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Abstract. One promising approach to verifying heap-manipulating programs is
based on user-defined inductive predicates in separation logic. This approach can
describe data structures with complex invariants and sound reasoning based on
unfold/fold. However, an important component towards more expressive program
verification is the use of lemmas that can soundly relate predicates beyond their
original definitions. This paper outlines a new automatic mechanism for proving
and applying user-specified lemmas under separation logic.
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1 Introduction

Inductive predicates based on separation logic [16/22] offer an important approach to
the specification of data structures that make extensive use of pointers and require so-
phisticated invariants. The technique brings the conveniences of algebraic data struc-
tures to the imperative settings, including precise yet simple and intuitive data structure
definitions. It also enables effective and automatic reasoning based on the folding and
unfolding of predicate definitions, and can verify programs over a wide range of inter-
esting data structures. However, there are some crucial limitations in existing automated
verification systems that rely solely on the unfold/fold mechanism. Firstly, it constrains
traversals of a data structure to links explicitly allowed by the recursively defined predi-
cates. These are typically top-down unravelling of the data structures, in that a program
first accesses the “root” of a data structure, then any of its (non-dangling) fields that
can be shown pointing to other objects or data structures. Secondly, the unfold/fold rea-
soner cannot discover auxiliary relations between predicates that may require inductive
proofs.

In this work, we propose a new mechanism that aims to address the aforementioned
shortcomings. The main idea is to explicitly state any auxiliary relations between pred-
icate definitions, so that a deductive mechanism based on unfold/fold can prove and use
them. This information is presented to the system in the form of lemmas that can be
viewed as auxiliary relations for the predicates, apart from their definitions. These aux-
iliary properties can capture different linkage patterns in the data structure. They can
also reveal complex relations between distinct but related predicates. Currently, user ef-
fort is required in stating the lemmas. Nevertheless, once stated, each of these lemmas
is automatically proven once and applied many times, without further user assistance.

As the need for lemmas in theorem proving is well-known, our contribution is not on
the lemmas per se, but rather on the mechanisms to prove and apply them for automated
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verification via separation logic. These mechanisms are non-trivial, especially for han-
dling more complex lemmas. We shall show that our procedure is sound, terminates and
is directed. Our specific contributions are:

— Alternative Traversals. Lemmas provide different ways to reason about induc-
tive predicates, which allows alternative traversals of data structures that are not
captured by the original predicate definitions.

— Complex Subsumption. Predicates are often related to one another in complex
ways (possibly involving multiple predicates from a heap state with side condi-
tions) that may require inductive proofs. Lemmas provide an explicit way to cap-
ture such complex subsumptions between heap states for use through the deductive
mechanism based on unfold/fold reasoning.

— Lemma Proving. To prove lemmas automatically, we use the same deductive
mechanism as our entailment checker, after an initial unfold on the base predicate
in the antecedent. The lemma itself can be applied during proving, when needed,
which corresponds to a cyclic proof by infinite descent [5/4]. Our proposal can be
viewed as a special case of [4] since it is based on a fragment of separation logic.
However, we have succeeded in providing an automated procedure for cyclic prov-
ing under this fragment which is highly suited for program verification via forward
reasoning.

— Lemma Application. Our program verifier can also apply the lemmas describing
auxiliary relationships between predicates by automatically coercing one predicate
to another, as needed. Coercion provides suitable transformations on formulas that
facilitate proof search to enhance the capability of automated verification. Our co-
ercion mechanism is goal-directed and terminates.

2 Examples

We now illustrate the usefulness of lemmas in program verification with an example
which shows the ability of lemmas to provide alternative unfoldings and foldings of
predicates, thereby providing different ways to reveal points-to facts not apparent in
the original definitions of predicates. Let us consider the following class and predicate
definitions.

classnode { int val; node next}
classnode2 { int val; node2 prev; node2 next}
root::11(s) = root=null A s=0 V Jr-root:mnode( ,r)*r:11l(s—1) inv s>0;

root::dseglN(s,p,n,t) = root=n A p=t A s=0 V
Jr-root::node2( ,p,r) * r::dsegN(s—1,root,n, t) inv s>0;

root::dcl(s) = root=null A s=0 V
Jry, ro-root:node2( ,ry,Ty) * ry::dsegN(s—1, root, root,ry) inv s>0;
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Predicate 11 defines a linear-linked list of length s. Predicate dsegN, adopted from
[11]], defines a doubly-linked list segment. Parameter s denotes its length, while p is the
dangling prev field of the first element, n is the dangling next field of the last element
which is also pointed to by t. The dcl predicate defines a circular list by making the
dangling pointer of the dsegN predicate point to the same distinguished root node,
thereby making a cycle.

Details of our specification language is given in Sec 3 Briefly, each predicate de-
scribes a data structure, which is a collection of objects reachable from a base pointer
denoted by root in the predicate definition. root also serves as an implicit argu-
ment of the predicate. The expression after inv keyword captures a pure, i.e. heap-
independent, formula that always holds for the given predicate. Formula p::c(v*) de-
notes either a points-to fact if c is a class name, or an instance of predicate ¢ with p, v*
as its arguments, where p is the actual argument for root and v* are arguments for the
explicit parameters.

The dsegN predicate, by its definition, favors one direction of linkage. Traversing
the list in a forward manner by following the next field is naturally supported by the
definition with unfold/fold reasoning. However, traversing the list in a backward manner
using the prev field is not as easily done. The problem manifests itself in, for example,
the following delete procedure for a circular doubly-linked list. The procedure deletes
the element pointed by x and updates x. The precondition requires the circular list to be
non-empty, and the postcondition asserts that the updated x points to a circular list with
one fewer element.

void delete(ref node2 x)
requires x::dcl(s) A s> 1

1

2

3 ensures X ::dcl(s—1);

s A

5 if (x.next == x) x = null;

6 else {

7 /l x::node2( ,ri,ra) * rpdsegN(s — 1,x,x,T1) As > 2

8 node tmp = X.prev;

9 /l x::node2( ,ri,ry) * rpdsegN(s — 1,x,x,T1) Atmp =11 As > 2

10 tmp.next = x.next;

1" /l x::node2( ,ri,Ts) * ra:dsegN(s — 2,x,T1,T3) * ri:node2( ,r3, o)

12 /I ANtmp=riAs>2

13 X.Next.prev = x.prev;

14 /I x:mode2( ,ri,rs) xriinode2( ,T1,r) AT =Ti Ax=r3 As=2Atmp=r1;
s /I'V x:mnode2( ,ri, ra) % rp:node2( ,rs, ra) * rydsegN(s — 3,1, Ty, T3)
16 1 * ri:mode2( ,r3, ra) As >3

17 X = X.next ; }}

Fig. 1. Delete from circular list

For exposition purpose, intermediate program states are given as comments (after
//) in the code, though they are automatically derived from the initial precondition. To
verify the assignment to tmp.next at line 10, the program verifier requires an explicit
points-to fact tmp::node2( , , ). This is enforced by the following entailment where
®r is inferred.
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x::node2( ,rq,Ty) * radsegN(s—1,%,x, 1) A tmp=r; A s>2
F tmp::node2( , , ) * Pp

This proof obligation is challenging for reasoning based on unfolding and folding of
inductive definitions [[16], since the dsegN predicate does not explicitly state that the
parameter t points to an object when the data structure is non-empty. Fortunately, the
problem can be solved by adopting the following two-way equivalence lemma.

root::dsegN(s,p,n,t)As>0 <> Jr-root::dsegN(s—1,p,t,r)*t::node( ,r,n) (1)

3 Specification Language

Figure2lshows the grammar for our specification language that has been mostly adopted
from [16] except for lemma specifications. Shape predicate spred is the main specifi-
cation construct that provides data structure descriptions. Formulas are compiled to an
internal representation in which arguments for heap formulas are distinct and fresh.
Additional existentially quantified variables are introduced if necessary to obtain this
normal form.

Predicate spred ::= [root:]c(v*) = & [inv 7]
Formula & ==\/3* (kA7)
Pure form. w =y A¢
Pointer form. v u=wvi=wv2|v=null |vi Zv2|vF#null |y A7
Heap form. Kk u=emp | vic(v") | K1 * ke
Presburger arith. ¢ =z=arth| g1 Aga | d1 Vo2 | ¢ |Iv-¢|Vv-¢
arith :=a; =az a1 #az a1 <az a1 <a
a =u=kl|v|kxalai+az|—a|max(a,az) | min(a,as)
Lemma L ==HANGXB
Complex Lemma L' ==Yv*-((H*E)ANG — B)
Head H = [root:]|c(v*)
ExtraHeap FE =K
Body B =&
Guard G ==
k € Integer constants

¢ ldentifiers

=
o

Fig. 2. Grammar for Shape Predicates and Lemmas

Recursive shape predicate definitions need to satisfy certain syntactic restrictions,
namely well-formed and well-founded conditions, to ensure soundness and termina-
tion of static reasoning. Well-formed conditions ensure that shape predicates and for-
mulas do not admit garbage. They thus disallow predicates such as root::p() = Ix -
root:node( , )*x:node(, ) wherex:node( , )is garbage as it is inaccessible from
the free variables. Well-founded conditions disallow root to be passed as argument to
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a recursive predicate invocation. That means root either is null, dangles, or points
to an object which ensures a decreasing heap with each recursive predicate instance.

We now describe a special class of lemmas L allowed by our new specification lan-
guage. Each L lemma consists of a head H and a body B. The head H is a single
predicate. The guard G is a pure formula whose variables are solely from H, which
can be omitted if it is true. The body B is a formula in separation logic. The direction
> of a lemma constrains its applicability. The lemmas are divided into three groups,
namely : (i) weakening lemmas using —, (ii) strengthening lemmas using «—, and (iii)
equivalence lemmas using <. We expect lemmas to be well-formed and well-founded,
but allows the root parameter to reference a predicate. These lemmas have a similar
format as user-defined predicates and can therefore be handled by the same unfold/fold
mechanism of our prover, except that it can be goal-directed.

However, we are also interested to support lemmas with more general LHS and with
universally quantified variables in the guard. These more complex lemmas are captured
by L’ in Fig[Plas a weakening lemma. There is no need to consider a strengthening ver-
sion of complex lemma since it can be converted to L’-form by swapping the two sides.
To illustrate the utility of complex lemma, consider a list segment predicate below:

root::1seg(p, s) = root=p A s=0 V Jr-root:node( ,r) x r::1seg(p, s—1) inv s>0;
One simple L-form lemma to support list segment breaking and joining is:
root::lseg(p,n) «» Ja,b,r - root::1seg(r,a) x r::1seg(p,b) An=a+b A a,b>0

However, this lemma cannot support entailment proving that requires the capture of size
properties for broken segments, such as the following:

x::1seg(p,n) An=8F Jr - x::1seg(r,a) x r::1seg(p,b) ANa=2 Ab=6 x Pp

To support the above entailment, we require a more general L'-form lemma where some
variables in the guard, such as a and b, are universally quantified, as follows:

Va,b - (root::lseg(p,n) An=a+b Aa,b>0 — Jr-root::1seg(r,a) * r::1seg(p, b))

Such lemmas allow universally quantified variables to be instantiated which can cru-
cially increase the expressive power of our entailment prover. They can be provided for
the list segment with length property, but not for the list segment with bag of values
property. Furthermore, there are also lemmas with multiple predicates on the LHS. An
example of this was used in for a decidable fragment of separation logic to safely
break a class of non-touching list segments. (Our thanks to Peter O’Hearn for highlight-
ing the importance of complex lemmas to us.)

4 Entailment

Given formulas ¢; and @5, our entailment prover checks if @, entails @,, that is if in
any heap satisfying @;, we can find a subheap satisfying $>. Moreover, we determine
a formula @, for the residue heap state which captures the frame condition. Formally,
our entailment relation is defined as follows:
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Definition 4.1 (Entailment) . A formula ©, entails a formula ®5 with residue P iff
Vs, hy - s, hy ':Qsl = Jdho,hr -h1 = ho xhg A s, hs ):@2 NS, hgr ':QSR

The main features of our entailment prover are that, besides determining if the above
relation holds, it also infers the residual heap of the entailment, that is a formula @5
such that s,hr = @g and derives the predicate parameters. These two features are
important for program verification tasks using forward analysis. The relation is formal-
ized using judgment of the form where « denotes the consumed heap and V' is the set
of existential variables encountered :

431 "@ 432 *@R

A sound and terminating proof system for the above entailment relation is presented
in [16]. That system relies on unfolding and folding of the predicate definitions to com-
pute the subheap of @, that matches @5 and the residue @r. In the current paper, ad-
ditional proof rules that handle user-supplied lemmas shall be presented which greatly
enhances our entailment prover. We provide a re-cap on the unfold/fold mechanisms.

We apply an unfold operation on a predicate in the antecedent that matches with an
object in the consequent. For instance, when checking:

x:11(n) An>3+ (Ir - x:node( ,r) * r:node( ,y) A y#null) x &y

where &, is the residue, we unfold the x::11(n) heap formula in the antecedent twice to
match two objects in the consequent. This results in the following reductions towards a
residual state:

Jqi-x:mode( , qi1)*q1::11(n—1)An>3 F (Jr-x:mode( ,r)*r:mode( ,y)Ay7#null) &y

q:::11(n—1)An>3 F (qi:node( ,y) A y#null) * &
3q2-q1::node( , q2)*q2::11(n—2)An>3 F qi::node( , y)Ay#null * &
q2::11(n—2)An>3Aqe=y F y#null % &

We apply a fold operation when an object in the antecedent is aliased with a predicate
in the consequent. An example is:

x:node(l,qi)*qq::node(2, null)*y:node(3,null) F x:11(n)An>1 %@y

The fold step may be recursively applied but is guaranteed to terminate for well-founded
predicates. Furthermore, the fold operation may introduce bindings for free parameters
of the folded predicate. In the above, we obtain n=2 which may be transferred to the an-
tecedent since n is free. This allows our folding step to finally derive y::node(3, null)A
n=2F n>1 % & from which we will obtain ¢z = y::node(3,null) A n=2.

5 Lemma Application

User-supplied lemmas are proved and applied to support sound proof search by the
entailment prover. Since the proof of a lemma may apply the lemma itself inductively,
we first present the proof rules that apply lemmas. Depending on whether the lemma
is applied to the antecedent or the consequent of the entailment, our entailment prover
treats it as an unfolding or folding, respectively. «— lemmas can be applied to only the
consequent of an entailment, — to only the antecedent, and « to both.
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5.1 Weakening the Antecedent by Lemma Unfolding

Alemma H A G <1 B where i<1is — or < can be seen as an alternative way to unfold
a predicate. Its application is formalized below which says that the lemma is applied if
we can find a substitution p that matches H to py::c1(vi) and satisfies the guard.

[L-LEFT]
IsPred(cy) prcr(vy) * ke Ay b pG
p =match(H,p1:c1(vi)) (pB) * 51 Amy }—':/*pl::cmm (ko A o) * @
pruci(v]) * k1 A FE (ke Ama) @
where @ - 7 checks if guard 7 holds under @, and match is defined as:

£ [p1 — po, v} > V3]

match(py::c{vy), po::e(vg))

For a goal-directed lemma application, we shall only apply this rule when there exists
a predicate pp::ca (Vi) € Ko in the consequent that would (subsequently) match up via
aliasing with a pa::co(v}) in the RHS of lemma pB where ps € {p1, v} }.

We now show how a lemma can help verify the delete procedure, in particular
during an assignment to the prev field of the tmp object at line 10. As part of the
verification, the following entailment needs to be checked, where the antecedent denotes
program state at that program point.

x::node2( ,rq,Ty) * ri::dsegN(rs, , ,To) Atmp =1,
Arz=s—1As>1F tmp:node2(, , )*Pp
~ ([L-LEFT])
x:mode2( ,ry,ry) *ridsegN(ry, ,rp, ) *rpinode2(, , )
Atmp=ryArs=r3—1Ar3=s—1As>1F tmp:node2(, , )*Pp
~ ([ENT-MATCH])
Success

After the above goal-directed lemma application, we can reveal a match up between
ry::node2( , , ) (from the lemma) and tmp::node2( , , ) (from the consequent), be-
fore successfully proving the entailment.

Our proposal also handles the more complex lemma form: Vo* - (H « EA G — B).
We have designed and implemented it as follows:

[L-LEFT-COMPLEX]
IsPred(cy) p = match(H, py::c1{v]))
K1 AT I—g*plz:q@ﬁ pE x &y
pB x ([(v =) FpG) % By Ay FEPE) () A my) % B
prici(vy) * k1 AT EY (ke Amg) * @

To support the above proof rule, we provide a new delayed guard ([(v —?)*]FpG)
that is used to support the instantiations of v* when the body pB is being matched by
our entailment procedure. Once v* have been instantiated, we test the guard G before
its instantiations are added to the antecedent. The use of lemmas with universal vari-
ables, where possible, allows stronger proofs to be asserted than what is possible using
corresponding lemmas with existentially quantified variables. In our approach, this is
realised by a novel instantiation mechanism from the delayed guard construct.
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5.2 Strengthening the Consequent by Lemma Folding

A lemma H A G <t B where i is < or « provides an alternative way to fold a
predicate. Its application is formalized as follows:

[L—RIGHT]
IsPred(c2) p = match(H, pa::c2(v3)) k1 AT FpG
(", K", ") € foldL" (k1 A 1, paiica(v3), pB)
(m%, 7€) = spliti,%}(?rr) D"ATEE (kg Ao ATC) * D
k1 Ay E (paiica(vg) * ko A ) * @
foldL performs folding using a lemma instead of the body of a predicate.

[L—FOLD]
Wi:‘/i—{'l)*,p} K/\ﬂ—l_ﬁ/ *} pB*{(@i,ﬁi,W7ﬂi)}?:1

{p,v

foldL”'(m AT, pie{v*), pB) s {(D;, k4, AW, - ) 1y

Note that the folding function foldL uses a specialized entailment checking proce-
dure. The checker returns a set of quadruples (?", k", V, 7"), each being the result of a
successful folding against a disjunct of the predicate definition or the lemma body. The
meaning of each component of a triple is as following:

— @" is the residue (frame) not consumed by the folded disjunct.

— K" is the part of the heap consumed by the folded disjunct. By definition, k" * &"
equals the heap in the first argument of foldL.

— V is the set of existential variables generated from unfoldings of the predicate
definition.

— 7" is the pure constraint of the folded disjunct. It is used to obtain information,
such as bindings to values, for predicate parameters. This information is especially
useful for forward verification.

This use of a set of states can be generalized to the entire system which results in
entailment proving of the form &, F & x S that has been implemented in our tool.
Here, S denotes a set of residual heap states that arise from proof search for successful
entailment. Failure of entailment is denoted by S={}, while multiple answers denote
alternative successful outcomes of entailment with the respective residual heaps. Proof
search (with the help of lemmas) increases the expressivity of our verifier.

5.3 An Example of Entailment with Lemma Capability

An interesting application of lemma involves the list-with-tail predicate which is de-
fined as follows:

root::11 tail(tx,n) = root:node( ,null) An = 1A tx = root
V root:node( ,r) *r:1l tail(tx,n—1) invn>1

The predicate captures a list of n objects, with tx pointing to the last one. It can be
coerced to a list segment, and vice versa, via the lemma:

root::11 tail(tx,n) < root:lseg(tx,n — 1) * tx::node( ,null) ()
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By applying this lemma, our verifier can easily prove the following specification for
the concatenation of two lists with tail pointers:

{x::11 tail(tx,n) * y::11 tail(ty,m)}
tx.next =y;
{x::11 tail{ty,m+n)}

Separation logic semantics requires tx::node( , ) to be present in the program state
in order to safely perform the dereference operation via tx.next. Such an object can
be exposed via an unfolding of the 11 tail predicate using the lemma, resulting in the
following program state prior to the assignment:

{x:lseg(tx,n — 1) x tx:node( ,null) x y:11 tail(ty,m)}
which is then updated by the assignment to:

{x:lseg(tx,n — 1) x tx:mode( ,y) % y::11 tail(ty,m)}

The weakening on the postcondition is done via an entailment, whose proof is sketched
below. This proof is performed automatically by our system.

(match ty with )

described below

recursive entailment
residue from fold

(FOLD)
tx:node( ,y) *y:11 tail(ty,m) ty:node( ,null)
F tx::lseg(ty,m) F ty:node( ,null)
*{ty:mode( ,null)} *{emp}
FOLD
tx:node( ,y) *y:11 tail(ty,m) ( )
F tx:lseg(ty,m) % ty:node( ,null) % {emp}
(L-RIGHT)
x::lseg(tx,n — 1) x tx:node( ,y) * y::11 tail(ty,m)
F x:lseg(ty,m+n — 1) x ty:node( ,null) * {emp}
(L-RIGHT)

x::lseg(tx,n — 1) x tx:node( ,y) * y::11 tail(ty,m)
F x:11 tail(ty,m + n) * {emp}

Our entailment prover first converts the list with tail pointer in the consequent to a
list segment and a node. It then breaks the list segment into two and match the first
segment with the aliased segment in the antecedent. Subsequently, it performs a fold on
atx:lseg(ty,m) predicate which invokes a recursive entailment, as follows:

( derive residue)

ty::node( ,null) - emp * {ty::node( ,null)}

(MATCH)
yi:lseg(ty,m — 1) * ty:node( ,null)

b y:ilseg(ty,m — 1) * {ty::node( ,null)}
(L-LEFT)
y::11 tail(ty,m) F y:lseg(ty,m — 1) x {ty:node( ,null)}
tx:node( ,y) *y:11 tail(ty,m)

F (3r - tx:node( ,r) * rilseg(ty,m — 1)) * {ty:node( ,null)}

(MATCH)

(FOLD)
tx:node( ,y) *y:11 tail(ty,m)

F tx:lseg(ty,m) * {ty:node( ,null)}
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Such applications of lemmas are critical for automatically deriving non-trivial proofs
to support program verification.

5.4 Termination

To prevent non-termination during lemma applications, we assign a history to each heap
constraint p::c{(v*) where ¢ is a predicate name. The history is a set of predicate names
which are transitively rewritten to p::c(v*). Lemma application is possible only if it
does not rewrite a predicate to some predicate already in the former’s history. Initially
the history is empty. After each predicate application, the predicate name in the head H
is added to the history of each and every predicate p::c{v*) in the body p B, in addition to
the history of the matching predicate instance p::c{v*). Folding and unfolding predicate
instances pass the predicate history on to the predicate instances in the body.

Theorem 5.1 (Termination). Entailment proving is terminating, even in the presence
of lemma applications.

Proof Sketch. Termination is guaranteed by the fact that only a finite number of lemma
applications can occur when proving an entailment. This is the case since there is a fi-
nite number of lemmas, and each predicate instance maintains a history of predicates
that are rewritten by lemma applications to the current predicate instance. Therefore
lemma applications cannot occur after a finite number of steps in the entailment check-
ing process. Termination is then guaranteed by the entailment checking as in [16].

6 Lemma Proving

Correctness of lemmas is automatically proved by our system via the entailment prover.
A weakening lemma is proved by showing that the predicate in the head of the lemma
entails the body. A strengthening lemma needs an entailment in the reverse direction.
An equivalence lemma needs both. During this entailment proving, the lemma being
proved can be soundly used in the proof itself as an instance of cyclic proof. Formally,
proving — and < lemmas amount to discharging the following proof obligation:

unfold(H =« E N\ G,root) - B * emp 3)
whereas < and < generate the following obligation:
unfold(B,root) - (H * E A G) * emp 4)

At the start of lemma proving, we always unfold the head predicate in the antecedent.
This ensures that infinite descent occurs for the resulting cyclic proof which guarantees
a progress condition needed for sound induction. During lemma proving, the lemma
being proved may be applied to the unfolded formulas as an instance of cyclic proving.
Furthermore, we also check that the entailment derives an empty residual heap. This
ensures that both sides of the lemma cover the same heap region.
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7 Implementation

We have built a prototype system using Objective Caml. The proof obligations gen-
erated by this verification system are discharged by our entailment proving procedure
with the help of Omega Calculator [21] and CVC [23]. These two arithmetic solvers
have complementary strengths. In many cases, CVC Lite is faster; but Omega is more
complete. We therefore run both of them and get the timing of the first returning prover;
or use Omega’s when CVC Lite fails.

Programs LOC Timing
with lemmas without lemmas
List with Tail verifies size/length
append 1 0.18 failed
Circular Linked List verifies size + circularity
delete first 15 0.07 0.04
count 15 0.13 failed
Doubly Linked Circular List verifies size + double links + circularity
delete 12 0.26 failed
Doubly Linked List verifies size + double links
append 26 0.16 0.12
flatten (from tree) 34 0.35 0.33
Sorted List verifies size + min + max + sortedness
delete 21 0.16 0.15
insertion sort 36 0.37 0.32
selection sort 52 0.34 0.31
bubble sort 42 0.64 failed
merge sort 105 0.61 0.56
quick sort 85 0.67 0.65
File Manager verifies directory structure
search name 18 1.71 1.49
mkdir 43 3.02 failed
remove 50 4.66 failed
copy folder 67 7.50 failed
AVL Tree verifies size + height + height-balanced
insert 169 5.06 5.00
Red-Black Tree verifies size + black-height + height-balanced
insert 167 1.53 1.39

Fig. 3. Verification Times (in seconds) for Data Structures with Arithmetic Constraints

We tested our system on a suite of examples summarized in Figure[3l These examples
are small but handle data structures with sophisticated shape and size properties such
as sorted lists, balanced trees, etc. in a uniform way. Verification time for each function
includes time to verify all functions that it calls. We compare the timings obtained with
and without lemmas. Lemma proving time is not included, since they are proven once
and applied many times. Preliminary results indicate that proof search with lemmas
does not incur much overhead due to the directed nature of search. On the other hand,
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lemmas are important to verify a number of examples that would fail otherwise. For
example, the bubble-sort algorithm requires sorted list to be coerced into an unsorted list
expected for its precondition, whenever a swap has occurred for the bubble procedure.
Also, the file manager traverses its doubly-linked lists in two directions. while circular
lists are built using list segments that may require breaking and joining.

8 Related Work and Concluding Remarks

The general framework of separation logic is highly expressive but undecidable. Thus,
in the search for a decidable fragment of separation logic, Berdine et al. supports
only a limited set of lemmas and predicates without size properties, disjunctions and ex-
istential quantifiers. This fragment forms the basis of a program verifier called Small-
foot [2]]. Jia and Walker [13]] also identified a decidable logic but without recursive
predicates for automated reasoning of pointer programs. Preoteasa [20] showed that
separation logic rules such as the frame rule are correct with respect to the predicate
transformer semantics for a language with recursive procedures, local variables, value
and value-result parameters via the PVS theorem prover [18]]. Marti et. al. verifed
the heap manager of a small embedded operating system, while Feng et. al. [9]] showed
how the effects of interrupts and thread preemptions can be soundly modelled through
ownership transfers. These approaches are based on separation logic but currently re-
quire hand-written Coq proofs. Separation logic has also been used to automatically
reason about heap-manipulating programs in various contexts, e.g. locality [8], termi-
nation [3l], concurrency [19]]. Similar to [1]], most of these works only support a limited
predefined set of predicates and lemmas. Our recent work [16] allowed user-specified
inductive predicates in separation logic, which are then automatically verified via a
sound, terminating but incomplete verification system. Building on this prior work, the
current paper proposes a new mechanism based on user-specified lemmas that can be
automatically proven and applied by our program verifier. This feature can greatly en-
hance the capability of our automated program verification system, and is an important
step towards building a more complete program verifier. Compared to traditional theo-
rem provers, like Isabelle [17]], our approach attained the following improvements: 1) it
is based on separation logic (not classical logic), 2) it is automatically proven (via cyclic
proof), 3) it is automatically applied (during entailment), and 4) it always terminates.
In contrast, traditional theorem prover handles lemmas (for classical logic) using either
user-specifiable tactics/heuristics or requires manual proofs, and is not guaranteed to
terminate.

On the inference front, Lee et al. [14] has formalized an intraprocedural analysis for
loop invariants using grammar approximation under separation logic. Their analysis can
handle a wide range of shape predicates with local sharing but is restricted to predicates
with two parameters and without size properties. Another work [[10] has also formulated
interprocedural shape inference but is restricted to just the list segment shape predicate.
More recently, Guo et al showed how fairly complex shapes can be inferred with
the help of a technique based on truncation point which can be viewed as a lemma
for cutting (or grafting) a subheap of the same predicate from (or into) a given shape.
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However, the presence of numerical properties makes the truncation point technique
difficult for more general user-defined predicates. The reason is that, after cutting a sub-
heap and then grafting back a piece of heap of the same shape, the shape of the original
heap is restored, but not necessarily its content or other quantitative properties. Another
recent work by Chang and Rival [6] proposes a backward unfolding technique that re-
quires an in-built (but generic) lemma for splitting inductive segments. This hardwired
use of a lemma can be viewed as a special case to our user-defined approach. While our
system does not focus on the inference aspect, we provide better support for automated
verification via an expressive data structures and lemmas specification mechanism. For
example, data structures with strong invariants, such as balanced heights, sortedness
and graph-like pointer links, are easily captured by our specification mechanism prior
to automatic verification.

To the best of the authors’ knowledge, most past works in automated program veri-
fication have not made systematic provision for user-specified lemmas that can be au-
tomatically proven and applied, so as to widen the class of programs that can be auto-
matically verified. However, the use of user-specified lemmas can be found in works
based on dependent type systems and proof checkers. An example of this is the Ap-
plied Type System (ATS) [7] that was proposed for combining programs with proofs.
In ATS, dependent types for capturing program invariants and lemmas are highly ex-
pressive, but users must supply all expected properties, associated proofs, and precisely
state where they are to be applied, with ATS playing the role of a proof-checker. On
the contrary, our proposed technique performs lemma proving and program verification
automatically, without the need for such detailed guidance.

To summarise, we have introduced a new mechanism to support user-supplied lem-
mas for automated program verification via separation logic. This approach is directed
and is guaranteed to ferminate. It is directed because the lemmas are applied selec-
tively, as guided by the need for the eventual matching up of heap predicates during
entailment proving. It terminates since we use well-formed and well-founded heap
formulae for both shape predicates and lemmas, together with a cycle detection tech-
nique. One strength of our approach is that users are allowed to add relevant lemmas
to further enhance the capability of the automated program verification system. This
puts creative control back into users’ hands. Nevertheless, we provide machine sup-
port for automatically proving and then applying these given lemmas. With the appro-
priate use of universal quantifiers, these lemmas can be quite expressive. We believe
that lemmas can greatly enhance the capability of automated program verification in
general, and separation logic in particular; as they play the role of cut rules in proof
systems.
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