of the ethernet switches (or infiniband

switches). For dense nodes with multiple GPUs, aggregate and broadcast phases are needed

to synchronize the weights between the GPUs on a single machine. By overlapping the

aggregate and broadcast phases using software pipelining, the intra-node synchronization

can efficiently utilize the full-duplex data transfer capabilities of PCI-express (or NVLink)

that interconnects GPUs on a single machine.

6.2.4 State machine to track job progress

After a pool of jobs have been created and each job has been assigned machines, the next

question is to simulate the distributed execution of the job using the assigned machines. For

this, we introduce the next level abstraction calledmachine manager which is responsible for

all activites on a machine and for synchronizing with other machine managers after execution

90

Job	

Compute	

Task	

Data	

Transfer	

Task	

Machine	

Manager	 1	

Machine	

Manager	 N	

Aggrega;on	

Flow	

Broadcast	

Flow	

Training

one

batch

Figure 57: Components of a job to process a single batch of training data

of each minibatch. Next comes a task. Each machine manager consists of multiple tasks. In

an actual implementation (for example, Tensorflow), a task might be a thread responsible for

managing a particular GPU or sending/receiving the ANN weights to/from other machines.

In our simulator, there are only two types of tasks - a computation task and a data transfer

task. A computation task is modeled simply by advancing time according to the job’s ANN.

The data transfer tasks are more intersting being responsible for synchronizing the weights

with data transfer tasks on other machines, either on the same rack or between two racks.

A task consists of one or more flows. A flow, in our simulator, is the actual consumer

of available bandwidth inside a rack and between racks. Flows can be used either as an

aggregation flow or as a broadcast flow, in both tree-based and pipelined synchronization

mechanisms. This is shown in Figure 6.2.4.

The simulator proceeds in discrete time ticks during which the flows are updated. The

remaining bytes to be transferred on a flow is decreased by the actual bytes transferred

since the last tick which in turn depends on the bandwidth allocated to this flow. When the

remaining bytes on a flow reaches zero, the flow is considered complete. A task is considered

complete When all flows in the task have been closed. New tasks can be continuously

started for a job as long as the simulation is running. In practice, at some point, a job will

be considered complete when the training accuracy reaches some desired threshold. But

a job typically runs for several hours before that happens. Our goal is to simulate up to

a point where the throughput of the cluster has reached a quiescent state. Usually, this

happens within a few minutes. So, it is a reasonable assumption that all jobs would have

91

an unlimited supply of new tasks over the length of the simulation.

Two types of events can cause the scheduler to be invoked - (1) when tasks are created,

and, (2) when tasks are completed. Due to the bulk-synchronous nature of distributed ANN

training, new tasks can only be created when all previous tasks belonging to the same job

have completed including the compute tasks. When such an event occurs, the number of

flows contending for the intra-rack and the inter-rack bandwidth increases. This calls for a

redistribution of bandwidth whereby existing flows need to give up a part of their allocated

bandwidth to the flows that were just created. On the other hand, when tasks complete,

their allocated bandwidth may become available for use by flows of other tasks. This occurs

when other data transfer tasks for the same job have not closed possibly due to residing

on other racks or the compute tasks have not completed. In such a case, extra bandwidth

becomes available which can be distributed among the existing flows.

6.2.5 Scheduling Policies for bandwidth sharing

Once the state machine outputs a task creation or completion event, the scheduler in the

simulator gets triggered. It takes as input 1) the continuing flows, 2) the created flows,

and 3) the completed flows, for each rack as well as between racks. When new flows are

created, the scheduler needs to assign them bandwidth by reducing the bandwidth allocated

to the continuing flows. Likewise, when flows complete, the scheduler needs to assign the

freed up bandwidth to continuing flows or newly created flows, if any. Computing an

optimal allocation for any performance objective (for example, maximize total progress of

all the jobs) is intuitively hard (not of polynomial complexity). Moreover, it would require

exchange of a considerable amount of control information between racks. We explore two

scheduling policies for effective reallocation of bandwidth based on the characteristics of the

ANNs constituting the job mix.

6.2.5.1 Least requested bandwidth first (LRBF)

Jobs with ANNs that have fewer weights to transfer could process a batch even with less

bandwidth. By favoring flows from such jobs, the overall throughput of the cluster can be

improved albeit at the cost of reducing fair progress. Every time new flows are created, all

92

flows are ranked according to the number of bytes they need to transfer. New flows would

need to tranfer all the weights of the corresponding job’s ANN. Continuing flows would

have transferred some of the weights already. For each flow, the requested bandwidth is

calculated from the number of bytes left to transfer and the remaining time left to complete

the compute tasks of the job this flow belongs to. Bandwidth inside each rack and the inter-

rack bandwidth is allocated to flows in the increasing order of their requested bandwidth.

When most of the jobs train ANNs with hundreds of millions of weights (for example,

Alexnet, VGGNet, Overfeat[120]), there are many jobs with flows that do not receive the

requested bandwidth. Compared to a fairshare distribution of bandwidth based just on the

number of flows, the LRBF policy can be more effective in reducing the number of jobs that

do not receive their requested bandwidth. That is, it can help to decrease the margin by

which a job is slower in processing a batch due to not getting its requested bandwidth.

6.2.5.2 Least available slack first (LASF)

A job’s slack is calculated by taking the difference of the time it would take for the flows

of the job (on the given rack) to send their remaining bytes at their currently allocated

bandwidth and the time remaining to complete the computing tasks of the job. Whenever

flows of a job that has ongoing computing tasks complete, all the continuing flows that have

a negative value of slack are ranked in ascending order (most negative to least negative).

A negative value of the slack indicates that those jobs have flows that are not going to

complete before their computing tasks are done. If extra bandwidth is allocated to such

flows, that should help. Jobs with negative slack are selected in their sorted order and they

are allocated as much bandwidth as required to raise their slack to zero. This is continued

until all the extra bandwidth available from the completed flows have been used. If there

are no flows (of any job) with negative slack, it indicates that the extra bandwidth is not

useful for improving the throughput from the current rack. In that case, it is distributed

equally among other flows of jobs on the same rack that are fully contained in the rack.

In contrast to the previous scenario where most of the jobs have hundreds of millions

of weights in their ANN, there are other ANNs([48], [128]) with hundreds of thousands

93

up to a few million weights. When the job mix is largely constituted by such jobs, most

jobs will complete their data transfer tasks before their computing tasks have completed.

Instead of using a fairshare policy to distribute bandwidth recovered from early completion

of data transfer tasks, the LASF policy can help to make sure that only jobs that need

extra bandwidth get it.

6.3 Designing GPU coflow middleware

In this section, we look into some of the design tradeoffs that have to be considered when

building a middleware framework for managing GPU coflows. The different controllers to

arbitrate network bandwidth are shown in Figure 6.3.1.

6.3.1 Multi tenancy vs. single job per machine

As the individual nodes are likely to be dense with up to four or eight GPUs, it is worth de-

bating the possibility if a node could be shared by more than one job at any given time. The

main advantage is the flexibility to support more user jobs at the same time even if some jobs

only need a few GPUs. With the maturity of container-based isolation mechanisms[124],

the security risks of a job accessing GPUs not allocated to it can be eliminated without any

noticeable overhead (if the same had to be enforced through hypervisor-based isolation[14]).

For intra-node coflow management, the resource under contention is the PCIe (or

NVLink) bandwidth for synchronizing between the GPUs on the node. The only platform-

independent way to use the PCIe bandwidth from/to GPUs is by going through the GPU

runtime (and the driver). This is challenging because the way applications use the memcpy

API provided by the GPU runtime is a lot different from their use of network send/receive

API. For example, application-specific batching of small transfers is quiet common. Any

middleware layer on top of the GPU runtime to manage the bandwidth use through the

memcpy API has to also consider other aspects of the runtime which soon gets tied up deeply

with application semantics. Considering the possible complexity to build PCIe bandwidth

management middleware, it seems more reasonable to design for a scenario where all GPUs

on a node would be allocated to a single job.

94

Machine	

Rack-‐level	

Manager	

Rack	

Backbone	

Manager	

Rack

crossbar

Backbone

crossbar

Figure 58: GPUCoflow controllers

6.3.2 Manager per job vs. manager per machine

All flows belonging to a job constitute a collective flow (or a “coflow”) and treating them

as a single entity for the purposes of bandwidth allocation makes sense given that they

need to be synchronized after each batch. For a job that fit completely inside a single rack,

the per machine managers could send their bandwidth request along with an identifier for

the job to a rack-level manager that arbitrates the bandwidth allocation inside the rack.

The complication arises due to the fact that some jobs will span across two or three racks

when using the compact or bounded spread placement policy, and possibly more for other

placement heuristics. One option is to restrict all coflow decisions within a single rack.

The downside of not considering bandwidth request from a job on another rack is that

the bandwidth allocated to the job may turn out to be more than or less than what the job

needs. Due to the synchronous nature of distributed ANN training jobs, a job completes

processing a batch only when its slowest flows complete. Any extra bandwidth if there

are slower flows or bandwidth such that the flows on the given rack are the slowest, may

diminish the overall throughput. By having a manager for each machine on the rack and

disregarding the spillover machines on the other racks, the complexity of the rack-level

scheduler is greatly simplified. Even if more globally cognizant scheduling policies need to

be enforced, the control flow between rack-level schedulers can remain decoupled from the

actuation logic in a rack that enforces the scheduler’s decision.

95

6.3.3 Overlapping vs. spread out inter-rack traffic

When jobs span across multiple racks, there would be flows between machines on different

racks in addition to flows between machines on the same rack. Inter-rack flows are difficult

to handle because they will affect the throughput of the racks at either ends. If the inter-

rack flows for a given batch are allowed to run concurrently with the intra-rack flows, they

could provide an extra layer of scheduling control on top of the rack-level schedulers to

affect the overall throughput of the system. At the same time, globally optimal scheduling

decisions are hard.

On the other hand, by serializing the intra-rack and the inter-rack aggregation/broadcast

phases, the inter-rack scheduler can be made much simpler. In this case, the inter-rack

bandwidth is used by different jobs in short bursts. At any given instant, only a few

jobs use the inter-rack network and all the jobs have similar scheduling objective, that is,

complete the remaining inter-rack data transfer as fast as possible. This is because the

intra-rack data transfer activities of the jobs have already completed. If they were allowed

to overlap, sometimes it may occur that finishing the inter-rack transfer in the shortest

possible time is unnecessary because the intra-rack flows are slower. Whatever be the flow-

control mechanism, all inter-rack bandwidth requests from a rack should be routed to a

rack-level agent. Each such agent would then forward the requests to a backbone manager

that arbitrates inter-rack bandwidth among the requesting jobs.

6.4 Experimental Evaluation

In the evaluation of the bandwidth scheduling policies for GPU coflows, we investigate three

different aspects of their effectiveness.

• How much is the relative speedup compared to fairshare bandwidth sharing in terms

of the total number of batches processed spanning across all the jobs?

• How much is the performance gain dependant on the characteristics of the ANNs

constituting the job mix?

96

To evaluate the LRBF policy, we considered ANNs that have more than a hundred

megabyte of weights. The most well-known convolutional ANNs along with their compute

time for a batch of 128 Imagenet size (224x224x3) samples on a Maxwell Titan X GPU

are shown in Table 3. The fastest reported 32-bit floating point implementation is used for

reference. Sources are [24] and [59]. 10 Gigabit Ethernet switches are used to model the

rack-level and backbone switches.

Table 2: ANNs with high number of (>50M) weights to train

Name Number of
weights (in mil-
lions)

Compute Time
(in milliseconds)

Comments
(fastest im-
plementation)

Alexnet 61 80 Tensorflow

VGGNet 144 320 Neon

OverFeat 138 210 Neon

The first set of LRBF experiments uses a mix of Alexnet and VGGNet training jobs.

Two configurations are evaluated, eight and sixteen GPUs respectively, that the maximum

number of nodes that each job can scale up to. Higher scale up limit results in more jobs

that span across racks. The increase in throughput of total number of batches processed

relative to a fair share bandwidth allocation among active flows is shown in Figure 59, for

increasing size of the cluster. The improvement in throughput ranges from 31-44% with the

configurations that allow up to a maximum of eight nodes per job, giving better performance

for all sizes of the cluster.

1	

1.05	

1.1	

1.15	

1.2	

1.25	

1.3	

1.35	

1.4	

1.45	

16	 32	 64	 128	

T
h
ro
u
g
h
p
u
t	
Im

p
ro
v
e
m
e
n
t	
re
la
1
v
e
	 t
o
	

F
a
ir
S
h
a
re
	

Total	 number	 of	 racks	

Upto	 8	 machines	 per	 job	 Upto	 16	 machines	 per	 job	

Figure 59: LRBF throughput : Mix of ANNs with low and high number of weights

97

In the second set of LRBF experiments, we select a mix of VGGNet and Overfeat jobs

where both the ANNs have high bandwidth requirement. As expected, the improvement in

throughput is lower in this case ranging between 13% and 33%. Interestingly, the configu-

ration that allows up to sixteen machines per job, performs better for this mix. By having

more jobs spread out across racks for the sixteen machine per job configuration, there are

more stalls due to cross-rack synchronization which helps to free up bandwidth in a rack

and let the jobs that reside on single racks make better progress.

1	

1.05	

1.1	

1.15	

1.2	

1.25	

1.3	

16	 32	 64	 128	

T
h
ro
u
g
h
p
u
t	
Im

p
ro
v
e
m
e
n
t	
re
la
1
v
e
	 t
o
	

F
a
ir
S
h
a
re
	

Total	 number	 of	 racks	

Upto	 8	 machines	 per	 job	 Upto	 16	 machines	 per	 job	

Figure 60: LASF throughput : Mix of ANNs with only high number of weights

To evaluate the LASF policy, we considered ANNs that have less than a hundred

megabyte of weights. Googlenet and the Resent variants are the popular convolutional

ANNs belonging to this category as shown in Table 3. Due to the significantly lower band-

width requirements of the jobs in this case, we have used 1 Gigabit Ethernet switches to

model the rack-level and backbone switches for the LASF experiments.

Table 3: ANNs with low number of (<50M) weights to train

Name Number of
weights (in mil-
lions)

Compute Time
(in milliseconds)

Comments
(fastest im-
plementation)

GoogleNet 5 470 Torch

ResNet-50 30 1280 Torch

ResNet-100 40 2000 Torch

We used a mix of Googlenet and Resnet-50 jobs for our first set of experiments. Googlenet

has relatively lower computation time than Resnet-50. Both have less than 50 million

wieghts to synchronize. The throughput improvement ranges from 1.78x to 2.08x the

98

throughput of fairshare bandwidth allocation. The configuration with jobs that can scale

out to a maximum of 16 machines gives slightly better throughput for all rack sizes. Due

to the wider difference in bandwidth requirement of the two types of jobs and when jobs

are more spread out across racks, the stalling of a few Resnet-50 flows on any rack enables

to raise the throughput by allowing a greater number of Googlenet jobs to make progress.

1	

1.2	

1.4	

1.6	

1.8	

2	

16	 32	 64	 128	

T
h
ro
u
g
h
p
u
t	
Im

p
ro
v
e
m
e
n
t	
re
la
1
v
e
	 t
o
	

F
a
ir
S
h
a
re
	

Total	 number	 of	 racks	

Upto	 8	 machines	 per	 job	 Upto	 16	 machines	 per	 job	

Figure 61: LASF throughput : Mix of ANNs with low and high FLOPs to compute

In the next set of experiments for LASF, we used a mix of Resnet-50 and Resent-100 jobs,

both of which have very high computation time and relatively few weights to synchronize.

Similar throughput improvements ranging from 1.84x to 2.05x are obtained in this case,

too. However, in this case the more compact configuration of a maximum of 8 machines per

job performs slightly better. The stalling in the spread out configuration cannot be offset

by higher progress per rack as both jobs have similar bandwidth requirements.

1	

1.2	

1.4	

1.6	

1.8	

2	

2.2	

16	 32	 64	 128	

T
h
ro
u
g
h
p
u
t	
Im

p
ro
v
e
m
e
n
t	
re
la
1
v
e
	 t
o
	

F
a
ir
S
h
a
re
	

Total	 number	 of	 racks	

Upto	 8	 machines	 per	 job	 Upto	 16	 machines	 per	 job	

Figure 62: LASF throughput : Mix of ANNs with high and high FLOPs to compute

6.5 Chapter Summary

In this chapter, we have looked at the problem of network bandwidth sharing in dense GPU

clusters that are fast becoming the infrastructure of choice for running distributed GPU

99

applications like training artificial neural networks that takes hours to complete even with

the huge computing power of GPUs. In such a scenario, it is critical that the network

is shared appropriately among the co-running jobs to sustain a high throughput at which

batches of input samples are processed by all the training jobs.

We exploit the repetitive nature of these workloads to build a simulator, GpuCoflowSim,

that captures the essence of their execution patterns without going into the excessive details

of standard packet-level network simulators, allowing us to model substantially large clusters

over time windows of several minutes. We have proposed coflow aware scheduling policies

to manage network traffic from the different jobs and evaluated them on GpuCoflowSim

to demonstrate their effectiveness over application-agnostic fair share bandwidth sharing

policies. Finally, we present a qualitative discussion on the different design tradeoffs that

are essential to consider when building a middleware framework for managing GPU coflows

in a dense cluster environment.

100

CHAPTER VII

CONCLUSIONS, RECOMMENDATIONS AND FUTURE

DIRECTIONS

GPGPUs are useful for many types of compute-intensive workloads from scientific simu-

lations to cloud-focused applications like machine learning and graph analytics. However,

unlike CPUs they do not allow for software-controlled sharing of resources. This leads to

underutilization, unfair use and reduced programmability. This thesis looks at three differ-

ent areas, 1) in situ analysis in scientific workflows, 2) multi tenancy in cloud computing

environments, and 3) network sharing between evolving distributed GPU frameworks. The

thesis presents four distinct software-scheduling based constructs to handle problems in each

of these spaces.

First, the thesis looks at Landrush, an idle cycle scavenging approach for GPUs to im-

prove time to answer in scientific workflows by running data analysis in situ with controlled

interference due to co-location.

Second, the thesis presents GPUShare, which enables sharing of GPUs between long-

running cloud workloads helping to reduce cost of usage by ensuring resources are fairly

shared while ensuring that standalone execution remains unaffected.

Third, the thesis demonstrates Symphony, a software-supervised GPU scheduler that

trades off the low overhead of hardware dispatching and the runtime responsiveness of

software scheduling to improve time to answer for such scientific workflows that do not

afford idle cycles.

Finally, the thesis talks about GpuCoflow, a novel approach to network sharing between

evolving distributed GPU computing frameworks that considers and application’s comput-

ing and data transfer characteristics to ensure increased overall throughput compared to

traditional network scheduling approaches that are geared towards providing high bisection

bandwidth.

101

In summary, this research puts forth compelling scenarios to demonstrate how GPGPU

computing is managed at a system level and then presents concrete mechanisms with ac-

companying policies to enhance the manageability both in terms of how computation cycles

on the GPU gets used as well as how data gets moved from/to the GPU with or without

involving the network.

This thesis has covered several aspects of GPGPU scheduling with regards to both com-

putation and data movement. During the course of dealing with the current GPGPU system

stack (both hardware and software), we encountered multiple interaction scenarios between

applications and the system stack that could be better handled if future GPU platforms are

equipped with better system support. Below is a list of a few important recommendations

that could enhance the system-level manageability of future GPU platforms.

• Programmability in thread block dispatching The current thread block dis-

patching mechanism in GPUs is completely hardwired. In this thesis, we have ex-

plored ways to add flexibility to how thread blocks are dispatched by diminishing the

role of the hardware thread block dispatcher. This could benefit further if some level

of programmability is provided to control the behavior of the thread block dispatcher

that is exposed at the runtime layer above the driver. For example, the thread block

dispatcher could be instructed to issue thread blocks to an SM only when a majority of

thread blocks that were previously running have completed execution. This can help

in a more contiguous placement of thread blocks onto SMs thereby reducing memory

divergence.

• Online tracking of variability of running times across thread blocks Increased

flexibility to dispatch thread blocks onto SMs calls for online feedback as to how

good the chosen dispatching policy has been and accordingly take actions to improve

the dispatch throughput. Profiling information detailing when each thread block

was dispatched and which other thread blocks it was colocated with at relatively

frequent intervals can be very helpful to adjust the timing and placement policies.

The collection interval of such profiling data would also be critical in order to limit

102

overhead. Interrupt handlers inside the hardware thread block dispatcher appears to

be a suitable site to install such functionality.

• Online tracking of memory access window This thesis has explored ways to

achieve efficient multi-tenancy on GPUs. One of the key hindrance to multi-tenancy

on GPUs is the limited support for memory oversubscription on GPUs. Most GPU

applications perform their memory allocations up front as a result of which if the

sum total of the memory footprint of two applications exceed the physical memory

on the GPU, some of the allocations need to be moved to the system memory if the

applications are to co-run on the same GPU. Compiler analysis can provide some

insight on the range of memory accessed by each thread block but not all. Even

if paging is supported in future GPUs, online profiling information about memory

access ranges by thread blocks would be extremely useful. In conjunction with a

programmable DMA engine that can coordinate with the thread block dispatcher at

runtime, mechanisms that implement application-aware paging can do much better

than application-oblivious paging that takes care of only the memory access datapath

of warp-level instructions.

• Program loading support Loading a program onto the GPU today happens com-

pletely via the driver and fixed-function hardware. Consequently, any mechanism to

enable persistent scheduler threads on the GPU has to implement tedious workarounds

of stopping and restarting the scheduler threads if new programs need to run. For

some usecases like the the in situ scientific analysis workflows, this is not a show stop-

per. However, for an environment consisting of many short-running jobs that arrive

dynamically, the associated overhead can be prohibitive. If future GPUs support priv-

ilege levels, it can support higher privilege GPU kernels that can have memory execute

permissions in addition to read and write permissions. Such kernels can then be used

to perform loading of lower privilege application kernels and as a result, persistent

scheduler threads on GPUs can work similar to the operating system’s scheduler for

multi-core CPUs.

103

• Application-aware system control Training deep neural networks have attracted

the most attention in recent times due to the huge reduction in time required to train

them using GPUs. Graph processing workloads appear to be very promising too.

Iterative graph workloads such as different link analysis algorithms, e.g. PageRank,

HITS, SALSA, Who-To-Follow and others look set to be the immediate beneficiaries

with new dense GPU platforms offering up to 24GB of memory per GPU and up

to eight GPUs interconnected at near memory speeds. It is possible to analyze a

reasonable subset of a massive graph dataset like the Facebook social network (one

trillion edges) without sending a single network packet. Even considering the slow

PCIe bandwidth to access system memory, benchmarking studies have shown at least

2x speedup with GPUs over CPU throughput. Despite local variations due to what

part of the data gets accessed, these workloads exhibit distinct longer-term repititive-

ness in their execution characteristics. Moreover, these workloads run long enough

such that their execution characteristics may be learned and used to steer subsequent

execution. Most system control mechanisms in the CPU world are less fortunate

being bound by stricter limitations to cater to more generalized execution behavior.

Without such stringent constraints in designing system software for GPUs, we have

exploited application-awareness in all of the components in this thesis. It would be

very useful if future GPUs can come up with standardized interfaces to exchange

this information between the application and the system software in addition to what

already exists at the hardware level, today.

If some or all of these recommended support becomes available in future platforms,

it would only assist in further proliferation of GPUs in environments or application areas

where their use is still limited. Some of this is envisoned in the future work, described

next. At one end, future work will look at other big data frameworks to understand if the

enhanced manageability principles can be used by such frameworks to reap the benefits of

GPGPU computing. At the other end, it will be interesting to explore the least resistance

path for cluster management frameworks to abstract the principles contributed in this thesis

and export them to higher layer frameworks.

104

REFERENCES

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga,

R., Moore, S., Murray, D. G., Steiner, B., Tucker, P. A., Vasudevan, V.,
Warden, P., Wicke, M., Yu, Y., and Zheng, X., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016.,
pp. 265–283, 2016.

[2] Abbasi, H., Eisenhauer, G., Wolf, M., Schwan, K., and Klasky, S., “Just in
time: adding value to the IO pipelines of high performance applications with jitstag-
ing,” in Proceedings of the 20th ACM International Symposium on High Performance
Distributed Computing, HPDC 2011, San Jose, CA, USA, June 8-11, 2011, pp. 27–36,
2011.

[3] Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., and Zheng,

F., “Datastager: scalable data staging services for petascale applications,” in Pro-
ceedings of the 18th ACM International Symposium on High Performance Distributed
Computing, HPDC 2009, Garching, Germany, June 11-13, 2009, pp. 39–48, 2009.

[4] Adriaens, J., Compton, K., Kim, N. S., and Schulte, M. J., “The case for
GPGPU spatial multitasking,” in 18th IEEE International Symposium on High Per-
formance Computer Architecture, HPCA 2012, New Orleans, LA, USA, 25-29 Febru-
ary, 2012, pp. 79–90, 2012.

[5] Aji, A. M., Panwar, L. S., Ji, F., Chabbi, M., Murthy, K., Balaji, P., Bisset,

K. R., Dinan, J., Feng, W., Mellor-Crummey, J. M., Ma, X., and Thakur,

R., “On the efficacy of gpu-integrated MPI for scientific applications,” in The 22nd
International Symposium on High-Performance Parallel and Distributed Computing,
HPDC’13, New York, NY, USA - June 17 - 21, 2013, pp. 191–202, 2013.

[6] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., andVahdat, A.,
“Hedera: Dynamic flow scheduling for data center networks,” in Proceedings of the
7th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2010, April 28-30, 2010, San Jose, CA, USA, pp. 281–296, 2010.

[7] Alphabet, “Announcing gpus for google cloud platform.” https://goo.gl/Lv4p7m,
Nov. 2016.

[8] Alverson, R., Roweth, D., and Kaplan, L., “The gemini system interconnect,”
in IEEE 18th Annual Symposium on High Performance Interconnects, HOTI 2010,
Google Campus, Mountain View, California, USA, August 18-20, 2010, pp. 83–87,
2010.

[9] Amazon, “New ec2 instance type the cluster gpu instance.” https://goo.gl/

sYyKq5, Nov. 2010.

105

[10] AMD, “Hardware-based scheduling of gpu work.” https://goo.gl/J6prg1, Nov.
2012.

[11] AMD, “Amd unveils 6th generation a-series processor.” https://goo.gl/UZAmue,
June 2015.

[12] Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro,

B., Chen, J., Chrzanowski, M., Coates, A., Diamos, G., Elsen, E., Engel,
J., Fan, L., Fougner, C., Hannun, A. Y., Jun, B., Han, T., LeGresley, P.,
Li, X., Lin, L., Narang, S., Ng, A. Y., Ozair, S., Prenger, R., Qian, S.,
Raiman, J., Satheesh, S., Seetapun, D., Sengupta, S., Wang, C., Wang, Y.,
Wang, Z., Xiao, B., Xie, Y., Yogatama, D., Zhan, J., and Zhu, Z., “Deep
speech 2 : End-to-end speech recognition in english and mandarin,” in Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, pp. 173–182, 2016.

[13] Bakhoda, A., Yuan, G. L., Fung, W. W. L., Wong, H., and Aamodt, T. M.,
“Analyzing CUDA workloads using a detailed GPU simulator,” in IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS 2009, April
26-28, 2009, Boston, Massachusetts, USA, Proceedings, pp. 163–174, 2009.

[14] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T. L., Ho, A.,
Neugebauer, R., Pratt, I., and Warfield, A., “Xen and the art of virtualiza-
tion,” in Proceedings of the 19th ACM Symposium on Operating Systems Principles
2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003, pp. 164–177,
2003.

[15] Basaran, C. and Kang, K., “Supporting preemptive task executions and memory
copies in gpgpus,” in 24th Euromicro Conference on Real-Time Systems, ECRTS
2012, Pisa, Italy, July 11-13, 2012, pp. 287–296, 2012.

[16] Becchi, M., Sajjapongse, K., Graves, I., Procter, A. M., Ravi, V. T., and
Chakradhar, S. T., “A virtual memory based runtime to support multi-tenancy
in clusters with gpus,” in The 21st International Symposium on High-Performance
Parallel and Distributed Computing, HPDC’12, Delft, Netherlands - June 18 - 22,
2012, pp. 97–108, 2012.

[17] Belviranli, M. E., Bhuyan, L. N., and Gupta, R., “A dynamic self-scheduling
scheme for heterogeneous multiprocessor architectures,” TACO, vol. 9, no. 4, p. 57,
2013.

[18] Bennett, J., Abbasi, H., Bremer, P., Grout, R. W., Gyulassy, A., Jin, T.,
Klasky, S., Kolla, H., Parashar, M., Pascucci, V., Pébay, P. P., Thomp-

son, D. C., Yu, H., Zhang, F., and Chen, J., “Combining in-situ and in-transit
processing to enable extreme-scale scientific analysis,” in SC Conference on High Per-
formance Computing Networking, Storage and Analysis, SC ’12, Salt Lake City, UT,
USA - November 11 - 15, 2012, p. 49, 2012.

[19] Boyer, M., Skadron, K., Che, S., and Jayasena, N., “Load balancing in a
changing world: dealing with heterogeneity and performance variability,” in Comput-
ing Frontiers Conference, CF’13, Ischia, Italy, May 14 - 16, 2013, pp. 21:1–21:10,
2013.

106

[20] Braspenning, P. J., Thuijsman, F., and Weijters, A. J. M. M., eds., Artificial
Neural Networks: An Introduction to ANN Theory and Practice, vol. 931 of Lecture
Notes in Computer Science, Springer, 1995.

[21] Brin, S. and Page, L., “The anatomy of a large-scale hypertextual web search
engine,” Computer Networks, vol. 30, no. 1-7, pp. 107–117, 1998.

[22] Bussmann, M., Burau, H., Cowan, T. E., Debus, A., Huebl, A., Jucke-

land, G., Kluge, T., Nagel, W. E., Pausch, R., Schmitt, F., Schramm, U.,
Schuchart, J., and Widera, R., “Radiative signatures of the relativistic kelvin-
helmholtz instability,” in International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21,
2013, pp. 5:1–5:12, 2013.

[23] Chabbi, M., Murthy, K., Fagan, M. W., and Mellor-Crummey, J. M., “Ef-
fective sampling-driven performance tools for gpu-accelerated supercomputers,” in
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC’13, Denver, CO, USA - November 17 - 21, 2013, pp. 43:1–43:12, 2013.

[24] Chintala, S., “Easy benchmarking of all publicly accessible implementations of con-
vnets.” https://goo.gl/T25hRT, Oct. 2016.

[25] Chowdhury, M. and Stoica, I., “Coflow: a networking abstraction for cluster
applications,” in 11th ACM Workshop on Hot Topics in Networks, HotNets-XI, Red-
mond, WA, USA - October 29 - 30, 2012, pp. 31–36, 2012.

[26] Chowdhury, M., Zhong, Y., and Stoica, I., “Efficient coflow scheduling with
varys,” in ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA,
August 17-22, 2014, pp. 443–454, 2014.

[27] Cielak, R., “Exploring neural networks, p.3.” https://goo.gl/YsXma9, Feb. 2016.

[28] Cui, H., Zhang, H., Ganger, G. R., Gibbons, P. B., and Xing, E. P., “Geeps:
scalable deep learning on distributed gpus with a gpu-specialized parameter server,”
in Proceedings of the Eleventh European Conference on Computer Systems, EuroSys
2016, London, United Kingdom, April 18-21, 2016, pp. 4:1–4:16, 2016.

[29] Databricks, “Deep learning with apache spark and tensorflow.” https://goo.gl/

n5795w, Jan. 2016.

[30] Dayal, J., Lofstead, J. F., Eisenhauer, G., Schwan, K., Wolf, M., Abbasi,

H., and Klasky, S., “SODA: science-driven orchestration of data analytics,” in
11th IEEE International Conference on e-Science, e-Science 2015, Munich, Germany,
August 31 - September 4, 2015, pp. 475–484, 2015.

[31] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao,

M. Z., Ranzato, M., Senior, A. W., Tucker, P. A., Yang, K., and Ng, A. Y.,
“Large scale distributed deep networks,” in Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States., pp. 1232–1240, 2012.

107

[32] Dean, J. and Ghemawat, S., “Mapreduce: Simplified data processing on large
clusters,” in 6th Symposium on Operating System Design and Implementation (OSDI
2004), San Francisco, California, USA, December 6-8, 2004, pp. 137–150, 2004.

[33] Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F., “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pp. 248–255, 2009.

[34] Dettmers, T., “How to parallelize deep learning on gpus part 1/2: Data paral-
lelism.” https://goo.gl/4GK6AP, Oct. 2014.

[35] Dettmers, T., “How to parallelize deep learning on gpus part 2/2: Model paral-
lelism.” https://goo.gl/PF2W8C, Nov. 2014.

[36] Diamos, G., Sengupta, S., Catanzaro, B., Chrzanowski, M., Coates, A.,
Elsen, E., Engel, J., Hannun, A. Y., and Satheesh, S., “Persistent rnns: Stash-
ing recurrent weights on-chip,” in Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
pp. 2024–2033, 2016.

[37] DoE, “Top ten exascale research challenges.” https://goo.gl/Pyr7Ms, Feb. 2014.

[38] Duato, J., Peña, A. J., Silla, F., Mayo, R., and Quintana-Ort́ı, E. S., “rcuda:
Reducing the number of gpu-based accelerators in high performance clusters,” in
Proceedings of the 2010 International Conference on High Performance Computing &
Simulation, HPCS 2010, June 28 - July 2, 2010, Caen, France, pp. 224–231, 2010.

[39] Funahashi, K. and Nakamura, Y., “Approximation of dynamical systems by con-
tinuous time recurrent neural networks,” Neural Networks, vol. 6, no. 6, pp. 801–806,
1993.

[40] Gamell, M., Rodero, I., Parashar, M., Bennett, J., Kolla, H., Chen, J.,
Bremer, P., Landge, A. G., Gyulassy, A., McCormick, P. S., Pakin, S.,
Pascucci, V., and Klasky, S., “Exploring power behaviors and trade-offs of in-
situ data analytics,” in International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21,
2013, pp. 77:1–77:12, 2013.

[41] Giunta, G., Montella, R., Agrillo, G., and Coviello, G., “A GPGPU trans-
parent virtualization component for high performance computing clouds,” in Euro-
Par 2010 - Parallel Processing, 16th International Euro-Par Conference, Ischia, Italy,
August 31 - September 3, 2010, Proceedings, Part I, pp. 379–391, 2010.

[42] Goswami, A., Tian, Y., Schwan, K., Zheng, F., Young, J., Wolf, M., Eisen-
hauer, G., and Klasky, S., “Landrush: Rethinking in-situ analysis for GPGPU
workflows,” in IEEE/ACM 16th International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2016, Cartagena, Colombia, May 16-19, 2016, pp. 32–41, 2016.

[43] Goswami, A., Young, J., Schwan, K., Farooqui, N., Gavrilovska, A., Wolf,

M., and Eisenhauer, G., “Gpushare: Fair-sharing middleware for GPU clouds,” in
2016 IEEE International Parallel and Distributed Processing Symposium Workshops,
IPDPS Workshops 2016, Chicago, IL, USA, May 23-27, 2016, pp. 1769–1776, 2016.

108

[44] Greenberg, A. G., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri,
P., Maltz, D. A., Patel, P., and Sengupta, S., “VL2: a scalable and flexible data
center network,” in Proceedings of the ACM SIGCOMM 2009 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communications,
Barcelona, Spain, August 16-21, 2009, pp. 51–62, 2009.

[45] Gregg, C., Dorn, J., Hazelwood, K. M., and Skadron, K., “Fine-grained
resource sharing for concurrent GPGPU kernels,” in 4th USENIX Workshop on Hot
Topics in Parallelism, HotPar’12, Berkeley, CA, USA, June 7-8, 2012, 2012.

[46] Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar,
V., and Ranganathan, P., “Gvim: Gpu-accelerated virtual machines,” in Proceed-
ings of the 3rd ACM Workshop on System-level Virtualization for High Performance
Computing, HPCVirt ’09, (New York, NY, USA), pp. 17–24, ACM, 2009.

[47] Gupta, V., Schwan, K., Tolia, N., Talwar, V., and Ranganathan, P., “Pe-
gasus: Coordinated scheduling for virtualized accelerator-based systems,” in 2011
USENIX Annual Technical Conference, Portland, OR, USA, June 15-17, 2011, 2011.

[48] He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for image recog-
nition,” CoRR, vol. abs/1512.03385, 2015.

[49] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz,

R. H., Shenker, S., and Stoica, I., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2011, Boston, MA, USA, March
30 - April 1, 2011, 2011.

[50] Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and Igel, C., “De-
tection of traffic signs in real-world images: The german traffic sign detection bench-
mark,” in The 2013 International Joint Conference on Neural Networks, IJCNN 2013,
Dallas, TX, USA, August 4-9, 2013, pp. 1–8, 2013.

[51] hsafoundation.com, “Heterogeneous systems architecture - standards.” https://

goo.gl/dcx5OL, Aug. 2012.

[52] Iandola, F. N., Ashraf, K., Moskewicz, M. W., and Keutzer, K., “Firecaffe:
near-linear acceleration of deep neural network training on compute clusters,” CoRR,
vol. abs/1511.00175, 2015.

[53] IBM, “Ibm cloud first to offer latest nvidia grid with tesla m60 gpu.” https://goo.

gl/Lv4p7m, May 2016.

[54] Ibrahim, K. Z., Madduri, K., Williams, S., Wang, B., Ethier, S., andOliker,

L., “Analysis and optimization of gyrokinetic toroidal simulations on homogenous and
heterogenous platforms,” IJHPCA, vol. 27, no. 4, pp. 454–473, 2013.

[55] ICL-UTK, “Magma - matrix algebra on gpu and multicore architectures.” https:

//goo.gl/o22iCp, Aug. 2016.

[56] Intel, “Gen8 compute architecture of intel graphics.” https://goo.gl/9GbeJT, July
2015.

109

[57] Intel, “Intel math kernel library benchmarks.” https://goo.gl/cVC7pb, Sept. 2015.

[58] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R. B.,
Guadarrama, S., and Darrell, T., “Caffe: Convolutional architecture for fast fea-
ture embedding,” in Proceedings of the ACM International Conference on Multimedia,
MM ’14, Orlando, FL, USA, November 03 - 07, 2014, pp. 675–678, 2014.

[59] Johnson, J., “Benchmarks for popular cnn models.” https://goo.gl/3dzjxr, Oct.
2016.

[60] Kato, S., Lakshmanan, K., Kumar, A., Kelkar, M., Ishikawa, Y., and Ra-

jkumar, R., “RGEM: A responsive GPGPU execution model for runtime engines,”
in Proceedings of the 32nd IEEE Real-Time Systems Symposium, RTSS 2011, Vienna,
Austria, November 29 - December 2, 2011, pp. 57–66, 2011.

[61] Kato, S., Lakshmanan, K., Rajkumar, R., and Ishikawa, Y., “Timegraph:
GPU scheduling for real-time multi-tasking environments,” in 2011 USENIX Annual
Technical Conference, Portland, OR, USA, June 15-17, 2011, 2011.

[62] Kato, S., McThrow, M., Maltzahn, C., and Brandt, S. A., “Gdev: First-
class GPU resource management in the operating system,” in 2012 USENIX Annual
Technical Conference, Boston, MA, USA, June 13-15, 2012, pp. 401–412, 2012.

[63] KhronosGroup, “Opencl - the open standard for parallel programming of hetero-
geneous systems.” https://goo.gl/dAuzD9, Dec. 2008.

[64] KhronosGroup, “Opencl 2.0 device enqueue.” http://goo.gl/NRTwqn, Nov. 2014.

[65] Klug, T., Ott, M., Weidendorfer, J., and Trinitis, C., “autopin - automated
optimization of thread-to-core pinning on multicore systems,” Trans. HiPEAC, vol. 3,
pp. 219–235, 2011.

[66] Krieder, S. J., Wozniak, J. M., Armstrong, T. G., Wilde, M., Katz, D. S.,
Grimmer, B., Foster, I. T., and Raicu, I., “Design and evaluation of the gemtc
framework for gpu-enabled many-task computing,” in The 23rd International Sympo-
sium on High-Performance Parallel and Distributed Computing, HPDC’14, Vancou-
ver, BC, Canada - June 23 - 27, 2014, pp. 153–164, 2014.

[67] Krizhevsky, A., Sutskever, I., and Hinton, G. E., “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States., pp. 1106–1114, 2012.

[68] Lee, J., Samadi, M., Park, Y., and Mahlke, S. A., “Transparent CPU-GPU
collaboration for data-parallel kernels on heterogeneous systems,” in Proceedings of the
22nd International Conference on Parallel Architectures and Compilation Techniques,
Edinburgh, United Kingdom, September 7-11, 2013, pp. 245–255, 2013.

[69] Leskovec, J. and Faloutsos, C., “Scalable modeling of real graphs using kronecker
multiplication,” in Machine Learning, Proceedings of the Twenty-Fourth International
Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, pp. 497–504,
2007.

110

[70] Leskovec, J. and Sosic, R., “SNAP: A general-purpose network analysis and graph-
mining library,” ACM TIST, vol. 8, no. 1, p. 1, 2016.

[71] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski,
V., Long, J., Shekita, E. J., and Su, B., “Scaling distributed machine learning with
the parameter server,” in 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pp. 583–598,
2014.

[72] Li, M., Zhang, T., Chen, Y., and Smola, A. J., “Efficient mini-batch training
for stochastic optimization,” in The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24
- 27, 2014, pp. 661–670, 2014.

[73] Li, T., Brett, P., Knauerhase, R. C., Koufaty, D. A., Reddy, D., and Hahn,

S., “Operating system support for overlapping-isa heterogeneous multi-core architec-
tures,” in 16th International Conference on High-Performance Computer Architecture
(HPCA-16 2010), 9-14 January 2010, Bangalore, India, pp. 1–12, 2010.

[74] Liu, C. L. and Layland, J. W., “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973.

[75] LLNL, “Sierra advanced technology system.” https://goo.gl/Lzrka5, Nov. 2014.

[76] Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I.,
Leiser, N., and Czajkowski, G., “Pregel: a system for large-scale graph process-
ing,” in Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pp. 135–146,
2010.

[77] Mars, J., Tang, L., Hundt, R., Skadron, K., and Soffa, M. L., “Bubble-up:
increasing utilization in modern warehouse scale computers via sensible co-locations,”
in 44rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
2011, 3-7 December 2011, Porto Alegre, Brazil, pp. 248–259, 2011.

[78] Mars, J., Vachharajani, N., Hundt, R., and Soffa, M. L., “Contention aware
execution: online contention detection and response,” in Proceedings of the CGO 2010,
The 8th International Symposium on Code Generation and Optimization, Toronto,
Ontario, Canada, April 24-28, 2010, pp. 257–265, 2010.

[79] Martinasso, M., Kwasniewski, G., Alam, S. R., Schulthess, T. C., and Hoe-

fler, T., “A pcie congestion-aware performance model for densely populated accel-
erator servers,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA,
November 13-18, 2016, p. 63, 2016.

[80] Massoulié, L. and Roberts, J., “Bandwidth sharing: Objectives and algorithms,”
in Proceedings IEEE INFOCOM ’99, The Conference on Computer Communications,
Eighteenth Annual Joint Conference of the IEEE Computer and Communications
Societies, The Future Is Now, New York, NY, USA, March 21-25, 1999, pp. 1395–
1403, 1999.

111

[81] MaximMilakov, “nnforge : Convolutional and fully-connected neural networks c++
framework.” https://goo.gl/9Nuga3, July 2016.

[82] Menychtas, K., Shen, K., and Scott, M. L., “Disengaged scheduling for fair,
protected access to fast computational accelerators,” in Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA,
March 1-5, 2014, pp. 301–316, 2014.

[83] Microsoft, “New g2 instance type with 4x more gpu power.” https://goo.gl/

qKYH6E, Apr. 2015.

[84] Microsoft, “Azure n-series preview availability.” https://goo.gl/ar7ehL, Aug.
2016.

[85] nanomsg.org, “nanomsg library.” https://goo.gl/vD1eFb, Nov. 2014.

[86] Nervanasys, “Neon - the worlds fastest deep learning framework.” https://goo.

gl/rgC9XR, Sept. 2016.

[87] nextplatform.com, “Inside the gpu clusters that power baidu’s neural networks.”
https://goo.gl/DqA8ab, Dec. 2015.

[88] Nvidia, “Nvidia gpus - the engine of deep learning.” https://goo.gl/6SmcYO.

[89] Nvidia, “About cuda.” https://goo.gl/og3jYS, Mar. 2006.

[90] Nvidia, “Nvidia gpus power adobe creative cloud.” https://goo.gl/4lvpok, Nov.
2006.

[91] Nvidia, “Nvidia unveils cuda.” https://goo.gl/n5qAP4, Nov. 2006.

[92] Nvidia, “Kepler architecture.” https://goo.gl/aY3Bfg, Apr. 2012.

[93] Nvidia, “An introduction to cuda-aware mpi.” https://goo.gl/h7zg0d, Mar. 2013.

[94] Nvidia, “Cuda dynamic parallelism.” https://goo.gl/TBIuVh, May 2014.

[95] Nvidia, “What is nvlink?.” https://goo.gl/CeGD6v, Nov. 2014.

[96] Nvidia, “Cuda 7 performance report.” http://bit.ly/2fZMr1w, May 2015.

[97] Nvidia, “Cuda multi-process service.” https://goo.gl/sSydPk, Mar. 2015.

[98] Nvidia, “cublas - gpu accelerated basic linear algebra subroutines.” https://goo.

gl/Al2IRy, Apr. 2016.

[99] Nvidia, “Cuda profiling tools interface.” https://goo.gl/dq0nao, Apr. 2016.

[100] Nvidia, “cudnn - gpu accelerated deep learning.” https://goo.gl/WNP3bF, Apr.
2016.

[101] Nvidia, “cufft - gpu accelerated fast fourier transform.” https://goo.gl/YopE0o,
Apr. 2016.

[102] Nvidia, “Gpu applications catalog.” https://goo.gl/Kfr5Bb, Nov. 2016.

112

[103] Nvidia, “Nvidia dgx saturnv ranked worlds most efficient supercomputer by wide
margin.” https://goo.gl/1pz9sa, Nov. 2016.

[104] Nvidia, “Nvidia pascal gpus to double speed of europe’s fastest supercomputer.”
https://goo.gl/yj0dMZ, Apr. 2016.

[105] OLCF, “Introducing titan - advancing the era of accelerated computing.” https:

//goo.gl/0cqbOz, Nov. 2012.

[106] OLCF, “Summit the next peak in hpc.” https://goo.gl/pikrTW, Nov. 2014.

[107] openacc.org, “Openacc - directives for accelerators.” https://goo.gl/UAAiyd,
Nov. 2011.

[108] Pai, S., Thazhuthaveetil, M. J., and Govindarajan, R., “Improving GPGPU
concurrency with elastic kernels,” in Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’13, Houston, TX, USA - March 16 - 20,
2013, pp. 407–418, 2013.

[109] Park, J. J. K., Park, Y., and Mahlke, S. A., “Chimera: Collaborative preemp-
tion for multitasking on a shared GPU,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, pp. 593–606, 2015.

[110] Phull, R., Li, C., Rao, K., Cadambi, S., and Chakradhar, S. T., “Interference-
driven resource management for gpu-based heterogeneous clusters,” in The 21st In-
ternational Symposium on High-Performance Parallel and Distributed Computing,
HPDC’12, Delft, Netherlands - June 18 - 22, 2012, pp. 109–120, 2012.

[111] Plimpton, S., “Fast parallel algorithms for short-range molecular dynamics,” J.
Comput. Phys., vol. 117, pp. 1–19, Mar. 1995.

[112] Qiu, Z., Stein, C., and Zhong, Y., “Minimizing the total weighted completion time
of coflows in datacenter networks,” in Proceedings of the 27th ACM on Symposium on
Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June
13-15, 2015, pp. 294–303, 2015.

[113] Ravi, V. T., Becchi, M., Agrawal, G., and Chakradhar, S. T., “Support-
ing GPU sharing in cloud environments with a transparent runtime consolidation
framework,” in Proceedings of the 20th ACM International Symposium on High Per-
formance Distributed Computing, HPDC 2011, San Jose, CA, USA, June 8-11, 2011,
pp. 217–228, 2011.

[114] Rossbach, C. J., Currey, J., Silberstein, M., Ray, B., and Witchel, E.,
“Ptask: operating system abstractions to manage gpus as compute devices,” in Pro-
ceedings of the 23rd ACM Symposium on Operating Systems Principles 2011, SOSP
2011, Cascais, Portugal, October 23-26, 2011, pp. 233–248, 2011.

[115] Rossbach, C. J., Yu, Y., Currey, J., Martin, J., and Fetterly, D., “Dande-
lion: a compiler and runtime for heterogeneous systems,” in ACM SIGOPS 24th Sym-
posium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013, pp. 49–68, 2013.

113

[116] Sajjapongse, K., Wang, X., and Becchi, M., “A preemption-based runtime to
efficiently schedule multi-process applications on heterogeneous clusters with gpus,”
in The 22nd International Symposium on High-Performance Parallel and Distributed
Computing, HPDC’13, New York, NY, USA - June 17 - 21, 2013, pp. 179–190, 2013.

[117] Seide, F. andAgarwal, A., “CNTK: microsoft’s open-source deep-learning toolkit,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, p. 2135,
2016.

[118] Sengupta, D., Goswami, A., Schwan, K., and Pallavi, K., “Scheduling multi-
tenant cloud workloads on accelerator-based systems,” in International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2014, New
Orleans, LA, USA, November 16-21, 2014, pp. 513–524, 2014.

[119] Seo, S., Yoon, E. J., Kim, J., Jin, S., Kim, J., and Maeng, S., “HAMA: an
efficient matrix computation with the mapreduce framework,” in Cloud Computing,
Second International Conference, CloudCom 2010, November 30 - December 3, 2010,
Indianapolis, Indiana, USA, Proceedings, pp. 721–726, 2010.

[120] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun,

Y., “Overfeat: Integrated recognition, localization and detection using convolutional
networks,” CoRR, vol. abs/1312.6229, 2013.

[121] Shi, L., Chen, H., and Sun, J., “vcuda: GPU accelerated high performance com-
puting in virtual machines,” in 23rd IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009, pp. 1–11, 2009.

[122] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale
image recognition,” CoRR, vol. abs/1409.1556, 2014.

[123] skymind.io, “Distributed deep learning, part 1: An introduction to distributed train-
ing of neural networks.” https://goo.gl/VNZKlL, Oct. 2016.

[124] Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A. C., and Peterson,

L. L., “Container-based operating system virtualization: a scalable, high-performance
alternative to hypervisors,” in Proceedings of the 2007 EuroSys Conference, Lisbon,
Portugal, March 21-23, 2007, pp. 275–287, 2007.

[125] Stephenson, M., Hari, S. K. S., Lee, Y., Ebrahimi, E., Johnson, D. R.,
Nellans, D. W.,O’Connor, M., andKeckler, S. W., “Flexible software profiling
of GPU architectures,” in Proceedings of the 42nd Annual International Symposium
on Computer Architecture, Portland, OR, USA, June 13-17, 2015, pp. 185–197, 2015.

[126] Stratton, J. A., Stone, S. S., and Hwu, W. W., “MCUDA: an efficient imple-
mentation of CUDA kernels for multi-core cpus,” in Languages and Compilers for
Parallel Computing, 21th International Workshop, LCPC 2008, Edmonton, Canada,
July 31 - August 2, 2008, Revised Selected Papers, pp. 16–30, 2008.

[127] Suzuki, Y., Kato, S., Yamada, H., and Kono, K., “Gpuvm: Why not virtualizing
gpus at the hypervisor?,” in 2014 USENIX Annual Technical Conference, USENIX
ATC ’14, Philadelphia, PA, USA, June 19-20, 2014., pp. 109–120, 2014.

114

[128] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A., “Going deeper with convolu-
tions,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pp. 1–9, 2015.

[129] Tanasic, I., Gelado, I., Cabezas, J., Raḿırez, A., Navarro, N., and Valero,

M., “Enabling preemptive multiprogramming on gpus,” in ACM/IEEE 41st Inter-
national Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA,
June 14-18, 2014, pp. 193–204, 2014.

[130] Tang, L., Mars, J., and Soffa, M. L., “Compiling for niceness: mitigating con-
tention for qos in warehouse scale computers,” in 10th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO 2012, San Jose, CA,
USA, March 31 - April 04, 2012, pp. 1–12, 2012.

[131] Tang, L., Mars, J., Wang, W., Dey, T., and Soffa, M. L., “Reqos: reactive
static/dynamic compilation for qos in warehouse scale computers,” in Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’13, Houston,
TX, USA - March 16 - 20, 2013, pp. 89–100, 2013.

[132] Tian, K., Dong, Y., and Cowperthwaite, D., “A full GPU virtualization solu-
tion with mediated pass-through,” in 2014 USENIX Annual Technical Conference,
USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014., pp. 121–132, 2014.

[133] Tian, Y., Klasky, S., Yu, W., Abbasi, H., Wang, B., Podhorszki, N., Grout,

R. W., and Wolf, M., “A system-aware optimized data organization for efficient
scientific analytics,” in The 21st International Symposium on High-Performance Par-
allel and Distributed Computing, HPDC’12, Delft, Netherlands - June 18 - 22, 2012,
pp. 125–126, 2012.

[134] UCDavis, “Gunrock: High-performance graph primitives for the gpu.” https://

goo.gl/GZQyWS, Nov. 2016.

[135] Valiant, L. G., “Why BSP computers?,” in The Seventh International Parallel
Processing Symposium, Proceedings, Newport Beach, California, USA, April 13-16,
1993., pp. 2–5, 1993.

[136] Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., and
LeCun, Y., “Fast convolutional nets with fbfft: A GPU performance evaluation,”
CoRR, vol. abs/1412.7580, 2014.

[137] Wang, B., Ethier, S., Tang, W. M., Williams, T. J., Ibrahim, K. Z., Mad-

duri, K., Williams, S., andOliker, L., “Kinetic turbulence simulations at extreme
scale on leadership-class systems,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’13, Denver, CO, USA - November
17 - 21, 2013, pp. 82:1–82:12, 2013.

[138] Wehrle, K., Günes, M., and Gross, J., eds., Modeling and Tools for Network
Simulation. Springer, 2010.

[139] Yair, E. and Gersho, A., “The boltzmann perceptron network: A multi-layered
feed-forward network equivalent to the boltzmann machine,” in Advances in Neural

115

Information Processing Systems 1, [NIPS Conference, Denver, Colorado, USA, 1988],
pp. 116–123, 1988.

[140] Yalamanchili, P. and others, “ArrayFire - A high performance software library
for parallel computing with an easy-to-use API,” 2015.

[141] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M.,
Franklin, M. J., Shenker, S., and Stoica, I., “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012,
San Jose, CA, USA, April 25-27, 2012, pp. 15–28, 2012.

[142] Zhao, Y., Chen, K., Bai, W., Yu, M., Tian, C., Geng, Y., Zhang, Y., Li, D.,
and Wang, S., “Rapier: Integrating routing and scheduling for coflow-aware data
center networks,” in 2015 IEEE Conference on Computer Communications, INFO-
COM 2015, Kowloon, Hong Kong, April 26 - May 1, 2015, pp. 424–432, 2015.

[143] Zheng, F., Yu, H., Hantas, C., Wolf, M., Eisenhauer, G., Schwan, K.,
Abbasi, H., and Klasky, S., “Goldrush: resource efficient in situ scientific data
analytics using fine-grained interference aware execution,” in International Conference
for High Performance Computing, Networking, Storage and Analysis, SC’13, Denver,
CO, USA - November 17 - 21, 2013, pp. 78:1–78:12, 2013.

[144] Zheng, F., Zou, H., Eisenhauer, G., Schwan, K., Wolf, M., Dayal, J.,
Nguyen, T., Cao, J., Abbasi, H., Klasky, S., Podhorszki, N., and Yu, H.,
“Flexio: I/O middleware for location-flexible scientific data analytics,” in 27th IEEE
International Symposium on Parallel and Distributed Processing, IPDPS 2013, Cam-
bridge, MA, USA, May 20-24, 2013, pp. 320–331, 2013.

[145] Zhou, A. C., He, B., Cheng, X., and Lau, C. T., “A declarative optimization
engine for resource provisioning of scientific workflows in iaas clouds,” in Proceedings
of the 24th International Symposium on High-Performance Parallel and Distributed
Computing, HPDC 2015, Portland, OR, USA, June 15-19, 2015, pp. 223–234, 2015.

[146] Zinkevich, M., Weimer, M., Smola, A. J., and Li, L., “Parallelized stochastic
gradient descent,” in Advances in Neural Information Processing Systems 23: 24th
Annual Conference on Neural Information Processing Systems 2010. Proceedings of a
meeting held 6-9 December 2010, Vancouver, British Columbia, Canada., pp. 2595–
2603, 2010.

116

VITA

Anshuman Goswami was born and raised at Serampore, a suburb of Kolkata, India. He

went to Jadavpur University for his undergraduate studies majoring in Electronics and

Telecommunication Engineering in 2005. He worked in the industry as a software engineer

for the next 5 years, first, in Tata Consultancy Services Ltd and then, in STMircoelectronics

NV. He came back to school to pursue a PhD in Computer Science from Georgia Institute

of Technology in 2010. He is currently a PhD candidate at the School of Computer Science

in the College of Computing at Georgia Tech being advised by Prof Karsten Schwan and

Dr Matthew Wolf.

117

