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SUMMARY

Optimal control strategies for both non-linear and linear plants and indices are notoriously sensitive to
modelling errors and external noise disturbances. In this paper a general framework to enhance robustness
of an optimal control law is presented, with emphasis on the non-linear case. The framework allows a
blending of off-line non-linear optimal control, on-line linear robust feedback control for regulation
about the optimal trajectory and on-line adaptive techniques to enhance performance/robustness. The
adaptive-Q techniques are those developed in previous work based on the Youla–Kucera parametrization
for the class of all stabilizing two-degree-of-freedom controllers. Some general fundamental stability
properties are developed which are new, at least for the non-linear plant and linear robust controller case.
Also, performance enhancement results in the presence of unmodelled linear dynamics based on an
averaging analysis are reviewed. A convergence analysis based on averaging theory appears possible in
principle for any specific non-linear system but is beyond the scope of the present paper. Certain model
reference adaptive control algorithms come out as special cases. A non-linear optimal control problem
is studied to illustrate the efficacy of the techniques, and the possibility of further performance
enhancement based on functional learning is noted.

KEYWOREE Non-linear optimal COtItrOlRobust and adaptive control Stability

1. INTRODUCTION

Optimal non-linear deterministic control methods are considered very elegant in theory but lack
robustness in practice. In the optimal control approach a mathematical model of the process
is first formulated based on the fundamental laws in operation or via identification techniques.
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2. SELF-TUNING OPTIMAL NON-LINEAR CONTROL

Signal modelloptimal control

Let us consider some actual plant, in operator notation G, with a nominal model Go, given

in state space form

GO: dx/dt =j(X,U,f), y=h(x,t) (1)

with an associated performance index I = 1/T) J; l(x, u, [) d[. Let us denote the optimal control

signal u*, assuming that this exists and can be calculated under the usual assumptions on the

non-linear functions f, h and 1. The optimal state/output trajectories for the nominal model are
denoted x*/y*. We will focus on the case when the time horizon T becomes infinite.

Linearize a signal modelllinear optimal regulation. Let us consider linearized versions of(1)
about the optimal trajectory, obtained using the usual series expansion approach with

as

A=Lf
(3X ;:,::

~=tf
au .(=

~=

AGO: d(6x)/dt = A&x + B6u,

r
A1=~

sTo
[(6x)TQ.6x + 2(6X)T.S,6U +

With A G the operator denoting the actual system

C=*
.,.. ax ..= ..”
u* I

fiy= C6X, 6X(O)= C$xo (2)

(6u)’R@] dt = ~ ~~ eTe dt (3)

with input 8U= u – u*, state 6X = x* and
output 8-Y= y – Y*, then AGo denotes a linearized version of A G. Also, e is a vector calculated
in terms of 6x, au, QC,S. and RC as

‘=[~:1’’2[::1“’>0) ‘c-s’’R:’sc>O“>0 ‘4)
The associated linear optimal (LQG) regulator of the linearized model (2) (in a suitably

stochastic environment not spelt out here) for the index (3) (or rather its expected value) is given

the operator notation Ko, where

KO: d(&-f)/dt = A6f + B6u – H6r, 6U= FM, 6r = 13y– CM (5)

Here H and F are time-varying matrices formed via standard LQG theory and & is the
estimator residuals. (Ito equations are avoided in this presentation. )

Actually, the important aspect of the LQG design for our purposes is that under the relevant
uniform stabilizability and uniform detectability assumptions the (time-varying) gains H and
F exist and are given from the solution of two Riccatti equations (with no finite escape time).
Moreover, for the limiting case when the time horizon T becomes infinite, the controller KO

stabilizes A Go. Here stability means that all possible bounded inupts to the closed loop

consisting of KO feeding back on AGo result in bounded loop signals (outputs).

Robust feedback controller. It is well known that the LQG controller (5) for the linearized

plants (2), although optimal for the nominal linear time-varying plant for the assumed noise
environment, may be far from optimal in other than the nominal noise environments or in the
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Next a performance index is derived which reflects the various cost factors associated with the

implementation of any control signal. Then off-line calculations lead to an optimal control law

u * via one of the various methods of optimal control. In theory, then, applying such a control

law to the physical process should result in optimal performance. However, the process is rarely

modelled accurately and is frequently subject to stochastic disturbances. Consequently, the
application of the ‘optimal’ control signal u* results in poor performance, in that the process
output y differs from -y*, the output of the idealized process model.

One approach to achieve improved performance could be to include robustness measures in
the cost function, so that for plants ‘near’ the nominal model and ‘small’ disturbances poor

performance is avoided. This approach turns out to be difficult to develop in practice.
A standard approach to enhance open-loop optimal control performance is to measure on-

line the difference between the ideal optimal process output trajectory Y* and the actual process
output y. This difference signal by depends on the difference CMbetween the optimal control
u* for the nominal model and any actual control signal u applied. For nominal plants with
suitably smooth non-linearities and small differences CMand by, a linearization of the process
allows an approximate linear dynamic model for relating c$y to 6u. With this model, optimal
linear regulator theory can be applied to calculate au in terms of by, which is measurable, so

as to regulate 6y to zero. Indeed, the linearization can extend to yield an associated quadratic
performance index consistent with the original non-linear index, so that linear optimal control
(LQG) theory can be applied to achieve optimal regulation of ~y under the linearization

assumptions. Robust regulator designs based on optimal theory, perhaps via loop transmission

recovery (LTR), could be expected to lead to performance improvement over a wider range of
perturbations on the nominal plant model.

Even with the application of linearization and feedback regulation to enhance optimal
control strategies, there can still be problems with external disturbances and modelling errors.
The linearization itself may be a poor approximation when there are large perturbations from
the optimal trajectory.

[n this paper it is proposed to apply robust and adaptive techniques to assist in regulation
of the actual plant so that it behaves as closely as possible to the nominal (idealized) model.
An adaptive control technique which is designed to enhance performance of a stabilizing

regulator for a nominal time-varying linear plant model is presented in an earlier work, 1

building on the time-invariant casee proposed in Reference 2 and further studied in
Reference 3. Here this technique is applied in conjunction with an open-loop non-linear
optimal controller and standard linear optimal feedback regulator (LQG) approach, with
the view to enhancing performance of the optimal controller when applied to a plant, not the
idealized model. Loop recovery (LTR) techniques are also studied to enhance robustness of the
optimal regulator designs. Some analysis results are presented giving stability properties of
the optimal/adaptive scheme. These generalize known linear system stability plant results to
the case of mixed linear and non-linear systems as here. Mention is made of performance
enhancement properties in the presence of unmodelled dynamics developed for the linear case
based on an averaging analysis; although generalizing to a specific non-linear case appears

possible, such an analysis is beyond the scope of the present paper. Simulation results
demonstrate the effectiveness of the various control strategies, and the possibility of further

performance enhancement based on functional learning is noted. In Section 2 the algorithms
of Reference 1 are viewed in the context of non-linear optimal control. In Section 3 some
analysis results are developed relevant to the non-linear control situation, and in Section 4
simulation studies are presented. Conclusions are drawn in Section 5.
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Figure3. Two-degree-of-freedom adaptive-Q scheme

A refinement on this proposal is to consider a two-degree-of-freedom controller scheme
based on Reference. This is depicted in Figure3. It can be
one-degree-of-freedom controller arrangement for the augmented plant [0
as a two-degree-of-freedom arrangement for G. The objective is
bounded-input, bounded-output operators QI and Qz on-line so that
minimized in an Lz sense.

In order to present a least-squares algorithm for selection of Q, as

Reference 1, some preprocessing of the signals e, 6U and ~y is required.

Prejiltering. To design the appropriate prefilters, it is convenient to
factorization for A Go and KO such that

AGO = NOA461 = MO l~(j, Ko=UOV;’=~(j’~0

satisfy the double Bezout

[-i -a[:::I=[fi:%1[-fi-M

derived from a
Gr] ‘, reorganized
to select causal,
the response e is

in the schemes of

introduce coprime

(7)

o

1I (8)

where the factors N’0, A40, No, VO,fio, NO and ~0 are stable and causal operators. We consider
those defined in Reference 1, using the shorthand notation which would represent A C() of (2) as

[-HAB
C D 6.,<)

with

(9)
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presence of structured or unstructured perturbations on (2). Stability maybe lost even for small
variations from the nominal plant.

Methods to enhance LQG regulator robustness exist, such as modifying QC, SC and R,
(usually .SC= O) selections or assumed noise environments, as when loop recovery is used. Such

techniques could well serve to strengthen the robustness properties of the optimal/adaptive
schemes studied subsequently. In order to proceed, we here merely assume the existence of a
controller (5) stabilizing AGO, although our objective is to achieve a controller which both
stabilizes AC and achieves a low value of the index AI when applied to AC.

The class of all stabilizing controllers for A GO. On the basis of Reference 1, the class of all

stabilizing controllers K(Q) for A Go is as depicted in Figure 1(a). Here Q is an arbitrary causal
bounded-input, bounded-output operator parametrizing the class of all stabilizing controllers.
If Q is linear, rational, proper and stable, then it parametrizes the class of all linear, rational,
proper, stabilizing controllers for AGO. A rearrangement is depicted in Figure l(b), from which

the subsystem JK is readily extracted

JK: d&?/dt = (A + BF)M + Bs – H&, 6U= FM+ S, & = 6y – C&i? (6)

Of course, in obvious notation [JK] I I = Ko.

Adap[ive Q. Our proposal is to implement a controller K(Q) for some adaptive Q, but

applied to AC and not AGo. The intention is for Q to be chosen to ensure that K(Q) stabilizes
G and achieves good performance in terms of the index AZ. Thus consider the arrangement of
Figure 2, where the block P is actually the arrangement depicted in Figure 1 but effectively
characterized by operators AC and L.

hy

6 c

K(Q);

hi

(a)

8;

6?4 Liy
AGo

. . . . . . . . . . . . . . . . .

JK
br s;

Q
. . .. . . .... ...... .

Figure 1. Class of all stabilizing controllers for AC”

‘m
W fig

JK
a

w[

(b)

Figure 2. Adaptive Q for disturbance response minimization
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e /

Figure4. Least-squares adaptive-Q arrangement

Remarks

1.

2.

3.

4.

5.

6.

7.

8.

9.

The algorithms (16) should be modified to ensure that ok is projected into a restricted

domain, such as IIQk II < c for some fixed c. Such projections can be guided by the theory

discussed in the next section.
To achieve convergence of ~~, ~k must approach zero or, equivalently, ~k must be

persistently exciting in some sense. However, parameter convergence is not strictly
necessary to achieve performance enhancement. With more general algorithms which
involve resetting or forgetting, care must be taken to avoid ill-conditioning of ~/r, perhaps
via unstable excitation in the system.
It turns out that appropriate scaling can be crucial to achieve the best possible

performance enhancement. Scaling gains can be included to scale r and/or e with no effect
on the supporting theory, other than defining projection domains as in Remark 1 above.
Likewise, the ‘scaling’ can be generalized to stable dynamic filters for r and/or e with no

effect on the supporting theory. In this way frequency-shaped designs can be effected.
Our presentation so far has been for continuous-time A G and .lK but discrete-time

updates of parameters & and then Qk, based on samplings of r and e. Likewise, our
subsequent simulation results are mixed continuous-time/ discrete-time results. Theory, as
noted below, gives performance enhancement only at the discrete-time sampling instants,
so that as in all mixed continuous/discrete system studies care must be taken to achieve
a suitably fast sampling rate. Of course, we could have worked exclusively in discrete time
or continuous time.
The scheme described above can be specialized to the cases when QI and QZ are finite

impulse response filters by setting n = O. The Qs are stable for all bounded ok. Also, either

Q1 or Q2 can be set to zero to simplify the processing, although possibly at the expense
of performance.
In the case when Q, is moving average and Qz is zero, our scheme becomes very simple,

being a moving average filter Q1 in series with the closed-loop system (AG, Ko). In this
case, if QI is stable, guaranteed when the gains ok are bounded, and (AG, Ko] is stable,
then there is obvious stability of the adaptive scheme.
When the linearized plant model A Go is stable and one selects trivial values F, H = O so
that KO = O, then the arrangement of Figure 3 simplifies to the familiar model reference

adaptive control arrangement depicted in Figure 5.
In the case when Q1 is set to zreo, there is no adaptive feedforward control action.

The operators AGO and YK are in fact functions of the optimal trajectory x“ or, under

suitable generalizations of x*, 6x. It would make sense to have the operator Q also as a
function of x* (or x* and 8x). Then this adaptive-Q approach becomes a learning-Q
approach as studied in a companion paper. 4
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Thus

‘0=[-16.()
etc.

In this notation YK of (6) has the form

JK =
[

K. vi 1

vi I
–v(j’N” 1

Now define Plz as the operator between h and e under nominal
since (2) and (4) hold, then in operator notation

“2=[:::1’’2N1
where

AG,: d(6x)/dt = /lbX + B&J

With the above definitions and using operator notation, we define

(lo)

plant assumptions. Thus,

filtered variables

[1
P12MOU*g=
Pl~MO& ‘

{ = e – P1’Mos

Least-squares Q selection. Let us define a discrete-time version of Q in Z-transforms

Q,(Z-’)=70+ TIZ-’+7PZ+PPZ-P
l+cYlz- l+... +z.”-’”

Q2(Z-1)=60+61Z-’ + . . . +(j,,,z-r’r
l+alz-l+... +an”-”

Q(z-’)= [Q,(z-’) (2,(z- 1)], ~T= [al ““”atldo ”””b,,tyo”””~pl

The following state (regression) vector in discrete time is

~~ = [–s~-,... –s~-,,~r~.. ~r~-,,,~k.. ~,,],]

(11)

(12)

as

(13)

(14)

The dimensions n, m and p are set from an implementation convenience/performance trade-
off. In the adaptive-Q case the parameters are time-varying, resulting from least-squares
calculations given below. We assume a unit delay in calculations. Thus d is replaced by ok- I

and the filter with operator Qk = [Ql~Qzk] is implemented with parameters (time-varying in
general)

sk=~~-l~k, ~~ = [~lk ““”~nkbOk ““” fitnk$’Ok ““” ?pk] (15)

We seek selections of ok so that the adaptive controller minimizes the Lz-norm of the
response pk. Using theory in Reference 2, with suitable initializing we have the adaptive-Q

arrangement of Figure 3 with equations

~k = ok- [ + P/&&/&1, i?k/&l = {k–d;ok-l, @k/k = tk – d:i$k

k

()

–1

Pk = ~ ~,~] ‘Pk.l–pk., f$k(z+fj; pk., fjk)-’$kpk., (16)
1

d; = [(~k- 1/k-l - .(_k-l)(~k-,l/k -,!- {k-n-i 2,k””” ‘:’,k -m””” ‘tl,k ””” ‘tl,k -m]

Summary of proposed direct adaptive sehetne. The complete adaptive-Q scheme is a

combination of Figures 3 and 4 with key equations 9 and 16.



TECHNIQUES FOR ENHANCING OPTIMAL CONTROLLERS 421

Moreover, the maps 17 and 18 have the block diagram representations of Figures 6(a) and 6(b),

where

JG =
[

–A4i’u(j A4i’
fii1 AGO1 (20)

The solutions of 17 and 18 are unique, given from the right fractional maps in terms of A G
or AG– AGo as

S=(–fiO+fiO AG)(tio– tiO AG)-’ (21)

=X70(AG-AGO)MOIZ– C70(AG-AGO)A40] ‘1

or in terms of the closed-loop system operators as

s=[–No fi70] [[
I

1[
–Ko-’ I

11[1
–K. ‘1 lkfo

–AG I – –AGo I NO
(23)

Moreover, (N(S), M(S)) are coprime and ovey a Bezout identity

Prooj_. Simple manipulations
assumption as

~oA4(S) – tioN(S) = I (24)

allow (21 ) to be reorganized under the well-posedness

[1[
I PC!-s=–l% 1[1‘~AL(Z- KAG)-’~;’

(a) .. ... . .. . ... .. .. .. .. .. .. ... . ...A.CLS)...................................

............................................................................
.....................................

v

(b):

!s!
s

;/iG(S)

JG

:,, ..., ,., ,.:
;

.IK
;IS(Q)

Q:

(c) (d)

.“”-.””.-..”..””......”””jT= s

g] m
:,,,.,,,. .......

Figure 6. The feedback systems [A G(S), K(Q)], [Q,S]
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u“

/

Figure 5. Model reference adaptive control special case

3.CONVERGENCE PROPERTIES

In this section we focus on stability results asa first step toachieving convergence results for
our system. We first analyse a parametrization of the plant AC with input au and output 6-Y
in terms of the coprime factorization of the linearized version AGo and stabilizing linear
controller KO and establish that this parametrization covers the class of well-posed closed-loop
systems under study. Next, stability of the scheme is studied in terms of such parametrizations

and then expected convergence properties are noted based on this characterization and known
convergence theories in the linear case.

Non-linear system fractional maps

As in the previous section, let us consider the right and left coprime factorization for the
nominal linearized plant and controller of Reference 5. These operators are expressed as
functions of the desired optimal trajectory x*, but since x* is time-dependent, then for any
specific trajectory x*(” ) the operators are merely linear time-varying operators and can be
treated as such. We define AG(x*) as the (non-linear) system with input 8U and output 8Y. Note
that A Go(x*) is a linearization of A G(x*). When the notation A Go, A G is used, the

x*-dependence, or equivalently the time dependence, is understood. Also, a unity-gain

feedback loop with open-loop operator WOIis said to be well-posed when (1+ WOI)-’ exists.
Recall that for a non-linear operator S, in general S(A + B) # S,4 + SB, or equivalently
superposition does not hold, and care must be taken in the composition of non-linear
operators. Otherwise, manipulation rules for non-linear operators follow the more familiar
ones for linear operators.

Theorem 1 (right fractional map forms)

Consider that (A Go, Ko] is well-posed and stabilizing with left and right coprime
factorization for AGO and KOas in (7) and the double Bezout (8) holding. Then any non-linear

plant with AC such that {AG, Ko] is a well-posed closed-loop system can be expressed in terms
of a (non-linear) operator S in right fractional map forms:

AC= N(S) M-’(S), N(S) = (N. + L’OS), M(s) = MO + Uos (17)

=AGo+fi~’S(I +A4;1UOS)-l Mt’

Also, closed-loop system operators are given from

[

I

1[
–K. “

‘ ‘~1-’+[:~1[~w $1–AC I = –AGo

(18)

(19)
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and applying the double Bezout (8) gives

or equivalently (19) holds and (23). (This result is generalized in Theorem 2.)

Simple manipulations from Figure 6(b) give the transfer function of the G-block to be
J21S(I – YI~S)- lJI* + Jz* and substitution of (20) gives AG by (18).

Toestablish coprimenessof lV(S) and A-4(S), observe that under thedouble Bezout (8)

VOM(S) – U,N(s) = F,&f– O,N+ (F,u, – U,v, )s = z

which is unimodular. Thus from Lemma 2.1 of Reference 6 IV(S) &f(S) -‘ is a right co-prime
factorization. ❑

Remarks

1.

2.

3.

4.

When A G is linear, the above results specialize to known results in Reference 5, although
the details of the theorem proof appear quite different so as to avoid using superposition
when non-linear operators A G and S are involved.

The fact that fio, fio, A40, No, ~0, ~0, UO and VO are linear has allowed derivations to take
place without differential boundedness or other such assumptions as in a full non-linear
theory as developed in References 6 and 7 using left coprime factorization.
Dual left coprime factorization results, apart from those in References 6 and 7 involving
differential boundedness, are elusive at this time. Certainly, dualizing certain of the above

proof steps requires superposition and thus linearity of A G and S.
Dual results apply for fractional mappings of K = K(Q) as in (28) and (29), along with
duals of the other results. Thus K(Q) can be expressed as a linear controller KOaugmented
with a non-linear Q. Also, by duality, Figure 6(a) depicts a block diagram arrangement
for

K!$ K(Q)= CJ(Q)V-l(Q),U(Q)= (UO + ~oQ)> V(Q) = (V. + ~oQ) (28)

where

Q=(-~0+ ~oK)@o-~oK)-’ (29)

Stabilization results

We define a system [G, K ] to be internally stable iff for all bounded inputs the outputs are
bounded.

Theorem 2

Consider the well-posed feedback system (A G, K ) under the conditions of Theorem 1, with
A G and K parametrized by S and Q as in (17) and (28) and as depicted in Figures 6(a) and 6(b).
Then [AC (S), K(Q)) is well-posed and stable if and only if the feedback system [Q, S] depicted

in Figure 6(d) is well-posed and internally stable. Moreover, referring to Figure 6(c), the J~/AG-
block with input/output operator T satisfies

T= S (30)
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and via the Bezout identity as

Thus under (21), Al- 1(S) exists and (17) holds as follows:

N(S) A4-’(S) =AG(l-K AG)-lti~l[(Z- KAG)-1p;1]-1=AG

To prove the equivalence of (17) and (18), simple manipulations give

AG=AGO+ (NO+ VOS)(Z+ A4i1UOS)-l Mil-NoMi’

=AGo+(Vo –N~~l Uo)S(Z+ M~l UoS)-l M~’

=AGo+(Vo –ti~l~oUo)S(Z +M~l UoS)-lM~l

= AGo + ~~l(itio~o ‘~o~o)S(~+ fi’f;’~oS)-l&f;’

=AGo+@& 1S(I+h4;1UoS)-l M;l

so that under (8), equation (18) holds. Likewise, (21) is equivalent to (22) as follows:

S=mO(AG– AGO)(~O– ~. AC)”’

=no(AG– AGo)Mo(voA40– ~0 AGA40)-’

=fWo(AG-AGo)Mo(I+ Oolvoiwi’fwo– L70AcA40)-’

=RO(AG–AGO)MOII–OO (AG– AGO)A40]-’

To see that the operator of (17) is equivalent to that depicted in Figure 6(a), observe from
Figure 6(a) that /= A461(el – UoSl) or, equivalently, /=( MO+ UOS)- le. Also,
ez – W2= (ZVo+ VoS)f = (N. + VOS)(A40 + UOS)-lel, which is equivalent to (17).

Now suppose there is some other S + AS which also satisfies (17); then

[4=[RMw’’+uos)-’=[n:IIS:ASI(”O+UOS+UOAS)-l
for some AS. Then, using (8),

[-: -a[4=[4(M0+u0s)-l=[s:@O+As)-’ (26)

Premultiplication by [1 O] gives &f. + UOS= MO+ UOS+ U. AS and premultiplication by [0 Zl
gives then in turn that AS= O.

To verify (23), first observe that

[

I – K.

1[–AC I =

Thus

[1 -Ko1-l [ Z

~ “:1[-:r“~uosT’

1
–Ko “

I

[[ 0 w :1-’-[~:011[-fiMO+Uos o——

‘[~ :1[: !-~ ‘v’

(27)

1
Uo “
Vo
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Q and S. More general versions of this approach where GO and KO are non-linear will be

explored in subsequent work.
2. If I S I < c, then by the small-gain theorem for closed feedback loops, if I Q I < I/e, then

Q stabilizes the loop. From this and Theorem 2 with AC - AGO suitably small in norm,

there exists some Q which will guarantee stability.

3. In the case where AC= AGO, then trivially S = O, and any Q selection based on
identification of S will be trivially Q = O. This contrasts the awkwardness of one alternative
design approach which would seek to identify the closed-loop system as a basis for a

controller augmentation design.
4. Observations on examples in the linear AC case have shown that if K. is robust for G,

then S can be approximated by a low-order system, 3 thus making any Q selection more
straight forward than might be otherwise expected.

5. In Reference 8 stability results are studied for nested linear systems based on the Q/S
parametrization approach. The authors demonstrate how an (n + 1)-loop control diagram

can be specialized to an equivalent n-loop diagram and show that internal stability of an
H + 1 control loop is equivalent to that of the controller in the last loop stabilizing the rrth
frequency-shaped plant model error. It is clear that our results could also likewise extend,

at least in the case when all approximations but the last were linear.

Averaging convergence analysis

The adaptive scheme has the property that when A G = A Go, then Qk converges to zero, so

that when KO is the nominal optimal regulator, then the adaptive regulator K(Q~ ) converges

to KO= K(0), the optimal one. Such details are studied in Reference 1. More general results are
given in Reference 9 for the case of linear AC, based on an averaging analysis. One result

concerns the case when {AC, Ko] is a stabilizing pair as well as (AGO, Ko]. There is guaranteed
performance enhancement when {AC, Ko) is not stabilizing, but is small in that {AG, K(Q)]
is stabilizing for some Q with IIQll < e with c known, then with QK projected into the domain

[IIQ II< .s),there is guaranteed performance enhancement. For the more general case where
A G is non-linear, new results are needed. One approach is the averaging analysis as used in
Reference 9 but for non-linear systems as in Reference 10, but clearly any results obtained will

be problem-specific and beyond the scope of the present paper. A first step in such an analysis
is to derive appropriate stability results. Stability results for the proposed scheme in the non-
linear A G but linear K. and AGO case are studied in the next section. These are more developed
than those for the non-linear K(),AGO and AC case studied in References 6 and 7. Convergence
results for a learning-Q approach, for linear systems as in Remark 8 in Section 2 would follow
similar lines to the adaptive-Q approach, at least when A Go, Jk and Q were functions only of
x*. However, for the more general case when the operators are functions of x or 6X) a

stabilization theory coping with non-linear A C() and J~ is developed in reference 13.

4, SIMULATIONS

In this section we demonstrate the efficacy of our approach through simulation studies.
Consider an optimal control problem based on the van der Pol equation

il =(1 – X2)X1 – X2+U, i2= xl, y=xl (35)
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with XI(0)= O, X2(0) = 1 and the
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performance index defined by

(36)
JO

A second-order algorithm 11using 400 integration steps was adopted for the numerical solution
of the open-loop optimal control signal u*. An arbitrary initial nominal control u = O,t E [0,5]
was chosen. The value of the performance index was reduced to the optimal one in four

iterations in updating u (” ) over the range [0, 5].
Four situations have been studied in simulations. For each case we add a stochastic or a

deterministic disturbance which disturbs the optimal input signal. Also, in some of the

simulations we apply a plant with unmodelled dynamics. The objective is to regulate
perturbations from the optimal by means of the index AZ= j~(~x~ + 6x; + 6U2) dt, which is
expressed in terms of perturbations 6X and 6u. For each of the disturbances added and for the
unmodelled dynamics case we compare five controller strategies and demonstrate the robustness
and performance properties of the adaptive-Q methodology.

Case 1. Open-loop design

Here we adopt the optimal control signal u* as an input signal of the non-linear system with

added disturbance. Figure 7 shows that the open-loop design is quite sensitive to such

disturbances in that xl and X2 differ significantly from x ~ and x:.

1.s !.s

.,.
1 “.

,, .,.
. .. . . . . . . . . . ....-” ‘..

0.s - ,“ .. .
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(a) 0

Figure 7. Open-loop and LQGILTRladaptive-Q trajectories

Case 2. LQG design

In order to construct feedback controllers, we adopt the standard LQG theory based on the
linearized plant model of (35) about the optimal trajectories and the performance index (37).
Of course, the input signals u*+ 6u are no longer ‘optimal’ for the nominal plant. The LQG
controller design yields better performance than the open-loop case in that the errors xl – x ~
and X2– XT are mildly smalier than in the previous figure for the open-loop case (see Table I).
It is well known, however, that the LQG controller, although optimal for the nominal plant
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Table I. Trajectory 1. I.C. = [0 1]

Open loop LQG LQG/LTR LQG/Ad-Q LQG/LTR/Ad-Q Disturbance

AI 3.0712 0.7486 0.2295 03478 0.1600 d=O.2
3“0556 0“7435 0.2278 0 “3449 01592 dEu(o.l, o.3)
6.2587 3.2557 1.3483 1~9925 1.0010 d( L/(0,1)

model under the assumed noise environment, may lose performance and perhaps its stability

even for small variations from

Case 3. LQG[ L TR design

the nominal plant model.

In order to enhance the robustness properties of LQG controllers, we adopt well-known loop

transfer recovery (LTR) techniques. 12Thus the system noise covariance Qf in a state estimator
design is parametrized by a scalar q >0, and a loop recovery property is achieved as q becomes
large. In our scheme the state estimator ‘design system and measurement noise covariances’

Qf(q) and Rf are given by Qf(q) = 1+ q2[jl [1 O] and Rr= Z with q = 50. There is a more
dramatic reduction of errors xl – x: and x2 – x; over that for the LQG design of the previous
case as indicated in Table I. Of course, Case 3 is identical to Case 2 when q = O. Also,
simulations not reported here show that the LQG/LTR design performs virtually identically to

an LQ design where states 6X are assumed available for feedback.

Case 4. Adaptive-Q design

The adaptive-Q two-degree-of-freedom controller design for optimal control problems is
studied with the LQG/LTR controller KO and the adaptive Q = [QI, Qz] using least-squares
techniques. Third-order FIR models are chosen for the forward Q] (z) and the backward Q2 (z).

Simulations, summarized in Table I, show that adaptive-Q controller design strengthens the
robustness/performance properties of both the LQG and LQG/LTR designs without the need
for any high gains in the controller (see also Figure 7). The intention in this first design example
has not been to demonstrate that an adaptive-Q approach works dramatically better than all

others, although one example is shown where such is the case. Rather, we have sought to stress
that the adaptive-Q method is perhaps best used only after a careful robust fixed controller

design, and then only to achieve fme tuning. Actually, for the design study here, the robust
LQG/LTR design performed better than the LQG adaptive-Q design. The values of AZ for all

five cases are summarized in Table I for a deterministic disturbance d = 0.2 and then two
stochastic disturbances, with in the first instance d uniformly distributed between O”1 and 0.3
and in the second d uniformly distributed between O and 1.

To demonstrate the robustness of the adaptive-Q control strategy, the simulations were
repeated with unmodelled dynamics in the actual plant. The state equations of the actual plant

in this case are .il = (1 – x3)x1 – X2+ X3 + u,.iz = xI,Is – .i~ – 4x? + u and y = xl with initial
state vector [0 1 O] (see Table II).

The simulations in Tables I and 11 were repeated for different initial conditions and thus a

different optimal trajectory. The results are included in Tables 111 and IV.
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Table 11. Trajectory 1. I.C. = [0 1 O]

Open loop LQG LQG/LTR LQG/Ad-Q LQG/LTR/Ad-Q Disturbance

AI 5.9077 1.9438 0 ~6623 0 ~984 0.4251 d=O.2

Table 111. Trajectory 2. I.C. = [1 0.5]

Open loop LQG LQG/LTR LQG/Ad-Q LQG/LTR/Ad-Q Disturbance

AI 3.6646 0.7524 0.2165 (). 3447 (). 1505
36478

ri=o’2
0.7476 0.2148 0.3415 0.1495

7.4502
d{u(ol, ()”3)

3.3817 1.2766 I .9734 0.9278 d< U(O> 1)

Table N. Trajectory 2. 1.C. = [0 0.5 O]

Open loop LQG LQG/LTR LQG/Ad-Q LQG/LTR/Ad-Q Disturbance

A1 4.7301 1.2805 0.5162 0.6313 0.2981 d=02

Remarks

1.

2.

3.

In our simulation for the adaptive-Q controller, two passes are needed for ‘warming up’
the controller. Subsequently, the coefficients in QI and Qz, in the notation of (12),
‘converge’ to slowly varying values in the vicinity of TO= 0“ 0976, ~1 = – 0“ 0002,
72= –O” 1016, Do= –ll” 18, /31= –9.247 and ~z= –7.781 with a,=O.
The prefilters P12A40 used in our study are

-iP, = (A + BF)xp\ + Bu*,
‘1=(7) ‘.s+(O “

with input U* and output ~1; likewise for the prefilters driven by & and s.

Our simulations not reported here show significant improvements when scaling

adjustments are made to r and e. Also, other simulations not reported here show that
there is insignificant benefit to increasing the dimensions p = 3, m = 3 and n = O in Q,

although the cost of reducing p or m is significant.

5. CONCLUSIONS

A method to combine off-line (open-loop) optimal control approaches with robust feedback

control and on-line (closed-loop) adaptive control techniques is presented, with emphasis on
non-linear cases. Stability properties for the non-linear case are discussed. Simulation results
show that our proposed method can enhance robustness/performance properties in the
presence of unmodelled dynamics and deterministic or stochastic disturbances. The method

can be generalized to a learning-Q approach where the Q feedback operator is a function of
the optimal state trajectory x* or of x itself; this will be discussed in a companion paper. ~
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