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Abstract: Image super-resolution (SR) is a significant technique in image processing as it enhances
the spatial resolution of images, enabling various downstream applications. Based on recent achieve-
ments in SR studies in computer vision, deep-learning-based SR methods have been widely in-
vestigated for remote sensing images. In this study, we proposed a two-stage approach called
bicubic-downsampled low-resolution (LR) image-guided generative adversarial network (BLG-GAN)
for remote sensing image super-resolution. The proposed BLG-GAN method divides the image
super-resolution procedure into two stages: LR image transfer and super-resolution. In the LR image
transfer stage, real-world LR images are restored to less blurry and noisy bicubic-like LR images
using guidance from synthetic LR images obtained through bicubic downsampling. Subsequently,
the generated bicubic-like LR images are used as inputs to the SR network, which learns the mapping
between the bicubic-like LR image and the corresponding high-resolution (HR) image. By approach-
ing the SR problem as finding optimal solutions for subproblems, the BLG-GAN achieves superior
results compared to state-of-the-art models, even with a smaller overall capacity of the SR network.
As the BLG-GAN utilizes a synthetic LR image as a bridge between real-world LR and HR images,
the proposed method shows improved image quality compared to the SR models trained to learn the
direct mapping from a real-world LR image to an HR image. Experimental results on HR satellite
image datasets demonstrate the effectiveness of the proposed method in improving perceptual quality
and preserving image fidelity.

Keywords: remote sensing images; high-resolution satellite images; super-resolution; generative
adversarial network; image transfer; bicubic downsampling

1. Introduction

Image super-resolution (SR) refers to the task of reconstructing high-resolution (HR)
images from their low-resolution (LR) counterparts [1], and it has great significance in
image processing, enabling various downstream applications [2]. However, image super-
resolution is a well-known ill-posed problem because a single LR image can correspond
to multiple HR images. Recent SR studies have addressed this problem by leveraging
deep learning networks and achieved remarkable performance improvements compared to
conventional example-based methods [3], even in the absence of prior information [4–10].

Since the advent of the deep-learning-based SR approach [4], several studies have
devised deeper networks using various learning strategies such as residual [6,9,11–14],
recursive [6,7], and adversarial [9,15] learning. Deep-learning-based SR models can be cate-
gorized into two groups, including convolutional neural network (CNN)-based models and
generative adversarial network (GAN)-based models [16]. The first deep-learning-based
SR model, SRCNN, is a CNN-based model composed of three convolutional layers, each
corresponding to patch extraction, nonlinear mapping, and reconstruction [4]. Following
the success of the SRCNN, CNN-based models such as VDSR [6] and EDSR [11] have been
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widely developed to fully leverage the learning capability of deeper networks. Currently,
a residual network with a stack of residual blocks is perceived as the basic structure of
CNN-based SR models. Zhang et al. [14] proposed RDN, consisting of residual dense blocks
with dense local connections to enhance the residual block. In [13], a channel attention
mechanism was adopted for a residual structure, demonstrating a significant improvement
in SR image quality. However, because most CNN-based models are trained to optimize
pixel-wise losses, such as the mean squared error (MSE) loss or L1 loss, these models
are prone to producing overly smoothed SR outputs with restrictions on realistic texture
recovery [17].

Compared with CNN-based models, GAN-based SR models generate more realistic
textures by introducing adversarial training into existing CNN-based models [18]. The basic
principle of a GAN is to train two networks (generator and discriminator) simultaneously
for opposite purposes. The discriminator is trained to distinguish real HR images from
SR images, whereas the generator is trained to produce realistic SR images to fool the
discriminator. SRGAN [9] and ESRGAN [15] integrated two additional losses (perceptual
and adversarial losses) into a loss function and improved the perceptual quality of the SR
results.

A GAN-based SR approach has also been employed for remote sensing image process-
ing to improve the perceptual quality [19]. Jiang et al. [20] complemented a GAN-based
model by incorporating a subnetwork for edge enhancement, which refines edge infor-
mation from satellite image datasets. Furthermore, Rabbi et al. [21] proposed EESRGAN,
which trained the SR and object detection networks end-to-end and attempted to enhance
the SR performance by using the detector loss from the subsequent object detection network.
Liu et al. [22] proposed SG-GAN to benefit from employing a downstream task network by
applying a pre-trained saliency detection model to the outputs of the SR network.

In general, deep-learning-based SR methods require LR images and their correspond-
ing HR images as the training dataset. However, owing to the difficulties in obtaining
real-world LR-HR datasets, most SR studies have only used HR images and generated LR
images by applying degradations to HR images. The most commonly used method for
generating LR images from HR images is downsampling by bicubic interpolation with a
predefined scale factor [6,8–10,12,15,23]. However, SR models trained on simple degrada-
tion do not reflect the properties of real-world degradation, and often result in deteriorated
performance when applied to real-world LR images. Therefore, some researchers have
attempted to alleviate the gap between simple downsampling and real-world image degra-
dation by applying a blur kernel and noise [4,13,14,24–27]. Conversely, several tailored
datasets have been constructed, such as RealSR [28], DRealSR [29], and SR-RAW [30],
which are more targeted at real-world image super-resolution. These datasets comprise
real-world LR-HR image pairs obtained by adjusting the camera’s focal length. Similarly,
deep-learning-based SR models for remote sensing images commonly use predefined degra-
dation to generate synthetic LR-HR datasets for training and validation [21,22]. Some recent
studies adopted a degrader [31] or downsample generator [32] in the deep-learning archi-
tecture and attempted to make the model learn image degradation and super-resolution.

For HR satellite images, image datasets are usually provided as pairs of panchromatic
(PAN) and multispectral (MS) images. Thus, these paired images provide a favorable
opportunity for constructing real-world LR-HR image datasets. In this study, to train
and validate the proposed model on real-world LR-HR image datasets, we performed
pansharpening [33] using paired PAN and MS images from WorldView-3 (WV3) to generate
real-world LR-HR remote sensing image datasets. The pansharpened and original MS
images were then used as the HR and LR images, respectively. The scale factor was set to
4, based on the scale ratio of the PAN and MS images. The experimental results from the
overall study were obtained from SR models trained on real-world LR-HR image datasets.
A detailed description of the datasets used in this study is provided in Section 3.1.

Figure 1 demonstrates the difference between real-world and synthetic LR images. The
ground objects are discernible in the bicubic-downsampled LR images (Figure 1a), whereas
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the clarity of the object boundaries is diminished in the real-world LR images (Figure 1b)
because of blurring. Therefore, SR models trained on synthetic LR images from bicubic
downsampling often fail to achieve satisfactory SR performance on real-world LR images.
Furthermore, we observed that the SR models demonstrated better SR performance when
trained on synthetic LR-HR image datasets than when trained on real-world LR-HR image
datasets (see Appendix A).
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Figure 1. Comparison of the synthetic LR image with real-world LR image and HR image:
(a) bicubic-downsampled LR image; (b) real-world LR image (MS image); (c) HR image (pansharp-
ened MS image). For the convenience of comparison, the LR images are enlarged to the size of the
HR images.

Based on these observations, we have inferred that refining the input LR image is as
crucial as designing a complex SR network architecture to enhance the SR performance.
Thus, this study proposed a bicubic-downsampled LR image-guided generative adversarial
network (BLG-GAN) for the super-resolution of remote sensing images. The BLG-GAN
performs super-resolution for real-world LR images under the guidance of clean synthetic
LR images, obtained through a simple bicubic operation. By dividing the SR problem
into subproblems with separate networks, the learning objective of each network becomes
clearer. As a result, the training process of the BLG-GAN can be more stabilized than that of
deep networks trained to learn a direct relationship between real-world LR and HR images.

To the best of our knowledge, this is the first study to introduce a training strategy
that uses a synthetic LR image from bicubic downsampling to guide the supervised image
super-resolution of remote sensing images. Moreover, we investigated the effectiveness of
our method by comparing it with state-of-the-art methods and thoroughly analyzed the
influence of its components on SR performance.

The remainder of this study is organized as follows. Section 2 presents the architecture
of the proposed BLG-GAN model. Section 3 presents the experimental results of the WV3
datasets. In Section 4, the effectiveness of the proposed method was validated using
ablation studies on the network architecture and type of loss. Finally, Section 5 presents the
conclusions of this study.

2. Methodology

The proposed model aims to learn mapping from the real-world LR image domain
X to the HR image domain Y from training using the given samples x ∈ X and y ∈ Y
with the guidance of bicubic-downsampled LR images. While real-world LR image x is
obtained from MS bands of WV3, a synthetic LR image is generated from HR images y
with bicubic downsampling and denoted as y↓ ∈ Y↓. Inspired by [34–36], we assumed y↓
as “clean LR image,” which has less corruption in an image such as blur and noise. Thus,
we used these bicubic-downsampled LR images as a bridge between the LR images and
the corresponding HR images to restore clear details from the clean LR images. The prior
application of image transfer to the input LR image is intended to reduce corruption within
the real-world LR image and affects the quality of the output images from the following SR
process.
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As shown in Figure 2, the proposed BLG-GAN model consists of two stages: LR
image transfer and super-resolution. In the LR image transfer stage, the LR images are
processed through GXY↓ to generate LR images that have similar image characteristics
or distributions with synthetic LR images, referred to as “bicubic-like LR images”. The
output of the LR image transfer stage is then fed into the generator with upsampling blocks
(GY↓Y) for super-resolution. Both stages include a generator and a discriminator to adopt
adversarial training for the generation of bicubic-like LR and SR images. Each generator is
trained to fool its corresponding discriminator and produce bicubic-like LR or SR images.
Conversely, the discriminator is trained to distinguish whether the generated image is real
or fake. The following subsections provide detailed explanations of each stage.
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Figure 2. Overall network architecture of the proposed BLG-GAN. The proposed network consists of
two stages: LR image transfer and super-resolution. In the LR image transfer stage, the generator
(GXY↓) transfers real-world LR images to bicubic-like LR images. In the super-resolution stage, the
subsequent generator (GY↓Y) learns the relationship between bicubic-like LR images and HR images.

2.1. LR Image Transfer

In LR image transfer, generator GXY↓ learns the mapping from the LR domain X to
the bicubic-like LR domain Y↓, as illustrated in Stage 1 of Figure 2. For the given input LR
image x, GXY↓ generate a bicubic-like LR image ŷ↓, which looks similar to a synthetic LR
image y↓. This LR image transfer process can be formulated as:

ŷ↓ = GXY↓(x). (1)

Using adversarial training, GXY↓ was trained to fool the corresponding discriminator,
DY↓, for the generated bicubic-like LR image (ŷ↓). In the meantime, DY↓ is trained to
discern the generated LR image ŷ↓ as fake and the synthetic LR image y↓ as real.

The generator loss for LR Image transfer consists of two different losses: pixel-wise
loss LLR

pix and adversarial loss LLR
adv. The pixel-wise loss calculates the l1-distance between ŷ↓

and y↓. We chose LSGAN [37] for adversarial loss, which uses the form of least squares
loss instead of negative log-likelihood loss. The LSGAN is known to stabilize the learning
process while achieving a higher SR performance than the standard GAN [38]. The two
different losses are formulated as:

LLR
pix =

1
N ∑N

i=1 ‖GXY↓(xi)− y↓i‖1, (2)

LLR
adv =

1
N ∑N

i=1 ‖DY↓
(
GXY↓(xi)

)
− 1‖2, (3)
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where N denotes the number of training samples. The discriminator loss for DY↓ can be
formulated as:

LLR
D =

1
N ∑N

i=1 ‖DY↓
(
y↓i
)
− 1‖2 + ‖DY↓

(
GXY↓(xi)

)
‖2. (4)

Finally, the total loss for generator GXY↓ can be expressed as the weighted sum of the
pixel-wise loss (LLR

pix) and adversarial loss (LLR
adv),

LLR
G = LLR

pix + ω1LLR
adv, (5)

where ω1 is the weight of adversarial loss for LR images.

2.2. Super-Resolution

Using the LR image generated from the prior LR image transfer as the input, the
generator for super-resolution (GY↓Y) learns the mapping relationship from the bicubic-like
LR domain Y↓ to the HR domain Y. As shown in Stage 2 of Figure 2, the output of GXY↓,
which is a bicubic-like LR image ŷ↓, is input into the SR network GY↓Y to produce an
SR image ŷ. In the training phase, the discriminator DY interacts with GY↓Y and helps
the network generate an SR image similar to the corresponding HR image, y. The super-
resolution process can be formulated as follows:

ŷ = GY↓Y
(
ŷ↓
)
= GY↓Y

(
GXY↓(x)

)
= GY↓Y ◦ GXY↓(x). (6)

We denote the consecutive processes of GXY↓ and GY↓Y as GY↓Y
◦GXY↓. As with the LR

image transfer, GY↓Y is trained to fool the corresponding discriminator DY for the generated
SR image ŷ, whereas DY is trained to distinguish the generated SR image ŷ as fake and the
ground truth HR image y as real.

The generator loss function for super-resolution consists of three different losses: pixel-
wise loss LHR

pix , perceptual loss LHR
per , and adversarial loss LHR

adv . Similar to the LR image
transfer, we chose the L1 norm for pixel-wise loss and LSGAN for adversarial loss. The
pixel-wise and adversarial losses for HR image are formulated as:

LHR
pix =

1
N ∑N

i=1 ‖GY↓Y
(
ŷ↓i
)
− yi‖1 (7)

LHR
adv =

1
N ∑N

i=1 ‖DY
(
GY↓Y

(
ŷ↓i
))
− 1‖2. (8)

The discriminator loss for DY↓ can then be formulated as:

LHR
D =

1
N ∑N

i=1 ‖DY(yi)− 1‖2 + ‖DY
(
GY↓Y

(
ŷ↓i
))
‖2. (9)

Additionally, we added the perceptual loss LHR
per between ŷ and y. For perceptual loss,

we adopted the learned perceptual image patch similarity (LPIPS) [39], which measures
the perceptual similarity of images with multi-layer features. Recent SR studies have
verified the usefulness of the LPIPS as a perceptual loss measure by achieving high ranks in
challenges on SR tasks [40,41]. In Section 4.3, we also compare perceptual loss with LPIPS
and the commonly used VGG-based perceptual loss.

The total loss for generator GY↓Y can be expressed as the weighted sum of LHR
pix , LHR

adv ,

and LHR
per

LHR
G = LHR

pix + λ1LHR
adv + λ2LHR

per , (10)

where λ1 and λ2 are the weights of adversarial loss and perceptual loss for HR images,
respectively.
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2.3. Network Architecture

The proposed SR network consists of two generators and two discriminators, each for
LR image transfer and super-resolution. In this section, the architecture of each network
component is described.

2.3.1. Generator

For the two generators (GXY↓ and GY↓Y) in the proposed model, we adopted the
network architecture from residual channel attention networks (RCAN) [13] (Figure 3),
considering its superior SR performance even without a discriminator. RCAN is based
on residual in residual (RIR) architecture with several residual groups and long skip
connections. Each residual group comprises multiple residual channel attention blocks
(RCABs). As shown in Figure 3b, RCAB integrates channel attention into the residual
block to extract channel-wise features and achieves considerable enhancement in the
image quality of the SR outputs. Further investigation of the effectiveness of the RCAN-
based generator is addressed in Section 4.1 through a comparison with other generator
architectures.
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patchGAN architecture [42] (Figure 4). The patchGAN consists of four convolutional 
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Figure 3. Architecture of the generators used in the proposed BLG-GAN: (a) generator with residual
channel attention blocks (RCABs) [13]; (b) RCAB from the generator. GXY↓ and GY↓Y share the same
framework composed of residual groups with RCABs. GY↓Y includes upsampling blocks to increase
the size of the LR image by a factor of 4, whereas GXY↓ does not require upsampling blocks because
the scale of input and output images do not change in LR image transfer.

Although the basic architecture for the two generators is almost identical, we adjusted
the network capacity by setting the number of residual groups and the number of RCABs in
each residual group to (5, 10) and (5, 20) for GXY↓ and GY↓Y, respectively. Even though our
total generative network (GY↓Y

◦GXY↓) is smaller in size than the original RCAN model with
10 residual groups and 20 RCABs for each residual group, BLG-GAN achieves superior
SR performance by dividing the SR problem into subproblems. In addition, GXY↓ does not
include upsampling blocks because the scales of the input and output images remain the
same in the LR image transfer.

2.3.2. Discriminator

The discriminators DY↓ and DY share the same discriminator structure based on
patchGAN architecture [42] (Figure 4). The patchGAN consists of four convolutional layers
with the number of features increasing from 64 to 512 by a factor of 2, followed by a final
convolutional layer. The output features represent the patch-based decision of whether the
image region is real or fake. To discriminate between the generated SR and HR images
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(DY), we used a 70 × 70 patchGAN discriminator. For the discriminator for the generated
bicubic-like LR images (DY↓), we modified the stride of the first three convolutional layers
of DY from two to one [34], because the size of the LR images is smaller than 70 × 70 pixels.
As a result, the receptive field of DY↓ is reduced to 16 × 16 for LR images.
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Figure 4. Architecture of the discriminators used in the proposed BLG-GAN: (a) discriminator for
LR image transfer (DY↓); (b) discriminator for super-resolution (DY). DY↓ and DY share the same
discriminator structure based on patchGAN [42]. Considering the size of the input image, the stride
of the first three convolution layers is set to one and two for DY↓ and DY , respectively.

3. Experimental Results

Here, we describe the datasets used in this study and the quantitative assessment met-
rics used for the evaluation. Based on those metrics, the proposed method was compared
with state-of-the-art techniques to verify the effectiveness of BLG-GAN.

3.1. Datasets

This study used HR satellite images from the WV3 sensor as the remote sensing
images. The WV3 sensor provides PAN and MS bands with spatial resolutions of 0.31 m
and 1.24 m, respectively. Two WV3 datasets, WV3-1 and WV3-2 (Figure 5), were generated
using two WV3 images captured over the Pyeongdong Industrial Complex in Gwangju,
Republic of Korea, with a temporal interval of approximately one year (26 May 2017 and
4 May 2018). The scene contained various land-cover types and objects, including urban
areas, paddy fields, grasslands, forests, and rivers. To construct the LR-HR datasets, we
adopted the Gram–Schmidt adaptive (GSA) algorithm [33] for pansharpening the paired
PAN and MS images to generate HR images. The image quality assessment results for the
pansharpened images are provided in Appendix B. For training and testing the SR models,
the HR images were divided into sub-images of 512 × 512 pixels, which corresponded to
sub-images of 128 × 128 pixels for the LR images. Consequently, the generated datasets
comprised 1208 images for WV3-1 and 1136 images for WV3-2. These datasets were split
into training, validation, and test datasets, with each set containing 60%, 20%, and 20% of
the total dataset, respectively.
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3.2. Quantitative Assessment Metrics

The SR results were evaluated using several image quality metrics, including the peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) [43], LPIPS [39],
spectral angle mapper (SAM) [44], erreur relative globale adimensionnelle de synthèse (ER-
GAS) [45], universal image quality index (UIQI) [46], and natural image quality evaluator
(NIQE) [47].

The PSNR is calculated as:

PSNR(ŷ, y) = 10log 10
MAX2

MSE(ŷ, y)
, (11)

where MAX is the maximum pixel value of the image and MSE is the mean squared error
between the SR image (ŷ) and the ground truth HR image (y).

SSIM [43] measures three properties of an image: luminance, contrast, and structural
characteristics. SSIM is defined as:

SSIM(ŷ, y) =

(
2µŷµy + c1

)(
2σŷy + c2

)(
µ2

ŷ + µ2
y + c1

)(
σ2

ŷ + σ2
y + c2

) , (12)

where µŷ and µy are the means of ŷ and y, respectively. σŷ and σy are the standard deviations
of ŷ and y, respectively, and σŷy is the cross-covariance of images ŷ and y. c1 and c2 are
constants to prevent division by zero.

Although the PSNR and SSIM are the most widely used indices for evaluating the
image quality of SR products, these conventional metrics focus on image fidelity rather
than human perception. Therefore, we also used LPIPS, which was devised to reflect
human perception and calculate the perceptual similarity of images [39]. LPIPS measures
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the perceptual similarity of image patches using pre-trained networks such as VGGNet
and AlexNet. We used the pre-trained VGG-16 model to compute the l2-distance of the
features from multiple layers. The formulation of LPIPS is as follows:

LPIPS(ŷ, y) = ∑l
1

HlWl
∑h,w ‖wl � ( f l

h,w − f l
0,h,w)‖

2
2, (13)

where f l
h,w and f l

0,h,w represent the features extracted from the lth layer at the locations (h,
w) of images ŷ and y, respectively. Hl and Wl are the height and width of the features from
the lth layer, respectively. wl is a learned weight vector and � represents the element-wise
product. Although higher PSNR and SSIM values indicate better image quality, a low
LPIPS value is desirable because it measures the distance between the features of the input
images.

In addition, SAM, ERGAS, and UIQI are conventional image quality assessment
metrics that also focus on image fidelity rather than perceptual quality. SAM [44] measures
the spectral angle between two images by calculating the dot product divided by the l2-
norm of each image. As the input images show high similarity, the SAM value approaches
zero. The SAM is defined as

SAM(ŷ, y) = arccos
(

ŷ · y
‖ŷ‖2‖y‖2

)
. (14)

ERGAS [45] measures the image quality in terms of the band-wise normalized mean
error. A lower ERGAS value indicates higher image quality. The formulation of ERGAS is
as follows:

ERGAS(ŷ, y) = 100s

√
1
N ∑N

k=1

(
RMSE(ŷk, yk)

yk

)
, (15)

where s and N represent the scale factor and the number of spectral bands of the images
being evaluated, respectively.

Wang and Bovik [46] proposed UIQI, which models image distortion as a combination
of three factors: loss of correlation, luminance distortion, and contrast distortion. Higher
UIQI values that are close to one indicate better image quality. The UIQI is calculated as:

UIQI(ŷ, y) =
4σŷyµŷµy(

µ2
ŷ + µ2

y

)(
σ2

ŷ + σ2
y

) . (16)

To evaluate the quality of the SR results, we also employed a no-reference quality
metric. Unlike the previously mentioned metrics, a no-reference quality metric does not
require a reference image for image quality assessment. NIQE [47] operates by extracting
the natural scene statistics (NSS) features from the image patches and fitting them with a
multivariate Gaussian (MVG) model. The derived MVG model is then compared with the
MVG model obtained from a natural image database. A lower NIQE value indicates better
image quality.

3.3. Implementation Details

To stabilize the training process, two generators in the proposed model (GXY↓ and
GY↓Y) were pre-trained using only the pixel-wise loss (L1 loss). Subsequently, based on
the pre-trained generators, discriminators were added for adversarial training and jointly
trained to generate SR images from real-world LR images (MS images).

In the training phase, we randomly cropped eight LR image patches with a size of
32 × 32 pixels for every iteration and augmented the data with random flip (horizontal
and vertical) and rotation (90◦, 180◦, or 270◦) to complement the limited number of training
samples. The generators and discriminators were trained using the Adam optimizer with
β1 = 0.5, β2 = 0.999, and ε = 10−8, except for GY↓Y, which uses β1 = 0.9 instead. The learning
rate was initialized to 10−4 and halved every 100 epochs. To ensure a fair comparison among
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different SR models, we trained all the models from scratch on our training datasets rather
than using the pre-trained models. We set the weights for loss as ω1 = 0.001, λ1 = 0.001,
and λ2 = 0.01.

3.4. Comparison with State-of-the-Art Methods

To validate the effectiveness of the proposed BLG-GAN, we implemented several
state-of-the-art methods, including seven CNN-based methods and five GAN-based meth-
ods. The CNN-based methods implemented were EDSR [11], D-DBPN [12], RRDB [15],
RDN [14], RCAN [13], HAN [27], and DRN-L [48]. Additionally, we implemented the fol-
lowing GAN-based methods: SRGAN [9], ESRGAN [15], ESRGAN-FS [40], EESRGAN [21],
and SG-GAN [22]. For all these models, real-world LR images (MS images) were used as
inputs, and the corresponding SR images were obtained directly from a single SR network
or generator.

SRGAN [9] and ESRGAN [15] are widely recognized studies that introduced GANs to
solve the SR problem, and their basic structures have been adopted by many researchers.
ESRGAN-FS [40] builds upon the structure of ESRGAN and incorporates a frequency
separation training strategy. As these GAN-based models were originally developed for
images used in computer vision, we also compared our method with two GAN-based SR
methods designed for remote sensing images: EESRGAN [21] and SG-GAN [22]. EESRGAN
is an improved model based on EEGAN [20], which aims to enhance the edges extracted
from an image by adding an edge-enhancement network to the back of the generator. On
the other hand, the SG-GAN adopts a salient object detection network [49] at the rear of
the SRGAN-based generator, leveraging saliency information to generate more detailed SR
outputs.

The quantitative evaluation results for the WV3-1 and WV3-2 datasets are presented
in Tables 1 and 2. Consistent with previous research [9,40], CNN-based methods tend
to achieve high PSNR and SSIM values but they also exhibit high LPIPS values. This is
because using only pixel-wise loss (e.g., MSE loss or L1 loss) for the SR model training often
results in blurry and overly smoothed SR outputs with low perceptual quality. In contrast,
GAN-based methods generated visually pleasing SR results with low LPIPS and NIQE
values. However, this comes at the expense of decreased PSNR, SSIM, and UIQI values, as
well as increased SAM and ERGAS values, which can be attributed to the introduction of
pseudo-texture through adversarial training. Therefore, it is crucial to effectively suppress
the pseudo-texture while preserving high image fidelity to construct a successful GAN-
based SR model. Furthermore, it is worth noting that, although GAN-based methods
yield better NIQE values than CNN-based methods, it can be difficult to distinguish subtle
performance differences among the CNN-based or GAN-based methods using NIQE alone.
This limitation arises from the inherent nature of NIQE as a no-reference image quality
index derived from a natural image database [47]. As remote sensing images have distinct
image characteristics compared to natural images, the evaluation results using NIQE often
deviate from human perceptions [31,50]. Hence, it is preferable to consider the limitations
associated with using a no-reference index when evaluating the performance of SR methods
for remote sensing images.



Remote Sens. 2023, 15, 3309 11 of 24

Table 1. Quantitative comparison with state-of-the-art methods on the WV3-1 dataset. The best and
the second-best performances for each method are indicated in bold and underlined, respectively.

Method PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

Bicubic 30.2986 0.8173 0.0242 63.0769 0.4173 0.3545 7.2993

CNN-based

EDSR [11] 31.9558 0.8586 0.0217 52.4538 0.4952 0.3247 7.3323
D-DBPN [12] 31.1050 0.8397 0.0248 57.6184 0.4528 0.3390 7.2362
RRDBNet [15] 31.7101 0.8540 0.0238 53.9245 0.4855 0.3288 7.7258

RDN [14] 32.5940 0.8704 0.0223 49.0862 0.5219 0.3092 7.3097
RCAN [13] 32.1932 0.8626 0.0234 51.1209 0.5066 0.3107 7.2772
HAN [27] 32.8207 0.8752 0.0215 47.8851 0.5359 0.2980 7.5154

DRN-L [48] 32.0414 0.8615 0.0221 51.9685 0.5014 0.3222 7.7383

GAN-based

SRGAN [9] 29.1961 0.7702 0.0560 72.4688 0.3420 0.3231 4.8997
ESRGAN [15] 29.2197 0.7892 0.0449 72.1651 0.3904 0.2870 5.0202

ESRGAN-FS [40] 28.9710 0.7827 0.0504 74.3983 0.3881 0.2852 4.9360
EESRGAN [21] 30.4883 0.8138 0.0350 62.1157 0.4329 0.2669 5.5291
SG-GAN [22] 30.9505 0.8310 0.0293 58.6363 0.4378 0.3073 5.5822

BLG-GAN (1-stage) 31.4131 0.8373 0.0272 55.8005 0.4557 0.2740 5.7224
BLG-GAN 32.1416 0.8518 0.0247 51.8453 0.4883 0.2349 5.7999

Table 2. Quantitative comparison with state-of-the-art methods on the WV3-2 dataset. The best and
the second-best performances for each method are indicated in bold and underlined, respectively.

Method PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

Bicubic 30.1314 0.8158 0.0246 54.9347 0.4392 0.3601 7.2807

CNN-based

EDSR [11] 31.5149 0.8509 0.0244 47.0863 0.5032 0.3342 7.9368
D-DBPN [12] 31.1819 0.8423 0.0249 48.8536 0.4822 0.3444 7.9284
RRDBNet [15] 31.2424 0.8463 0.0245 48.4882 0.4920 0.3424 8.2237

RDN [14] 31.7136 0.8566 0.0248 46.0044 0.5136 0.3246 7.8459
RCAN [13] 31.5306 0.8525 0.0235 46.8795 0.5048 0.3270 7.6668
HAN [27] 31.8671 0.8612 0.0239 45.2343 0.5245 0.3151 7.9126

DRN-L [48] 31.5219 0.8537 0.0231 46.9640 0.5080 0.3310 8.0392

GAN-based

SRGAN [9] 28.9943 0.7653 0.0544 62.8320 0.3508 0.3301 5.1271
ESRGAN [15] 29.0857 0.7798 0.0582 62.1098 0.4006 0.3036 4.9066

ESRGAN-FS [40] 29.2271 0.7899 0.0435 61.7939 0.4184 0.2894 5.1028
EESRGAN [21] 30.3289 0.8076 0.0339 53.6708 0.4381 0.2781 5.3389
SG-GAN [22] 30.4923 0.8200 0.0312 52.7853 0.4532 0.3181 5.4784

BLG-GAN (1-stage) 30.8558 0.8267 0.0306 50.4641 0.4580 0.2858 5.5300
BLG-GAN 31.1871 0.8331 0.0272 48.8193 0.4769 0.2493 5.6032

As shown in Tables 1 and 2, HAN [27] and RDN [14] exhibited superior SR perfor-
mance among the CNN-based methods. Among the GAN-based methods, the proposed
BLG-GAN model achieved superior SR performance for both the WV3-1 and WV3-2
datasets. Although HAN shows better image quality in terms of image fidelity than BLG-
GAN, the LPIPS and NIQE values of HAN are significantly higher than those of BLG-GAN.
This indicates a limitation of CNN-based methods in respect of perceptual quality. To
further investigate the performance, we also implemented a one-stage version of the BLG-
GAN model, denoted as “BLG-GAN (1-stage)” in Tables 1 and 2. This one-stage model
consists of GY↓Y and DY, which employ the same network structures as the proposed two-
stage BLG-GAN model. The one-stage BLG-GAN is intended to learn a direct relationship
between real-world LR and HR images. While the one-stage BLG-GAN model outperforms
other GAN-based models, the two-stage BLG-GAN model achieves superior SR perfor-
mance in terms of both image fidelity and perceptual quality. These experimental results
verify that the proposed BLG-GAN can generate clearer SR images than other methods
by utilizing bicubic-like LR images obtained through LR image transfer as input to the SR



Remote Sens. 2023, 15, 3309 12 of 24

model. In particular, our method significantly reduces the LPIPS values while maintaining
high values for image fidelity metrics, outperforming all other GAN-based methods. The
enhancement of the perceptual quality of the SR outputs can also be observed in Figure 6.
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Figure 7 illustrates the SR process of the BLG-GAN model for real-world remote
sensing images using LR image transfer to bicubic-like LR images. Once the real-world
LR image (Figure 7a) is fed into the image transfer network, the input image is restored
to a less blurry bicubic-like LR image (Figure 7b) with sharper edges. The subsequent
SR network can use these edges to generate SR images with clear details. As shown in
Figure 7c, the BLG-GAN successfully recovers various ground features, including road
lanes, parking lines in the parking lot, and the rectangular shape of building roofs.

Furthermore, we evaluated the computational efficiency of BLG-GAN by considering
the number of network parameters (M) and SR performance. As illustrated in Figure 8, the
CNN-based models showed higher PSNR and LPIPS values with fewer network parameters
than the GAN-based models. This is because GAN-based models incorporate additional
parameters from the discriminator. Most GAN-based models showed slightly lower PSNR
values than the CNN-based models while improving the perceptual quality of the SR
outputs, as indicated by low LPIPS values. Remarkably, BLG-GAN achieved superior
results in terms of both PSNR and LPIPS compared to the state-of-the-art models, even with
a smaller overall capacity of the SR network. This indicates that our approach of dividing
the SR problem into subproblems is valid for real-world remote sensing images.



Remote Sens. 2023, 15, 3309 13 of 24Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 26 
 

 

 
(a) (b) (c) (d) 

Figure 7. Examples of SR results from BLG-GAN: (a) input real-world LR images; (b) the generated 409 
bicubic-like LR images; (c) output SR images; (d) reference HR images. 410 

 411 

(a) (b) 

Figure 8. Comparison of the number of network parameters (M) and SR performance using (a) 412 
PSNR and (b) LPIPS metrics. The proposed BLG-GAN model is indicated as a red point, and the 413 
CNN- and GAN-based models are shown as blue and orange points, respectively. 414 

Furthermore, we evaluated the computational efficiency of BLG-GAN by consider- 415 
ing the number of network parameters (M) and SR performance. As illustrated in Figure 416 
8, the CNN-based models showed higher PSNR and LPIPS values with fewer network 417 
parameters than the GAN-based models. This is because GAN-based models incorporate 418 
additional parameters from the discriminator. Most GAN-based models showed slightly 419 
lower PSNR values than the CNN-based models while improving the perceptual quality 420 
of the SR outputs, as indicated by low LPIPS values. Remarkably, BLG-GAN achieved 421 
superior results in terms of both PSNR and LPIPS compared to the state-of-the-art models, 422 
even with a smaller overall capacity of the SR network. This indicates that our approach 423 

Figure 7. Examples of SR results from BLG-GAN: (a) input real-world LR images; (b) the generated
bicubic-like LR images; (c) output SR images; (d) reference HR images.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 24 
 

 

 
(a) (b) (c) (d) 

Figure 7. Examples of SR results from BLG-GAN: (a) input real-world LR images; (b) the generated 

bicubic-like LR images; (c) output SR images; (d) reference HR images. 

Furthermore, we evaluated the computational efficiency of BLG-GAN by considering 

the number of network parameters (M) and SR performance. As illustrated in Figure 8, 

the CNN-based models showed higher PSNR and LPIPS values with fewer network 

parameters than the GAN-based models. This is because GAN-based models incorporate 

additional parameters from the discriminator. Most GAN-based models showed slightly 

lower PSNR values than the CNN-based models while improving the perceptual quality 

of the SR outputs, as indicated by low LPIPS values. Remarkably, BLG-GAN achieved 

superior results in terms of both PSNR and LPIPS compared to the state-of-the-art models, 

even with a smaller overall capacity of the SR network. This indicates that our approach 

of dividing the SR problem into subproblems is valid for real-world remote sensing 

images. 

  

(a) (b) 

Figure 8. Comparison of the number of network parameters (M) and SR performance using (a) PSNR
and (b) LPIPS metrics. The proposed BLG-GAN model is indicated as a red point and the CNN- and
GAN-based models are shown as blue and orange points, respectively.

4. Discussion

To verify the effectiveness of each component of the proposed BLG-GAN, we analyzed
the influence of the generator and discriminator architectures, the type of GAN loss, and
the type of perceptual loss on the SR performance. The final architecture and loss function
of the BLG-GAN were determined based on the results of the following analyses.

4.1. Generator Architecture

We compared the SR performance of the generators GY↓Y using four different basic
blocks: the residual block from SRResNet [9], the residual block based on ResNet-18/34,
the residual in residual dense block (RRDB) from ESRGAN [15] (Figure 9), and RCAB from
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RCAN [13] (Figure 3b). The residual block from SRRestNet consists of two convolutional
layers followed by batch normalization (BN) and uses ParametricReLU (PReLU) as the
activation function [9] (Figure 9a). The main difference between the residual blocks from
SRResNet and ResNet-18/34 is whether the block contains BN layers or not. Previous
studies [11,15] have shown that BN layers are preferentially removed from the SR network
because normalization of the features can restrain the generalization ability and deteriorate
the SR performance. The RRDB also eliminates BN layers from the block architecture
and integrates dense connections into a multilevel residual network to increase the net-
work capacity. As mentioned in Section 2.3, the RCAB was proposed as a basic block for
RCAN [13]. The RCAN model is based on the RIR structure with multiple residual groups.
Each residual group comprises RCABs, which utilize a channel attention mechanism to
extract more informative features from the input.

The number of blocks was set to 16 for the generators using residual blocks from
SRResNet and ResNet-18/34, following the configuration in [9]. For the RRDB, we used the
same number of blocks as in the original study [15], which is 23. While the original RCAN
model had 10 residual groups with 20 residual blocks [13], we reduced it to five residual
groups with 20 residual blocks in our implementation. Despite the reduced network
capacity, we could achieve satisfactory SR results from the generator. To ensure a fair
comparison among the generators with different basic blocks, all the input LR images were
obtained from the LR image transfer generator GXY↓, which is described in Section 2.1. In
the training phase, we employed patchGAN [42] as the discriminator for the SR outputs
and trained the generators using pixel-wise and adversarial losses in all cases.

From the evaluation results presented in Tables 3 and 4, it was confirmed that utiliz-
ing residual blocks without BN instead of residual blocks with BN can improve the SR
performance, which is consistent with previous observations [11,15]. The generator that
employed the RCAB exhibited a superior performance, achieving the highest values for
PSNR, SSIM, and UIQI, as well as the lowest values for SAM, ERGAS, and LPIPS values
for both datasets. As a result, RCAB was chosen as the basic block for GY↓Y, and further
analysis was conducted on discriminators and losses.
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Table 3. Analysis of the effect of the basic block type for generator GY↓Y on SR performance on
the WV3-1 dataset. The best and second-best performances are indicated in bold and underlined,
respectively.

Type of Basic Block
for Generator GY↓Y

PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

Residual block with BN [9] 31.5495 0.8392 0.0361 60.1968 0.4645 0.2966 5.5730
Residual block without BN 32.0368 0.8486 0.0257 52.3808 0.4740 0.2845 5.6019

RRDB [15] 32.1078 0.8516 0.0255 51.9306 0.4831 0.2775 5.2930
RCAB [13] 32.2062 0.8552 0.0242 51.4806 0.4927 0.2636 5.8955

Table 4. Analysis of the effect of the basic block type for generator GY↓Y on SR performance on
the WV3-2 dataset. The best and second-best performances are indicated in bold and underlined,
respectively.

Type of Basic Block
for Generator GY↓Y

PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

Residual block with BN [9] 30.8659 0.8255 0.0289 51.2175 0.4572 0.3057 5.4436
Residual block without BN 30.9909 0.8275 0.0269 49.7892 0.4620 0.3025 5.4305

RRDB [15] 31.1359 0.8308 0.0264 49.0844 0.4664 0.2953 5.1734
RCAB [13] 31.2822 0.8362 0.0255 48.2146 0.4806 0.2815 5.6038

4.2. Discriminator Architecture and GAN Loss

To compare the discriminator architectures, we selected two widely used networks,
SRGAN [9] and patchGAN [42], for adversarial training of the SR network. The SRGAN
discriminator (SRGAN-D) originates from [9] and is used in two state-of-the-art GAN-
based SR methods, SRGAN and ESRGAN. SRGAN-D consists of eight convolutional layers
with increasing features from 64 to 512 by a factor of two. The output features are then
passed through two fully connected dense layers, followed by a sigmoid activation function.
On the other hand, the patchGAN discriminator [42] provides a patch-based decision on
whether the input image patch is real or fake. The detailed architecture of the patchGAN
discriminator is presented in Section 2.3.2 (Figure 4b). We tested two types of GAN losses
for both discriminators: the standard GAN loss [51] and the LSGAN loss [37]. Additionally,
we applied the relativistic average GAN (RaGAN) [52] to SRGAN-D, as proposed in [15].
Besides the LSGAN, which is already explained in Section 2.1, the formulations for the
standard GAN and RaGAN losses are provided below for comparison. The standard GAN
loss for the generator (LG) and discriminator (LD) can be formulated as:

LG =
1
N ∑N

i=1− log DY

(
x f ,i

)
, (17)

LD =
1
N ∑N

i=1− log(DY(xr,i))− log
(

1− DY

(
x f ,i

))
, (18)

where N denotes the number of training samples. xr and x f represent the real data (HR
image) and fake data (SR image), respectively. While standard GAN loss for the generator
uses 1-side loss, RaGAN utilizes both real and fake data in adversarial training. The RaGAN
losses for the generator (LRa

G ) and discriminator (LRa
D ) are formulated as:

LRa
G = −Exr

[
log
(

1− DRa
Y

(
xr, x f

))]
−Ex f

[
log DRa

Y

(
x f , xr

)]
, (19)

LRa
D = −Exr

[
log DRa

Y

(
xr, x f

)]
−Ex f

[
log
(

1− DRa
Y

(
x f , xr

))]
, (20)
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where DRa
(

xr, x f

)
= σ

(
C(xr)−Ex f

[
C
(

x f

)])
. σ is the sigmoid function and C(x) is

the output of the discriminator before applying the final sigmoid function. Ex f [·] means
averaging the inputs for fake data (x f ) in the batch.

Based on the evaluation results presented in Tables 5 and 6, we verified the effec-
tiveness of the PatchGAN discriminator for SR model training. The SR results obtained
using the PatchGAN discriminator showed better LPIPS values than SRGAN-D for all
types of GAN loss, while maintaining high values for PSNR, SSIM, and UIQI, and low
values for SAM and ERGAS. Among the different types of GAN loss, LSGAN was found to
improve image fidelity metrics more than the standard GAN. On the other hand, RaGAN
showed inconsistent performance across the two test datasets, which can be attributed to
the distortions introduced in the SR outputs by excessive pseudo-textures. Therefore, for
our proposed BLG-GAN model, we selected PatchGAN as the discriminator and LSGAN
loss as the GAN loss, considering the superior perceptual quality of the SR outputs along
with reasonably good image fidelity.

Table 5. Analysis of the effect of type of discriminator architecture and GAN loss on SR performance
on the WV3-1 dataset. The best and second-best performances are indicated in bold and underlined,
respectively.

Type of
Discriminator

Type of
GAN Loss PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

SRGAN-D [9]
Standard [51] 31.1322 0.8182 0.0345 58.0834 0.4363 0.2905 5.1780
LSGAN [37] 32.6198 0.8726 0.0219 48.9879 0.5287 0.2977 7.9888
RaGAN [52] 30.7263 0.8099 0.0380 61.2168 0.4356 0.2923 5.1638

PatchGAN [42]
Standard [51] 31.9389 0.8455 0.0255 53.1523 0.4805 0.2651 5.6226
LSGAN [37] 32.2062 0.8552 0.0242 51.4806 0.4927 0.2636 5.8955

Table 6. Analysis of the effect of type of discriminator architecture and GAN loss on SR performance
on the WV3-2 dataset. The best and second-best performances are indicated in bold and underlined,
respectively.

Type of
Discriminator

Type of
GAN Loss PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

SRGAN-D [9]
Standard [51] 30.4062 0.8084 0.0341 53.2263 0.4388 0.3042 5.3235
LSGAN [37] 31.6627 0.8575 0.0233 46.2162 0.5163 0.3155 8.0493
RaGAN [52] 30.5378 0.8237 0.0344 52.4700 0.4546 0.3233 5.6434

PatchGAN [42]
Standard [51] 30.9809 0.8253 0.0271 49.9844 0.4666 0.2852 5.3255
LSGAN [37] 31.2822 0.8362 0.0255 48.2146 0.4806 0.2815 5.6038

4.3. Perceptual Loss

In most CNN-based methods, the perceptual quality of SR images is often limited due
to the optimization using only pixel-wise MSE loss or L1 loss. To address this limitation
and improve the perceptual quality of SR images, Ledig et al. [9] introduced perceptual
loss in their GAN-based SR model. However, some studies [53] reported that the use of
perceptual loss can introduce color variations and alter the original spectral information of
the images. Therefore, we aimed to investigate the effect of different perceptual losses on
the performance of SR models, using the model architecture determined in Section 4.1 and
Section 4.2. We employed the same generator and discriminator architecture and tested
three different perceptual losses: (1) VGG loss based on the pre-trained VGG-19 model,
computed in the L2 norm (Lvgg19−L2), as proposed in [9]; (2) VGG loss computed in the L1
norm (Lvgg19−L1); and (3) perceptual loss based on LPIPS, which utilizes features extracted
from the pre-trained VGG-16 model. The two VGG-19 model-based perceptual losses are
defined as:

Lvgg19−L1(ŷ, y) = ‖φ(ŷ)− φ(y)‖1, (21)
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Lvgg19−L2(ŷ, y) = ‖φ(ŷ)− φ(y)‖2, (22)

where φ(·) represents the output features from the pre-trained VGG-19 model.
As shown in Tables 7 and 8, the utilization of any perceptual loss resulted in a slight

decrease in the values of PSNR, SSIM, and UIQI, and an increase in the values of SAM
and ERGAS. However, it significantly enhanced the perceptual quality of the SR images,
as evidenced by the decreased values of LPIPS. Among the three perceptual losses tested,
the LPIPS loss exhibited the highest values for image fidelity metrics and achieved a
remarkable enhancement in perceptual image quality. These trends remained consistent
across both test datasets, validating the effectiveness of employing LPIPS as a perceptual
loss for improving the perceptual quality of SR images. The pre-trained models used for
calculating perceptual loss were originally trained for high-level tasks, such as VGG models
trained for classification. Leveraging these pre-trained models in training SR models proves
highly beneficial because it enables the integration of high-level features into low-level
tasks, such as image super-resolution.

Table 7. Analysis of the effect of type of perceptual loss on SR performance on the WV3-1 dataset.
The best and second-best performances are indicated in bold and underlined, respectively.

Type of Perceptual Loss PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

No perceptual loss 32.2062 0.8552 0.0242 51.4806 0.4927 0.2636 5.8955
LPIPS [39] 32.1416 0.8518 0.0247 51.8453 0.4883 0.2349 5.7999
VGG19-L1 32.0325 0.8474 0.0264 52.4761 0.4802 0.2451 6.0107
VGG19-L2 31.9628 0.8440 0.0278 52.8709 0.4734 0.2459 5.7429

Table 8. Analysis of the effect of type of perceptual loss on SR performance on the WV3-2 dataset.
The best and second-best performances are indicated in bold and underlined, respectively.

Type of Perceptual Loss PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

No perceptual loss 31.2822 0.8362 0.0255 48.2146 0.4806 0.2815 5.6038
LPIPS [39] 31.1871 0.8331 0.0272 48.8193 0.4769 0.2493 5.6032
VGG19-L1 31.0858 0.8319 0.0272 49.2414 0.4714 0.2629 5.5312
VGG19-L2 30.9904 0.8263 0.0293 49.8302 0.4617 0.2653 5.5133

5. Conclusions

In this study, we proposed a novel two-stage SR model for real-world remote sensing
images. The proposed BLG-GAN method divides the image super-resolution procedure
into two stages: LR image transfer and super-resolution. In the LR transfer stage, our
proposed method refines the input LR images by transforming them into less blurry and
noisy bicubic-like LR images using the guidance from synthetic LR images obtained through
bicubic downsampling. The refined LR images are then fed into the SR network, which
learns the relationship between the bicubic-like LR images and their corresponding HR
images. By utilizing bicubic-downsampled LR images as a bridge between the real-world
LR and HR images, our BLG-GAN method achieves a superior SR performance in terms
of both image fidelity and perceptual quality. Moreover, since synthetic LR images can be
easily obtained through bicubic downsampling, BLG-GAN can be easily implemented with
a lower computational burden. In future studies, our method can be further validated using
remote sensing images from other sources. Incorporating multi-source remote sensing
images would enable the construction of large-scale datasets and facilitate comparisons
with data-intensive models, which was not feasible in this study due to limited dataset
size. Furthermore, the proposed method can be enhanced by integrating transfer learning
techniques within the framework to address real-world remote sensing images without
reference.
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Appendix A

Tables A1 and A2 provide quantitative assessment results of SR models trained on
synthetic datasets. The results demonstrate that the SR models trained on synthetic LR-HR
image datasets achieve better SR performance than those trained on real-world LR-HR
image datasets. To ensure a fair comparison, all models were trained from scratch using
the same hyperparameters for synthetic and real-world datasets. The comparison between
Tables 1 and 2 in Section 3.4 and Tables A1 and A2 reveals that generating HR images from
real-world LR images is more challenging than synthetic LR images.

Table A1. Quantitative assessment results of state-of-the-art SR models trained on synthetic LR-HR
image dataset (WV3-1 dataset).

Method PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

Bicubic 32.8364 0.8846 0.0206 47.5450 0.6291 0.2757 6.6302

CNN-based

EDSR [11] 34.3155 0.9103 0.0180 40.7123 0.6698 0.2300 7.8177
D-DBPN [12] 33.8119 0.9006 0.0204 42.8439 0.6423 0.2534 7.4990
RRDBNet [15] 33.9596 0.9045 0.0200 42.2957 0.6514 0.2488 7.5386

RDN [14] 34.5049 0.9134 0.0185 39.8893 0.6755 0.2197 7.6263
RCAN [13] 34.2489 0.9094 0.0191 41.0236 0.6650 0.2294 7.4470
HAN [27] 34.6353 0.9155 0.0182 39.3325 0.6814 0.2142 7.8436

DRN-L [48] 34.4271 0.9123 0.0186 40.2755 0.6740 0.2236 7.6602

GAN-based

SRGAN [9] 31.5388 0.8355 0.0525 56.1957 0.4871 0.2546 5.3869
ESRGAN [15] 31.4596 0.8467 0.0452 56.5095 0.5274 0.2290 5.2891

ESRGAN-FS [40] 31.4043 0.8491 0.0426 57.9827 0.5370 0.2188 5.3988
EESRGAN [21] 32.6946 0.8755 0.0305 48.9042 0.5939 0.2046 5.8502
SG-GAN [22] 32.3234 0.8629 0.0356 51.0380 0.5435 0.2655 5.5719
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Table A2. Quantitative assessment results of state-of-the-art SR models trained on synthetic LR-HR
image dataset (WV3-2 dataset).

Method PSNR SSIM SAM ERGAS UIQI LPIPS NIQE

Bicubic 33.1650 0.8921 0.0185 38.7233 0.6612 0.2636 6.6402

CNN-based

EDSR [11] 34.4422 0.9127 0.0168 33.6200 0.6912 0.2325 7.6672
D-DBPN [12] 34.0034 0.9046 0.0190 35.2938 0.6694 0.2509 7.2414
RRDBNet [15] 34.1724 0.9090 0.0195 34.6322 0.6786 0.2435 7.1857

RDN [14] 34.6515 0.9164 0.0172 32.8534 0.6982 0.2235 7.4615
RCAN [13] 34.4469 0.9130 0.0176 33.6167 0.6911 0.2275 7.4895
HAN [27] 34.8012 0.9188 0.0169 32.3318 0.7048 0.2174 7.4457

DRN-L [48] 34.5861 0.9151 0.0173 33.0998 0.6972 0.2262 7.4913

GAN-based

SRGAN [9] 31.3895 0.8367 0.0484 47.7144 0.5120 0.2661 5.4253
ESRGAN [15] 31.3861 0.8535 0.0418 47.9343 0.5639 0.2260 5.0752

ESRGAN-FS [40] 31.6624 0.8567 0.0383 46.2197 0.5689 0.2183 5.4178
EESRGAN [21] 33.0359 0.8793 0.0270 39.5130 0.6225 0.1987 5.6776
SG-GAN [22] 33.8097 0.9038 0.0247 36.0339 0.6650 0.2388 7.1215

Appendix B

To construct the real-world LR-HR datasets, we evaluated several pansharpening meth-
ods, including component substitution (CS)-based, multiresolution analysis (MRA)-based,
and hybrid methods. The CS-based methods employed were GSA [33], partial replacement
adaptive component substitution (PRACS) [54], and hybrid pansharpening algorithm using
NDVI in spectral mode (HP-NDVIspectral) [55]. In addition, we implemented the following
MRA-based methods: high pass filtering (HPF) algorithm [56], additive wavelet luminance
proportional (AWLP) [57], and generalized Laplacian pyramid with modulation transfer
function and high-pass modulation (MTF-GLP-HPM) algorithm [58]. Furthermore, the
hybrid pansharpening algorithm using NDVI in spatial mode (HP-NDVIspatial) [55] was
also implemented as a hybrid method. The detailed explanation of each pansharpening
method is beyond the scope of this study. For detailed methodological information, please
refer to the original papers.

Due to the unavailability of reference HR images, the image quality of pansharp-
ened images from the WV3-1 and WV3-2 datasets was evaluated using no-reference met-
rics, including perception-based image quality evaluator (PIQE) [59], NIQE [47], and
blind/referenceless image spatial quality evaluator (BRISQUE) [60]. Lower values of PIQE,
NIQE, and BRISQUE indicate better image quality. Figure A1 presents the box plots of
the image quality assessment results obtained from different pansharpening methods.
The MRA-based methods exhibited slightly lower PIQE and BRISQUE values than the
CS-based methods. However, the MRA-based methods tended to generate blurry images
in comparison to the CS-based methods, as depicted in Figure A2. This suggests that the
blurriness in remote sensing images may be perceived as smoothness in natural images.
Among the CS-based methods, GSA showed stable performance with low PIQE values and
concentrated distributions for BRISQUE values. The distributions of NIQE values were
similar across the different pansharpening methods, indicating no significant difference.
In addition, the HP-NDVIspatial method exhibited superior performance in terms of PIQE
and BRISQUE values, but the introduction of excessive spatial information often led to
undesired artifacts such as pseudo-textures. Therefore, the GSA algorithm was chosen to
generate HR images for the LR-HR datasets due to its stable performance and visually
clear pansharpened images. Nevertheless, further investigation on large-scale datasets is
necessary to generalize these observations.
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Figure A1. Comparison of image quality assessment results of pansharpening images obtained from
the WV3-1 dataset using (a) PIQE, (c) NIQE, and (e) BRISQUE, and from the WV3-2 dataset using
(b) PIQE, (d) NIQE, and (f) BRISQUE. On each box, the red line indicates the median and the outliers
are plotted as blue ‘+’ markers.
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