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Abstract—Privacy protection is critical for Location-Based
Services (LBSs). In most previous solutions, users query service
data from the untrusted LBS server when needed, and discard the
data immediately after use. However, the data can be cached and
reused to answer future queries. This prevents some queries from
being sent to the LBS server and thus improves privacy. Although
a few previous works recognize the usefulness of caching for
better privacy, they use caching in a pretty straightforward way,
and do not show the quantitative relation between caching and
privacy. In this paper, we propose a caching-based solution to
protect location privacy in LBSs, and rigorously explore how
much caching can be used to improve privacy. Specifically, we
propose an entropy-based privacy metric which for the first
time incorporates the effect of caching on privacy. Then we
design two novel caching-aware dummy selection algorithms
which enhance location privacy through maximizing both the
privacy of the current query and the dummies’ contribution
to cache. Evaluations show that our algorithms provide much
better privacy than previous caching-oblivious and caching-aware
solutions.

I. INTRODUCTION

As one of the most popular activities, Location-Based

Services (LBSs) have enriched our life with many applications

over recent years. Users can download these location-based

applications from Apple Store or Google Play Store easily

through their smartphones or tablets. With such applications,

mobile users can easily obtain information about various Point

of Interests (POIs) in the vicinity, e.g., the menu of restaurants

and the availabilities of nearby bars.

To enjoy these conveniences, mobile users need to submit

queries to the untrusted LBS server. Since these queries

include some personal information, such as users’ locations

and the queried interests, the LBS server can easily infer who

are doing what in which place. The server may track users

directly or release their personal information to third parties

such as advertisers. We thus need to pay much attention to

protecting user privacy.

To address the privacy issue for mobile users in LBSs,

many approaches have been proposed over recent years. They

include trusted anonymization server-based approaches [1],

[2], [3] and mobile device-based schemes [4], [5], [6], [7], [8],

[9], [10], [11]. One problem with most existing privacy pre-

serving approaches is that they are limited to the perspective of

protecting privacy for the queries sent to the LBS server. They

neglect another perspective of privacy protection which is to

reduce the number of queries sent to the LBS server. If less

queries are submitted to the server, less location information

is released, and hence there is less chance of exposing user’s

locations. A natural way of reducing the number of queries

sent to the LBS server is to use caching; i.e., using the cached

data obtained from previous queries to answer future queries.

Although a few previous works [12], [13], [14] recognize

the usefulness of caching for better privacy, they use caching

in a pretty straightforward way, and do not provide in-depth

understanding about the effect of caching on privacy.

In this paper, we propose a caching-aware, dummy-based

solution to protect location privacy in LBSs. The basic idea is

to cache the service data obtained for both the real location

and dummy locations of the current query, and use the cached

data to answer future queries so as to reduce the queries sent

to the LBS server. Different from previous straightforward

caching-based solutions, we rigorously explore the effect of

caching on the achieved privacy. Specifically, we propose

an entropy-based privacy metric which takes caching into

account. Based on this metric, we design two caching-aware

dummy selection algorithms. When selecting dummies for a

query, these algorithms not only maximize the privacy of the

current query, but also maximize the dummies’ contribution

to cache which in turn improves privacy.

The contributions of this paper are summarized as follows:

• We propose a privacy metric which for the first time

incorporates the effect of caching on privacy. It describes

the quantitative relation between cache hit ratio and the

achieved privacy. Based on this metric, we rigorously

explore to what extent caching can improve privacy.

• We propose a novel Caching-aware Dummy Selection Al-

gorithm (CaDSA), which innovatively integrates caching

with dummy selection to maximize the achieved privacy.

• We identify important factors that affect caching perfor-

mances, including normalized distance and data fresh-

ness. Considering these factors, we design enhanced-

CaDSA to further improve privacy.

• We evaluate the proposed algorithms with extensive sim-

ulations, and shed light on how caching enhances privacy.

The rest of this paper is organized as follows. In Section II,



we review related work. Section III presents some preliminar-

ies and our privacy metrics. Section IV describes the details of

our proposed schemes, security analysis and implementation

issues. Section V presents performance evaluation results.

Finally, we draw the conclusions in Section VI.

II. RELATED WORK

Privacy has been one of the most popular research topics

recently (e.g., privacy in LBSs [15], [16] and privacy in mobile

sensing [17], [18], etc.). We review some existing research

on user’s privacy issues for LBSs. Although policy-based

approaches [19] and cryptography-based approaches [20] have

been proposed to protect location privacy for LBSs, most exist-

ing works are based on anonymization or location perturbation

and obfuscation. They include trusted anonymization server-

based schemes [2], [3] and mobile device-based schemes [6],

[9], [10], [14], [11], [21], [22].

The former category suffers from the single point of failure

due to the reliance on a trusted server, e.g, location anonymizer

in [23]. As the result, if an adversary gains access to it, the

privacy of all users will be compromised. This trusted server is

also a performance bottleneck since all the submitted queries

have to go through it.

Mobile device-based schemes avoid these problems. Some

works focus on decreasing the computational and storage

overhead by using VHC mapping [6], encountered-based solu-

tion [9], and k-anonymous cloaking box [10]. However, users

need to communicate with each other to obtain extra data.

Kido et al. [4] solved this problem by introducing dummy

locations, which are randomly selected at user’s mobile device

to achieve k-anonymity. But they ignore the effects of side

information [24] at the adversary. With side information (e.g.,

query probability in the local map), the adversary can easily

filter out some randomly selected dummy locations from

the submitted k locations, which decreases the anonymity

degree of k-anonymity. Niu et al. [14], [11], [21], [22], [25]

proposed a set of solutions to address this problem by carefully

selecting dummy location considering that side information

may be obtained by the adversaries; however, its associated

communication and storage cost is pretty high. All of the above

works overlook the use of caching to improve privacy.

Caching has been used in a few previous works. Shahriyar

et al. [12] proposed the Cache system to improve user privacy.

By pre-fetching the service data within a particular area before

coming into that area, mobile users can search the Point

of Interests (POIs) locally instead of sending queries to the

untrusted LBS server. However, mobile users need to store

a huge amount of service data for a large area. Shokri et

al. [13] designed a distributed location privacy preserving

algorithm for a collaborative group, termed MobiCrowd. Users

in MobiCrowd query neighbors for service data before sending

a query to the LBS server. Through this way, the location

exposing probability is decreased. However, this scheme has

several drawbacks. It pays little attention to protecting privacy

for users who need to send queries to the LBS server. Ad-

ditionally, it is not intentionally designed to improve cache

hit ratio, which renders a low benefit brought by caching.

Mobicache [14] simply tries to cache more data that has not

been cached yet, and it does not consider the side information

that an adversary may have. Thus, the adversary can infer the

real location with the help of side information. There are also

several common problems with these caching-based solutions.

They do not have an integrated privacy metric to measure the

effect of caching on privacy, and their caching design is pretty

straightforward without considering important factors such as

query probability and data freshness. Different from them,

we propose a privacy metric to model the effect of caching,

and our caching-aware dummy selection algorithms carefully

combine k-anonymity, caching, and side information to achieve

higher privacy degree and cache hit ratio.

III. PRELIMINARIES

In this section, we first introduce our system model with

some basic concepts adopted in this paper, and then present

the motivation and the basic idea of our solution. Finally, we

introduce the location privacy metrics used in our schemes.

A. System Model

The adversary may have some side information which helps

it infer users’ locations. In this paper, side information refers

to the probability that a query can be sent from each location

[11]. Users may also have such information which helps select

the best dummies for privacy. This kind of information can

be obtained either from some well-known social applications

(i.e., Google Latitude or Yelp!) or in peer-to-peer ways like the

methods in [26], [27]. For a particular user, the ideal case is

that he knows all the side information known to the adversary

and thus can perform optimal dummy locations against the

adversary.

In this paper, the untrusted LBS server is considered as

the adversary. It can easily obtain all the side information

by monitoring the queries sent from users. It also knows the

location privacy protection mechanism used in the system.

Additionally, it knows which data has been cached. Based

on these information, it tries to perform inference attacks to

deduce and learn user’s location information.

B. Motivation and Basic Idea

A mobile user of current LBS applications always submits

a location-related query to the untrusted LBS server to obtain

and enjoy the corresponding service data. Let us consider an

example scenario. In a classroom building of a university,

many mobile users may want to check for the discount

information of nearby restaurants or the availability of bars

in the vicinity after class. To enjoy the service data provided

by particular LBS applications such as Yelp, each user needs

to initiate a query to Yelp which includes his current location

and the queried interest. This solution has some drawbacks that

motivate our work. First, since the submitted queries include

the location of users, each user’s location is revealed to the

untrusted LBS server. Second, if a user frequently submits

queries to the LBS server, many of his locations are exposed,



and thus his moving path can be easily identified by the LBS

server. Third, the LBS server needs to reply to every user,

even though some users have queried for the same interest.

Obviously, this solution has low efficiency.

For the first problem, a straightforward method is to use

k-anonymity, which hides user’s real location into k − 1
other locations. This aim can be achieved either by collecting

real queries from nearby users or selecting dummy locations.

Collecting k − 1 real queries from neighbors is easy, but the

locations in these queries may be very close to each other,

and the LBS server can easily infer that the real user is in

the small area surrounded by these locations. It is a kind of

privacy leakage [28], [11]. Selecting dummy locations can

solve this problem effectively, but the improperly selected

dummy locations may fall into some unlikely places such

as lakes, swamps, and rugged mountains, and can be easily

filtered out by the adversary with side information. Therefore,

how to select proper dummies is a challenge.

For the second problem, the service data obtained from

previous queries can be cached to answer other future queries,

since it has been shown that most LBS data has a long lifetime

[12], [13], [14]. This can reduce the number of queries sent

to the LBS server, and make it more difficult to track a

user’s moving path. Note that caching also addresses the third

problem. However, it is not easy to determine which data to

cache from the perspective of cache hit ratio.

To address the aforementioned problems, our basic idea is to

integrate dummy and caching, through caching the service data

obtained for dummy locations (as well as the real location).

Dummies protect privacy for queries sent to the LBS server,

while caching further enhances privacy through reducing the

number of queries exposed to the LBS server. To maximize the

location privacy against adversary with side information and

improve the caching performance, we design caching-aware

dummy selection schemes which carefully select dummy lo-

cations in two main steps. First, we choose dummy locations

which have similar query probability as the real location.

Second, when we have a set of candidates, we prefer to

choose dummy locations which can bring more contributions

to caching.

Fig. 1 further illustrates our basic idea, which focuses

on two main factors, privacy (shown in Fig. 1(a) and 1(b))

and caching (shown in Fig. 1(c) and 1(d)). In Fig. 1(a) and

1(b), different shades of the cells represent different query

probabilities, and cells marked with
√

indicate that these

cells are candidates of dummy locations. In Fig. 1(c) and

1(d), the shaded cells represent cached cells for which service

data have been cached, while the blank cells have not been

cached. Different gray degree means different data freshness

of the cached service data in each cell. For example, darker

cells represent that the service data cached on these cells is

still fresh, and lighter cells mean that these service data may

become out of date soon. The areas within the red dotted

rectangles mean the user’s query regions based on the current

location and the query range.

In the first step, to effectively provide k-anonymity against

(a) Two dummy locations chosen by
existing k-anonymity based approach

(b) 14 candidates marked with
√

in
our CaDSA considering side informa-
tion

(c) A straightforward way (CaDSA)
to obtain as many un-cached cells as
possible by dummy locations

(d) Our enhanced-CaDSA to improve
the caching performance by consid-
ering normalized distance and data
freshness

Fig. 1. Our main idea to achieve 3-anonymity

adversaries with side information, we prefer to assign dummy

locations into cells with similar query probabilities (shown

in Fig. 1(b)), rather than randomly select dummy locations

(shown in Fig. 1(a)). In the second step, based on the obtained

14 candidates marked with
√

in Fig. 1(b), the goal of our

Caching-aware Dummy Selection Algorithm (CaDSA) is to

improve the caching performance. Therefore, we prefer to

select proper dummy locations which can contribute more

to caching. Fig. 1(c) shows an optimal case where all the

chosen dummy locations have made maximum contributions

(6 blank cells within the queried region) to the cache. As the

result, both user privacy and cache hit ratio can be improved.

However, CaDSA may not perform well in some cases due

to two important factors: 1) users usually query for service

data nearby, and 2) frequently queried cells in cache should be

updated (i.e., cached again) before being expired. We consider

these two factors to better evaluate dummies’ contributions

to caching. This further improves cache hit ratio as well as

privacy since higher cache hit ratio means less queries sent to

the LBS server. The chosen dummy locations can be found in

Fig. 1(d). Here, we prefer dummy locations which are nearby

and whose service data is out of date.

C. Location Privacy Metrics

There are many metrics to measure privacy, such as entropy-

based metrics [29] and distortion-based metrics [30]. Entropy



can be seen as the uncertainty in determining the real location

of a user from all the candidates, and it has been widely used in

the literature. Based on entropy, we define two privacy metrics

to measure location privacy. One metric measures the privacy

degree achieved for a user when he sends a query to the LBS

server. Since some queries are answered by cache, the other

metric also takes the effect of caching into consideration and

measures the overall privacy achieved in our system.

1) Individual privacy metric: To provide privacy protection

for users who need to send queries to the LBS server, our

schemes use dummy locations to achieve k-anonymity even

when the LBS server has side information. In this paper, side

information is the probability that a location can be queried

(i.e., service data is requested for this location). Specifically,

we divide the map area into N × N cells. Each cell has a

probability of being queried (called query probability) which

is proportional to the number of times the location was queried

in the past. Let q denote this probability. Then we have
∑N2

i=1 qi = 1. For the k locations (i.e., cells) contained in

a query which include one real location and k − 1 dummies,

each location has a conditional probability of being the real

location. Let pi (i = 1, 2, ..., k) denote the probability that

the ith location is the real location. Then pi =
qi∑

k
j=1 qi

, and

obviously
∑k

i=1 pi = 1. The entropy H of identifying the real

location out of the anonymity set is defined as

H = −
k
∑

i=1

pi · log2 pi. (1)

Since larger H means higher privacy degree, our aim is

to achieve the maximum entropy. It happens when all the k

possible locations have the same query probability and the

maximum entropy is Hmax = log2 k.

2) Global privacy metric: The privacy metric defined in

Equation 1 describes the privacy degree achieved when a user

sends a query to the LBS server, but it does not consider

the effect of caching on the overall privacy degree. Actually,

caching improves privacy since some queries do not have to

be sent to the LBS server. To capture this effect, we define

another privacy metric.

Let us consider all the queries in the system. For a query

answered by the LBS server, the uncertainty of the real

location is calculated using Equation 1. For a query answered

by cache, the LBS server obtains no information about the

user’s real location from this query, and every cell may be

the real location. Then the uncertainty of the real location

is defined as log2 N
2, which can be obtained with Equation

1 assuming that every cell is equally likely to be the real

location. Let Qcache denote the set of queries which are

serviced by cache, and Qserver denote the set of queries which

are sent to and serviced by the LBS server. Then our second

privacy metric is defined as the average uncertainly (denoted

by λ) of the real location in each query out of all queries:

λ =

∑

q∈Qserver
Hq + log2 N

2 × |Qcache|
|Qserver|+ |Qcache|

(2)

where Hq is the uncertainty of the real location in query

q calculated using Equation 1. Since cache hit ratio γ =
|Qcache|

|Qserver |+|Qcache|
, the above formula can be rewritten as

λ =

∑

q∈Qserver
Hq

|Qserver|+ |Qcache|
+ γ · log2 N2. (3)

It can be seen that there are two ways of increasing λ. One is

to increase the entropy of each query q ∈ Qserver . The other

is to increase cache hit ratio γ, such that more users can be

directly served by cache and enjoy higher privacy degree (note

that log2 N
2 > log2 k ≥ Hq). Our system considers these two

factors to protect location privacy.

IV. OUR PROPOSED SCHEMES

In this section, we first present an overview of the proposed

system. Then we present our Caching-aware Dummy Selection

Algorithm (CaDSA) and the enhanced-CaDSA, followed by

security analysis and discussion of implementation issues.

A. System Overview

When a user needs LBS, he first queries our cache system

(we will show how to implement it in Section IV-F later). If

there is no match or the matched service data cannot satisfy

his requirements, the user sends a query to the LBS server to

request service data for his real location and k − 1 dummy

locations, and the obtained data will be used to update cache.

Such a user is called a data contributor, since he contributes

data to cache. If the user’s requirement can be satisfied by the

cached service data, he does not need to send a query and

reveal location information to the untrusted LBS server, and

simply gets service data from cache. Such a user is called a

data consumer since he consumes data from cache. For data

contributors who submit queries to the LBS server, privacy is

protected by our dummy selection algorithms which guarantee

k-anonymity; for data consumers, privacy is protected by

caching since they do not have to send queries to the LBS

server and hence no location is revealed.

In our system, dummy selection affects the achieved privacy

in two ways. First, for a particular query sent to the LBS

server, dummy selection determines the privacy degree that

the querying user can enjoy for this query. Second, since the

service data obtained for dummy locations will be cached,

dummy selection affects the cache hit ratio and in turn

determines the achieved privacy degree. Considering these

factors, we propose two dummy selection algorithms, CaDSA

and enhanced-CaDSA.

To answer a query, cache does not need to have data for

all the cells within the query range in our system. Instead,

caching a high percentage of cells suffices. Specifically, each

user can set a threshold τ which means the lowest fraction of

cells that should be cached to answer his query. Let parameter

ξ denote the percentage of cells that have actually been cached

within the query range. Then a user’s query can be answered

by cache if ξ ≥ τ , but the user must send the query to the

LBS server if ξ < τ . By tuning τ , a user can tune the tradeoff

between service quality and privacy.



B. A Cache-Oblivious Baseline Algorithm

Before describing our advanced dummy selection algo-

rithms, we first present a baseline algorithm for comparison

purposes. In this baseline algorithm, dummies are selected

to maximize the entropy for the current query only, without

considering dummies’ effect on cache hit ratio:

Max(−
k
∑

i=1

pi · log2 pi). (4)

This algorithm is the same as the basic scheme proposed in

[11] (we omit the details here due to the space limitation), ex-

cept that here the data obtained for real and dummy locations

is cached.

C. Caching-Aware Dummy Selection Algorithm

Inspired by Equation 3, our main idea is to select a set

of realistic dummy locations to ensure high entropy for the

current query and at the same time provide more contributions

to cache hit ratio. Intuitively, a dummy location’s contribution

to cache is mainly determined by the query probability of this

location. If the query probability of a location is high, the

data for this location is more likely to serve future queries,

and can achieve higher cache hit ratio. Clearly, a dummy with

high query probability has more contributions to cache than a

dummy with low query probability. Let δ denote a dummy’s

contribution to cache. We define δ as

δ = q · g (5)

where g = 0 if this location is already cached and g = 1
otherwise.

Since two objectives are considered, we formulate the

dummy selection problem as a Multi-Objective Optimization

Problem (MOP), which can be described as

Cdummy = argmax{−
k

∑

i=1

pi · log2 pi,
k
∑

i=1

δi}, (6)

where the first objective (max{−
∑k

i=1 pi · log2 pi}) is to

provide higher privacy degree for the current query and the

second objective (max{∑k

i=1 δi}) is to guarantee a better

cache hit ratio. Since it is hard to satisfy all objectives at

the same time, we solve the MOP in two steps, optimizing

one objective function in each step. We first select a set of

candidate dummies which can achieve high entropy for the

current query:

Cc = argmax(−
k
∑

i=1

pi · log2 pi). (7)

Then from these candidates, we further select k − 1 dummy

locations which can contribute most to cache:

Cdummy = argmax

k
∑

i=1

δi. (8)

Algorithm 1 illustrates our idea in details. We first select

4k cells (this number can be adjusted based on privacy needs

Algorithm 1: Caching-Aware Dummy Selection Algo-

rithm (CaDSA)

Input : q (query probability of each cell), cr (real location), s
(a system parameter)

Output: Cdummy

1 sort cells based on their query probability q;
2 choose 4k cells (2k cells are right before cr and 2k cells are

right after cr in the sorted list);
3 randomly select 2k cells out of them as the candidate set Cc;

4 Ĉc = ∅;

5 if
(

2k

k−1

)

≤ s then

6 Ĉc = {C′|C′ ⊂ Cc & (|C′| = k − 1)}
7 end
8 else
9 Generate s subsets of Cc with k − 1 random dummies in

each subset;
10 Add these subsets to Ĉc;
11 end

12 for each C′ in Ĉc do

13 compute
∑k

i=1
δi for the k − 1 dummies in C′;

14 end

15 output Cdummy = argmax
C′⊂Ĉc

∑k

i=1
δi

and allowable computation cost) which have similar query

probabilities to the user’s real location cr, and randomly select

2k of them as candidate cells. Due to the definition of entropy

in Equation 1, these candidate cells can achieve a high entropy

for the current query. Out of these 2k cells, we further select a

subset of k − 1 dummies which have the highest contribution

to cache. When k is large, since the number of subsets
(

2k
k−1

)

is too large, we only consider s random subsets and select one

of them which has the highest contribution to cache. Here s

is a system parameter and s = 1000 by default. Note that,

bigger s leads to higher computation cost but higher privacy

degree.

D. Enhanced Caching-Aware Dummy Selection Algorithm

Besides query probability, we identify two other important

factors which affect dummy locations’ contributions to cache.

They are normalized distance and data freshness. This algo-

rithm considers these factors into dummy selection to further

improve cache hit ratio and achieved privacy degree.

Normalized Distance. We consider the effect of the dis-

tance between the real location and dummy location. Since

users usually query for POIs in vicinity and the data retrieved

from the LBS server is cached locally around the real location,

it is not very useful to cache cells far away from the real

location. Thus, we prefer to select dummy locations not very

far away from the real location to maintain a good cache

hit ratio. We define the normalized distance between the real

location lr and the ith dummy location li as

di = d(lr, li) ·
1√
2π

e−
(d−d(lr,li))

2

2 , (9)

where d(lr, li) denotes the physical distance between lr and

li, and d =
∑

k
i=1 d(lr,li)

k
.



Algorithm 2: Enhanced Caching-Aware Dummy Selection

Algorithm (enhanced-CaDSA)

Input : q (query probability of each cell), cr (real location), s
(a system parameter)

Output: Cdummy

1 run line 1-11 in Algorithm 1;

2 for each C′ in Ĉc do
3 compute ∆ for the k − 1 dummies in C′;
4 end
5 outputs Cdummy = argmax

C′⊂Ĉc

∆

We use the total normalized distance D (D ∈ [0, 1]) to

describe the effect of all the k − 1 dummy locations on the

caching performance. It is defined as

D =

k−1
∏

i=1

√
2π

di

d(lr, li)
. (10)

Data Freshness. Since the data cached for a cell may

become out of date, we prefer to update the cached data before

it expires, especially for cells with high probability of being

queried. For example, suppose the lifetime of cached data is 6

hours. Then the freshness of the data which has been cached

for 5.5 hours is much worse than the data cached for 0.5 hours.

More formally, let T denote the lifetime of cached data, and

t denote the time that a cell’s data has already been cached.

Then the freshness value of the cell, denoted by f , is defined

as

f =

√

1− t2

T 2
, t ≤ T. (11)

For a query submitted to the LBS server, the service data

obtained for each location (being it the real location or a

dummy location) covers multiples cells around this location

when the query range is larger than a cell. Considering this, we

compute the average data freshness (F ) of those cells covered

by the k submitted locations as

F =

l·k
∑

i=1

fi

l · k , (12)

where fi is the freshness value of cell i, and l indicates the

number of cells within the query range.

Finally, a set of dummy locations’ total contribution to cache

∆ can be defined as

∆ = (

k
∑

i=1

δi) · (1 −D) · (1− F ). (13)

Algorithm 2 illustrates our idea in details. The algorithm is

quite similar to Algorithm 1, expect that in the last four lines

we select the set of dummies to optimize ∆.

E. Security Analysis

Since standard cryptography techniques such as encryption

and decryption can be easily used upon our algorithms to deal

with eavesdropping attacks on the wireless channel between

users and other entities, in this section, we focus on analyz-

ing the privacy of data contributor against inference attacks

performed by the untrusted LBS server.

In our scheme, data contributors need to send queries

to the untrusted LBS server to enjoy service data when

their requirements cannot be satisfied by cache. Ideally, due

to k-anonymity, the LBS server cannot distinguish the real

location of a particular user from the other k − 1 dummy

locations. The probability of successful guessing should be
1
k

. However, the LBS server knows the query probabilities

of the whole map and the historical queries of each user

(each query containing the user’s identifier, a mix of real

and dummy locations, queried POI, query range, etc.). It can

perform inference attacks based on these information. More

formally, the information includes query probability qi, (0 <

i ≤ N2) of each cell, query interest I , all the submitted k

locations l1, l2, · · · , lr, · · · , lk with their corresponding cells

c1, c2, · · · , cr, · · · , ck. The LBS server’s goal is to improve

its probability of successfully guessing the real location from

the submitted query set. In our algorithms, the inference

attack is avoided by using randomization. Let us consider

enhanced-CaDSA as an example. We first select 4k cells and

then construct a candidate set Cc with 2k elements randomly

chosen from the 4k cells. Further, the constructed candidate set

should be refined into C′ with k−1 elements, which improves

the randomization. As a result, any combination of k locations

may be selected from the 4k cells, which have similar query

probability. Thus, the LBS server cannot use such information

to improve its probability of guessing the real location. In

another attack, the adversary may learn the algorithm details

of CaDSA and enhanced-CaDSA. Then it can assume each of

the k locations to be the real location, run our algorithms to

select dummies, and compare if the obtained dummies are the

same as those included in the query. If so, it concludes that

the assumption is correct which means identification of the

real location. However, due to the introduced randomization,

different real locations may lead to the same set of k locations

including one real and k−1 dummies. Thus, such assumption-

and-verification attack will fail.

In another attack, the adversary guesses the real location as

the one in the central part among the submitted k locations.

However, this attack cannot improve the probability of guess-

ing the real location due to our use of normalized distance

and data freshness. In Equation 10, we use multiplication to

compute the total normalized distance, which guarantee that

the selected dummy locations cannot be too close to each other

(this property is also proved in [11]). Although we prefer to

cache nearby cells over others, data freshness helps balance the

distribution of the dummy locations. As a result, cells around

the real location may not always be selected as the dummy

locations.

F. Implementation Issues

In our CaDSA and enhanced-CaDSA, side information is

assumed to be known to the mobile user. Additionally, the



cached service data should be stored and disseminated prop-

erly. In this subsection, we address the issues of how to obtain

side information and where to store cached data.

We implement our ideas through utilizing WiFi Access

Points (APs), which have been used for LBSs in many other

works [26], [27], [11]. In our implementation, each AP acts as

the local cache for mobile users connected to it. Each AP also

records the number of queries issued from each cell within its

range. Here such information is also called side information

for convenience since query probability can be derived from it.

Different APs exchange their cached data and side information

with the help of mobile users, such that each AP can acquire

data and side information of a larger area. To achieve this,

mobile users downloads cached data and side information from

each encountered AP and uploads them to other encountered

APs. Specifically, when a user needs LBS, he communicates

with the local AP to see if this AP caches the needed data.

When receiving this query, the AP updates its side information

by increasing the number of queries from the user’s cell by

one. If the AP caches the requested data, it answers the query

using cached data; otherwise, the user sends a query to the

LBS server, obtains data for the real and dummy locations, and

adds the data to the AP’s cache. To accelerate dissemination

of cached data and side information, the user and the AP also

exchange their collections of cached data and side information.

Note that users can communicate with APs anonymously to

protect privacy against APs.

Note that, our schemes can work even when there is no AP

around a user, since the user stores some side information and

cached service data locally. As the result, he can either use the

cached service data locally or select k − 1 dummy locations

properly based on the side information in hand.

Our schemes work for each POI independently and it can

serve many POIs in parallel. When serving many POIs, the

storage cost may be high. To reduce the cost, we can utilize

some efficient storage techniques. For example, the top-k

query scheme [31] can be applied on top of our CaDSA and

enhanced-CaDSA to reduce the storage cost.

V. PERFORMANCE EVALUATIONS

A. Simulation Setup

To evaluate the performance of our proposed algorithms, we

follow the simulation setting in our previous work [11] and

deploy 10000 mobile users into a 8km × 8km area map of

New York city, which is shown in Fig. 2(a). Users follow the

Levy walk mobility model [32] which has been shown to be a

realistic model of describing human mobility [33], [34]. The

local map is divided into 160 × 160 cells, and the length of

each cell is 50m. The initial query probability information

in this area is obtained from Google Maps API. In every

1 minute, we choose 10 users to issue a request for LBS

service. Without loss of generality, only one POI is considered

in the simulations. The probability that a user is chosen is

proportional to the query probability of the cell where the user

is currently located. Red dashed circles in Fig. 2(a) represent

WiFi access points with their communication ranges. These

(a) Map of New York City (b) APs in OPNET simulator

Fig. 2. Simulation settings
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(a) Communication cost vs. k, t = 120
minutes
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(b) Communication cost vs. t, k = 10

Fig. 3. The communication cost, τ = 0.8

APs are located at popular places, such as downtown areas

of NYC, Brooklyn and New Jersey, shopping malls and bars,

since these places usually have more users around and are

covered by APs in reality. Fig. 2(b) indicates the distribution

of the APs in our simulator.

In our following experiments, k is related to k-anonymity,

which means the degree of anonymity, t is the evaluation time.

τ is defined by our cache system. We compare our proposed

CaDSA and enhanced-CaDSA with three existing schemes,

enhanced-DLS which represents the dummy selection algo-

rithm in [11], MobiCrowd [13], and Mobicache [14]. Note

that enhanced-DLS does not use caching but MobiCrowd and

Mobicache use caching. The baseline scheme described in Sec.

IV-B is also compared to better understand our schemes.

B. Evaluation Results

1) Communication cost: Communication cost in our

schemes should be considered from two aspects, short-range

communications and 3G/4G data traffic. We pay much atten-

tion to the 3G/4G data traffic due to the extra data fee. Fig. 3

shows the effects of k and simulation time t on the number of

queries submitted to the LBS server. In Fig. 3(a), we choose a

snapshot when the simulation time is 120 minutes and τ = 0.8.

The number of submitted queries in enhanced-DLS [11] in-

creases linearly with k since it does not consider caching at

all. MobiCrowd, Mobicache, and the baseline scheme perform

better than enhanced-DLS due to use of caching. However,

many queries are still sent to the LBS server due to their

poor cache design. Our CaDSA performs much better than

all of them since it carefully selects the dummies which have

higher contribution to cache. Our enhanced-CaDSA performs
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(b) Cache hit ratio vs. k

Fig. 4. Effects of k on privacy and cache, τ = 0.8, t = 120

even better due to the consideration of normalized distance

and data freshness which affect caching hit ratio a lot. Similar

results can be found in Fig. 3(b). These results show that our

schemes make a good utilization of the service data retrieved

from the LBS server and thus decrease the number of queries

sent to the LBS server through cellular networks. Therefore,

the communication cost is significantly reduced compared to

previous solutions [13], [11], [14].

2) Storage cost: The storage cost in our scheme can be

analyzed in three parts, the query probability, the distribution

of cached service data as well as the cached service data. The

former two are closely related to the number of cells divided.

In our implementation, their storage cost are 22.8 KB and

53.7 KB on average when the simulation runs for 4 hours for

a grid with 160 × 160 cells, respectively. Under this setting,

each user/AP almost obtains all the query probabilities in the

map. The storage cost of the cached service data is affected

a lot by the number of the POIs in a particular area. In our

work, each POI in the storage is recorded in the format of

{〈longitude, latitude〉, POI, timestamp}. Suppose the data

for each POI is of less than 1KB (e.g., bank name, location,

and a brief description). Then we can evaluate the storage

requirement of our scheme given the number of POIs in a map.

For example, there are roughly 250,000 POIs in New York City

(NYC) [12]. Then the total storage cost is 250, 000×1KB =
250 MB for a city as big as NYC. Such storage cost is not a

big issue for modern computers and smart phones.

3) Effects of k on privacy and cache: Fig. 4(a) shows

the effects of k on the average uncertainty λ. Obviously, the

privacy degree of enhanced-DLS [11] is the worst since it

does not use caching. MobiCrowd [13] performs better since it

caches the obtained service data to serve other users. However,

the improvement is not that much due to poor caching design.

The results of the baseline scheme show a slightly higher

average uncertainty since the data for dummy locations is also

cached. Mobicache [14] performs a little better. Our CaDSA

and enhanced-CaDSA have much higher privacy degree than

all those schemes due to our more advanced design of caching-

aware dummy selection. In particular, enhanced-CaDSA per-

forms better than CaDSA due to consideration of normalized

distance and data freshness in caching design.

Fig. 4(b) further explains how k affects cache hit ratio.

enhanced-DLS [11] does not consider caching, and hence its

cache hit ratio is 0. Since MobiCrowd [13] does not use

any dummy locations, its cache hit ratio stays at a lower

level around 32%. This value increases to 43% in the base-

line scheme due to dummy locations’ contribution to cache.

While in our schemes, dummy selection optimizes caching

performance as one objective, and such caching-aware dummy

selection achieves a much higher cache hit ratio than the

baseline scheme.

4) Effects of t on privacy and cache: We also evaluate the

impact of the simulation time t on the average uncertainty λ,

which is shown in Fig. 5(a). The average uncertainty increases

with time in most of schemes except enhanced-DLS [11]. The

reason is that, as time goes by, more data is cached and less

queries are sent to the LBS server. Users in MobiCrowd [13]

send queries to the LBS server without any privacy protection

when their requirements cannot be satisfied by cache, and

thus the average uncertainty is low. Mobicache [14] does not

consider the side information, and thus the contribution to

average uncertainty is limited. Our CaDSA and enhanced-

CaDSA outperform all other schemes in all the tested cases

since they can cache more useful data as time goes by.

These results are further explained by Fig. 5(b), which

shows how cache hit ratio changes with simulation time t.

We can see that the cache hit ratio in MobiCrowd, baseline,

Mobicache, CaDSA, and enhanced-CaDSA increases with t

since more data is cached as time goes by, but the cache hit

ratio of enhanced-DLS [11] is zero due to its ignorance of

caching. In all cases, our CaDSA and enhanced-CaDSA have

higher cache hit ratio than the other schemes.

5) Cache hit ratio vs. τ : Fig. 5(c) shows how cache hit

ratio changes with τ . Generally speaking, cache hit ratio

drops with the increasing τ , since more data must be cached

to answer a query. Since the contributions provided by the

obtained service data are from both the real location and

the carefully selected dummy locations, our schemes perform

much better than MobiCrowd, Mobicache and the baseline

scheme. For example, when τ = 0.8, the cache hit ratios

are only 34%, 40% and 53% in MobiCrowd, the baseline

scheme and Mobicache respectively, but the cache hit ratios in

CaDSA and enhanced-CaDSA are 74% and 86%, respectively.

Compared to CaDSA, our enhanced-CaDSA improves a lot

on the cache hit ratio due to consideration of more factors

affecting caching performance.

VI. CONCLUSIONS

Considering the impact of caching on user privacy in LBSs,

we proposed two caching-aware dummy selection algorithms

to improve user’s location privacy. The first algorithm CaDSA

achieves k-anonymity effectively by selecting some candidate

cells with similar query probabilities, and then improves

caching by determining the optimal set of dummies which

contributes most to cache hit ratio. The second algorithm

enhanced-CaDSA considers a more comprehensive set of

factors that affect caching performances, including normalized

distance and data freshness, and further improves caching hit

ratio as well as the overall privacy. Evaluation results indicate
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Fig. 5. Evaluation Results

that our proposed algorithms achieve much better privacy than

previous solutions.
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