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Abstract: This paper proposes a calibration algorithm to improve the positional accuracies of an
industrial XY-linear stage. Precision positioning of these linear stages is required to maintain highly
accurate object handling and manipulation. However, due to imprecisions in linear motor stages
and the gearbox, static and dynamic errors exist within these manipulators that cannot be adjusted
internally. In this paper, to improve the positioning accuracy of these manipulators, measurements
from a laser tracker are used within an interval type-2 fuzzy logic system. The laser tracker used
in this experiment is an AT960-MR, which is a highly accurate noncontact coordinate metrology
equipment capable of performing highly accurate robotic measurements. To perform calibration,
we use an IT2FLS to find a nonlinear correcting relationship to compensate for position errors. The
IT2FLS acts on the commands given to the move stage to find the accurate position of the move stage.
To train the IT2FLS, we use particle swarm optimization (PSO) for the antecedent part parameters and
Moore–Penrose generalized inverse to estimate the consequent part parameters. Data are split into
train/test data to test the efficacy of the proposed algorithm. It is shown that by using the proposed
IT2FLS-based calibration approach, the standard deviation of the position errors can be decreased
from 86.1µm to 55.9µm, which is a 35.1% improvement. Comparison results with a multilayer
perceptron neural network reveal that the proposed IT2FLS-based calibration algorithm outperforms
multilayer perceptron neural network for positional calibration purposes.

Keywords: industrial robot control; XY-linear stage; interval type-2 fuzzy systems; particle swarm
optimization

1. Introduction

Miniaturized and modularized linear move stage technology can be used within a
highly precise manufacturing environment for efficient and high-precision object manip-
ulation and object handling with micrometer and nanometer accuracy [1]. Linear stages
have already been used within a wide range of applications, including single-axis nano-
positioning [2], profiling stages [3], commercial atomic force microscopes [4], moving
microscope probes [5], and micro-scale coordinate measurement machines [6].

The rotational motion of stepper motors is converted to linear motion using precision
lead screw converters that are inevitably subject to manufacturing-related limitations
and tolerances such as imperfect step sizes and dimensions, which leads to imprecise
positioning. It is therefore required to calibrate linear stages to compensate for their
positioning errors. The main sources of uncertainty within a linear move stage include
angular uncertainties associated with its stepper motor, uncertainties regarding the lead
screw converter, and uncertainties caused by the limited resolution of the shaft encoder.
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Moreover, for stacked XY-linear stages, the non-orthogonality between the X-linear stage
and the Y-linear stage may impose more uncertainties for the overall linear move stage.

Previous approaches to calibrate move stages have been conducted using linear cor-
recting equations and least squares approaches. A self-calibration technique has been
investigated in [2] for a dual-actuated single-axis manipulator. The position feedback
required for the calibration is provided using a simple artifact. The simplicity of this calibra-
tion approach makes it possible to conduct the calibration at the beginning of all automated
processes. The capacitive sensors are considered to perform position measurements that
are used for calibrations [2]. Having all measurements, a least squares algorithm is used
to estimate the parameters of linear calibration equation. Scanning probe microscopes
usually use linear stages in their structure. A self-calibration method to compensate for the
non-orthogonality between the XY-plane and the Z-axis for scanning probe microscopes is
investigated using some physical artifacts [5]. In this paper, an IT2FLS is used to compen-
sate for the positional errors of linear move stages. Because of the capability of IT2FLSs
to deal with nonlinear complex problems, they are the preferred choices in the current
research to compensate for the nonlinear error of each individual stage and the error caused
by non-orthogonality between the two move stages.

Because of the high precision of laser tracker systems, they are used to measure the true
linear stage positions in this research to perform calibration. The first laser tracker system
was invented in the 1980s to perform critical and highly accurate position measurements [7].
To date, this system is used to perform dimension measurements on large-scale aircraft
workpieces [8,9], astronomical telescopes [10–12], position measurements for robotic sys-
tems [13–15], etc. [16]. The high precision and ease of application of the laser trackers make
them a priority choice for the calibration of industrial robots and linear multi-axis linear
stages. The precision position measurements required in this paper are performed using a
high-precision laser tracker system.

In this paper, a novel calibration algorithm for XY-linear move stages is introduced.
The proposed method uses the measurements from a highly precise laser tracker system,
namely AT960-MR, to perform calibration. This equipment is a non-contact metrology
tool capable of performing measurements with the error of less than 3 µm/m. Interval
type-2 fuzzy systems (IT2FLSs) are strong general function approximations that are used to
compensate for measurement errors. Since measurements are performed in two dimen-
sions, the problem is solved using two IT2FLSs that share their antecedent part [17]. The
implementation results show that using the proposed algorithm, it is possible to reduce the
open-loop standard deviation of error in both X and Y dimensions from 86.1 µm to 55.9 µm,
which is a 35.1% improvement. A multilayer perceptron neural network (MLPNN) is used
to perform comparison. Comparison results reveal that IT2FLS is capable of performing
calibration with higher performance.

This paper is organized as follows: The structure of interval type-2 fuzzy systems is
explained in Section 2, and the experimental setup is presented in Section 3. In Section 4, the
methodology part of the paper is presented. Experimental results are presented in Section 5.
Concluding remarks and future works are presented in Section 6. The acknowledgments
and the references are provided in backmatter, respectively.

2. Interval Type-2 Fuzzy Systems Structure

In this paper, interval type-2 fuzzy MFs are used in the antecedent part, and interval
values are considered for the consequent part parameters. The interval type-2 fuzzy MFs
used in this paper are Gaussian MFs with certain center and interval values for the standard
deviations (see Figure 1). The fuzzy IF-THEN rules for such a structure are considered
as follows:

j-th rule : IF x1 is Ãj1 and x2 is Ãj2
THEN yj = α1jx1 + α2jx2 + βj, (j = 1, . . . , M),

(1)

where x1, and x2 are the input variables, y is the single output variable, and M is the total
number of the rules. Moreover, Ãjis (I = 1, 2) are interval type-2 fuzzy MFs for the j-th
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rule of the i-th input. The parameters αij and βj (i = 1, 2, j = 1, . . . , M) are the interval
parameters in the consequent part of the rules that satisfy the following equation. The
following definitions are made:

Fj = α1jx1 + α2jx2 + βj, (j = 1, . . . , M), (2)

wj(x) = µ
F̃j

1
(x1) ∗ µ

F̃j
2
(x2), (j = 1, . . . , M),

wj(x) = µ
F̃j

1
(x1) ∗ µ

F̃j
2
(x2), ( j = 1, . . . , M), (3)

where µ
F̃j

k
(xk), k = 1, 2 are µ

F̃j
k
(xk), k = 1, 2 are the lower and upper MF corresponding to

the j-th rule for xk and “∗” is a t-norm operator. The output value of the IT2FLS, with its
structure being as shown in Figure 2, is given as

Y(x) = [yl(x), yr(x)] =
∫

w1∈[w1,w1]
. . .

∫
wM∈[wM ,wM ] 1

∑M
j=1 wjyj

∑M
j=1 wj

(4)

where x = (x1, x2) ∈ R2 is the IT2FLS input vector, representing the position readings
from the move stage. The defuzzification process and the type-reduction are performed in
an output processing unit (see Figure 2). There are several defuzzification + type-reduction
methods for IT2FLSs [18–20]. The enhanced Karnik–Mendel model approach [21–23] is
an exact yet computationally expensive type of defuzzifier + type reducer. A Maclaurin-
based first-order approximator for an IT2FLS performs an approximation to the enhanced
Karnik–Mendel (EKM) [21]. The accuracy of this method is lower than the enhanced Karnik–
Mendel and higher than other approximate models of Biglarbegian–Melek–Mendel [24]
and Nie–Tan [25,26]. The computational complexity for the Maclaurin-based first-order
approximator is less than the EKM model, as it does not necessitate the sorting procedure
required by EKM [27,28]. The Maclaurin-series-expansion-based first-order approximate
output of the IT2FLS is as follows [27,28]:

y ∈ [yl , yr], (5)

where yl and yr are the left-most and right-most values of output of the IT2FLS, which are
calculated as follows:

yr ≈
∑M

j=1(w
j + wj)Fj + ∑M

j=1

(
sign

(
mj
)

∆wjFj
)

∑M
j=1(w

j + wj) + ∑M
j=1

(
sign

(
mj
)

∆wj
) (6)

where

mj = Fj −
∑M

j=1 wjFj

∑M
j=1 wj (7)

and ∆wj = wj − wj. Furthermore, yl is calculated as

yl ≈
∑M

j=1

(
wj + wj

)
Fj −∑M

j=1
(
sign

(
mj)∆wjFj

)
∑M

j=1

(
wj + wj

)
−∑M

j=1
(
sign

(
mj
)
∆wj

) (8)

where

mj = Fj −
∑M

j=1 wjFj

∑M
j=1 wj

(9)
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The final crisp output value of the IT2FLS is obtained as

Y(x) =
yl + yr

2
, (10)

It is then possible to rewrite (6) as

yr =
M

∑
j=1

ν
j
RFj

R (11)

where

ν
j
R =

wj + wj + sign
(

mj
)

∆wj

∑M
j=1

(
wj + wj

)
+ ∑M

j=1

(
sign

(
mj
)

∆wj
) (12)

The parameter yr in a vector form is obtained as:

yr = φRθ, (13)

where

φR = [
→
ν

T
R,
→
ν

T
Rx1,

→
ν

T
Rx2]

T
, (14)

and
→
α R is defined as

→
ν R = [ν1

R, . . . , νM
R ]

T
. (15)

Furthermore, θ is defined as

θT
(n+1)·M = [β1, . . . , βM,α11, . . . ,α1M,α21, . . . ,α2M]. (16)

Similarly, it is possible to rewire the equation corresponding to yl in (8) in a vector
form as

yl = ∑M
j=1 ν

j
l Fj

l (17)

where

ν
j
l =

(
wj + wj

)
−
(
sign

(
mj)∆wj)

∑M
j=1

(
wj + wj

)
−∑M

j=1
(
sign

(
mj
)
∆wj

) (18)

The parameter yl in a vector form is obtained as

yl = φLθ, (19)

where

φL = [
→
ν

T
L ,
→
ν

T
L x1,

→
ν

T
L x2]

T
, (20)

and
→
α L is defined as

→
ν L = [ν1

L, . . . , νM
L ]

T
. (21)

The pseudocode to find the output of IT2FLS is as follows.

1. Find the interval type-2 fuzzy membership functions µ
F̃j

k
(xk), k = 1, 2 are µ

F̃j
k
(xk),

k = 1, 2 as follows

µ
F̃j

k
(xk) = exp

(
−
(

xk−mk
σk

)2
)

, k = 1, 2

µ
F̃j

k
(xk) = exp

(
−
(

xk−mk
σk

)2
)

, k = 1, 2
(22)



Machines 2023, 11, 497 5 of 15

2. Calculate wj and wj, j = 1, . . . , M as follows

wj = µ
F̃j

1
(x1)µF̃j

2
(x2), j = 1, . . . , M

wj = µ
F̃j

1
(x1)µF̃j

2
(x2), j = 1, . . . , M

(23)

3. Calculate mj, and mj as in (7) and (9), where Fj is as defined as in (2).
4. Calculate yr, and yl as in (6) and (8).
5. Calculate y as in (10).
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3. Experimental Setup

The experimental setup consists of an XY-linear move stage and a Leica laser tracker.
The XY-linear stage is composed of two linear stages, which are mounted perpendicularly
on each other. The feedback data provided by the Leica laser tracker is used to calibrate the
position readings of the XY-linear stage. The detailed experimental setup is presented in
this section.

3.1. Hardware Setup

To calibrate a linear move stage, a laser tracker system is set up at an approximately
2.8 m distance from the XY-linear stage. The technical specifications of the XY-linear stage
and the laser tracker used in this paper are presented in this section.

3.1.1. Laser Tracker

The laser tracker system used for the calibration in this experiment is a Leica laser
tracker AT960-MR manufactured by Hexagon Metrology GmbH, Wetzlar. It is a widely used
measurement equipment in industries for precision distance measurements and position
measurements [29] (see Figure 3). This equipment measures the distance between the laser
tracker and the laser target mounted on a 3D-printed component on the XY-linear stage.
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The laser tracker target is a precision Leica 1.5” red ring reflector. The data is transferred
via a Wi-Fi network connectivity between the laser tracker and a PC running Windows 10
OS. The software used to collect data is Spatial Analyzer® (SA) software. The operational
frequency of the laser tracker is 10 Hz, and it can perform measurements up to 40 m, with
errors less than 3 µm/m. More details about the technical specifications of the laser tracker
can be found in Table 1.
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Table 1. Measuring equipment characteristics and specifications.

Environmental Working Conditions IP54: The IEC-Certified Sealed Unit Guarantees Ingress
Protection against Dust and Other Contaminants

Operating temperature Wide operating temperature range of −15 to 45 degrees Celsius

Temperature compensation
MeteoStation: Integrated environmental unit monitors

conditions including temperature, pressure, and humidity to
compensate for changes

ISO certification ISO 17025

Connectivity Wifi and LAN

Detector features
Red ring reflector—1.5” radius: 19.05 mm ± 0.0025 mm,

centring of optics: < ±0.003 mm, ball roundness: ≤0.003 mm,
acceptance angle: ±30◦, weight: 170 g

Data output rate Measurement rate of up to 1000 points per second

Distance accuracy 40 m in diameter and a 6DoF measuring volume of up to 20 m

Laser safety Laser class 2

3.1.2. XY-Linear Stage

XY-linear stages produced by Zaber® are highly reliable products intended for critical
medical, marine [30], aviation, 3D printing [31,32], and military applications (see Figure 4).
As it is illustrated in Figure 4, the assembled XY-linear stage includes two linear stages:
X-axis move stage and Y-axis move stage, which are assembled perpendicularly. The
position feedback is provided via the retroreflector mounted on the XY-linear stage as
the target for the laser tracker. The power supply for this linear stage is 24–48 VDC,
and its maximum load capacity is 250 N. Each stage benefits from a two-phase stepper
motor with a motor current rate of 600 mA/phase, and a precision lead screw converts
the rotational movement to a linear one. It also benefits from a rotary quadrature encoder,
with its resolution being equal to 800 states/rev. The micro-step sizes for this linear stage



Machines 2023, 11, 497 7 of 15

are equal to 0.047625 µm, its best accuracy is 15 µm, and its best repeatability is 3 µm.
Furthermore, the highest speed of the stage is 104 mm/s, its highest trust is 55 N, and it
benefits from the maximum load capacity of 250 N. When the move stages are mounted
on top of each other to perform movements in more than single dimension, the position
accuracy and repeatability of the overall system may be worse than the values associated
with a single stage. The main reason is the perpendicularity error between the two stages.
The communication interface between the PC and each linear stage is provided by an
RS232 connection and the communication protocol is Zaber ASCII or Zaber binary. The
maximum permeable connection baud rate is 115,200 bps, and a RS232/USB converter is
provided within the linear stage to provide its connectivity with the PC. To sense the home
position for the linear stage, a magnetic hall sensor is used. This product is controllable
from the PC by using either Zaber Console software or Zaber Launcher software. Zaber
motion libraries are also available under Python 3, C#, C++, JavaScript, Java, and MATLAB
(https://www.zaber.com/software (accessed on 20 February 2023)). The Zaber linear stage
may also be controlled using Arduino with the software library through the Zaber website
(https://www.zaber.com/software (accessed on 20 February 2023)).
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The data connection and the power connection for the first device are provided
separately, and for the next stages, a Daisy chain connection provides power as well as data
to control in a network fashion.

3.2. Data Resampling and Synchronization

In this paper, reference commands and the actual positions of the move stage are
recorded using MATLAB® software (version R2021b) with Zaber Add-Ons. The laser
tracker data are gathered using Spatial Analyzer software. As the start time and end time
for data recording and the sample time for the move stage and the laser tracker are different,
it is required to perform shift and resampling for the data gathered from the laser tracker
and the move stage to ensure the data are properly synchronized.

https://www.zaber.com/software
https://www.zaber.com/software
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3.3. Change in Coordinates

It is required to change the coordinate system to have the move stage positions
available in the laser tracker coordinates. This is mainly required for the performance
evaluation of the proposed IT2FLS based calibration algorithm.

[
x1rl
x2rl

]
= Trrl

x1rr
x2rr

1

, (24)

where x1rr, and x2rr are the move stage position readings obtained through its MATLAB®

interface and x1rl , and x2rl are the move stage position readings using laser tracker in
laser tracker coordinates, and Trrl ∈ R2×3 is the transformation matrix from the robot base
coordinate system to the coordinate system of the laser tracker. The transformation matrix
Trrl can be easily calculated using a least squares algorithm [33].

4. Methodology
4.1. Particle Swarm Optimization

Metaheuristic approaches have been successfully applied to a wide range of appli-
cations where the cost function is not explicitly given and/or it suffers from multiple
local minima. In this paper, inspired by previous applications of PSO in estimating the
parameters of IT2FLSs, a PSO algorithm is used to estimate the IT2FLS parameters.

PSO is a variant of swarm intelligence primarily inspired by research on the behavior
of swarms of birds and schools of fish [34]. The candidate solutions to this optimization
problem are presented as a position vector corresponding to each individual within the
swarm. The changes in the positions are determined by the velocity vector within each
iteration. The velocity vector is updated by using a random term, preserving the previous
velocity direction, and two other vectors, which guide particles towards the personal best
experience of each particle and the overall global best experience. The individual solutions
within the swarm are presented by Xi

PSO ∈ Rd, where Xi
PSO refers to the i-th particle within

the swarm, and d is the dimension of the solution space.
The positions in the next generation of PSO using its current position vector and

velocity vector are updated as follows [34–36]:

Vi
PSO(t + 1) = wVi

PSO(t) + r1c1

(
pbesti(t)−Xi

PSO(t)
)
+ r2c2(gbesti(t)− Xi

PSO(t)
)

, (i = 1, . . . , NP), (25)

Xi
PSO(t + 1) = Xi

PSO(t) + Vi
PSO(t), (26)

where t refers to the current iteration, pbesti(t) presents the personal best experience of i-th
particle, gbesti(t) represent the overall best experience within the swarm, 0 < c1, c2 are
the two positive constants, and r1, r2 are two uniform random numbers from the interval
of [0, 1]. The parameter c1 is the coefficient associated with the best personal experiment
of the particles in the swarm, and the parameter c2 is the coefficient associated with the
best global experiment of the particles within the swarm. The parameter w is the inertia
weight, which makes the swarm follow their previous search direction. The parameter NP
represents the total number of swarms. The stability criteria for PSO requires the following
condition to be valid for its parameters [36,37].

c1 + c2 <
4
(
1− 2w + w2)

1 + w
. (27)

It is further observed in [38] that while large value for w improves exploration, a small
value guarantees good exploitation capability for PSO.
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4.2. Training IT2FLS

To train consequent part parameters of the IT2FLS, input/output training samples for
it are considered as xi ⊂ Rn, yi ⊂ R, i = 1, . . . , N, where N is the total number of samples.

yk =
yr,k+yl,k

2 , (k = 1, . . . , N),
= 1

2 φL,kθ + 1
2 φR,kθ.

(28)

The overall input/output relationship in vectoral form is represented as follows.

Y = 0.5ΦLθ + 0.5ΦRθ, (29)

where ΦR ⊂ RN×3M, ΦL ⊂ RN×3M, and Y ⊂ RN×1 are defined as follows.

ΦR =
[
φT

R,1 φT
R,2 . . . φT

R,N

]T
,

ΦL =
[
φT

L,1 φT
L,2 . . . φT

L,N

]T
. (30)

Furthermore,
Y = Φθ, (31)

where Φ, and θ are defined as follows:

Φ =
[
ΦT

L ΦT
R
]T , (32)

The pseudo-inverse operator is used to find the solution for the estimation problem of
the consequent part parameters as follows.

θ = Φ†Y, (33)

where Φ† is the Moore–Penrose generalized inverse of matrix Φ [39]. This concludes the
consequent part parameters estimation problem.

4.3. Overall Hybrid Training Algorithm for IT2FLS

While the antecedent part parameters of IT2FLS appear nonlinearly within its out-
put, its consequent part parameters appear linearly within the output. Hence, the least
squares algorithm discussed in the previous subsection will be used for the consequent
part parameters, and PSO is used to train the antecedent part parameters.

Figure 5 illustrates the overall flowchart of the proposed algorithm for training IT2FLSs
for calibration purposes. The solutions in terms of the centers and the standard deviations
of the antecedent part of the IT2FLS are represented by each individual member within PSO.
The consequent part parameters of the IT2FLS need to be estimated according to (28)–(33).
The inputs to the IT2FLS are the move stage command signals and their target values
are the laser tracker data. The antecedent and consequent part parameters are evaluated
against mean squared errors of their corresponding IT2FLS output. The personal best value
of each individual member and the global best value of the overall swarm are updated
accordingly. The PSO velocity update rule, as shown in (25) and (26), is then applied to
each individual within the swarm to update the position of each individual. The algorithm
iterates a few times before it is converged.
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4.4. Overall Calibration Algorithm

The overall calibration algorithm consists of data gathering from the move stage
using MATLAB and the laser tracker data using a Spatial Analyzer. Since data collected
from the laser tracker and the move stage are gathered at different starting points and
sampling frequencies, shift and resampling are required to have data from both devices
synchronized (Sections 3.2 and 3.3). The next stage requires applying the overall hybrid
training algorithm to train IT2FLSs, as discussed in Section 4.3. To train the IT2FLS, we
use PSO for the antecedent part parameters and Moore–Penrose generalized inverse to
estimate the consequent part parameters. The overall flowchart of the proposed algorithm
is demonstrated in Figure 5.

5. Experimental Results

The calibration methodology, explained in Section 4, is used to improve the positional
accuracies in both X- and Y-directions, where position feedback is provided by the laser
tracker system, Leica AT960-MR, used in these experiments. Figure 6 demonstrates the
real-time position feedback by the laser tracker with the SA software. While Figure 6a
shows the SA environment, Figure 6b demonstrates the zoomed-in version of Figure 6a
in which the main axis as well as a few data points are demonstrated. It is required to
set the axis and the coordinate origin of the laser tracker for measurements. To assign
the coordinate origin as well as the X-axis and Y-axis, two initial large movements are
performed using the XY-linear stage. The length of each movement is as high as 5 cm
and is performed using each of the stages in the XY-linear stage. The axis assignment
wizard menu of the Spatial Analyzer is used to define the two axes. The coordinate origin
assignment as well as the axis assignment are required to be performed with high precision,
as they influence all other 3D point measurements.
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position data.

The uncertainties associated with positioning in a XY-linear stage are mainly due to
stepper motor uncertainties, joint encoder uncertainties, and lead screw converter uncer-
tainties. It is highly recommended to use calibration methods to improve the positional
accuracies of XY-linear stages. The data gathered from the XY-linear stages are its command
signal. The precise movement measurements are performed using the laser tracker. To
perform the calibration task, the command signals given to the move stage are used as the
input to an IT2FLS, and the target values for training IT2FLS are precise position measure-
ments from the laser tracker. The input/output data are split to train and test data with a
ratio of 70/30. The IT2FLS is tuned using the algorithm discussed in Sections 4.3 and 4.4
(see Figure 5). The antecedent part of the IT2FLS is iterated using PSO, and the consequent
part parameters are tuned using the Moore–Penrose generalized inverse. The Moore–
Penrose generalized inverse of matrix Φ is implemented using the “pinv” built-in function
in Matlab® software. The resulting IT2FLS gives the open-loop relationship between the
commands given to the move stage and the real positions of the move stage. To provide
precise XY-linear stage position feedback, a highly precise laser tracker system, Leica AT960-
MR, is used. This laser tracker is capable of position measurements with errors of less
than 3 µm/m. The distance between the laser tracker and the target widely affects the
measurement accuracy. The distance between the laser tracker system and its target is
almost 2.8 m.

The initial data gathered from the move stage and the measurements performed using
the laser tracker are provided in Figure 7. Least squares coordinate change is performed
on the move stage positions to have all the positions in laser tracker coordinates. As can
be seen from Figure 7, there exists some error in the move stage position commands with
respect to the more precise position measurements performed by the laser tracker. The
IT2FLS is then applied to the raw command signals given to the move stage for calibration
purposes. The population size for the PSO is considered as equal to 1000, and in total,
200 iterations are used for the PSO. It is observed that using this approach, it is possible to
decrease position errors in terms of the standard deviations of errors considerably.
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Figures 8 and 9 demonstrate the results of applying the calibration method to correct
data within the X-axis and Y-axis, respectively. As can be seen from the figures, the
calibrated position values are much closer to the measurements performed by the laser
tracker. Table 2 illustrates the numerical values for the calibrated and uncalibrated position
data. As can be seen from the table, the overall standard deviation of error has been reduced
from 86.1 µm to 55.9 µm, which is a 35.1% improvement. To further analyze the proposed
calibration scheme, the proposed algorithm is compared with a single layer MLPNN. The
number of neurons taken for the hidden layer is selected equal to 10. As can be seen from
the table, the IT2FLS outperforms MLPNN for the calibration of the move stage for both
training and testing data in terms of standard deviation as well as mean absolute error.
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Table 2. XY-mean absolute error and standard deviations of error for the linear stage.

Performance Indexes Calibrated Using
IT2FLS (µm)

Calibrated Using
MLPNN (µm)

Uncalibrated (µm)
Percentage

Improvement of
IT2FLS vs. Raw Data

MAE
Train

41.6 50.4 52.4 20.6%

σi 68.8 68.3 79.1 13.0%

MAE
Test

34.2 49.7 58.2 41.2%

σi 55.9 69.8 86.1 35.1%

6. Conclusions and Future Research

The uncertainties associated with an XY-linear stage are mainly due to stepper motor
uncertainties, joint encoder uncertainties, and lead screw converter uncertainties. Tolerance
in the manufacturing and assembly processes are the main causes of such uncertainties.
The role of the lead screw converter is to convert the rotational movement of the motors to
a linear movement. This part suffers from manufacturing tolerances and the uncertainties
caused by wear and tear. The uncertainty caused by the non-orthogonal X-Y move stages
is another source of uncertainty within an XY-linear stage. To calibrate the X-Y move
stages, we used a high-precision laser tracker, namely Leica AT960-MR, which is capable of
position measurements with errors of less than 3 µm/m. Using the proposed algorithm, we
showed that the standard deviation of positional errors associated with the XY-linear stage
measurements decreased from 86.1 µm to 55.9 µm, which shows a 35.1% improvement.
Furthermore, performance comparison of the proposed approach is provided with that
of MLPNN. The result of the comparison reveals higher performance for the proposed
approach over MLPNN calibration approaches.

As future work, closed-loop control methods to take advantage of the increased
precision from this work with XY-linear stages will be investigated. The feedback from the
laser tracker will be utilized to control the XY-linear stage online. The calibration results
from the current experiment make it possible to decrease the rise time to track the reference
trajectory for the XY-linear stage.
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