
Citation: Xia, Z.; Kim, J. Enhancing

Mask Transformer with Auxiliary

Convolution Layers for Semantic

Segmentation. Sensors 2023, 23, 581.

https://doi.org/10.3390/s23020581

Academic Editors: Erik Blasch and

Yufeng Zheng

Received: 6 December 2022

Revised: 30 December 2022

Accepted: 31 December 2022

Published: 4 Janauary 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancing Mask Transformer with Auxiliary Convolution
Layers for Semantic Segmentation
Zhengyu Xia and Joohee Kim *

Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
* Correspondence: joohee@ece.iit.edu

Abstract: Transformer-based semantic segmentation methods have achieved excellent performance in
recent years. Mask2Former is one of the well-known transformer-based methods which unifies com-
mon image segmentation into a universal model. However, it performs relatively poorly in obtaining
local features and segmenting small objects due to relying heavily on transformers. To this end, we
propose a simple yet effective architecture that introduces auxiliary branches to Mask2Former during
training to capture dense local features on the encoder side. The obtained features help improve
the performance of learning local information and segmenting small objects. Since the proposed
auxiliary convolution layers are required only for training and can be removed during inference, the
performance gain can be obtained without additional computation at inference. Experimental results
show that our model can achieve state-of-the-art performance (57.6% mIoU) on the ADE20K and
(84.8% mIoU) on the Cityscapes datasets.

Keywords: deep learning; semantic segmentation; image segmentation; transformer; convolutional
neural networks

1. Introduction

Transformer, a type of a deep learning model based on self-attention [1], was first
applied to natural language processing (NLP) tasks and achieved significant improvements.
Inspired by the huge success of Transformer architectures in NLP, extensive research has
been recently performed to apply Transformer to various computer vision tasks [2–4].
The basic idea for vision transformers is to break down images into sequential patches
and learn self-attention features without using convolutional layers. Unlike traditional
convolutional neural network (CNN) models [5,6], transformer-based ones can better
capture global attention and broader range relations throughout the entire layers.

Recently, several semantic segmentation approaches [7–11] based on vision trans-
formers have been proposed to exploit the benefits of transformer models for improving
semantic segmentation. One way to improve semantic segmentation is to adopt a feature
pyramid network (FPN) [12] in a transformer model to obtain multi-scale feature maps.
For example, SETR [7] designs a top-down feature aggregation at the decoder side. It gen-
erates the final predictions by collecting the feature maps from the transformer backbone.
SegFormer [8] proposes a hierarchical transformer at the encoder side. The feature outputs
are then fused into a multilayer perceptron (MLP) decoder to aggregate information. An-
other way is to replace per-pixel classification with mask classification to predict the final
outputs. Segmenter [9] utilizes a transformer-based decoder to generate class masks by
computing the scalar product between the patch embeddings and the class embeddings.
MaskFormer [10] observes that mask classification is sufficiently general to solve both
semantic- and instance-level segmentation tasks. It converts per-pixel classification into a
mask classification model using a set prediction mechanism. Mask2Former [11] improves
the performance on top of [10] and presents a universal segmentation model using the
same mask classification mechanism.
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However, we observe that these segmentation approaches rely heavily on transformer
models and therefore lose local information at a certain level. Even Mask2Former [11],
a powerful unified segmentation model, still faces the issue of learning local features
and segmenting small objects. In contrast, convolutional layers can better capture local
features since most CNN models adopt a small window-sized learning manner. In addition,
the optimization with CNN models is easier and more robust compared to transformer
models. Therefore, many researchers consider a hybrid model which combines the benefits
of CNNs and transformers. For example, ref. [13] replaces the ViT patching module with
a convolutional stem to achieve faster convergence and more stable training. BotNet [14]
incorporates multi-head self-attention modules on top of the ResNet. It provides a backbone
architecture that uses transformer-like blocks for downstream tasks. Visformer [15] offers
an empirical study by transforming a transformer-based model to a CNN model and
then proposes a new hybrid architecture by absorbing the advantages and discarding
the disadvantages.

Inspired by these hybrid approaches, we propose a simple yet effective method on
top of [11] to boost semantic segmentation performance. In this work, we introduce
an auxiliary CNN on the encoder side. It encourages the model to learn dense local
features compared to a pure transformer-based backbone. Additionally, unlike the existing
hybrid models, our proposed auxiliary convolution layers can be removed. Therefore, it
enhances the semantic segmentation performance without any additional computational
cost at inference. Since [11] is a universal segmentation model, we will also show that
our proposed method can improve the semantic segmentation performance using a single
panoptic model. The contributions of this work can be summarized as follows:

(1) We design an auxiliary CNN on top of Mask2Former [11] to help improve semantic
segmentation performance. The proposed network consists of simple convolutional
layers without bells and whistles. We demonstrate that the proposed method improves
the semantic segmentation performance quantitatively and qualitatively. Specifically,
we show that the proposed method is effective in learning local features and segment-
ing small objects more accurately.

(2) Since the proposed auxiliary convolution layers are required during the training stage
only, the proposed method incurs no additional computation overhead at inference.
This is one of the important properties of the proposed method because enhancing
the performance while maintaining the complexity at inference is crucial for real-
world applications.

(3) The proposed auxiliary convolution layers are effective for both semantic and panoptic
segmentation. Since Mask2Former is a universal architecture for different segmenta-
tion tasks and our proposed method is designed to enhance Mask2Former, we show
that the proposed method achieves state-of-the-art performance for semantic and
panoptic segmentation on the ADE20K [16] and Cityscapes [17] datasets.

The rest of the paper is organized as follows: In Section 2, the related work is discussed.
In Section 3, the proposed method is explained in detail. Section 4 introduces the dataset,
implement details, ablation study and experimental results. Section 5 is the conclusion and
future work.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation aims to assign a category label to each pixel. Ref. [18] is the first
work to train a fully convolutional network (FCN) end-to-end for semantic segmentation.
SegNet [19] and UNet [20] extend the segmentation model with a symmetric encoder-
decoder architecture to gradually recover image resolutions. ParseNet [21] augments the
features with the average feature for each layer to exploit global context information. PSP-
Net [22] and DeepLab [23–25] follow the ideas of Spatial Pyramid Pooling (SPP) [26] to
capture dense contextual information at multiple levels. DANet [27] appends two separate
attention modules on top of FCN to obtain global dependencies in spatial and channel di-
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mensions, respectively. CCNet [28] proposes a criss-cross attention module on the decoder
side to harvest contextual information along the criss-cross path. OCNet [29] presents an
object context aggregation scheme with an interlaced spare self-attention to address the
semantic segmentation task. These well-known models are all based on convolutional
neural networks to learn image features. With the advent of vision transformers [2–4],
many semantic segmentation approaches are proposed based on transformers. SETR [7]
reformulates semantic segmentation as a sequence-to-sequence learning problem and de-
ploys a pure encoder-decoder transformer model for semantic segmentation. SegFormer [8]
designs a hierarchical transformer encoder with a lightweight MLP decoder to generate
segmentation results without heavy computational cost. Segmenter [9] refers to ViT [2] and
extends it to semantic segmentation. It adopts a mask transformer on the decoder side to
generate class masks.

2.2. Panoptic Segmentation

Panoptic segmentation [30] aims to combine semantic and instance segmentation
into a general unified output. Panoptic-Deeplab [31] and TASCNet [32] build one shared
backbone with two segmentation heads to learn semantic and instance features individually.
UPSNet [33] designs a parameter-free panoptic head using pixel-wise classification to
resolve the conflicts between semantic and instance features. BGRNet [34] adopts a graph
structure on top of a panoptic network to mine intra- and inter-modular relations between
foreground and background classes. Auto-Panoptic [35] proposes an automated framework
to search for main components simultaneously in a panoptic network, achieving a reciprocal
relation between things and stuff classes. Panoptic-FCN [36] represents things and stuff
uniformly using a proposed kernel head, which generates unique weights for both classes.
MaskFormer [10] demonstrates that mask classification is sufficient to be used for both
semantic- and instance-level segmentation tasks. It shows that a simple mask classification
can outperform state-of-the-art per-pixel classification models. Mask2Former [11] is an
improved version of [10] and utilizes masked attention to extract localized features. It is a
universal image segmentation model that outperforms specialized segmentation models
across different tasks.

2.3. Hybrid Models Using Convolutions and Transformers

Recently, numerous approaches that combine both convolutions and transformers
have been proposed. DETR [26] adopts a CNN backbone with a transformer decoder
for object detection. ViLBERT [37] builds a multimodal two-steam model to process
visual and textual inputs through co-attentional transformer layers. It utilizes a BERT [4]
architecture for the linguistic stream and a Faster-RCNN [38] to capture image regions.
PVT [39,40] borrows the pyramid structure concept in CNNs and designs a pyramid vision
transformer for learning multi-scale features with high resolutions. P2T [41] implements a
pooling-based self-attention module with depthwise convolutional operations for multi-
scale feature learning. Ref. [13] demonstrates that the optimization challenges in ViT [2] are
related to the patchify stem and shows that the use of convolutional stem enables a much
faster convergence in training. BotNet [14] and Visformer [15] analyze the behaviors in
convolution- and transformer-based models. Both methods incorporate Multi-Head Self-
Attention (MHSA) modules on top of the ResNet-like models to improve the performance
of the baseline models. In this work, we propose a simple yet efficient method that
introduces an auxiliary CNN on top of the Mask2Fomer [11]. It helps increase the semantic
segmentation performance, especially for the local features and small objects. Unlike the
existing hybrid models, the proposed method can be removed at the inference stage and
therefore does not incur any additional computation overhead at inference.



Sensors 2023, 23, 581 4 of 14

3. Proposed Method
3.1. Overall Architecture

Our proposed method is integrated with the transformer-based model to improve
semantic segmentation. Figure 1 illustrates the overall architecture, where the proposed
auxiliary CNN is jointly trained with the main segmentation network. First, the input image
is fed to a Swin [42] backbone to generate feature embeddings Fl , where l ∈ {1, . . . , L}
and L is the total number of the stages represented in the Swin backbone. Then, feature
embeddings Fl are shared between two separate branches: the main segmentation head
and the proposed auxiliary CNN. We use Mask2Former [11] which adopts a pixel decoder
and a transformer decoder to generate mask predictions as the main segmentation head.
In the auxiliary CNN, feature embeddings Fl are first fed to a simple CNN-based network,
aiming to learn local features with different resolutions. Then, an auxiliary loss is calculated
based on the auxiliary outputs and added to the main loss to compute the total loss.

Figure 1. Architecture overview. The proposed method is instantiated on top of Mask2Former [11],
which uses Swin Transformer [42] as the backbone network to extract feature embeddings {F1, . . . , FL}.
The proposed auxiliary CNN consists of several simple convolutional layers to learn more accurate
local features by using the feature embedding produced by the Transformer backbone as input.
An auxiliary loss is used along with the main loss to compute the total loss for segmentation.
The auxiliary CNN is used for training only and will be removed at inference.

3.2. Auxiliary CNN

We design an auxiliary branch with convolutional layers to generate multi-scale local
features from the backbone, as illustrated in Figure 1.

For a feature embedding Fl ∈ R
HW
r2
l
×Cl

, we first reshape it into a feature map F
′
l with a

size of Cl × H
rl
× W

rl
, where Cl is the channel dimension of the feature map at the lth stage

in the Swin backbone. H and W are the height and width of the input image, respectively.
rl is the resolution factor equal to 4, 8, 16, and 32 for stages 1, 2, 3, and 4, respectively.
Then, the reshaped feature map F

′
l is applied to a series of residual blocks for local feature

learning. The residual block consists of a stack of three convolutional layers. The three
layers are 1 × 1, 3 × 3, and 1 × 1 convolutions, where the 1 × 1 layers are responsible
for downsampling and upsampling the channel dimensions and 3× 3 filters are used
for feature learning. A skip connection and an element-wise summation are included in
the residual block to refine the optimization processing during the training phase. Then,
the output from the residual block is fed to a 1× 1 convolutional layer to reduce the feature
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dimension from Cl × H
rl
× W

rl
to N × H

rl
× W

rl
, where N is the number of categories in the

dataset. Finally, we adopt a cross-entropy function for auxiliary loss calculation. Note that
the reshaping operation in the proposed method is not mandatory. Depending on the shape
of the output obtained from the Transformer backbone, the proposed auxiliary CNN can be
used without reshaping the feature embeddings.

3.3. Auxiliary Loss

We define the loss function for auxiliary CNN as a cross-entropy loss. Specifically,
the loss function for auxiliary branch at the lth stage is computed as:

Ll
aux =

W l

∑
w=1

Hl

∑
h=1

CE(yl(w, h), gtl(w, h)), (1)

where W l = W/rl and Hl = W/rl . yl is the auxiliary prediction at the l stage, and gtl

is the corresponding ground truth for semantic segmentation. CE is the cross-entropy
loss function. The total auxiliary segmentation loss Laux is the normalized sum of the
cross-entropy loss Ll

aux over all L stages and is defined as:

Laux =
L

∑
n=1

norm(Ll
aux). (2)

When training with the auxiliary CNN, the total loss function is defined as:

Ltotal = Lmask−cls + βLaux, (3)

where Lmask−cls is the mask classification loss defined in [11], β is the weight for auxiliary
segmentation loss. In our ablation study, the best β is selected as 0.1.

4. Experimental Results
4.1. Dataset

We conduct experiments on the ADE20K [16] and Cityscapes [17] datasets. The ADE20K
dataset is a densely annotated dataset for scene parsing with 150 categories. The training
set contains 20K images, and the validation set contains 2K images. The Cityscapes dataset
is a street-view dataset with 19 classes, focusing on a semantic understanding of urban
street scenes. It contains 5K images with fine annotations and 20K images with coarse
annotations. The fine-annotated dataset contains 2975, 500, and 1525 images for training,
validation, and testing, respectively. The ADE20K validation dataset is used for the ablation
study to compare the performance with our baseline Mask2Former [11] and other setups.

We use the mean Intersection-over-Union (mIoU) metric for semantic segmentation
and the standard Panoptic Quality (PQ) metric for panoptic segmentation. PQ metric [30]
evaluates the performance of both stuff and things in a unified manner. Additionally, we
use the same metric settings for semantic and instance segmentation based on a single
panoptic model as in [11]. Specifically, we report mIoUpan for semantic segmentation by
merging instance masks with the same category, and APpan for instance segmentation,
evaluated on the “thing” categories with instance segmentation annotations.

4.2. Implementation Details

Our implementation is based on PyTorch [43] framework with Detectron2 [44]. We
use the AdamW [45] optimizer and the step learning rate schedule, where the base learning
rate is initialized to 0.0001. All the training has a weight decay of 0.05 and a momentum of
0.9. The input image is resized to 640× 640 and 512× 1024 for ADE20K and Cityscapes,
respectively. Data augmentation includes random crop, random flip, and large-scale
jittering (LSJ) [46]. Following the default settings in [11], we adopt batch normalization for
the Cityscapes dataset only. The query number is 100 for all training except that we set
200 queries for the panoptic model with the Swin-L backbone.
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Due to the GPU memory limitation, we use smaller batch sizes with higher numbers
of training iterations so that we can have similar training settings as in Mask2Former.
Specifically, for the ADE20K dataset, we set the batch sizes to 16, 16, 12, and 8 for the Swin-
T, Swin-S, Swin-B, and Swin-L transformer backbones, respectively. The corresponding
training iterations for these Swin transformer backbones are set to 160K, 160K, 240K,
and 360K, respectively. For the Cityscapes dataset, we assign the batch sizes to 12, 8, and
6 for the Swin-S, Swin-B, and Swin-L, respectively. The corresponding training iterations
are set to 120K, 180K, and 240K, respectively. By doing so, the number of training epochs is
the same as [11]. We also represent the reproduced Mask2Former with our settings, marked
as Mask2Former(ours), for a fair comparison.

4.3. Ablation Study

We conduct our ablation study on the ADE20K validation dataset. To evaluate our
proposed method fairly, we use the same experimental environments to compare the
performance with different settings. We use the Mask2Former with Swin-B backbone as
the base network. The cropping size of the input data is set to 640× 640.

Effectiveness of auxiliary CNN: To determine the best architecture of the proposed
auxiliary CNN for local feature learning, we first use different combinations of the multi-
scale feature maps obtained from the Swin transformer backbone as input and evaluate the
performance. Specifically, we set various setups by using {F1}, {F2}, {F3}, {F1, F2}, {F1, F3},
{F2, F3}, and {F1, F2, F3} as the feature inputs for our auxiliary branches. The subscript in
Fl indicates the stage number in the Swin backbone. Table 1 shows that the use of auxiliary
CNN with any feature map generated from the transformer backbone improves the per-
formance compared to the baseline method. Among all settings, the best performance is
obtained when {F1, F2, F3} is used as input to the proposed auxiliary CNN. The experimen-
tal results verify that the proposed auxiliary CNN is effective in learning additional local
features and achieves better performance when multi-scale features are used. Since the
proposed auxiliary CNN will be removed at inference, we use {F1, F2, F3} as input to the
proposed auxiliary CNN for the remaining experiments to achieve the best performance.

Table 1. Performance comparison of different auxiliary CNN setups using the ADE20K validation set.
baseline: Mask2Former with Swin-B backbone for semantic segmentation. Fl : feature embeddings
extracted at the lth stage from the Swin-B backbone. ss: single-scale. ms: multi-scale.

Setups Baseline F1 F2 F3 mIoU (ss) mIoU (ms) #params

Setup 1
√

53.9 55.1 107.0M
Setup 2

√ √
54.2 (↑0.3) 55.3 (↑0.2) 107.1M

Setup 3
√ √

54.3 (↑0.4) 55.3 (↑0.2) 107.3M
Setup 4

√ √
54.0 (↑0.1) 55.1 (-) 109.2M

Setup 5
√ √ √

54.3 (↑0.4) 55.3 (↑0.2) 107.4M
Setup 6

√ √ √
54.2 (↑0.3) 55.2 (↑0.1) 109.3M

Setup 7
√ √ √

54.3 (↑0.4) 55.3 (↑0.2) 109.5M
Setup 8

√ √ √ √
54.5 (↑0.6) 55.5 (↑0.4) 109.6M

Architecture of auxiliary CNN: One of the main design criteria for the proposed aux-
iliary CNN is to learn some useful local information based on the feature maps generated
from the transformer backbone network using simple architectures. We consider four
different simple CNN architectures: a 1× 1 convolutional layer, a 3× 3 convolutional layer,
a residual block (a stack of 1× 1, 3× 3, and 1× 1 convolutional layers with a skip connec-
tion), and a stack of two residual blocks. Table 2 shows the comparison of performance gain
in semantic segmentation obtained by using these different auxiliary CNN architectures for
the ADE20K validation dataset. Among the simple architectures we considered, a stack
of two residual blocks achieved the best performance improvement. Since stacking more
than two residual blocks does not improve the performance gain significantly, we build
our proposed auxiliary CNN by using a stack of two residual blocks.



Sensors 2023, 23, 581 7 of 14

Table 2. Performance comparison of various auxiliary CNNs using the ADE20K validation set. ss:
single-scale. ms: multi-scale.

Auxiliary Structure mIoU (ss) mIoU (ms) #params

- 53.9 55.1 -
1× 1 conv. 53.6 (↓0.3) 54.7 (↓0.4) 1.4M
3× 3 conv. 54.0 (↑0.1) 55.0 (↓0.1) 12.4M

one residual block 54.2 (↑0.3) 55.2 (↑0.1) 1.3M
two residual blocks 54.5 (↑0.6) 55.5 (↑0.4) 2.6M

Weighting parameter of auxiliary CNN: A weighting parameter β is introduced in
Equation (3) to balance the loss between the main and the auxiliary tasks. The auxiliary
CNN is trained along with the main segmentation network to enhance local features and
improve segmenting small objects. However, while achieving this objective, the auxiliary
task should not dominate the overall segmentation task. Table 3 shows the performance
comparison when four different weighting parameters are used to adjust the contribution
of the auxiliary loss. To maximize the overall performance by balancing the main and the
auxiliary tasks, we set the weighting parameter β to 0.1.

Table 3. Performance comparison of different weighting parameters β using the ADE20K validation
set. ss: single-scale. ms: multi-scale.

Weighting Parameter β mIoU (ss) mIoU (ms)

- 53.9 55.1
0.1 54.5 (↑0.6) 55.5 (↑0.4)
0.2 54.4 (↑0.5) 55.3 (↑0.2)
0.3 54.1 (↑0.2) 55.2 (↑0.1)

0.05 54.2 (↑0.3) 55.3 (↑0.2)

4.4. Experimental Results for Semantic Segmentation

We compare the semantic segmentation performance of the proposed method with the
recent transformer-based semantic segmentation models on the ADE20K and Cityscapes
validation datasets. Since the performance of each model can be different from the one pre-
sented in the original paper depending on the hardware environment, we also include the
performance of the baseline model Mask2Former obtained by our reproduced experiments.

For the ADE20K dataset, we can observe in Table 4 that our proposed method im-
proves the performance of Mask2Former for all Swin Transformer backbones. Specifically,
the proposed auxiliary CNN with Swin-T transformer backbone improves the baseline
Mask2former by 0.9% and achieves 48.8% in mIoU (ss). With Swin-S, Swin-B†, and Swin-L†

Transformer backbones, the proposed method improves the mIoU by 0.9%, 0.4%, and
0.4%, respectively.

For the Cityscapes dataset, it can be seen from Table 5 that the proposed auxiliary
CNN can enhance the Mask2Former’s semantic segmentation performance by 0.5%, 0.6%
and 0.3% when Swin-S, Swin-B†, and Swin-L† transformer backbones are used, respec-
tively. Both experimental results show that our proposed method consistently outperforms
Mask2Former with different Swin Transformer-based backbones. We observe that the
performance with Swin-B is slightly better than with Swin-L. Two possible explanations
for these results are: the use of smaller batch size for Swin-L in our experimental settings
and the better multi-scale inference performance of Swin-B compared to Swin-L from
the baseline.
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Table 4. Performance comparison of semantic segmentation on the ADE20K validation dataset with
150 categories. †: backbone pretrained on ImageNet-22K. ss: single-scale. ms: multi-scale.

Method Backbone Crop Size mIoU (ss) mIoU (ms)

PVTv1 [39] PVTv1-L 512 × 512 44.8 -
PVTv2 [40] PVTv2-B5 512 × 512 48.7 -

P2T [41] P2T-L 512 × 512 49.4 -
Swin-UperNet [42,47] Swin-L † 640 × 640 - 53.5

FaPN-MaskFormer [10,48] Swin-L † 640 × 640 55.2 56.7
BEiT-UperNet [4,47] BEiT-L † 640 × 640 - 57.0

MaskFormer [10]

Swin-T 512 × 512 46.7 48.8
Swin-S 512 × 512 49.8 51.0

Swin-B † 640 × 640 52.7 53.9
Swin-L † 640 × 640 54.1 55.6

Mask2Former [11]

Swin-T 512 × 512 47.7 49.6
Swin-S 512 × 512 51.3 52.4

Swin-B † 640 × 640 53.9 55.1
Swin-L † 640 × 640 56.1 57.3

Mask2Former (Ours)

Swin-T 512 × 512 47.9 49.7
Swin-S 512 × 512 51.3 52.5

Swin-B † 640 × 640 54.1 54.9
Swin-L † 640 × 640 56.0 57.1

Ours

Swin-T 512 × 512 48.8 50.3
Swin-S 512 × 512 52.2 53.1

Swin-B † 640 × 640 54.5 55.5
Swin-L † 640 × 640 56.4 57.6

Table 5. Performance comparison of semantic segmentation on the Cityscapes validation dataset
with 19 categories. †: backbone pretrained on ImageNet-22K. ss: single-scale. ms: multi-scale.

Method Backbone Crop Size mIoU (ss) mIoU (ms)

Segmenter [9] ViT-L † 768 × 768 - 81.3
SETR [7] ViT-L † 768 × 768 - 82.2

SegFormer [8] MiT-B5 768 × 768 - 84.0

Mask2Former [11]
Swin-S 512 × 1024 82.6 83.6

Swin-B † 512 × 1024 83.3 84.5
Swin-L † 512 × 1024 83.3 84.3

Mask2Former (Ours)
Swin-S 512 × 1024 82.4 83.5

Swin-B † 512 × 1024 83.2 84.3
Swin-L † 512 × 1024 83.3 84.3

Ours
Swin-S 512 × 1024 82.9 83.8

Swin-B † 512 × 1024 83.8 84.8
Swin-L † 512 × 1024 83.6 84.5

Since one of the main objectives of the proposed auxiliary CNN is to improve the
segmentation performance in complex scenes which include small objects and require
detailed local information for accurate segmentation, we show several qualitative results
for the ADE20K and Cityscapes datasets. Figure 2 presents the qualitative results of
the ADE20K validation dataset. In the first row, the category “light” on the ceiling is
misclassified as a pillar by the baseline. Our proposed method can label the small object
with the correct category. In the second row, the category “bread” labeled with khaki
color is not segmented correctly using the baseline approach. However, our method can
accurately segment most of them. In the third row, the baseline model fails to segment the
category “plant” in the middle, while ours can detect and fully segment it.



Sensors 2023, 23, 581 9 of 14

Figure 2. Semantic segmentation results based on the ADE20K validation dataset. (a) RGB input,
(b) ground truth, (c) baseline method, and (d) our proposed method. The proposed method using
the auxiliary CNN improves the detection of local information and small objects compared with the
baseline method Mask2Former.

Figure 3 shows the qualitative results of the Cityscapes validation dataset. In the first
column, we can observe that the results generated by the baseline mislabeled the category
“road” (labeled with purple) on the right-middle side as the category “sidewalk” (labeled
with pink). Our proposed method can well distinguish both categories and segment them
accurately. In the second column, the baseline approach cannot tell the difference between
the category “terrain” (labeled with cyan) and “sidewalk” (labeled with pink), shown on
the left side. As a result, the baseline erroneously merges both categories into one, while
ours can correctly detect and segment these two categories. In the third column, we can
observe that the baseline has difficulty detecting objects with similar textures on the left side.
It recognizes the category “terrain” (labeled with cyan) and “road” (labeled with purple) as
“sidewalk” (labeled with pink). Our proposed method can distinguish them clearly and
accurately. The qualitative results prove that our proposed method can effectively learn
local features and identify small objects much better than its baseline method.
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Figure 3. Semantic segmentation results based on the Cityscapes validation dataset. (a) RGB input,
(b) ground truth, (c) baseline method, and (d) our proposed method. The proposed method using
the auxiliary CNN improves the detection of local information and small objects compared with the
baseline method Mask2Former.

4.5. Experimental Results for Panoptic Segmentation

Since our baseline method Mask2Former is a well-known universal segmentation
model, we evaluate our proposed method using a single panoptic model. Again, since the
hardware’s difference, we marked “Mask2Former(Ours)” as our reproduced results for the
baseline method. Following the baseline’s settings, we set 100 queries for Swin-B backbone
and 200 queries for Swin-L backbone.

The experimental results in Tables 6 and 7 show that our proposed method can
improve all segmentation performance. Specifically, we enhance the ADE20K’s panoptic,
instance, and semantic segmentation performance with Swin-L backbone by 0.5%, 1.1%,
and 0.3%, respectively. We also improve the panoptic, instance, and semantic segmentation
performance for the Cityscapes dataset by 0.3%, 1.6%, and 0.3%, respectively. It proves that
our proposed method can also improve all segmentation performance, even using a single
panoptic model.

4.6. Limitations

The proposed method aims to adopt a simple auxiliary CNN on top of a transformer
backbone to increase the overall segmentation performance. In Tables 4 and 5, we can
observe that the performance gain gradually decreases when the scale size of a Swin
transformer backbone increases. It indicates that a fixed-size auxiliary CNN has less impact
on a larger transformer. In our future work, we hope to design an auxiliary CNN that can
be adaptive to the transformer backbones with different scales.
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Table 6. Performance comparison of panoptic segmentation on the ADE20K validation dataset.
Single-scale (ss) inference is adopted by default. Multi-scale results are marked with *. †: backbone
pretrained on ImageNet-22K.

Method Backbone Panoptic Model
PQ (ss) APpan mIoUpan

BGRNet [34] R50 31.8 - -
Auto-Panoptic [35] ShuffleNetV2 [49] 32.4 - -
MaskFormer [10] R50 34.7 - -
Kirillov et al. [30] R50 35.6 * - -

Panoptic-DeepLab [31] SWideRNet [50] 37.9 * - 50.0 *
Mask2Former [11] Swin-L † 48.1 34.2 54.5

Mask2Former (Ours) Swin-L † 48.3 34.0 54.4
Ours Swin-L † 48.8 35.1 54.7

Table 7. Performance comparison of panoptic segmentation on the Cityscapes validation dataset.
Single-scale (ss) inference is adopted by default. Multi-scale results are marked with *. †: backbone
pretrained on ImageNet-22K. ‡: backbone pretrained on ImageNet-1K and COCO.

Method Backbone Panoptic Model
PQ (ss) APpan mIoUpan

TASCNet [32] R50 ‡ 59.2 - -
Kirillov et al. [30] R50 61.2 * 36.4 * 80.9 *

UPSNet [33] R101 ‡ 61.8 * 39.0 * 79.2 *
Panoptic-DeepLab [31] SWideRNet [50] 66.4 40.1 82.2

Panoptic-FCN [36] Swin-L † 65.9 - -

Mask2Former [11] Swin-B † 66.1 42.8 82.7
Swin-L † 66.6 43.6 82.9

Mask2Former (Ours) Swin-B † 65.7 42.8 82.1
Swin-L † 66.4 43.0 82.9

Ours Swin-B † 66.6 43.8 82.9
Swin-L † 66.7 44.6 83.2

5. Conclusions

In this paper, we propose a simple yet effective auxiliary CNN architecture that in-
troduces auxiliary convolutional layers to Mask2Former during training to learn dense
local features. Since the proposed auxiliary CNN is required only for training and can
be removed at inference, the segmentation performance can be improved without addi-
tional computation overhead at inference. Experimental results show that our proposed
method achieves an mIoU of 57.6% on the ADE20K validation dataset and an mIoU of
84.8% on the Cityscapes validation dataset. In the future, we hope to develop a model
that can be adaptive to the transformer backbones with different scales to improve the
segmentation performance.
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