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Abstract—There are many real-world classification problems
involving multiple classes, e.g., in bioinformatics, computer vi-
sion or medicine. These problems are generally more difficult
than their binary counterparts. In this scenario, decomposition
strategies usually improve the performance of classifiers. Hence,
in this paper we aim to improve the behaviour of FARC-HD
fuzzy classifier in multi-class classification problems using de-
composition strategies, and more specifically One-vs-One (OVO)
and One-vs-All (OVA) strategies. However, when these strategies
are applied on FARC-HD a problem emerges due to the low
confidence values provided by the fuzzy reasoning method. This
undesirable condition comes from the application of the product
t-norm when computing the matching and association degrees,
obtaining low values, which are also dependent on the number
of antecedents of the fuzzy rules. As a result, robust aggregation
strategies in OVO such as the weighted voting obtain poor results
with this fuzzy classifier.

In order to solve these problems, we propose to adapt the
inference system of FARC-HD replacing the product t-norm
with overlap functions. To do so, we define n-dimensional overlap
functions. The usage of these new functions allows one to
obtain more adequate outputs from the base classifiers for the
subsequent aggregation in OVO and OVA schemes. Furthermore,
we propose a new aggregation strategy for OVO to deal with the
problem of the weighted voting derived from the inappropriate
confidences provided by FARC-HD for this aggregation method.

The quality of our new approach is analyzed using twenty
datasets and the conclusions are supported by a proper statistical
analysis. In order to check the usefulness of our proposal, we
carry out a comparison against some of the state-of-the-art fuzzy
classifiers. Experimental results show the competitiveness of our
method.
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I. INTRODUCTION

FUZZY Rule-Based Classification Systems (FRBCSs) are

well-known and widely used tools in the field of pattern

recognition and classification problems. They provide an inter-

pretable model by using linguistic labels in the antecedents of

their rules [1]. FRBCSs have been applied in multiple real-

world problems, including domotics [2], anomaly intrusion

detection [3], image processing [4], and medical problems [5],

among others.

In classification, two types of problems can be differentiated

depending on the number of classes that compose the output

of the problem: binary (two classes) and multi-class problems

(more than two classes). Usually, it is more difficult to build

a classifier in the latter case due to the overlapping among the

examples of the different classes of the problem, which makes

the definition of decision boundaries more complex. Even

so, multi-class problems are present in several applications

domains such as fingerprints recognition [6], handwritten

digits [7], microarrays [8] or cardiovascular disease classifi-

cation [5]. A commonly used solution to deal with multi-class

classification problems is to use decomposition techniques [9],

[10], which try to divide the original multi-class problem into

easier to solve binary classification problems, which are faced

by independent binary classifiers named base classifiers.

Different decomposition strategies have been proposed in

the specialized literature [10]. Two of the most well-known

and used ones are One-vs-One (OVO) and One-vs-All (OVA)

[9], which can be included within the wider Error Correcting

Output Codes (ECOC) framework [11]. OVO scheme divides

the original problem into as many sub-problems as possible

pairs of classes, whereas in OVA the division results in as

many sub-problems as classes in the original one. In both

strategies each binary problem is addressed by an independent

base classifier. When classifying a new example, the outputs of

all the base classifiers are combined to make the final decision

(aggregation phase).

In this paper we aim to improve the performance of FARC-

HD (Fuzzy Association Rule-based Classification model for

High-Dimensional problems) [12] in multi-class problems us-

ing decomposition strategies. Previous works have shown that

although the base classifier can be capable of solving multi-

class problems, such as FARC-HD, these strategies usually
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work better than addressing the problem directly [9], [13]–

[16]. However, two main difficulties emerge when carrying

out the proposed hybridization:

1) The aggregation of the classifiers in OVA and OVO

schemes directly depends on the confidences provided

by the base classifiers. In the case of FARC-HD, due

to the usage of additive combination [17] as fuzzy

reasoning method, we consider as confidence the sum

of the association degrees obtained for each class, which

are computed by multiplying the matching degrees (of

the example with the antecedents of the rules using

the product t-norm to model the conjunction) and the

rule weight. For this reason, when combining FARC-HD

and decomposition strategies the confidences obtained

when carrying out the inference process of FARC-HD

are not suitable for the subsequent aggregation. From

our point of view, this is due to the usage of the

product in the inference of FARC-HD, which produces

small confidences with low variations for each pair of

classes and penalizes the rules with the largest number

of antecedents.

2) Aggregation strategies that usually have a robust and

accurate performance in OVO, such as the weighted

voting (WV) [18], [9], [19], do not obtain good results

when using FARC-HD as base classifier (while others

do not present this problem). Our hypothesis is that

the confidence estimation of the non-predicted class

provided by FARC-HD distorts the combination in OVO

when using this aggregation strategy.

In order to address the former problem, we propose to adapt

the inference process of FARC-HD in such a way that the

confidences obtained allow decomposition strategies to pro-

duce more accurate aggregations and consequently, can lead

to improve the classification in OVO and OVA models. To do

so, we will use overlap functions [20], which satisfy similar

properties to those of the product, in the inference of FARC-

HD. These functions allow us to obtain values with a higher

variation than those provided by the product, in such a way

that the confidences used in OVO and OVA (stored in the

score-matrix or vector) are better modeled, and hence greater

knowledge is acquired for the posterior aggregation.

Since overlaps functions are originally defined for 2-

dimensional problems, in this paper we introduce the concept

of n-dimensional overlap functions to be able to compute the

overlap among n input values. More specifically, according

to the problem related to the number of antecedents, we

propose the usage of n-dimensional overlap functions that do

not decrease the results as the number of input values (n)

increases.

In addition, aiming at facing the latter problem, we propose

an alternative to the usage of the WV in the aggregation phase

of OVO strategy. To do so, we propose an aggregation strategy

named WinWV, which follows the idea of the WV, in which

we do not consider the confidences obtained by non-predicted

classes, since its usage is not appropriate for the classification

in the case of FARC-HD (we will show that OVA and other

OVO aggregations are not affected by this problem).

In order to assess the quality of the methods, we use twenty

numerical datasets from the KEEL dataset repository [21]

and we contrast the results obtained using non-parametric

statistical tests, as suggested in the specialized literature [22],

[23]. In these experiments, we will study the goodness of

the usage n-dimensional overlap functions and we will also

analyze whether the usage of WinWV allows the performance

of the WV to be enhanced. Moreover, we will show the validity

of our proposal to improve the performance of FARC-HD in

multi-class problems, comparing it against the original FARC-

HD algorithm and some of the best performing fuzzy methods,

i.e., FURIA algorithm [24], IVTURSFARC-HD [25], and PTTD

[26].

The rest of this paper is organized as follows. In Section II,

we briefly introduce FARC-HD and decomposition strategies

and we describe some of the aggregations for OVO that we

use in this paper. Section III contains a detailed description of

our proposals to use FARC-HD with decomposition strategies

and puts forward the definition of the n-dimensional overlap

functions. The set-up of the experimental framework is given

in Section IV and the analysis of the results obtained is

presented in Section V. Finally, Section VI concludes this

paper.

II. PRELIMINARIES

In this section, we first recall some concepts about FRBCSs

and we briefly explain the FARC-HD algorithm [12] (Section

II-A). Then we describe OVO and OVA decomposition strate-

gies and some of the OVO aggregation methods studied in the

literature (Section II-B). Finally, we review the related works

in Section II-C.

A. Fuzzy Rule-Based Classification Systems and FARC-HD

A classification problem consists in learning a mapping

function called classifier from a set of training examples,

named training set, that allows one to classify previously

unknown examples. Let xp = (xp1, . . . , xpn) be the pth

example of the training set which is composed of P examples,

where xpi is the value of the i-th attribute (i = 1, 2, . . . , n)
of the p-th training example. Each example belongs to a class

yp ∈ C = {C1, C2, ..., Cm}, where m is the number of classes

of the problem.

We find multiple techniques used to cope with classification

problems. Among them, FRBCSs are widely used because

they provide an interpretable model by means of the use of

linguistic labels in their rules [1].

The two main components of FRBCSs are the following

ones:

1) Knowledge base: It is composed of both the rule base

(RB) and the database, where the rules and the mem-

bership functions are stored, respectively.

2) Fuzzy reasoning method: This is the mechanism that

classifies examples using the information stored in the

knowledge base.

In this work we focus on a fuzzy rule learning algorithm

known as FARC-HD [12], since it is currently one of the
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most accurate and interpretable FRBCSs in the literature. This

algorithm makes use of the following rule structure:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class = Cj with RWj

(1)

where Rj is the label of the j-th rule, x = (x1, . . . , xn) is

an n-dimensional pattern vector that represents the example,

Aji is a fuzzy set, Cj ∈ C is the class label and RWj is

the rule weight, which is computed using the most common

specification, i.e., the fuzzy confidence value or certainty factor

defined in [27]:

RWj = CFj =

∑

xp∈ClassCj

µAj
(xp)

P
∑

p=1

µAj
(xp)

(2)

where µAj
(xp) is the matching degree of the example xp with

the antecedent part of the fuzzy rule Rj , which is computed

using the Eq. (3), shown further in this subsection. In the case

of FARC-HD, linguistic labels are modeled using uniformly

distributed triangular membership functions, which form a

strong partition (Fig. (1)).

1.0

0.0

0.0 1.0

Fig. 1. Linguistic labels partitioning in FARC-HD.

In order to generate the rule base, FARC-HD applies a

learning process composed of three steps:

1) Fuzzy association rule extraction for classification: With

the aim of obtaining the fuzzy rule base, a search tree

[28] is constructed for each class. To do so, the frequent

itemsets (an item is a linguistic label) are computed

using the support and confidence. Finally, the fuzzy rules

are generated from the obtained frequent itemsets. The

number of linguistic terms in the antecedents of the rules

is limited by the maximum depth of the tree.

2) Candidate rule prescreening: This phase makes use of

subgroup discovery to preselect the most interesting

rules from the rule base obtained in the previous stage by

means of a pattern weighting scheme [29]. The weights

of the examples are based on the coverage of the fuzzy

rules.

3) Genetic rule selection and lateral tuning: An evolution-

ary algorithm is used both to perform a lateral tuning of

the fuzzy sets [30] and to select the most accurate rules

from the rule base generated in the previous steps.

Let xp = (xp1, ..., xpn) be a new example to be classified,

FARC-HD applies a fuzzy reasoning method called additive

combination [17], computed in four steps.

1) Matching degree. In this step the strength of activation

of the if -part for all rules in the RB with the pattern xp

is computed.

µAj
(xp) = T (µAj1

(xp1), . . . , µAjnj
(xpnj

)) (3)

where µAji
(xpi) is the matching degree of the example

with the i-th antecedent of the rule Rj , T is a t-norm

(in the case of FARC-HD the product), and nj is the

number of antecedents of the rule.

2) Association degree. The association degree of the pattern

xp with each rule in the RB is computed.

bj(xp) = µAj
(xp) ·RWj (4)

3) Confidence degree. In this stage the confidence degree

for each class is computed. To obtain the confidence

degree of a class, the association degrees of the rules of

that class, i.e., those whose consequent class is the class

we are considering, are summed.

confl(xp) =
∑

Rj∈RB; Cj=l

bj(xp), l = 1, 2, . . . ,m

(5)

4) Classification. The class that obtain the highest confi-

dence degree is the predicted one.

Class = arg max
l=1,...,m

(confl(xp)) (6)

As we can observe in the rule structure and the fuzzy

reasoning method, FARC-HD is capable of solving multi-class

classification problems directly. However, previous works have

shown that decomposition strategies usually work better than

addressing the problem directly [9], [10], [13]–[16]. Therefore,

we propose to use the decomposition strategies with the aim of

improving the performance of FARC-HD when facing multi-

class problems. However, as we have stated in the introduction,

we will show that there are some issues we need to address

when combining FARC-HD and these strategies.

B. Decomposition strategies

Decomposition strategies [10] divide the original multi-

class problem into simpler binary problems that are faced

by independent binary classifiers, which are referred as base

classifiers. These strategies can be used both with classifiers

that are able to face only two-class classification problems and

those having an inherent multi-class support. In this paper we

consider two of the most used decomposition strategies in the

literature: One-Versus-One (OVO) and One-Versus-All (OVA)

[9] strategies.

1) One-Versus-One (OVO): OVO decomposition divides a

problem of m classes into m(m− 1)/2 binary sub-problems

(all possible pairs of classes). Each problem is faced by a

binary classifier, which is responsible for distinguishing a

pair of classes {Ci, Cj}. When classifying a new example,

each base classifier will return a pair of confidence degrees

rij , rji ∈ [0, 1] in favour of classes Ci, Cj , respectively (if

only a confidence degree is given for the predicted class, the

other is usually computed as rji = 1 − rij , being Ci the

predicted one). The outputs (confidence degrees) provided by

all the base classifiers are stored in the score-matrix R as
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follows:

R =











− r12 · · · r1m
r21 − · · · r2m

...
...

rm1 rm2 · · · −











(7)

Since each binary sub-problem is faced by an independent

classifier, we normalize the score-matrix such that the range

of the confidences provided by all classifiers is the same.

This normalization is very important when using FARC-HD

because it does not return confidences in [0,1] that can be

interpreted as probabilities. The score-matrix is normalized as

follows.

rij =

{ rij
rij + rji

if rij 6= 0 or rji 6= 0

0.5 if rij = rji = 0
(8)

Finally, the outputs of the base classifiers are aggregated

and the predicted class is obtained. This aggregation step is a

key factor for the classification process [9]. In this paper, we

consider four well-known OVO aggregation methods.

• Voting strategy (VOTE) [31]. Each base classifier votes

for the predicted class and the class having the largest

number of votes is given as output:

Class = arg max
i=1,...,m

∑

1≤j 6=i≤m

sij (9)

where sij is 1 if rij > rji and 0 otherwise.

• Weighted Voting (WV) [18]. Each base classifier votes for

both classes based on the confidences obtained for them.

The class having the largest value is given as output:

Class = arg max
i=1,...,m

∑

1≤j 6=i≤m

rij (10)

• Non-Dominance Criteria (ND) [32]. The score-matrix is

considered as a fuzzy preference relation. Then class with

the highest non-dominance degree is the predicted one:

Class = arg max
i=1,...,m

{

1− max
j=1,...,m

r′ji

}

(11)

where R′ is the strict score-matrix.

• Learning valued preference for classification (LVPC)

[33], [34]. This aggregation strategy, as in ND, considers

the score-matrix as a fuzzy preference relation. In this

manner, the original relation is decomposed into three

new relations with different meanings: the strict prefer-

ence, the conflict, and the ignorance. In order to obtain

the output class, a decision rule based on voting strategy

is proposed:

Class = arg max
i=1,...,m

∑

1≤j 6=i≤m

Pij +
1

2
Cij +

Ni

Ni +Nj

Iij

(12)

where Ni is the number of examples from the class i in

the training data, Cij is the degree of conflict (the degree

to which both classes are supported), Iij is the degree of

ignorance (the degree to which none of the classes are

supported), and Pij and Pji are the strict preference for

i and j, respectively. These variables are computed as

follows:

Cij = min {rij , rji}

Pij = rij − Cij

Pji = rji − Cij

Iij = 1−max {rij , rji}

Owing to the way in which the multi-class problem is

divided in OVO scheme, there is an issue inherent to this

decomposition method: the non-competent classifiers [19].

The learning process of each base classifier is performed

using only the examples belonging to the two classes that

this classifiers will classify and consequently, it ignores the

examples belonging to other classes. Therefore, the remainder

classes are unknown for these classifiers and their outputs

are irrelevant when classifying examples of those classes.

However, these outputs are aggregated in the same way as

the relevant ones, possibly misleading the correct labeling of

the example. Although this is an interesting line, it is out of

the scope of this paper and we leave it as a future research

line.

2) One-Versus-All (OVA): OVA decomposition divides a

problem of m classes into m binary problems, which are ad-

dressed by independent binary classifiers. Each base classifier

distinguishes one of the classes from all other classes. The

learning process of these classifiers is performed using the

whole training data, considering the examples from the single

class as positives and the rest of examples as negatives. When

classifying a new example, each base classifier will return a

confidence degree ri ∈ [0, 1] in favour of the class Ci, which

will be stored in a score-vector R:

R = (r1, . . . , ri, . . . , rm) (13)

As in OVO, we need to normalize the score-vector such that

the range of the confidences provided by all classifiers is the

same. In order to do so, we also need the score-vector in which

the confidences obtained by each classifier for the negative

class are stored (R̂). With both vectors, the normalization of

the score-vector R is performed as follows.

ri =
ri

ri + r̂i
(14)

Finally, the most commonly used aggregation in OVA con-

sider the usage of the maximum value in the score-vector, and

thus the class with the highest confidence will be predicted.

C. Related works

Decomposition strategies can be included in the broader cat-

egories of ensembles and multiple classifier systems (MCSs)

[35], [36]. These types of systems aim to improve the classi-

fication performance by the combination of several classifiers.

In fact, ensembles and MCSs are usually referred to those

methods where the base classifiers are able to predict any of

the classes of the problem; however, decomposition techniques

are also formed of sets of classifiers, but there is a major

difference: each base classifier is not able to predict all the

classes in the problem (only two of them or two combinations

of different classes are predicted). Such an important differ-
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ence has produced rather different approaches for each type

of method.

Traditional ensembles aim to produce diverse base classi-

fiers [37], whose differences in their predictions allow them to

increase the performance, since they complement each other.

Widely used ensemble methods are Bagging [38] and Boosting

[39], [40]. These type of methods have been also considered

in the fuzzy community, where different approaches have

been proposed using fuzzy systems as base classifiers [41]–

[44]. In [41], the authors combined the FRBCSs obtained

in the pareto front of a multi-objective optimization genetic

algorithm. An extension of the classical Random Forests (a

variant of bagging) using fuzzy decision trees was presented

in [42], [45]. Boosting in the fuzzy context was applied in

[46]. The authors of [43], [44], [47] developed a method-

ology to construct FURIA-based multi-classifiers in a series

of works, including all the different phases of an ensemble,

from its construction (also bagging-based) to the combination

procedure presented in the latter work. All these type of

models are usually no longer interpretable, and hence the fuzzy

classifiers are used instead of other weak classifiers such as

the commonly used decision trees to take advantage of the

fuzzy decision boundaries to reach highly accurate models,

which may need the usage of thousands of rules [44], even

though some authors focused on reducing this number [48].

Moreover, FURIA [24] has been one of the most extended

base classifier in this framework, which by itself is not as

interpretable as classical FRBCSs [1], since it make use of

hyper-rectangles adjusted for each rule instead of using the

same linguistic labels in each rule. For this reason, in this paper

we only deal with decomposition-based ensembles, which may

maintain part of the interpretability of the original models.

Otherwise, decomposition strategies have also attracted at-

tention as a way of improving classification in multi-class

problems with FRBCSs [26], [32], [34], [49]. In this frame-

work, different base classifiers have been used (Fuzzy Ripper

[34], FH-GBML [50] or SLAVE [51]), as well as different

combination methods have been proposed such as the Non-

Dominance criterion (ND) in [32] or the Learning Valued

Preference for Classification (LVPC) [34], [49] already de-

scribed in Section II-B. In these papers, the authors considered

the score-matrix as a preference relation from which the best

alternative should be predicted. In order to do so, the conflict

and ignorance were modeled in [49] and thereafter applied

in the Fuzzy Ripper algorithm presented in [34]. Similarly

but with a different approach to output the class from the

score-matrix, the authors in [32] proposed the usage of the ND

criterion, showing good results with FH-GBML and SLAVE

classifiers. In addition, in [26] the authors presented the Top-

Down induction of Fuzzy Pattern Trees (PTTD), which made

use of OVA approach.

However, recent developments with fuzzy classifiers are not

only related to ensemble strategies. Taking into account the

good properties of FRBCSs, several approaches [24], [25],

[52]–[54] have been proposed aimed at improving the trade-

off between accuracy and interpretability [55]. FURIA [24] ex-

tended the RIPPER algorithm using fuzzy rules and it provides

accurate results. In [52], authors combined a feature selection

process using the so-called modulator functions and a fuzzy

rule extraction mechanism based on fuzzy clustering. Castro

et. al [53] defined a fuzzy classifier using general fuzzy rules

and a new mechanism aimed at solving the conflicts among

them. In [54], authors defined a new approach to design fuzzy

classifiers using k-means clustering and a memetic algorithm

to find the optimal values of fuzzy rules and membership

functions. In order to improve the interpretability of TSK fuzzy

classifiers, the usage of a minimax probability was proposed in

[56]. Finally, Sanz et. al [25] provided a framework to improve

the performance of FRBCSs using interval-valued fuzzy sets.

On account of the different fuzzy methodologies described

above, we have considered to include those following a similar

philosophy to our proposal in the experimental study. More

specifically, we have considered both aggregations defined in

the fuzzy context (ND and LVPC) [32], [34], [49], the PTTD

[26] method as an OVA based fuzzy system as well as FU-

RIA [24] and IVTURS [25] as state-of-the-art fuzzy classifiers.

Finally, we should mention that none of the ensemble/multi-

classifier approaches previously enumerated has addressed the

problem affecting the inference that we aim to overcome in

this paper.

III. INTRODUCING N-DIMENSIONAL OVERLAP FUNCTIONS

TO ADAPT FARC-HD BEHAVIOUR IN OVA AND OVO

In this paper, we propose to combine FARC-HD with

OVA and OVO decomposition strategies in order to improve

the performance of FARC-HD in multi-class classification

problems. However, the confidences provided by FARC-HD

are not adequate for them due to the use of the product

to compute the association degree, as we will show in the

experimental analysis. Thus, the inference process needs to be

adapted for the sake of a better synergy between FARC-HD

and decomposition schemes.

In the remainder of this section, we first describe the

way in which we introduce FARC-HD in OVO and OVA

models, as well as the problems that we have to address when

carrying out this combination (Section III-A). Next, we recall

the concept of two-dimensional overlap functions and we

present the new definition of n-dimensional overlap functions,

as well as their construction method (Section III-B). Then,

we describe the modification of the inference of FARC-HD

using n-dimensional overlap functions aiming at improving

the synergy between FARC-HD and decomposition strategies

(Section III-C). Finally, we present a new aggregation strategy

for the OVO model named WinWV that solves the problems

of the WV with the confidences of FARC-HD (Section III-D).

A. Using FARC-HD as base classifier in the OVA and OVO

strategies

In order to use OVO and OVA strategies with FARC-HD, we

need to fill the score-matrix of OVO (Eq. (7) and the score-

vector of OVA (Eq. (13)) with the confidences provided by

FARC-HD for each class. More specifically, we consider as

confidences the confidence degree for each class computed

using Eq. (5). Both the matching and the association degrees
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of the example with the fuzzy rules are computed by Eq. (3)

and (4), respectively, using the product t-norm.

When low values are aggregated using the product t-norm,

the range in which the result can vary is small (the lower

the input values are, the smaller the range becomes), which

may happen when computing the matching degree of several

fuzzy rules. This effect is further accentuated as the number

of antecedents of the rules increases, which implies that the

association degrees of those rules with more antecedents will

be smaller and will have a lower variation. This behaviour

implies that the confidences stored in the score-matrix and

score-vector will have low variations as well, which is not

desirable for the subsequent aggregation performed in OVO

and OVA schemes. Consequently, it seems suitable to modify

the inference process in such a way that the aggregation of the

values involved in the computation of the association degrees

is made using functions whose results are in a wider range,

maintaining more information for the aggregation process

(Section III-C).

The previous problem does not affect the behaviour of

the original FARC-HD, since the confidences obtained after

the inference process are not used beyond classification and

hence, this variation does not affect the final result given

by the algorithm. However, in decomposition strategies, the

confidences provided by FARC-HD are used in the aggregation

phase, and hence the predictions are used beyond the decision

of the class prediction of the base classifiers. Thus, a low

variation in the confidences might have a negative effect in

OVO and OVA models, which is especially reflected in the

unexpected behaviour of robust aggregation strategies used in

OVO, such as the WV, as we will show in the experimental

study. For this reason, a new aggregation strategy that solves

the problems of the WV is needed (see Section III-D).

B. n-dimensional overlap functions

The concept of overlap function [20] was introduced in

image processing in order to classify those pixels that it

was not clear whether they belonged to the object or to the

background. This concept has been applied in many image

processing problems [57]–[59] and used in [60] to model the

indifference in preference relations. However, the application

range of these functions has turned out to be much wider,

since they allow one to recover many of the characteristics

of the t-norms without imposing the associativity. Precisely

because the associativity is not demanded, the extension of

the concept of overlap function to dimensions higher than two

is not direct. Moreover, this extension is necessary in order to

use overlap functions in problems in which the associativity

is not necessary or even natural and in which t-norms have

been used. In this paper, we propose a definition of overlap

function in any finite dimension, which particularly allows one

to recover the two-dimensional case. Additionally, we present

the construction method of overlap functions using rational

expressions.

We first recall the following definition of two-dimensional

overlap functions:

Definition 1: [20] A function O : [0, 1]× [0, 1] → [0, 1] is

an overlap function if satisfies the following conditions :

1) O(x, y) = O(y, x) for all x, y ∈ [0, 1].
2) O(x, y) = 0 if and only if x · y = 0.

3) O(x, y) = 1 if and only if x · y = 1.

4) is increasing.

5) is continuous.

Following this concept we define the extension of the

previous two-dimensional overlap functions to n dimensions:

Definition 2: An n-dimensional function On : [0, 1]n →
[0, 1] with n ≥ 2 is a n-dimensional overlap function if the

following properties hold:

1) On is symmetric.

2) On(x1, . . . , xn) = 0 if and only if
n
∏

i=1

xi = 0.

3) On(x1, . . . , xn) = 1 if and only if
n
∏

i=1

xi = 1.

4) On is increasing.

5) On is continuous in each of the variables.

Example 1: The following functions are examples of n-

dimensional overlap functions:

1) The minimum is a n-dimensional overlap function which

is also a t-norm.

On(x1 . . . , xn) = min(x1, . . . , xn) (15)

2) Take p > 0. Then the function

On(x1, . . . , xn) =

(

n
∏

i=1

xi

)p

(16)

is a n-dimensional overlap function. Furthermore, On is

associative if and only if p = 1.

a) If p = 1 we recover the product, which is a t-norm

as well.

On(x1, . . . , xn) =

n
∏

i=1

xi (17)

b) If p = 1
n

we have the geometric mean:

On(x1, x2, . . . , xn) =
n

√

√

√

√

n
∏

i=1

xi (18)

3) The harmonic mean is a n-dimensional function:

On(x1, x2, . . . , xn)

=















n
1
x1

+ . . .+ 1
xn

if xi 6= 0, for all i = 1, . . . , n

0 otherwise.

(19)

4) The function

On(x1, . . . , xn) = sin

(

π

2

(

n
∏

i=1

xi

)α)

(20)

where α ≤
1

2n
, is another example of n-dimensional

overlap function.

As we have shown, both the product, which is used in the

original FARC-HD, and the minimum, which is another t-
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norm that is commonly used in FRBCs, are examples of n-

dimensional overlap functions. Finally, we present a construc-

tion method for n-dimensional overlap functions using rational

expressions.

Theorem 1: The mapping On : [0, 1]n → [0, 1] is a

n-dimensional overlap function if and only if there exist

f, g : [0, 1]n → [0, 1] with

On(x1, . . . , xn) =
f(x1, . . . , xn)

f(x1, . . . , xn) + g(x1, . . . , xn)

where

1) f and g are symmetric.

2) f is non-decreasing and g is non-increasing.

3) f(x1, . . . , xn) = 0 if and only if
n
∏

i=1

xi = 0.

4) g(x1, . . . , xn) = 0 if and only if
n
∏

i=1

xi = 1.

5) f and g are continuous.

Proof. To see the necessity, assume that On is a n-

dimensional overlap function. We can define f(x1, . . . , xn) =
On(x1, . . . , xn) and g(x1, . . . , xn) = 1 − f(x1, . . . , xn).
Hence, the properties (1)-(5) of the Theorem are direct and

also:

f(x1, . . . , xn)

f(x1, . . . , xn) + g(x1, . . . , xn)
=

On(x1, . . . , xn)

1

Let us take a look at what happens with the sufficiency.

We must see that the function defined in Eq. (1) is in fact a

n-dimensional overlap function. The continuity, the symmetry

and the monotony are evident. Also:

On(x1, . . . , xn) = 0 iff f(x1, . . . , xn) = 0 iff

n
∏

i=1

xi = 0

and On(x1, . . . , xn) = 1 iff f(x1, . . . , xn)

= f(x1 . . . , xn) + g(x1, . . . , xn)

that is, if and only if g(x1, . . . , xn) = 0 and if and only if
n
∏

i=1

xi = 1.

Example 2: The function

On(x1, . . . , xn) =

(

n
∏

i=1

xi

)
1

n

(

n
∏

i=1

xi

)
1

n

+ max
1≤i≤n

(1− xi)

is an example of n-dimensional overlap function.

C. Modification of the inference process using n-dimesional

overlap functions

Once the n-dimensional overlap functions and the construc-

tion methods have been presented, we show the proposed

modification of the inference process of FARC-HD in order

to improve the aggregation in OVO and OVA strategies. More

specifically, we propose to compute the matching degree and

the association degree of the example with the fuzzy rules

using the previously defined n-dimensional overlap functions.

To do so, we replace the t-norm in the matching degree

computation (Eq. (3)) by an overlap function (Eq. (21)):

µAj
(xp) = On(µAj1

(xp1), . . . , µAjnj
(xpnj

)) (21)

We must stress that the matching degree is employed to

compute both the support and the confidence used in the first

step of the learning algorithm shown in Section II-A. Thus, this

modification also affects the learning process of the algorithm

as well.

Similarly, we substitute the product in the association degree

computation (Eq. (4)) by an overlap function, according to Eq.

(22).

bj(xp) = O(µAj
(xp), RWj)

= O(On(µAj1
(xp1), . . . , µAjnj

(xpnj
)), RWj)

(22)

The reason for computing the association degree using an

overlap function instead of the product is the same as in the

case of the matching degree, that is, the low variation of the

association degrees obtained when multiplying the matching

degree and the rule weight.

In this paper, we have considered five different overlap

functions to observe their effect in the rule base and their

influence on the accuracy of the model (for the sake of brevity,

in the experiments we take the overlap O in Eq. (22) the same

as On). Each overlap function returns lower or higher values

than the rest for the same input tuple. According to the values

returned by the overlap functions, we can establish an order

among them. Thus, we will consider that an overlap function

is greater than other one if the values returned by the first

function are higher than those returned by the second one for

the same arguments. A short description of each function is

shown below, sorted in ascending order by the returned value:

• Product (PROD): The returned value is the product of

input values (Eq. (17)). Indeed, this is the case of the

original FARC-HD, and hence we are able to recover the

original method using the proposed extension of overlap

functions.

• Minimum (MIN): Returns the minimum of input values

(Eq. (15)). This is a t-norm as well, but unlike the product,

the returned value does not decrease when the number of

arguments increases. The minimum is commonly used in

FRBCs.

• Harmonic Mean (HM): The returned value is the har-

monic mean of input values if all of them are different

than zero and 0 otherwise (Eq. (19)).

• Geometric Mean (GM): Returns the geometric mean of

input values (Eq. (18)).

• Sine (SIN): This an example of an overlap function that

returns higher values than means (Eq. (20)). The use of

this type of functions is interesting in order to check what

happens in these cases. In the experiments carried out in

Section V, we take α =
1

2n
.

Among the considered overlap functions, the first one is

the product (used in the original FARC-HD). The product is

a t-norm that returns values with a lower variation than the
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other functions and whose returned value decreases as the

number of arguments increases. Next, we have the minimum,

which is a t-norm as well, but whose returned value does not

depend on the number of arguments. Then, we consider the

harmonic and the geometric means as representatives of means

that return higher values than t-norms [61]. Finally, we have

considered a function (SIN) that returns higher values than

means. This variety of overlap functions allows us to have a

general overview in the experiments (Section V).

According to Eq. (19) and (18), both the harmonic and the

geometric means return 0 when one of the arguments is 0.

This property is satisfied by t-norms as well, and it is very

important to conserve the necessary discrimination capability

of FARC-HD. In the experimental study, we will show that

another desirable property that the overlaps should satisfy in

order to work well in our framework is the idempotence, which

is satisfied if:

On(x, . . . , x) = x (23)

Among the previous overlaps, the minimum, the harmonic

mean and the geometric mean satisfy this property.

In Fig. (2a) and (2b) we can graphically observe the

previously mentioned differences in the values returned by

each overlap function (we depict overlaps with n = 2 to

ease the visualization of their behavior). Fig. (2a) depicts the

behavior of the overlap functions when aggregating a value

with the value 1, whereas Fig. (2b) shows the returned values

when aggregating a value with itself. Looking at Fig. (2a)

and (2b), we can see that the proposed n-dimensional overlap

functions provide a higher variation than the product when

the input arguments are small. However, both figures show

that there is a huge difference between the SIN and the rest of

the overlap functions. In fact, in Fig. (2b) we can observe that

the returned value is greater than the input arguments when

aggregating a value with itself, which might not be a desirable

behavior in this framework, as it may produce a loss of the

discrimination capabilities of FARC-HD.

D. Adapting the Weighted Voting to FARC-HD confidence

estimation: WinWV

In addition to the adaptation of the inference process of

the base classifiers to OVO and OVA using overlap functions,

we propose a new aggregation method for the OVO strategy

named WinWV, which is a modification of the WV that does

not achieve the expected results.

As we described in Section II-B, each base classifier pro-

vides a pair of confidence degrees rij , rji ∈ [0, 1] in favor of

classes Ci, Cj , so that rij is the confidence predicting the class

Ci and rji is the confidence predicting the class Cj . Although

we have improved the confidences provided by FARC-HD

making them more suitable for the OVO strategy, we will show

that the WV is still not working as expected. From our point

of view, the reason is that the confidence estimation of the

non-predicted class distorts the aggregation phase in OVO, as

we will show in Section V.

Likewise, the LVPC strategy does not work properly with

this type of confidences, as it can be observed in [32]. In this

case, the confidence for the non-predicted class does not allow

one to model the conflict and ignorance degrees properly.

Notice that if these terms were not considered the original

WV would be recovered. For this reason, we focus on solving

the problems of the WV with the confidence estimation of the

non-predicted class.

To do so, we propose to consider only the confidence of

the predicted class, whereas that of the non-predicted class

is not taken into account. Therefore, the WinWV aggregation

strategy works as follows:

Class = arg max
i=1,...,m

∑

1≤j 6=i≤m

sij (24)

where sij is rij if rij > rji and 0 otherwise. Notice that

OVA and other combination strategies in OVO such as VOTE

and ND (Section II-B) managing the confidence for the non-

predicted class differently need not be modified in order to

achieve competitive results.

IV. EXPERIMENTAL FRAMEWORK

In this section, we present the set-up of the experimental

framework used to develop the experiments carried out in

Section V. First, we describe the datasets selected for the

experimental study (Section IV-A). Next, we show the pa-

rameter setup considered for each method (Section IV-B).

Finally, we introduce the statistical tests that are necessary to

assess whether significant differences exist among the results

obtained (Section IV-C).

A. Datasets

In order to analyze the performance of our proposal, we

have considered twenty datasets selected from the KEEL

dataset repository [21]. Table I summarizes the features of

the selected datasets, showing for each dataset the number

of examples (#Ex.), number of attributes (#Atts.), number of

numerical (#Num.) and nominal (#Nom.) attributes, and the

number of classes (#Class.).

To carry out the different experiments we consider a 5-fold

stratified cross-validation model, i.e., we randomly split the

dataset into five partitions of data, each one containing 20% of

the patterns, and we employed a combination of four of them

(80%) to train the system and the remaining one to test it. We

use three different seeds for the execution of the methods in

each partition. In this manner, the result for each dataset is

obtained by computing the average of the five partitions using

the three seeds in each one. Instead of the commonly used

cross-validation and in order to correct the dataset shift, that

is, when the training data and the test data do not follow the

same distribution [62], [63], we will use a recently published

partitioning procedure called Distribution Optimally Balanced

Cross Validation [64].

B. State-of-the-art fuzzy classification methods used for com-

parison

In this section we briefly describe the different methods

used throughout the experiments and the configuration that

we have considered for each one. We have selected three
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Fig. 2. Values returned by the different overlap functions.

TABLE I
SUMMARY OF THE FEATURES OF THE DATASETS USED IN THE

EXPERIMENTAL STUDY.

Id. Dataset #Ex. #Atts. #Num. #Nom. #Class.

aut autos 159 25 15 10 6

bal balance 625 4 4 0 3

cle cleveland 297 13 13 0 5

con contraceptive 1473 9 6 3 3

eco ecoli 336 7 7 0 8

gla glass 214 9 9 0 7

hay hayes-roth 132 4 4 0 3

iri iris 150 4 4 0 3

new newthyroid 215 5 5 0 3

pag pageblocks 548 10 10 0 5

pen penbased 1100 16 16 0 10

sat satimage 643 36 36 0 7

seg segment 2310 19 19 0 7

shu shuttle 2175 9 9 0 5

tae tae 151 5 3 2 3

thy thyroid 720 21 21 0 3

veh vehicle 846 18 18 0 4

vow vowel 990 13 13 0 11

win wine 178 13 13 0 3

yea yeast 1484 8 8 0 10

recognized state-of-the-art fuzzy classifiers to compare against

our proposal, in addition to the comparison against the original

FARC-HD algorithm.

• FURIA [24]: This algorithm modifies and extends the

RIPPER rule induction algorithm [65]. In particular, FU-

RIA learns fuzzy rules of the form given in Eq. (1) instead

of conventional rules, using fuzzy sets with trapezoidal

membership functions. Additionally, the model built by

FURIA learns unordered rule sets instead of rule lists.

The learning process is divided in two stages:

1) Learn a rule set for each class using OVA decompo-

sition. To do so, a modified and extended version of

RIPPER is applied, which can be divided into the

building and the optimization phase.

2) Extract the fuzzy rules by fuzzifying RIPPER’s rules

using a greedy algorithm.

When classifying a new example, the class predicted by

FURIA is the one with maximal support. If the example

is not covered by any rule, a rule generalization (stretch-

ing) is carried out and all rules are replaced by their

minimal generalizations, which is obtained by deleting

all antecedents that are not satisfied by the query. In the

case of a tie, a decision in favor of the class with highest

frequency is made.

• IVTURSFARC-HD [25]: This method uses FARC-HD to

accomplish the fuzzy rule learning process and then, it

substitutes the original fuzzy sets by interval-valued (IV)

fuzzy sets and it modifies the inference process using

an IV fuzzy reasoning method. This inference process

uses IV restricted equivalence functions to increase the

relevance of the rules in which the equivalence of the

interval membership degrees of the patterns and the ideal

membership degrees is greater. In addition, it combines a

tuning of the parameters used in the IV fuzzy reasoning

method and rule selection, in order to both decrease the

complexity and increase the performance of the system.

• PTTD [26]: This method constructs a fuzzy pattern tree

for each class (OVA decomposition) whose inner nodes

are marked with generalized fuzzy logical operators and

whose leaf nodes are associated with linguistic terms on

input attributes. The learning algorithm used by PTTD

builds the pattern tree in a top-down manner.

The configuration of the previous methods and that of our

proposal is shown in Table II.

C. Performance measure and statistical tests

In order to test the performance of the different methods,

we have used the most common metric, that is, the accuracy

rate. This metric is defined as percentage of correctly classified

examples related to the total number of examples. However,

accuracy rate may not properly reflect the behaviour of dif-

ferent algorithms in multi-class problems as they do not take

into account the classes of the examples in its computation.

Therefore, the usage of additional metrics (not opposite, yet
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TABLE II
SETUP OF THE METHODS PARAMETERS.

Algorithm Parameters

FURIA Num. of optimizations: 2
Num. of folds: 3

FARC-HD and Num. of linguistic labels per variable: 5
IVTURSFARC-HD Minimum Support: 0.05

Minimum Confidence: 0.8
Maximum depth: 3
Parameter k: 2
Evaluations: 20000
Number of individuals: 50
α parameter: 0.02
Bits per gen: 30
Rule weight: certainty factor
Inference: Additive Combination

PTTD e parameter: 0.25%
Beam size: 5

complementary) increases the strength of the experimental

study, yielding more complete conclusions. For this reason

we have also considered Cohen’s kappa [66] measure as

an evaluation criterion, which evaluates the portion of hits

that can be attributed to the classifier itself (i.e., not to

mere chance), relative to all the classifications that cannot be

attributed to chance alone.

For multi-class problems, kappa is a very useful, yet simple,

meter for measuring a classifier’s classification rate while com-

pensating for random successes. The major difference between

the classification rate and Cohen’s kappa is the scoring of

the correct classifications, since Cohen’s kappa scores the

successes independently for each class and aggregates them.

This way of scoring is less sensitive to randomness caused by

a different number of examples in each class. Nevertheless,

for the sake of space we cannot include the experimental

study carried out with this metric, but we provide it as a

supplementary material of the paper. Anyway, we should stress

that the conclusions drawn are equivalent to those obtained

with accuracy along the whole experimental study.

Besides the performance measures used to evaluate the

quality of the models, we want to study how the different

overlap functions affect the rule base size. To do so, we

consider the average number of rules and antecedents by rule

for each overlap function in both OVO and OVA models

(considering all base classifiers) and the FARC-HD algorithm

(directly executed without decomposition strategies).

In order to give a statistical support to the analysis of the

results, we carry out some non-parametric tests [22]. More

specifically, we use the Wilcoxon signed-ranks test [67] to

perform pairwise comparisons, the Aligned Friedman test [68]

to check whether there are statistical differences among a

group of methods and the Holm post-hoc test [69] to find

the algorithms that reject the null hypothesis of equivalence

against the selected control method. A complete description

of these tests and software for their use can be found on the

website available at: http://sci2s.ugr.es/sicidm/.

V. EXPERIMENTAL STUDY

In this section, we analyze the results obtained by our

proposals developing an experimental study composed of three

steps (the same is done with kappa in the supplementary

material):

1) We analyze the effect of overlap functions in the final

performance of the model and we also study whether

our new aggregation strategy for OVO (WinWV) allows

to improve the results of the WV (Section V-A1). Ad-

ditionally, we show how the usage of overlap functions

affects the size of the rule base and the training times

(Section V-A2).

2) We show whether our new model is a suitable solution

for multi-class problems compared with the original

FARC-HD [12] and we analyze which decomposition

strategy obtains better results (Section V-B).

3) We study whether our proposal improves the results

obtained by some of the state-of-the-art fuzzy classifiers,

such as FURIA [24], IVTURSFARC-HD [25], and PTTD

[26] (Section V-C).

A. Study of the behavior of n-dimensional overlap functions

In this section we first study the effect of the different

overlap functions in the final performance of the system

(Section V-A1) and then we show the impact of these functions

in the rule base and in the training times (Section V-A2).

Additionally, in order to check whether the proposed new

aggregation strategy for OVO (WinWV) solves the problems

of the WV with the confidences provided by FARC-HD, a

comparison between the WV and the WinWV is performed

(also in Section V-A1).

Tables III and IV show the accuracy rate obtained in testing

by each method in all datasets, together with the standard

deviation (shown with ±). As we can observe in Table III,

on the one hand, we execute the FARC-HD algorithm directly

(with no decomposition strategies) using the five overlap

functions considered in this paper (PROD, MIN, HM, GM,

SIN). On the other hand, we present the results of OVA and

OVO models considering the previously mentioned overlap

functions for those aggregation strategies that are not affected

by the confidences of FARC-HD in the case of OVO (ND and

VOTE), whereas those being affected (LVPC, WV) are shown

in Table IV, together with our proposed solution (WinWV).

1) Analysis of the system’s performance:

As we can observe in Tables III and IV, in the case of

the original FARC-HD, the replacement of the product by an

overlap function does not seem to produce an improvement in

the results. However, in the case of OVA and OVO models, we

find that the greater overlap function we use, the better results

we obtain in general (although the GM does not improve the

results of the HM, due to the fact that they exhibit a similar

behaviour). The exception to this situation is the usage of the

greatest overlap function considered in this paper (SIN). This

could be due to the fact that this function returns aggregated

values that can be greater than the input ones,
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which is not a desirable behaviour in an inference system

because part of the discrimination power is lost. Therefore,

we can observe that there is a limit beyond which an overlap

function might be too great to obtain good results. Anyway,

no meaningful conclusions can be extracted without carrying

out the proper statistical analysis.

In order to detect significant differences among the results

of each overlap function used throughout the experiments,

we carry out the Aligned Friedman test and the Holm post-

hoc test, whose results are shown in Table V. These results

are grouped in columns according to the method used to

perform the comparison and in rows according to the overlap

function used to compute the association degree (which is

the subject of the study). The first column corresponds to

the different overlap functions over the original FARC-HD,

while in the second one OVA model is considered. The rest

of the columns correspond to the different OVO aggregation

strategies considered in this work (LVPC, ND, VOTE, WV

and WinWV). The value of each cell corresponds to the rank

obtained with the Aligned Friedman test that compares the

different overlap functions for each method (that is, a Aligned

Friedman test is carried out for each group of methods in

a column). The value shown in brackets corresponds to the

adjusted p-value obtained by the Holm post-hoc test using as

control method the one achieving the smallest rank in the same

column, which is shown in bold-face. The adjusted p-value

is underlined when there are statistical differences (α = 0.1
considering the ratio between datasets and algorithms).

TABLE V
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE THE DIFFERENT

OVERLAPS.

FARC-HD OVA OVOND OVOVOTE OVOWinWV OVOLVPC OVOWV

PROD 43.80 57.90 (0.128) 55.23 (0.327) 56.53 (0.269) 54.40 (0.747) 37.90 42.38

MIN 48.63 (0.967) 51.72 (0.282) 49.03 (0.708) 49.77 (0.672) 46.42 (1.000) 41.22 (0.717) 42.95 (1.000)

HM 50.22 (0.967) 38.23 40.52 40.95 43.83 54.05 (0.157) 43.90 (1.000)

GM 56.25 (0.699) 48.95 (0.282) 45.65 (0.708) 43.65 (0.768) 47.95 (1.000) 56.67 (0.122) 49.13 (1.000)

SIN 53.60 (0.856) 55.70 (0.170) 62.08 (0.075) 61.60 (0.097) 59.90 (0.319) 62.65 (0.028) 74.15 (0.002)

As it can be observed in the first column of Table V, in

the original FARC-HD the best aggregation method is the

product, although there are no statistical differences between

the five aggregations. However, in OVA and OVO models,

we can observe that the greater the overlap function we use

is, the better the results we obtain are (although the GM is

greater than the HM, both of them have a similar behaviour),

except in the case of the SIN, due to the fact that it can give

as output a value which is greater than all the input values,

which seems to distort the aggregation process in the OVA

and OVO strategies.

Hence, the best method to compute the association degree

for OVA and OVO in almost all cases are those obtaining

the highest aggregated values preserving the idempotence

(although the geometric and harmonic means return similar

values, the latter one tends to obtain better results but without

statistical differences). The exception to this situation is when

we use LVPC and WV strategies, since they are severely

affected by the poor quality of the confidences of the non-

predicted classes, which is accentuated in LVPC due to the

difficulty in modeling the conflict and ignorance terms (as we

have mentioned in Section III-D). However, we must recall

that removing these terms the original WV is recovered. On

this account, we only focus on WV strategy.

For the sake of solving the problem of the WV with

the confidences, we propose a new aggregation strategy for

OVO (WinWV) which considers only the confidences of the

predicted classes. This way, we want to study whether our

proposal allows to improve the results of the WV when using

FARC-HD and OVO. In the results presented in Table III, we

can observe that the results obtained by WV are different from

those obtained by the remainder OVO aggregations (except for

LVPC which suffers the same problem), in the sense that using

overlap function has no effect on the results. Focusing on the

differences between WV and WinWV, we can observe that the

usage of WinWV allows to enhance the results of WV.

In order to support this finding, we have carried out a

number of pair-wise comparisons using the Wilcoxon signed-

ranks test, where we confront the original WV method against

the proposed modification for each overlap function considered

in this study. Table VI shows the results of these comparisons,

where R+ and R- indicate the ranks obtained by WV and

WinWV, respectively. As we can observe, the new aggregation

strategy statistically outperforms the original WV method with

all overlap functions.

TABLE VI
WILCOXON TEST TO COMPARE THE WV AND THE WINWV.

Comparative R+ R- p-value Hypothesis

OVOWV
PROD vs. OVOWinWV

PROD 7.00 203.00 0.000 Rej. OVOWinWV
PROD 95%

OVOWV
MIN vs. OVOWinWV

MIN 21.00 189.00 0.002 Rej. OVOWinWV
MIN 95%

OVOWV
HM vs. OVOWinWV

HM 14.50 195.50 0.001 Rej. OVOWinWV
HM 95%

OVOWV
GM vs. OVOWinWV

GM 13.50 196.50 0.001 Rej. OVOWinWV
GM 95%

OVOWV
SIN vs. OVOWinWV

SIN 5.50 204.50 0.000 Rej. OVOWinWV
SIN 95%

2) Analyzing the effect of the usage of n-dimensional over-

lap functions in the rule base size and the training time:

In addition to the performance of the different overlap

functions, we want to study the impact of these functions

in the size of the rule base and in the time needed for its

construction. Table VII shows the average number of rules

and antecedents by rule obtained when the considered over-

lap functions are used in FARC-HD (without decomposition

strategies) and in OVA and OVO models, as well as the number

of base classifiers (#BC) employed in OVA and OVO for

each dataset. As it can be appreciated in Table VII, the usage

of a greater overlap function implies a growing trend of the

number of rules and a higher complexity of those rules (more

antecedents). Thus, there is a relationship between the value

returned by the overlap function and the size of the rule base

(the greater the overlap function the larger the rule base).

It is also interesting to note that the execution times of the

methods with the different overlap functions (shown in Table

VIII) follows the same trend (the construction of the rule base

is only shown since the computational time required by the
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different aggregations in OVO is negligible). The reason is

that the use of greater overlap functions implies that the aggre-

gation of the matching degrees returns higher values and thus,

a higher number of rules and antecedents is needed in order

to maintain or improve the discrimination capability (therefore

affecting the computational time needed). Moreover, due to the

fact that we focus on overlap functions that are independent

of the number of antecedents of the rule, the penalization

of those rules with more antecedents is minimized. As a

consequence, more rules with larger number of antecedents

can be learned, which better describe the examples. Table VII

confirms this situation, where we can find that the average

number of rules of the product is the lowest one among the

five overlap functions and increases when considering a greater

overlap function.

In Table VII we observe that the average number of rules

obtained in OVA and OVO is lower than that obtained in

FARC-HD. The reason is that we consider the average of

all base classifiers and since they solve binary problems, the

definition of the decision boundary in each binary problem is

simpler than in the original multi-class problem, which implies

that fewer rules are needed in each base classifier. We can

also observe that in the case of OVO the number of rules

generated by the base classifiers is lower than in OVA, since

the binaries problems solved in OVO are simpler. In the same

way, the rules generated in OVA and OVO are simpler than

those generated in the original FARC-HD algorithm (at the

same time the rules generated in OVO are simpler than in

OVA, for the reason explained before), but obviously, we have

more classifiers in the case of OVA and OVO.

B. Studying the usefulness of decomposition strategies for

FARC-HD

In this section we want to check whether our new model

improves the performance of the original FARC-HD algo-

rithm when addressing multi-class classification problems. We

have shown that the harmonic mean is the overlap function

that obtains the best results when using OVO and OVA.

Thus, before performing a comparison against FARC-HD, we

analyze which aggregation strategy for OVO obtains better

performance using the harmonic mean. As we can observe in

the results provided by the Aligned Friedman test in Table

IX, there are no statistical differences among ND, VOTE, and

WinWV (as usually occurs among OVO aggregations [9]).

For this reason, we will consider the aggregation strategy that

obtains the highest accuracy according to Tables III and IV

and the lowest ranks according to Table IX (VOTE).

TABLE IX
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE THE DIFFERENT

AGGREGATIONS IN OVO.

algorithm rank APV

OVOVOTE
HM 32.30

OVOND
HM 35.10 1.000

OVOWinWV
HM 36.55 1.000

OVOWV
HM 69.47 0.002

OVOLVPC
HM 79.08 0.000

In order to check whether there are statistical differences

among OVA, OVO, and the original FARC-HD, we show the

results of the Aligned Friedman test in Table X. It can be

observed that OVO model statistically outperforms the original

FARC-HD algorithm and obtains better results than the OVA

model, which is in accordance with the findings using other

classifiers [9].

TABLE X
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE OVA, OVO, AND

FARC-HD.

algorithm rank APV

OVOVOTE
HM 20.23

OVAHM 31.55 0.040

FARC-HD 39.73 0.001

C. Analyzing the quality of FARC-HD OVO versus state-of-

the-art fuzzy classifiers

This section analyzes the performance of our model against

three recognized state-of-the-art fuzzy classifiers, i.e., the

IVTURSFARC-HD algorithm [25] by Sanz et al., the FURIA al-

gorithm [24] by Hühn and Hüllermeier, and the PTTD method

[26] by Senge and Hüllermeier. The results in testing of these

three algorithms along with those obtained by OVOV OTE
HM

(denoted as FARC-HD OVOV OTE
HM ) are shown in Table XI,

where the best of the results obtained in each dataset is

highlighted in bold-face.

From the results presented in Table XI, we must high-

light the notable performance improvement of our proposal

respect to IVTURSFARC-HD, FURIA, and PTTD, improving

their average performances by 3.79%, 1.71%, and 1.22%,

respectively. However, we must contrast these results with the

proper statistical analysis.

TABLE XI
ACCURACY RATE OBTAINED IN TEST BY THE STATE-OF-THE-ART FUZZY

CLASSIFIERS AND THE MOST ACCURATE METHOD OF OUR MODEL BASED

ON FARC-HD FUZZY CLASSIFIER.

Dataset PTTD FURIA IVTURSFARC-HD FARC-HD OVOVOTE
HM

aut 75.07±6.06 75.66±4.79 77.07±9.11 80.99±7.33

bal 89.28±1.36 83.14±2.17 85.75±1.92 85.69±3.07

cle 59.96±4.36 55.11±1.35 57.47±3.23 57.74±5.31

con 54.17±1.47 55.37±2.06 54.47±1.44 55.15±2.31

eco 82.31±5.93 82.96±5.01 81.34±7.33 83.20±5.60

gla 63.69±6.61 72.05±5.72 69.12±6.17 70.18±4.11

hay 84.12±4.00 79.65±5.70 75.46±8.63 81.19±5.98

iri 96.67±2.36 94.22±3.44 95.78±2.95 95.33±3.52

new 96.74±2.08 94.88±3.31 94.26±1.73 96.28±2.61

pag 95.26±0.75 96.50±1.77 94.96±2.10 96.43±1.49

pen 92.47±2.36 91.07±1.67 92.22±2.48 94.22±2.49

sat 86.48±2.80 83.09±4.47 75.40±3.03 84.05±3.26

seg 93.12±0.89 97.27±0.81 90.56±0.91 94.99±1.30

shu 98.48±0.48 99.68±0.24 91.88±1.48 99.59±0.22

tae 53.55±8.63 44.51±5.72 54.83±7.80 60.55±8.94

tyr 96.53±0.98 98.37±1.73 93.85±0.64 92.51±0.64

veh 71.27±3.05 71.91±1.73 67.34±2.24 71.90±3.05

vow 75.96±2.54 82.36±2.97 65.99±2.14 90.71±1.14

win 97.20±1.91 94.79±2.01 95.18±3.03 94.55±3.55

yea 58.43±3.43 58.36±2.51 56.43±2.41 59.99±3.33

AVG 81.04±3.10 80.55±2.96 78.47±3.54 82.26±3.46

In order to compare these methods, we have applied the

Aligned Friedman test. The rankings of the different methods

computed using this test are shown in Fig. (3). The p-value
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obtained is 0.001, which implies the existence of significant

differences among the four methods.
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Fig. 3. Rankings of the state-of-the-art fuzzy classifiers along with our
proposal.

We now apply the Holm post-hoc test to compare the best

ranking method (FARC-HD OVOV OTE
HM ) with the remaining

methods. Table XII shows the results obtained by this test,

indicating whether the hypothesis of equivalence is rejected by

our proposal and the computed p-value (APV). According to

Table XII, the hypothesis of equivalence is rejected in the case

of IVTURSFARC-HD with a high level of confidence. Regarding

FURIA and PTTD, although the hypothesis is not rejected,

the APV values are low, which denotes that the behavior of

our proposal is very competitive against these state-of-the-art

fuzzy classifiers.

TABLE XII
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE OUR PROPOSAL

(FARC-HD OVOVOTE
HM ) WITH RESPECT TO IVTURSFARC-HD , FURIA,

AND PTTD.

algorithm rank APV Hypothesis

FARC-HD OVOVOTE
HM 27.85

PTTD 35.90 0.273 Not Rejected

FURIA 40.65 0.163 Not Rejected

IVTURSFARC-HD 57.60 0.001 Rej. FARC-HD OVOV OTE
HM 95%

VI. CONCLUDING REMARKS

In this paper, we have combined the FARC-HD algorithm

and OVO and OVA decomposition strategies to improve its

performance in multi-class classification problems. We have

shown that the confidences returned by FARC-HD may ad-

versely affect the aggregation phase in these decomposition

strategies and thus, the final prediction.

In order to minimize this negative effect, we have defined

the concept of n-dimensional overlap functions and we have

replaced the product t-norm by these functions in the inference

system. Additionally, we have proposed a new aggregation

strategy for OVO called WinWV, which solves the problems

of the WV with the confidences of FARC-HD.

These adaptations have allowed us to show the importance

of the inference process when OVO and OVA models are

considered, since the confidence values are used beyond the

FARC-HD classification. We have shown that the overlap

functions that obtain the best results are those which return

values with a higher variation and preserve the idempotence.

Furthermore, we have observed that there is a relationship

between the used overlap functions and the rule base size

as well as the computational time spent in its learning. In

addition, we have found that the usage of decomposition strate-

gies is suitable for the FARC-HD classifier, but this synergy

is better when the inference process is adapted appropriately

and the best results are obtained with OVO scheme which is in

accordance with previous works. Moreover, the experimental

study shows that our model obtains competitive results in

comparison with three state-of-the-art fuzzy classifiers.

In the future, several works remain to be addressed. Among

them, the problem of non-competent classifiers [19] must be

taken into account when using the OVO model. On the other

hand, a more in depth study of how this type of synergies

affect the interpretability of the model should be carried out.

Furthermore, our proposal might be adapted to different fuzzy

classifiers in order to generalize the effect of the usage of

overlap functions in the inference process when combining

fuzzy classifiers and decomposition strategies. Finally, the

comparison and combination between decomposition-based

techniques and preprocessing-based fuzzy ensembles such

as bagging [44] could be studied, but in this case, only

focusing on improving the classification performance using

fuzzy techniques.
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F. Herrera, ”Hybrid laser pointer detection algorithm based on template
matching and Fuzzy Rule-Based Systems for domotic control in real
home enviroments,” Applied Intelligence, vol. 36, no. 2, pp. 407-423,
2012.

[3] C. Tsang, S. Kwong, and H. Wang, ”Genetic-fuzzy rule mining approach
and evaluation of feature selection techniques for anomaly intrusion
detection,” Pattern Recognition, vol. 40, no. 9, p. 2373-2391, 2007.

[4] T. Nakashima, G. Schaefer, and Y. Yokota, ”A weighted fuzzy classifier
and its application to image processing tasks,” Fuzzy Sets and Systems,
vol. 158, no. 3, p. 284-294, 2007.

[5] J. Sanz, M. Galar, A. Jurio, A. Brugos, M. Pagola, and H. Bustince,
”Medical diagnosis of cardiovascular diseases using an interval-valued
fuzzy rule-based classification system,” Applied Soft Computing Journal,
2013, Article in Press.

[6] M. Galar, J. Sanz, M. Pagola, H. Bustince, and F. Herrera, ”A
preliminary study on fingerprint classification using fuzzy rule-based
classification systems,” in 2014 IEEE World Congress on Computational

Intelligence (IEEE WCCI 2014) - 2014 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE 2014), 2014.

[7] X.-X. Niu and C. Y. Suen, ”A novel hybrid CNN-SVM classifier for
recognizing handwritten digits,” Pattern Recognition, vol. 45, no. 4, pp.
1318-1325, 2012.

[8] V. Bolón-Canedo, N. S.-M. no, and A. Alonso-Betanzos, ”An ensemble
of filters and classifiers for microarray data classification,” Pattern

Recognition, vol. 45, no. 1, pp. 531-539, 2012.

[9] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera,
”An overview of ensemble methods for binary classifiers in multi-class
problems: Experimental study on one-vs-one and one-vs-all schemes,”
Pattern Recognition, vol. 44, no. 8, pp. 1761 - 1776, 2011.

[10] A. Lorena, A. Carvalho, and J. Gama, ”A review on the combination of
binary classifiers in multiclass problems,” Artificial Intelligence Review,
vol. 30, no. 1-4, pp. 19-37, 2008.

[11] E. L. Allwein, R. E. Schapire, and Y. Singer, ”Reducing multiclass to
binary: A unifying approach for margin classifiers,” Journal of Machine

Learning Research, vol. 1, pp. 113-141, 2000.
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