
Enhancing Performance of Asynchronous Data
Traffic over the Bluetooth Wireless Ad-hoc Network

Abhishek Das, Abhishek Ghose, Ashu Razdan, Huzur Sarany & Rajeev Shorey
IBM India Research Laboratory,

Block 1, Indian Institute of Technology,
Hauz Khas, New Delhi 110016, India

Email: srajeev@in.ibm.com
Phone: 91-11-6861100; Fax: 91-11-6861555

Abstract—Emerging technologies such as Bluetooth are expected to be-
come a ubiquitous solution for providing short range, low power, low cost,
pico-cellular wireless connectivity. Bluetooth is a Master driven Time Divi-
sion Duplex (TDD) system that supports an asynchronous channel for data
traffic as well as synchronous channels for voice traffic. Data applications
running over Bluetooth such as http, ftp and real audio will need transport
layer protocols such as TCP and UDP to send packets over the wireless
links. In this paper we study several schemes designed to improve the per-
formance of asynchronous data traffic over a Bluetooth piconet that sup-
ports multiple active slaves. We propose and compare a number of SAR
policies and MAC scheduling algorithms with a view towards enhancing
the performance of transport layer sessions. We investigate the effect of
different FEC and ARQ schemes at the baseband level, using a two-state
Markov channel model for the Bluetooth RF link. We also study how the
presence of circuit-switched voice impacts the performance of data traffic.

Keywords—Medium Access Control (MAC), Scheduling, Time Division
Duplex (TDD), Segmentation and Reassembly (SAR), Forward Error Cor-
rection (FEC), Automatic Repeat Request (ARQ), TCP, UDP.

I. INTRODUCTION

Bluetooth technology [1], [2] allows for the replacement of
the numerous proprietary cables that connect one device to an-
other with a universal short-range radio link. Beyond untether-
ing devices by replacing cables, Bluetooth provides a universal
bridge to existing data networks, a peripheral interface, and a
mechanism to form small private ad-hoc groupings of connected
devices away from fixed network infrastructures.

Bluetooth has a number of distinctive features compared to
existing wireless LANs such as:

� Support for both data and voice traffic
� Frequency hopping to avoid interference
� A master driven Time Division Duplex (TDD) system at

the Medium Access Control (MAC) layer to support full
duplex transmission

� Segmentation and Reassembly (SAR) to handle large data
packets

� Support for link level Automatic Repeat Request (ARQ)
and Forward Error Correction (FEC) schemes

y Abhishek Das and Ashu Razdan are in the Computer Science and Engineer-
ing Department, Indian Institute of Technology at Kharagpur and Guwahati, re-
spectively. Abhishek Ghose is in the Electrical Engineering Department, Indian
Institute of Technology, Mumbai, India. Dr. Huzur Saran is a Professor in the
Department of Computer Science and Engineering, Indian Institute of Technol-
ogy, New Delhi, India. He is currently on a sabbatical at Stanford University,
CA, USA. Email: saran@cse.iitd.ernet.in; Dr. Rajeev Shorey is a Research Staff
Member in the IBM India Research Laboratory, New Delhi, India. This work
was done while the first three authors were summer interns in the IBM India
Research Laboratory, New Delhi from May to July’2000.

These key features of Bluetooth will significantly impact the
performance of data traffic over Bluetooth. Fragmentation of
large data packets by performing SAR, which allows them to be
transmitted in small baseband packets, may increase their end-
to-end delay. Master driven scheduling at the MAC level will
affect throughput and queueing delay. The success rate of data
transmissions will be affected by the presence of FEC and ARQ
mechanisms at the link level. The bandwidth available for data
traffic will be reduced in the presence of voice connections. The
effect of these issues needs to be better understood in order to
enhance the performance of asynchronous data traffic over Blue-
tooth.

Since TCP [3] is the most widely used transport protocol for
reliable data services over the Internet, our primary focus in this
paper is on the performance of TCP over Bluetooth. A key ob-
servation for wireless environments is that since TCP interprets
packet loss as a sign of congestion and cuts back its window, its
performance may deteriorate in the presence of random losses
that cannot be attributed to congestion [4]. Considerable atten-
tion is being given to the design of a better TCP over the wireless
link [5], [6]. Since Bluetooth is distinct from existing wireless
LANs, these studies are not directly applicable to Bluetooth. We
also study the performance of Constant Bit Rate (CBR) applica-
tions using UDP, a minimal non-guaranteed datagram service
without any flow control or congestion avoidance.

In this paper, we propose two SAR policies with the aim of
increasing link utilization and decreasing end-to-end delay of
data packets. When multiple data transfers share the wireless
link, as in a Bluetooth piconet, MAC scheduling algorithms are
needed to achieve fair sharing of bandwidth, high link utilization
and low queue occupancy. We demonstrate that Round-Robin
scheduling is unable to meet these requirements and propose
three new scheduling algorithms which meet these criteria ad-
equately. We also incorporate Channel State Dependency [7]
in these algorithms in order to improve the performance in the
presence of bursty wireless errors. In accordance with observa-
tions reported in earlier studies of packet loss behavior in wire-
less LANs [5], [6], [18], a two state Markov model has been
used to model the errors in the wireless channel. Bluetooth pro-
vides support for error correction at the link level through FEC
and ARQ schemes. We investigate the performance improve-
ment provided by FEC and ARQ schemes. We also compare the
performance of different versions of TCP, namely, Tahoe, Reno,
New Reno and Sack [3], [8] over Bluetooth.

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

Prior research closest to our work is that of Johansson et al
[9]. They address the performance of TCP/IP over a Bluetooth
wireless network but with very simplistic assumptions. They
assume only two nodes (master and slave) in a Bluetooth pi-
conet and study the behavior of TCP Vegas. Further, the authors
model bit errors with a constant loss probability. They do not
assume any FEC for data traffic arguing that doing so will yield
largest ideal throughput. They do not specify any ARQ schemes
at the baseband level to prevent packet loss. In [10], the au-
thors have analysed and compared the behaviour of three dif-
ferent scheduling algorithms for Bluetooth: strict round robin
polling, exhaustive polling and fair exhaustive polling. They
study average delay versus bitrate for the three scheduling al-
gorithms. The authors have demonstrated an increase in per-
formance (high throughput and low delays) when allowing data
packets to be sent in multi-slots (i.e., 3 or 5 slot baseband pack-
ets). The simulation study uses very simplistic assumptions: (i)
the packet loss probability is constant for all packets, (ii) the
master does not send any traffic to the slave but just forwards
traffic from one slave to another, (iii) the buffers are assumed
to be unbounded. Kalia et al [11] have proposed some simple
SAR policies and MAC scheduling algorithms for Bluetooth.
They propose two scheduling policies that utilize information
about the size of the Head-of-the-Line packet at the master and
slave queues to schedule the TDD slots effectively. These poli-
cies achieve high throughput and greater fairness compared to
the Round-Robin based scheduling policies. The work in [11]
is restricted only to the link layer and hence is not optimized for
transport layer sessions.

The remainder of this paper is organized as follows. Section
II gives a brief introduction to the Bluetooth technology. In Sec-
tion III, we propose SAR and MAC scheduling policies and also
discuss other important design issues in Bluetooth which affect
the performance of asynchronous data traffic. The simulation
model is presented in Section IV. In Section V, we present our
simulation results and analyses. Finally, we conclude by pre-
senting a summary of our results and some suggestions for fu-
ture work in Section VI.

II. BLUETOOTH TECHNOLOGY

Bluetooth is a specification for the wireless communication
of voice and data using a short-range radio. It is defined by a
number of protocols residing in the physical and datalink layers
in the OSI model, as shown in Figure 1. Bluetooth uses an ad-
hoc, piconet structure with a single master and upto seven slaves.
For a detailed description, see [1] and [2].

A. Bluetooth Baseband

The Baseband describes the specifications of the digital signal
processing part of the hardware: the Bluetooth link controller,
which carries out the baseband protocols and other low level
link routines. Two link types are supported: (i) Synchronous
Connection Oriented (SCO) (used primarily for voice) and (ii)
Asynchronous Connectionless (ACL) (used primarily for packet
data). Both link types use a Time Division Duplex (TDD)
scheme for resolving contention over the wireless link, where
each slot is 625 �s long. The SCO link is a point-to-point link
between the master and a single slave, established by reserva-

Host Controller Interface

To Slave 6

 RADIO CHANNEL

Baseband

Master

LMP

Slave 1

SAR

UDP

IP

PPP

RFCOMM

TCP UDP

IP

PPP

RFCOMM

TCP

L2CAP

From Slave 1 From Slave 6 From Slave 7

To Slave 1

To Slave 7

SAR

Fig. 1. The Bluetooth Protocol Stack

tion of duplex slots at regular intervals. The ACL link is a point-
to-multipoint link between the master and all the slaves in the
piconet. A baseband packet may occupy one, three or five slots.
The desired baseband packet length can be decided based on
criterion such as the quantity of data to be transmitted or the
number of contiguous slots available in the presence of voice
traffic.

A fast unnumbered ARQ scheme is used to inform the source
of the success or failure of transfer of payload. The base-
band packets are retransmitted till a positive acknowledgement
(ACK) is returned or until timeout is exceeded. An optional 2=3
rate Forward Error Correction (FEC) can be used on the data
payload to reduce the number of retransmissions. The packet
header is always protected by a 1=3 rate FEC since it contains
valuable link information and should be able to sustain more
errors.

B. Link Manager Protocol (LMP) and Logical Link Control and
Adaptation Protocol (L2CAP)

LMP and L2CAP are layered above the Baseband Protocol
and reside in the datalink layer. LMP assumes the responsibility
of managing connection states, enforcing fairness among slaves,
power management and other management tasks. L2CAP sup-
ports higher level protocol multiplexing since the Baseband does
not support any type field identifying the higher layer proto-
col. L2CAP also supports packet segmentation and reassembly
(SAR), and conveys quality of service information. It permits
higher level protocols and applications to transmit and receive
L2CAP data packets up to 64 kilobytes in length.

C. IP over Bluetooth

TCP/IP/PPP is used for all Internet Bridge usage scenarios
in Bluetooth [1]. UDP/IP/PPP is also available as transport for
WAP (Wireless Application Protocol). In the Bluetooth technol-
ogy, PPP (Point-to-Point Protocol) [13] is designed to run over
RFCOMM [1] to accomplish point-to-point connections. RF-
COMM provides serial cable emulation using a subset of the
ETSI GSM 07.10 standard. However, the specification is open
and it is also possible to configure IP directly over L2CAP. Thus

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

two scenarios can be envisaged:
1. TCP/IP running over PPP over RFCOMM, which is lay-

ered over L2CAP. This enables smooth operation and inter-
operability with legacy applications. In this case, the fram-
ing information available through HDLC (Higher Level
Data Link Control) in PPP should be passed to the L2CAP
layer to make it aware of PPP packet boundaries, thus en-
abling efficient SAR [14].

2. TCP/IP layered directly over L2CAP.
The second approach has lesser overheads [14] and is used in our
simulation model. However, our results also apply to the former
case since the overheads due to RFCOMM and PPP headers (14
bytes) are negligible compared to the size of the TCP packet and
the delay involved is a constant factor.

III. DESIGN ISSUES IN BLUETOOTH

In this section, we examine some of the design issues which
have a significant impact on the performance of asynchronous
data traffic over Bluetooth.

A. Segmentation and Reassembly schemes

Segmentation and reassembly (SAR) mechanisms are used to
improve efficiency by supporting a maximum transmission unit
(MTU) size larger than the largest baseband packet. This re-
duces overheads by spreading the packets used by higher layer
protocols over several baseband packets, each covering 1, 3 or 5
slots. It is important to note that the payload size (without FEC)
for a 5 slot packet (339 bytes in 5 slots or 67.8 bytes/slot) is sig-
nificantly larger than that of 3 slot packets (183 bytes in 3 slots
or 61 bytes/slot) and 1 slot packets (27 bytes/slot). We define
slot limit as the maximum number of slots across which a base-
band packet can be sent. The slot limit may be less than 5 due
to presence of SCO connections or due to a very high bit error
rate in the wireless channel. This parameter can be conveyed by
the LMP to the L2CAP through a signalling packet. We now
propose two SAR schemes.

A.1 SAR - Best Fit (BF)

This algorithm aims to reduce the wasted bandwidth in the
baseband packets and uses a best-fit method to segment the
higher layer packets. The algorithm can be summarized in the
following steps:

1. If slot limit = 5, divide the L2CAP packet into an inte-
gral number num5 of 5 slot baseband packets.

2. If slot limit � 3, divide the remaining bytes into an inte-
gral number num3 of 3 slot baseband packets.

3. Divide the remaining bytes into an integral number num1

of 1 slot baseband packets.

For example, consider an L2CAP packet of size 556 bytes and
slot limit = 5. The biggest data segment possible in this case
is of 339 bytes, i.e. the best fit is a 5-slot packet. After this we
are left with 217 bytes. Now the best fit is a 3 slot packet. After
this iteration, we have 34 bytes left to be fragmented. The best
fit here is a 1-slot packet and we will be left with 7 bytes, which
is again sent in a 1 slot packet. Thus, we get one 5 slot packet,
one 3-slot packet and two 1-slot packets after fragmentation.

TABLE I

FRAGMENTATION OF 556 BYTE L2CAP PACKET

SAR-BF SAR-OSU

num1 num3 num5 num1 num3 num5

Initial 0 0 0 0 0 0
Step 1 0 0 1 0 0 1
Step 2 0 1 1 0 0 2
Step 3 2 1 1 - - -
Step 4 - - - - - -
Step 5 - - - - - -

A.2 SAR - Optimum Slot Utilization (OSU)

This algorithm aims to decrease the transmission delay of
L2CAP baseband packets by reducing the queueing delay of
baseband packets. The lesser the number of baseband pack-
ets per L2CAP packet, the lesser is the end-to-end delay since
only a single baseband packet is sent each time a slave is polled.
Hence this algorithm maximizes the data sent each time a slave
is polled by preferentially sending multi-slot packets. The algo-
rithm can be summarized in the following steps:

1. If slot limit = 5, divide the L2CAP packet into an inte-
gral number num5 of 5 slot baseband packets.

2. If the size remaining to be fragmented is larger than that
of a 3 slot packet, send it as a 5 slot packet.

3. If slot limit � 3, divide the remaining bytes into an inte-
gral number num3 of 3 slot baseband packets.

4. If the size remaining to be fragmented is larger than that
of a 1 slot packet, send it as a 3 slot packet.

5. Divide the remaining bytes into an integral number num1

of 1 slot baseband packets.
Revisiting the previous example, the biggest data segment

possible in this case is again of 339 bytes. After this we are left
with 217 bytes. Since this is larger than a 3-slot packet, these
bytes are sent as a 5-slot packet. Thus, we get two 5-slot pack-
ets after fragmentation. The operation of the two algorithms is
summarized in Table I.

In Section V-A, through simulations, we show that SAR-OSU
outperforms SAR-BF in terms of throughput, link utilization and
end-to-end delay.

B. Buffer-Size Optimization

As long as memory resources are abundant, one can keep the
buffer sizes undetermined so as to provide the scheduling tool
with the greatest flexibility and to prevent packet drops due to
overflow. However, when memory resources are scarce, as is the
case in small devices such as Personal Digital Assistants (PDAs)
on which Bluetooth is likely to run, buffer sizes are preferably
kept small. The primary data buffers in Bluetooth are at the
L2CAP and at the Baseband. We keep the baseband buffer large
enough to hold the baseband packets formed by fragmenting an
L2CAP packet. We carry out simulations in Section V-B to find
an appropriate size for the L2CAP buffer.

C. Scheduling Algorithms in Bluetooth

Multiple transport layer sessions share the wireless link in a
piconet when multiple slaves are active or when a slave has mul-
tiple data connections. Master-driven Round-Robin schedul-

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

ing achieves fair sharing of bandwidth and high link utilization
when each such connection has equal data flow. In a typical
situation, however, each slave in the piconet has varying data
input rates. Consequently, numerous baseband slots are wasted
by polling sources with low input rate, thereby decreasing link
utilization, increasing queueing delay and leading to unfair shar-
ing of bandwidth. To address these issues, we propose three
scheduling algorithms, which incorporate the following meth-
ods:

1S

S 2

S 3

S 4

S 5

S 6

S 7

S 2

S 3

S 6

S 7

S 5

S 4

1S

Transmit

Receive

Bluetooth MAC

Per Destination
Queues

Master

Scheduler

Link State
Monitor

Slaves

Fig. 2. MAC Scheduling in Bluetooth

Queue Priority based on Flow Bit: Per-slave baseband queues
at the master and similar queues at the slave are maintained (as
shown in Figure 2). We assign priority to these queues based on
the pending data in the corresponding L2CAP buffers, and use
the flow bit present in the payload header field of the baseband
packet for this purpose. This flow bit is used to convey flow
information at the L2CAP level as intended in the Bluetooth
specification [1]. It is set when the number of packets in the
L2CAP buffer for a particular slave is larger than a threshold
buf thresh. The LMP at the master monitors the flow bit of the
baseband packets sent/received and conveys the traffic status to
the Baseband. We define a variable flow to quantify the traffic
rate on the wireless channel, which is set when the flow bits for
packets traveling in either direction is turned on.
Queue Stickiness: In the case of Round-Robin scheduling, one
packet is served at a time from each baseband queue. However
the slaves with high data inflow may have their queues full while
baseband slots are being wasted for slaves with low queue back-
log. To reduce mean queue occupancy, we propose to transmit
a number of baseband packets successively (quantified by a pa-
rameter num sticky) for each queue having the flow parameter
set.
Based on these ideas, we propose the following scheduling al-
gorithms:

C.1 Adaptive Flow-based Polling (AFP)

Polling interval for a particular slave is defined as the maxi-
mum time limit, before which it must be served by the master
and is decided based on QoS requirements. We define P0 to
be the polling interval negotiated during master-slave connec-
tion setup. We assume a homogeneous situation initially where
all the slaves have the same value of P0. AFP uses an adaptive
polling interval P , whose value is changed based on the traffic

rate in the wireless channel as indicated by the variable flow.
1. If flow = 1 and the Head-of-Line (HOL) packet is a data

packet, transmit the data packet and set the polling interval
P to P0. In this case, there is a high flow rate for this slave,
and hence its polling interval is reduced so that it can be
served more frequently.

2. If flow = 0 and the HOL packet is a data packet, transmit
the data packet and keep the polling interval unchanged.

3. If a poll packet is transmitted and a null packet is received,
double the current polling interval P unless a threshold
value Pthresh is reached. The polling interval is increased
so as to reduce slots wasted when neither the master nor the
slave have any data to transmit.

C.2 Sticky

Each slave is serviced in a cyclic fashion contingent on the
state of flow:

1. If flow = 1, a maximum of num sticky packets are trans-
mitted for that queue. Here num sticky is a variable param-
eter greater than one, whose optimal value is found through
simulations in Section V-C.

2. If flow = 0, one packet is transmitted for that queue, as
in Round-Robin scheduling.

C.3 Sticky Adaptive Flow-based Polling (StickyAFP)

This is similar to AFP except that when flow = 1 and the
HOL packet is a data packet, a maximum of num sticky packets
are transmitted for that queue.

The hardware implementation of these algorithms is quite
simple, the only additional hardware overheads being counters
(for tracking number of packets transmitted in the Sticky algo-
rithm), combinatorial logic gates (for flow) and registers (for
keeping track of polling intervals). For a software implemen-
tation, a few additional instructions are needed.

The interaction between TCP’s flow control and the link layer
dispatching mechanism is quite complex. Since the behavior of
TCP sources is difficult to capture by any closed form analytical
expression, it is hard to analyze this system. We compare the
performance of these algorithms through simulations in Section
V-C.

D. Error Handling

For the ARQ scheme, we quantify timeout (described in Sec-
tion II-A) by a maximum number of retransmissions tx thresh.
The purpose of the FEC scheme on the data payload is to reduce
the number of retransmissions. However, in a reasonably error-
free environment, FEC results in unnecessary overhead that re-
duces the throughput. Using a two state Markov channel model
(described in Section IV-A) in our simulations, we study the ef-
fect of using FEC on the baseband payload and of varying the
parameter tx thresh in the ARQ scheme on the data throughput
(Section V-D).

Since wireless channels are characterized by bursty errors, re-
peated transmission attempts of the head of line (HOL) packets
may fail, blocking the transmission of packets to other receivers.
Since the wireless links to various destinations are statistically

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

independent [7], [16], packets for other slaves could be success-
fully transmitted during this interval. We propose Channel State
Dependent Packet (CSDP) scheduling [7] versions of our algo-
rithms to improve the data throughput over lossy wireless links.
Upon encountering a packet loss (indicated by receipt of a nega-
tive ACK), CSDP policies defer the retransmissions to that slave
till the next polling instant. If the deferred period length is more
than TCP’s timeout period, the source will timeout and retrans-
mit a copy of the delayed packet, thereby unnecessarily increas-
ing the load on the system. In practice, however TCP’s timeout
period is of the order of seconds, while the duration of burst
periods is of the order of milliseconds. This time difference is
sufficient for link layer mechanisms to attempt loss recovery by
retransmission over the radio link. We compare the performance
of CSDP-AFP, CSDP-Sticky and CSDP-StickyAFP through sim-
ulations in Section V-D.

E. Number of SCO connections

Upto three simultaneous SCO links for supporting real-time
traffic, such as voice, can be supported by the master. The mas-
ter will send SCO packets at regular intervals, the so-called SCO
intervals TSCO (counted in slots) in the reserved master-to-slave
slots. The SCO slave is always allowed to respond with an SCO
packet in the following slave-to-master slot.

Since SCO links reserve slots, no ACL packets can be sup-
ported in the presence of three SCO links. In the presence of
two SCO links, only 1 slot ACL packets can be sent. In the
presence of one SCO link, 1 and 3 slot ACL packets can be sup-
ported. The performance of data (ACL) traffic in the presence
of varying number of SCO links is described in Section V-E.

F. TCP variants

Current implementations of TCP, namely TCP Tahoe and
TCP Reno [8], use an acknowledgement number field that con-
tains a cumulative acknowledgement, indicating that the TCP
receiver has received all of the data upto the indicated byte. A
selective acknowledgement option allows receivers to addition-
ally report non-sequential data they have received (implemented
in Sack TCP [8]). New-Reno [8] avoids many of the retransmit
timeouts of Reno without requiring SACK. Through simulations
in Section V-F, we compare the performance of TCP Tahoe and
Reno with two modified versions of TCP Reno: TCP New Reno
and TCP Sack.

IV. SIMULATION MODEL

We have developed an extensive simulation model for Blue-
tooth, using the Network Simulator (ns) [15] and the MATLAB
package, containing the core Bluetooth protocol layers (shown
in Figure 1) as well as TCP/IP. The network is modeled as a
Bluetooth piconet with one master and seven slaves.

The traffic sources shown in Figure 3 generate TCP/UDP
traffic which is transmitted to the transport layer. After the
TCP/UDP header is added, the packets are sent to the network
layer. The L2CAP layer receives data segments from the upper
layer, adds an L2CAP header and enqueues them in the L2CAP
buffer. Large L2CAP packets are then segmented into multi-
ple smaller baseband packets by a SAR module at the L2CAP

and are enqueued in a baseband buffer. Using a MAC schedul-
ing algorithm, the packets are then sent at appropriate intervals
through the physical RF link. This is modeled in Section IV-A.

When the slave’s baseband layer receives a packet, it is en-
queued in the baseband buffer and then sent to the SAR mod-
ule in L2CAP for reassembly. The reassembled packets are
transmitted upwards through the protocol stack to the transport
layer. TCP then sends an ACK for correctly received packets
(UDP does not send any ACKs). In our simulations, we use a
TCP/UDP Packet size of 512 bytes and a TCP ACK size of 40
bytes.

The actual traffic sources may be located at any point in the
Internet. However, as the bandwidth associated with wireline
networks is much higher than is available in the Bluetooth wire-
less link, the latter becomes a bottleneck. Thus, for the purpose
of our simulation, we may equivalently place our sources at the
master and account for the wired part of the network by a con-
stant delay. In the simulated network (see Figure 3), slaves 1 and
2 have persistent TCP (ftp) connections which are active from 0
to 60 and 10 to 20 seconds respectively. Slaves 3 to 7 receive
CBR traffic running over UDP with rates ranging from 5520 bps
to 17664 bps, as shown in Figure 3. Note that we have tried to
capture a variety of traffic sources in the traffic model, which
is evident from the choice of flows. While we study this traffic
model, we look into the effect of all sources rather than a single
one and hence we use the performance metrics of link utiliza-
tion, average throughput and average end-to-end delay which
reflect the overall data performance rather than the performance
of a single slave in a piconet.

We have used TCP-Reno [8] in our simulations since it is one
of the most common reference implementations for TCP.

start = 20 s , stop = 50 s
UDP traffic , 35328 bps

TCP traffic (ftp)
start = 10 s , start = 20 s

start = 0 s , stop = 60 s

TCP traffic (ftp)

start = 5 s , stop = 25 s

UDP traffic , 17664 bps

start = 0 s , stop = 60 s UDP traffic , 17664 bps

start = 10 s, stop = 60 s

UDP traffic , 5520 bps

start = 0 s , stop = 40 s
UDP traffic , 5520 bps

Slave 1

Slave 2

Slave 3

Slave 4

Slave 5

Slave 6

Slave 7

Master

Fig. 3. Traffic Sources used in Simulation

Performance Metrics

We study three performance metrics: throughput, end-to-end
delay and link utilization. Throughput is an indication of how
much data the user can receive per second. In our simulation
results, the throughput is averaged every 0.5 seconds. We define
End-to-end delay of packets to be the delay incurred from the
time it is enqueued in the transport layer buffer to when it is re-
ceived. Note that this includes the queueing delay at the buffers.
Link Utilization quantifies how much of the available bandwidth
is actually being used by baseband packets.

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

A. Correlated Fading Channel Model

Since packet-error rates critically depend on the distance be-
tween the transmitter and receiver [17], the wireless channel
varies with each user, depending on their location. For high
speed radio transmissions at a high carrier frequency, as in Blue-
tooth (1 Mb/s at 2.4 GHz), the fade durations are comparable to
transmission times of TCP packets [5] and hence, packet losses
cannot be modeled as being independent of each other. How-
ever, the frequency-hopping scheme, incorporated in the Blue-
tooth radio, leads to considerably smaller bursts of errors com-
pared to other wireless links. In accordance with common prac-
tice, we model the Bluetooth RF link as a discrete two-state
Markov Chain [5], [6], [18] as illustrated in Figure 4. Since
wireless channels have been shown to be distinct and time-
varying for each user [16], we associate independent Markov
channel models with each master-slave connection. At any point

BadGood

µ

µ

G

B
BER = P BER = P

G B

Fig. 4. Transition Structure of the Markov Loss Model

of time, we model the channel as being in one of the two possible
states, G (Good) with BER PG or B (Bad) with BER PB where
PB � PG. These BER values are dependent on the characteris-
tics of the propagation environment and the transmission modu-
lation scheme. The mean residency time in states with high Bit
Error Rate (BER) are longer than a single packet transmission
time, resulting in correlated packet losses. We assume that the
time spent in each state is exponentially distributed, with dif-
ferent mean values, that is, different rates of state transitions �G
and �B . According to the properties of exponentially distributed
random variables, the average time between state transitions can
be expressed by �G = 1=�G and �B = 1=�B .

To obtain average parameter values of the indoor radio en-
vironment, time-varying channel impulse responses were simu-
lated using a wide band channel model. As GFSK is used in the
Bluetooth Radio, GFSK BER vs Eb=N0 results are taken from
[20]. We take a log-normal distribution for the received signal
amplitudes as it provides the closest fit for indoor wireless ra-
dio environments [21]. The two states of the Markov model are
constructed by partitioning the envelope of the received signal
into two intervals, and thus determine the mean residency times
and BERs of the two states. The parameter values obtained are
PG = 6:879� 10

�5, PB = 1:263� 10
�3, �G = 437:5 ms and

�B = 55:8 ms.

Note that the objective in this paper is to illustrate the be-
havior of a transport session when packets are subject to bursty
losses. An approximate characterization of the wireless channel
is sufficient to illustrate these effects.

0 10 20 30 40 50 60

Time (seconds)

0

20

40

60

80

100

120

140

160

180

200

Th
ro

ug
hp

ut
(k

b/s
)

SAR-BF
SAR-OSU

Fig. 5. TCP throughput vs time [slot limit = 5]

0 500 1000 1500 2000 2500

Packet Number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

En
d t

o e
nd

 de
lay

 (s
ec

on
ds

)

SAR-BF
SAR-OSU

Fig. 6. End-to-end delay vs Packet Number [slot limit = 5]

0 10 20 30 40 50 60

Time (seconds)

0

100

200

300

400

500

600

Li
nk

 ut
ili

za
tio

n (
kb

/s)

SAR-BF
SAR-OSU

Fig. 7. Link utilization vs time [slot limit = 5]

V. SIMULATION RESULTS AND PERFORMANCE

EVALUATION

A. Segmentation and Reassembly (SAR)

To compare the performance of SAR-BF and SAR-OSU, we
use an L2CAP buffer of size equal to 50 TCP/UDP packets.
The large buffer size allows us to neglect the effect of packet
drops and focus on the interaction between the SAR policy and
data performance. We use Round-Robin scheduling at the MAC
level and assume an error-free channel so as to isolate the ef-
fect of the SAR policies on data performance. In Figures 5
and 6, the throughput and end-to-end delay of a persistent TCP
source (to slave 1) is compared for SAR-BF and SAR-OSU

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

0 2 4 6 8 10 12 14 16

Buffer Size

0

20

40

60

80

100

120

140

160

180

200

Av
era

ge
 T

CP
 th

ro
ug

hp
ut

(k
b/s

)

Short TCP , slot_limit = 1
Long TCP , slot_limit = 1
Short TCP , slot_limit = 3
Long TCP , slot_limit = 3
Short TCP , slot_limit = 5
Long TCP , slot_limit = 5

Fig. 8. Average TCP throughput vs L2CAP Buffer Size

using slot limit = 5. Figures 5 and 6 clearly illustrate that
higher throughput and lower end-to-end delays can be obtained
by using SAR-OSU over SAR-BF. The overall link utilization
of SAR-OSU is also shown to be higher than that of SAR-BF
(Figure 7).

Two interesting trends are observed in Figures 5, 6 and 7.
Firstly, the frequent fluctuations seen in these figures are due to
the bursty sources (simulated by intermittent CBR traffic) in our
model. Secondly, since two TCP connections (to slaves 1 and 2)
are active in the period between 10 to 20 seconds, fair sharing
of bandwidth leads to a drop in the individual throughput of the
TCP connection to slave 1, while the overall link utilization is
seen to increase.

Table I in Section III-A illustrates that SAR-OSU uses 12
slots (including slots for ACKs) and wastes 122 bytes in the last
5 slot packet whereas SAR-BF uses 14 slots and wastes 20 bytes.
Since SAR-OSU uses a lesser number of slots and consequently
uses lesser time to transmit the same amount of data, it results
in a higher throughput and lower end-to-end delays, and hence
higher link utilization. If slot limit = 3 or 1, both SAR-BF
and SAR-OSU will fragment the 556 byte L2CAP packet into
the same number of baseband packets, and hence there will not
be any appreciable difference in their performance. Due to the
superior performance of SAR-OSU, it is used for the remaining
simulations in this paper.

B. L2CAP Buffer size

In this section, we use Round-Robin scheduling and assume
an error-free channel to isolate the effect of buffer size on TCP
performance. In Figure 8, we plot the average TCP through-
put as a function of buffer size for a persistent TCP connection
(to Slave 1) as well as for a short TCP transfer (to Slave 2) for
slot limit equal to 1, 3 and 5. The buffer size is expressed in
multiples of transport layer packets.

We observe that the average TCP throughput becomes almost
constant for a buffer size greater than four for the persistent TCP
connection. Though the throughput varies for L2CAP buffer
size larger than four for the short transfer, the variance is small.
In Figure 9, the end-to-end delay of TCP is plotted as a func-
tion of buffer size. This graph shows an increasing trend which
is justified by the fact that a larger buffer size leads to an in-
creased queueing delay, which in turn increases the average end-

0 2 4 6 8 10 12 14 16

Buffer Size

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Av
era

ge
 en

d t
o e

nd
 de

lay
 (s

ec
on

ds
) slot_limit = 1

slot_limit = 3
slot_limit = 5

Fig. 9. Average end-to-end delay vs L2CAP Buffer Size

0 10 20 30 40 50 60

Time (seconds)

0

100

200

300

400

500

TC
P

th
ro

ug
hp

ut
 (k

b/
s)

RR
Sticky (2)
Sticky (4)
Sticky (16)
AFP

Fig. 10. TCP throughput vs time for AFP and Sticky

to-end delay. Since Bluetooth will typically be implemented in
small devices with limited memory resources, we conclude that
a buffer size of four to six will optimally satisfy the memory
requirements of a generic Bluetooth device. For the rest of our
simulations, we use an L2CAP buffer size of five.

This buffer size can be justified by calculating the bandwidth-
delay product for our model. From Figure 8, we get an aver-
age throughput of 39.8 packets/second and from Figure 9, we
get an average delay of 0.11 seconds for a buffer size of 5 and
slot limit = 5. This gives a bandwidth-delay product equiv-
alent to 4.4 packets, which is quite close to 5. This reasoning,
however, is approximate since the entire 1 Mb/s bandwidth of
the radio link is not available to a single connection.

From Figure 8, it is also observed that the throughput perfor-
mance with slot limit = 5 is better than that for slot limit = 3

which is in turn better than that for slot limit = 1. This is ex-
pected since 5 slot packets have higher payload content than 3
slot and 1 slot packets, as described in Section III-C.

C. Scheduling Algorithms

In this section, we assume that the channel is error free and
simulate the algorithms described in Section III-C.

In Figure 10, the TCP throughput for different values of the
parameter num sticky in the Sticky algorithm is compared
with that of the Adaptive Flow-based Polling (AFP) and Round-

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

0 10 20 30 40 50 60

Time (seconds)

0

100

200

300

400

500

TC
P

th
ro

ug
hp

ut
 (k

b/
s)

AFP
StickyAFP (4)
StickyAFP (16)

Fig. 11. TCP throughput vs time for AFP and StickyAFP

0 10 20 30 40 50 60

Time (seconds)

0

100

200

300

400

500

600

Li
nk

 ut
ili

za
tio

n (
kb

/s)

RR
Sticky (16)
AFP
StickyAFP (16)

Fig. 12. Link utilization for scheduling algorithms

Robin (RR) algorithms. From this graph, we clearly observe that
the AFP and Sticky algorithms give significantly improved per-
formance compared to RR. The throughput of Sticky increases
with increase in the value of num sticky and is approximately
the same as AFP for a num sticky value of 16.

In Figure 11, the TCP throughput of AFP is compared to that
of StickyAFP for num sticky values 4 and 16. From this graph,
we observe that the throughput performance of StickyAFP for a
num sticky value of 16 is better than that of AFP and Stick-
yAFP for a num sticky value of 4, the latter two having almost
the same throughput. However, the performance improvement
obtained for a num sticky value of 16 is not very significant.

In Figure 12, the link utilization under different scheduling al-
gorithms is compared. From the graph, we see that high link uti-
lization is obtained for StickyAFP (num sticky = 16), Sticky
(num sticky = 16) and AFP, as compared to Round-Robin.
In Figure 13, the average end-to-end delay is plotted for each
of the slaves under different scheduling algorithms. The Sticky
algorithm is found to have the lowest end-to-end delay while
StickyAFP has the highest. By increasing the polling interval
for those queues that have less data, AFP decreases the num-
ber of poll packets which otherwise cause underutilization of
available bandwidth, and hence increases link utilization. Sticky
reduces queue occupancy by transmitting multiple packets con-
secutively from queues with a high backlog, hence preventing

1 2 3 4 5 6 7

Slave Number

0

0.2

0.4

0.6

0.8

Av
era

ge
 E

nd
-to

-en
d d

ela
y (

se
co

nd
s)

RR
Sticky (16)
AFP
StickyAFP (16)

Fig. 13. End-to-end delay for scheduling algorithms

0 1 2 3 4 5 6 7 8 9 10

tx_thresh

0

100

200

300

400

500

Li
nk

 ut
ili

za
tio

n (
kb

/s)

AFP
CSDP-AFP
AFP (error-free channel)
CSDP-AFP (with FEC)

Fig. 14. Link utilization vs tx thresh for versions of AFP

queue overflow and reducing end-to-end delay. StickyAFP, on
the other hand, causes a marked increase in the end-to-end de-
lay of intermittent CBR traffic because flow is set infrequently
for such bursty sources. Additionally, each cycle has a larger
duration due to other slaves being served num sticky times.

Although AFP, StickyAFP (num sticky = 16) and Sticky
(num sticky = 16) give the best results in terms of link utiliza-
tion as well as throughput (to Slave 1), we observe that Stick-
yAFP leads to significantly higher end-to-end delay. Thus we
infer that AFP and Sticky (with a high value of num sticky)
result in the best overall performance.

D. Effect of Error Correction Schemes

Figures 14 and 15 show the link utilization and average end-
to-end delay for different values of tx thresh (maximum num-
ber of retransmissions of baseband packets) under AFP and
CSDP-AFP in the presence and in the absence of a 2/3 rate
FEC. The corresponding values for AFP in an error free chan-
nel are also plotted for comparison. These figures clearly indi-
cate the performance degradation in the presence of errors, as
well as the additional reduction in link utilization and increase
in end-to-end delay due to the use of FEC. A remarkable ob-
servation is that when FEC is added, the performance is inde-
pendent of tx thresh, and hence of the ARQ scheme. We also
observe that ARQ leads to efficient error recovery and for values
of tx thresh > 4, the performance does not vary significantly.
This motivates us to choose the optimum value of tx thresh to
be 5.

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

0 1 2 3 4 5 6 7 8 9 10

tx_thresh

0.03

0.04

0.05

0.06

0.07

Av
era

ge
 E

nd
-to

-en
d d

ela
y (

se
co

nd
s)

AFP
CSDP-AFP
AFP (error-free channel)
CSDP-AFP (with FEC)

Fig. 15. End-to-end delay vs tx thresh for versions of AFP

0 2 4 6 8 10

tx_thresh

0

100

200

300

400

500

Li
nk

 ut
ili

za
tio

n (
kb

/s)

AFP
CSDP-AFP
CSDP-Sticky (16)
CSDP-StickyAFP (16)

Fig. 16. Link utilization vs tx thresh for CSDP algorithms

Figure 16 clearly illustrates that the CSDP versions of the
proposed scheduling algorithms do not give a significant perfor-
mance improvement and their relative performance is the same
as that in the error-free channel condition. Since the burst er-
ror periods in the wireless channel are short enough to allow the
packets to be successfully retransmitted before tx thresh re-
transmissions, CSDP versions do not improve the performance
in the presence of a link level ARQ scheme.

E. Varying voice connections

In Figures 17, the throughput for the persistent TCP transfer
(to slave 1) is shown using AFP and with varying number of
SCO connections (NSCO). The average end-to-end delays for
each of the slaves under the same conditions is shown in Fig-
ure 18. From these graphs we see that the throughput decreases
and end-to-end delay increases as the number of SCO connec-
tions increase. As is expected, the lowest throughput and highest
end-to-end delay is obtained when TSCO = 6, with 2 SCO con-
nections. For a TSCO value of 6 and one SCO connection, two
different values of slot limit (1 and 3) are possible. The graphs
show that a higher throughput and lower end-to-end delay is ob-
tained for slot limit = 3 than for slot limit = 1. Further, for
one SCO connection, a lower throughput and higher end-to-end
delay is obtained for TSCO = 6 than for TSCO = 4 . This is ex-
pected since for a larger TSCO, more slots are available for ACL
packets. Further, as shown in the graphs, the highest throughput
and lowest end-to-end delay is obtained for AFP with no voice
connections.

0 10 20 30 40 50 60

Time (seconds)

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (k

b/
s)

Tsco = 4 , Nsco=1 , slot_limit=1
Tsco = 6 , Nsco=2 , slot_limit=1
Tsco = 6 , Nsco=1 , slot_limit=1
Tsco = 6 , Nsco=1 , slot_limit=3
Nsco = 0 , slot_limit=5

Fig. 17. Throughput degradation in the presence of voice

1 2 3 4 5 6 7

Slave number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

En
d t

o e
nd

 de
lay

 (s
ec

on
ds

)

Tsco = 4 , Nsco = 1 , slot_limit=1
Tsco = 6 , Nsco = 2 , slot_limit=1
Tsco = 6 , Nsco = 1 , slot_limit=1
Tsco = 6 , Nsco = 1 , slot_limit=3
Nsco=0 , slot_limit= 5

Fig. 18. End-to-end delay in the presence of voice

Tahoe Reno New Reno Sack
320

325

330

335

340

345

350

355

360

365

370

375

380

TC
P t

hr
ou

gh
pu

t in
 kb

/s

Fig. 19. Performance of TCP Versions

F. TCP variants

The performance of the different TCP versions in the pres-
ence of errors, for the TCP connection to slave 1, is shown in
Figure 19. NewReno performs marginally better than the other
versions. However, the difference in throughput is insignificant
which clearly illustrates that the efficient link layer ARQ scheme
of Bluetooth eliminates the need for modifications at the trans-
port layer for error recovery.

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

VI. CONCLUSION AND FUTURE WORK

We have presented methods to enhance the performance of
asynchronous data traffic over a Bluetooth piconet with a master
and seven active slaves. We have used both TCP and UDP traf-
fic sources in our study. To begin with, we proposed two new
SAR mechanisms: SAR-BF and SAR-OSU, that increase the
link utilization and throughput, as well as reduce the end-to-end
packet transmission delays. SAR-OSU outperforms SAR-BF
in all respects, i.e., throughput, link utilization and packet trans-
mission delays. Further, we demonstrated that an L2CAP buffer,
capable of holding five transport layer packets is well suited for
Bluetooth devices (which typically have low memory resources)
and also reduces the queueing delay. Assuming a transport layer
packet of size 512 bytes, we concluded that even real time UDP
applications running at 32 kb/s will not experience any packet
drops.

We observed that a simple MAC scheduling algorithm such
as Round-Robin is not suitable for Bluetooth as it is unable to
minimize delay for interactive sessions. Further, it does not dis-
tribute bandwidth fairly amongst all active sessions. With these
issues in mind, we proposed and compared three new scheduling
algorithms: AFP, Sticky and StickyAFP, which have a simple
implementation. Our results highlight the significant increase
in performance obtained by their use. AFP and Sticky (with
num sticky set to 16) have been shown to have the best perfor-
mance.

Using an appropriate two state Markov model to character-
ize the indoor wireless channel, we studied the performance of
the Bluetooth system with link level ARQ and FEC schemes of
Bluetooth. We emphasized the fact that the use of link level
ARQ is adequate for efficient error recovery, with FEC only
adding to the overheads. An optimum value for the maximum
number of retransmissions, tx thresh, in the ARQ scheme was
found to be five. We demonstrated that the channel state depen-
dent (CSDP) versions of the proposed scheduling algorithms do
not lead to significant gains in performance. Further, we showed
that the presence of voice connections degrades the performance
of data traffic. We observed that the performance gains across
TCP variants are marginal, from which we concluded that effi-
cient link-layer error recovery mechanisms in Bluetooth obviate
the need for transport layer enhancements.

It is important to point out that the error model can be ex-
tended, at the expense of an increased computational complex-
ity, to a transmission channel modeled as a finite state Markov
chain with more than two states. Further study is required
to incorporate low power modes (sniff, hold, park) into MAC
scheduling and to explore the effect of varying number of slaves
in a piconet. Since performance is expected to vary significantly
with varying channel status, a clever design of adaptive FEC and
ARQ schemes may be very effective in Bluetooth. An important
area of future research is to study the performance of TCP traffic
over a Bluetooth scatternet with multiple overlapping piconets.
Many earlier papers have focussed on TCP performance over
mobile ad-hoc networks (see [12] and the references therein), it
however remains to be seen how TCP will perform over a Blue-
tooth scatternet with a unique physical and TDD MAC layer.

ACKNOWLEDGMENT

The authors would like to thank Apurva Kumar (Research
Staff Member, IBM India Research Laboratory, New Delhi, In-
dia) and Vijay Gupta (Department of Electrical Engineering, In-
dian Institute of Technology, New Delhi, India) for their help in
designing the Bluetooth channel model. The parameters of the
two state Markov model for Bluetooth have been obtained by
them.

REFERENCES

[1] Bluetooth Special Interest Group, “Specification of the Bluetooth System
1.0b, Volume 1: Core,” http://www.bluetooth.com, Dec. 1999.

[2] J. Haartsen, “The Bluetooth Radio System,” IEEE Personal Communica-
tions, Vol. 7, No. 1, pp. 28-36, Feb. 2000.

[3] W.R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison Wes-
ley, 1994.

[4] H. Chaskar and U. Madhow, “TCP over wireless with link level error con-
trol: Analysis and design methodology,” Proc. MILCOM, 1996.

[5] A. Kumar, “Comparative performance analysis of versions of TCP in local
network with a lossy link,” IEEE/ACM Trans. on Networking, Vol. 6, No.
4, pp. 485-498, Aug. 1998.

[6] H. Balakrishnan, V. N. Padmanabhan, S. Seshan and R. H. Katz, “A com-
parison of mechanisms for improving TCP performance over wireless
links,” IEEE/ACM Trans. on Networking, Vol. 5, No. 6, pp. 756-769, Dec.
1997.

[7] P. Bhagwat, P. Bhattacharya, A. Krishna and K. Tripathi,“Using channel
state dependent packet scheduling to improve TCP throughput over wire-
less LANs,” Wireless Networks, pp. 91-102, 1997.

[8] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and
Sack TCP,” ftp://ftp.ee.lbl.gov, Mar. 1996.

[9] N. Johansson, M. Kihl and U. Korner, “TCP/IP over the Bluetooth wireless
ad-hoc network,” Networking 2000, Paris, France, May 2000.

[10] N. Johansson, U. Korner and P. Johansson, “Performance evaluation of
scheduling algorithms for Bluetooth”, In Broadband Communications:
Convergence of Network Technologies, Edited by Danny H. K. Tsang and
Paul J. Kuhn, Kluwer Academic Publishers, pp 139-150, 2000.

[11] M. Kalia, D. Bansal and R. Shorey, “MAC scheduling and SAR poli-
cies for Bluetooth: A master driven TDD pico-cellular wireless system”,
IEEE International Workshop on Mobile Multimedia Communications
(MoMuc’99), San Diego, CA, USA, pp. 384-388, Nov. 1999.

[12] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile
ad hoc networks”, Fifth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom’99), Seattle, USA, August,
1999.

[13] W. Simpson, “The Point-to-Point Protocol (PPP),” RFC 1661, July 1994.
[14] P. Bhagwat, I. Korpeoglu, C. Bisdikian, M. Naghshineh and S. K. Tripathi,

“Bluesky: A cordless networking solution for palmtop computers,” Mobi-
com’99, Seattle, Washington, Aug. 1999.

[15] S. McCanne and S. Floyd, “NS-Network Simulator,” 1995, http://www-
nrg.ee.lbl.gov/ns.

[16] D. Moldkar, “Review on radio propagation into and within buildings,” IEE
Proc.-H, Vol. 138, No. 1, Feb. 1991.

[17] D. Duchamp and N. Reynolds, “Measured performance of a wireless
LAN,” 17th Conference on Local Computer Networks, Minneapolis, MN,
pp. 494-499, Sept. 1992

[18] H. S. Wang and N. Moayeri,“Finite-state Markov channel - a useful model
for radio communication channels,” IEEE Trans. Veh. Technol., Vol. 44,
pp. 163-171, Feb. 1995.

[19] G. T. Nguyen, B. D. Noble, R. H. Katz and M. Satyanarayanan, “A trace-
based approach for modeling wireless channel behavior,” in Proc. Winter
Simulation Conf., Dec. 1996.

[20] M. Shimizu et al., “New method of analyzing BER performance of GFSK
with postdetection filtering,” IEEE Trans. Commun., Vol. 45, No. 4, pp.
429-436, April 1997.

[21] R. Ganesh and V. Pahlavan, “Effects of local traffic and local movements
on the multipath characteristics of the indoor radio channel,” IEE Elect.
Let., 26(12), pp.810-812, 1990.

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001

