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Abstract: The saga pattern manages transactions and maintains data consistency across distributed
microservices via utilizing local sequential transactions that update each service and publish messages
to trigger the next ones. Failure by one transaction causes the execution of compensating transactions
that counteract the preceding one. However, saga lacks isolation, meaning that reading and writing
data from an incomplete transaction is allowed. Therefore, this research proposes an enhanced saga
pattern that resolves the lack of isolation issue via the use of the quota cache and the commit-sync
service. Some transactions will be transferred from the database layer to the memory layer. Thus,
no wrong commit to the main database will occur. If a microservice fails to be completed, the other
microservices will run compensation transactions to rollback the changes that only affect the cache
layer instead of the database layer. Database commit will be performed when all transactions are
completed successfully. A lightweight microservices-based e-commerce system was implemented
for comparison. Experiments were conducted for validation and evaluation. Results demonstrate
that the proposal has the capability of resolving the lack of isolation. Results indicate that the
proposal achieves better performance not only in typical cases but also in the scenario that needs to
handle exceptions.

Keywords: microservice; saga pattern; distributed transaction; read isolation

1. Introduction

A microservice based-application [1,2] is a distributed system where the functionalities
of the application are provided by multiple smaller services that are working together. The
microservice architecture has restructured the monolithic application into several individual
services in order to provide loose coupling, high maintainability, high availability, and
scalability for the application development. The microservices architecture enables selecting
the technology stack per service. For instance, the relational database could be employed to
provide one service while the NoSQL database could be utilized to implement the other one;
thus, allowing the services to manage the domain data independently. Moreover, with the
microservice architecture, scaling data stores on-demand is enabled. Each microservice has
its own database that contains some business transactions; therefore, managing distributed
transactions and maintaining data consistency when transactions span across multiple
services are challenging.

To manage distributed transactions in the microservice architecture, the Saga Pattern
(Software Automation, Generation, and Administration) was proposed. Saga design pattern
manages transactions and maintains data consistency across distributed microservices
transactions. Saga is a set of local sequential transactions that is responsible for updating the
microservices and publishing messages to trigger the next transactions. In the case of failure
by one transaction, compensating transactions will be run to counteract the preceding one.
However, the saga pattern does not have read isolation. It is ACD (atomicity, consistency,
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durability), not ACID (atomicity, consistency, isolation, durability) [3]. The missing isolation
means that data reading and writing from an incomplete transaction are allowed which, in
turn, introduces various isolation anomalies [4,5]. Therefore, to address this problem, this
research proposes an enhanced saga pattern that aims to achieve eventual consistency via
the use of the quota cache and the commit-sync service. The idea is to integrate the standard
saga pattern with an in-memory data caching layer by allocating the quota of the main
database to the in-memory data caching server. Therefore, the CRUD (create, read, update,
and delete) tasks will be handled via the quota cache instead of the main database which
ensures that no wrong commit to the main database will occur. When a microservice fails
to be completed, the other microservices will run compensation transactions to rollbacks
the changes that only affect the cache layer instead of the main database layer. This will
resolve the lack of read-isolation of the saga pattern and, additionally, it will enhance the
performance. The database commit will be postponed and handled via the message queue
middleware at the end of the workflow when all transactions are completed successfully
to achieve eventual consistency. The clean architecture approach was utilized for the
implementation where all the domain use cases have been defined in advance.

For demonstration, a lightweight microservices-based e-commerce system was imple-
mented to compare the standard baseline version of the saga pattern with the proposed
enhanced version. Several experiments were conducted for validation and evaluation.
Results demonstrate that the proposed approach has the capability to resolve the lack of
isolation in the saga pattern. Results also indicate that the proposed approach achieves
better performance than the standard baseline version not only in typical cases but also in
the scenario that needs to handle exceptions as employing the cache operations instead of
the database operation enhances the performance and reduces the latency time.

2. Literature Review
2.1. Distributed Transactions in Microservices

The microservice architecture also known as microservices is an architectural style
that enables organizing an application or a system as a collection of services. It allows
the frequent, rapid, and reliable delivery of large, complex applications. As presented at
the otto.de, one of the biggest European e-commerce platforms [2], the properties of the
microservices include: high availability, scalability, loosely coupling, agility, and reliability.
The microservice architecture restructured the monolithic application into several individ-
ual services. The most common challenge with the traditional monolithic application is the
use of a single shared database which raises additional issues related to the scalability and
the single point of failure [6]. A microservice architecture could be viewed as a distributed
system where each transaction is distributed across multiple services that are invoked in
sequence or in parallel to complete the entire workflow. As the microservice architecture
enables applying the database per service pattern, transactions have to span across differ-
ent databases. With a microservice architecture, handling and implementing distributed
transactions that guarantee data consistency in addition to the rollbacks operation are key
issues that need to be considered. The following subsections summarize the patterns to be
used in implementing distributed transactions in a microservice architecture.

2.1.1. Two Phases Commit Protocol

One of the most popular patterns to implement distributed transactions in a microser-
vice architecture is the two-phase commit protocol (2PC) [7]. In this protocol (see Figure 1),
a coordinator is the component that controls transactions and contains the logic for man-
aging them, while the microservices (participating nodes) execute their local transactions.
With the 2PC protocol, a distributed transaction is executed in two phases. In the first
phase or what is known as the prepare phase, the coordinator asks the participating nodes
to commit the transaction. Thus, a yes or no response will be returned. In the second
phase (i.e., the commit phase), when a yes response is received by the coordinator from
all participating nodes, the coordinator, in turn, asks all nodes to commit. Note that the
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coordinator asks all participants to rollback their local transactions upon receiving at least
one negative response.
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Although the 2PC is viewed as a useful way to implement distributed transactions [8],
the coordinator can become a single point of failure. Moreover, the overall performance of
the transactions depends on the slowest service as all other services need to wait until the
slowest service finishes its confirmation. Thus, it does not perform very well in large-scale
and highly loaded systems [9].

2.1.2. Saga Pattern

To solve the problems with the 2PC protocol, the saga pattern was introduced [3,10]
to organize the communication in a microservice architecture. In 1981, Campbell and
Richards introduced the SAGA project [11] which explored both the practical and the
formal characteristics of computer-aided support for the software lifecycle in order to
enable the design of a practical software development environment. In 1987, Garcia-Molina
and Salem [10] introduced the idea of utilizing the saga pattern for long lived-transactions
by organizing them as a sequence of local transactions where each update of the database
publishes an event or message to trigger the next local transaction. In other words, the saga
has been introduced for updating data in multiple services in a microservices architecture
without using distributed transactions. When one local transaction fails because of not
complying with the business rules, a series of compensating transactions will be executed
by saga to undo the changes that were made by the preceding local transactions.

The authors in [10] described the saga as a sequence of operations that perform a
specific unit of work and are generally interleaved with each other. Saga operations are
allowed to be rolled back by a compensating action. Saga pattern ensures either the
successful completion of all operations or running the corresponding compensation actions
for all executed operations to rollback any work previously done. The idea of the saga
pattern is rather than having long transactions which hold into locks, long transactions will
be broken into a series of short transactions that commit in sequence [10].

Generally, the choreography and the orchestration are the most two common ap-
proaches to coordinating the saga pattern. With choreography, sagas are coordinated with
no centralized point of control where events are exchanged by participants. Domain events
are published by local transactions to trigger local transactions in other services. On the
other hand, the orchestration is another means to coordinate sagas where sagas will be coor-
dinated with a centralized controller who tells saga participants what local transactions to
execute based on the events. With the orchestrator, saga requests are executed, stored, and
the task states are interpreted. With compensating transactions, the orchestrator handles
failure recovery.
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The saga pattern was utilized by previous research. In general, implementing the saga
pattern requires a creative way of thinking in order to coordinate transactions and maintain
data consistency for a business process that spans multiple microservices. The design of a
SAGA-based Pilot-Job was proposed in [12]. The design proposed by the research supports
several types of applications to be usable over a broad range of infrastructures. In [13], a
multi-agent-based framework in the microservices architecture, namely SagaMAS is pro-
posed where the distributed transactions are coordinated by the framework simplifying the
interactions among microservices and relieving developers from coordination tasks. In [14],
the authors proposed a model-based approach for microservices and service integration
through formal models using the UML and UML profiles. Previous research concluded
that the saga architecture pattern is a useful means to implement distributed transactions
in a microservice-based system. However, the saga pattern is ACD (atomicity, consistency,
durability), not ACID (atomicity, consistency, isolation, durability) [3]. Read-isolation is
missing in the saga pattern which in turn allows reading and writing data from an incom-
plete transaction [4] and in saga, the microservices commit changes to their local databases.
The lack of read-isolation imposes a durability challenge. The saga implementation must
include countermeasures to reduce anomalies.

3. Proposed Approach: Design and Components

This section demonstrates the proposed approach that enhances the saga pattern
via the use of the quota cache and the eventual commit sync service. In a microservices
architecture, the system will be structured as a collection of services, namely microservices
each of which has its own database. The proposed approach employs in-memory data
caching to resolve the read-isolation issue in the saga pattern. A quota from the main
database will be allocated to the memory cache server initially. The operations of the
databases will be transferred to the memory cache server. Database commit will only be
performed when transactions are completed successfully.

The workflow of a standard e-commerce microservices-based system will be illus-
trated in the next section. Moreover, the components of the proposed approach will be
demonstrated in detail in Section 3.2.

3.1. Workflow of a Standard E-Commerce Application

Figure 2 presents the event workflow of an e-commerce microservices-based system.
The system allows buying products over the Internet, and offers the possibility to select
the products, the payment method, and the shipping means. This is a long-lived trans-
action that consists of several microservices: the Warehouse-Service, the Order-Service,
the Billing-Service, and the Shipping-Service. As shown in Figure 2, the system includes
both the warehouse-before-billing and the billing-before-warehouse to simulate real-world
e-commerce applications [15]. The flow starts with the Warehouse-Service that fetches
goods. Then, the Order-Service initializes an empty order marked as “IN-PROGRESS”.
The order will be marked as “FAILED” when the goods cannot be fetched. The Billing-
Service in turn validates the specified payment. The Billing-Service collects the payment if
the validation is completed successfully; otherwise, it terminates the flow with the order
marked as “FAILED”. The Shipping-Service dispatches the delivery. The Order-Service,
finally, completes the order and updates the order information including: the status, the
shipping-id, and the amount.
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3.2. Components of the Proposed Approach

This section demonstrates the backend components of the proposed enhanced saga
pattern. Figure 3 shows the architecture and the tech stacks of the e-commerce system whose
workflow is described in Section 3.1. The clean architecture approach was utilized for the
implementation [16]. All the domain use cases have been defined in advance. For example,
the Billing-Service has: the add-payment-use-case, the create-billing-use-case, the validate-
payment-use-case, the payment-pay-use-case, the revert-payment-pay-use-case, etc.
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3.2.1. Microservices

As shown in Figure 3, five microservices are involved in the system: the Warehouse-
Service, the Order-Service, the Billing-Service, the Shipping-Service, and the Customer-
Service. Each microservice has its own database. The microservices were developed via the
spring boot technology that has inherited the relevant use cases and implemented them [17]
(see Figure 4). The microservices were exposed via the REST API [18,19] internally; thus,
communication can be accomplished with the simple HTTP method.
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3.2.2. Message Queue Middleware

The message queue middleware is a distributed event-store and a stream-processing
platform handling both the failure and the completion events. It supports sending and
receiving messages between the microservices. It preserves the order of requests from
the microservices to guarantee the correctness of the eventual commitment. As shown in
Figure 3, various types of message queue middleware were applied to handle the different
events involved.

Apache Kafka [20] was utilized as a message queue middle. Apache Kafka is an open-
source distributed event streaming platform that can be used to publish and subscribe to
the streams of messages. Kafka is able to build a high throughput application as it is capable
of handling thousands of messages per second. Kafka has the durability characteristic;
thus, it always will store the messages on the disk for persistence [21].
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3.2.3. Quota Cache

A cache in computing is generally a hardware or a software component that stores
data. It is known as a high-speed data storage layer. A cache increases the performance
of data retrieval by reducing main memory access. The quota cache (see Figure 5) is the
quota of a specified resource from the main database. Quota is a feature that estimates the
available bytes (i.e., the amount of available space) to store contents.
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To resolve the read-isolation property in the saga pattern, in-memory data caching
is utilized. A quota from the main database will be allocated to the memory cache server.
The CRUD (create, read, update, and delete) tasks will be handled via quota cache. This in
turn will never cause a wrong commit to the main database. In addition, the microservices
which apply the quota cache will also benefit from the in-memory operations to ensure low
latency and high throughput and thus achieve better performance in comparison to the
baseline standard saga.

As shown in Figure 3, microservices that require validation apply the quota cache as
exceptions may occur when the validation fails. When a microservice fails to be completed,
the other microservices will run compensation transactions to rollback the changes. As-
suming that an error occurs from the Warehouse-Service when fetching the goods, in the
standard saga pattern, initial good fetching will cause updating of the main database; thus,
a customer could see the created order. However, when the compensation transaction is
run to rollback the changes, the order will be removed in the next few seconds. In contrast,
with the enhanced version, the CRUD operations are moved to the cache level instead of
the main database level. This will not cause a wrong database commit or update. The
compensation request will be sent to the corresponding message queue middleware in
the case of an error. Several message queue middleware were utilized to handle differ-
ent events, including: the buy events, the completion events, and the failure events. For
instance, the request will send to the warehouse-compensate queue if an error occurs in
either the Warehouse-Service or the Billing-Service. Moreover, the request will be sent to
the payment-related queue if an error occurs in the Billing-Service. As a result, with the
enhanced saga pattern, database commit will only be performed when the transaction is
completed successfully.

Redis [22] was utilized as our memory cache server. Redis is an open-source database,
with an in-memory data store. Redis is suitable for building low latency in-memory cache,
and also can increase the throughput. Several well-known companies, such as Twitter,
GitHub, and StackOverflow, have applied Redis.

3.2.4. Eventual Commit Sync Service

This service is a synchronous commit and will be blocked until either the commit
succeeds or an unrecoverable error is encountered (in which case it is thrown to the caller).



Appl. Sci. 2022, 12, 6242 8 of 24

Although the CRUD operations are shifted to the memory cache server, there is still a need
to commit to the main database. Therefore, the eventual commit sync service is needed.

The system that applies the proposed approach will send the “finished message”
to the message queue middleware at the last step when all the events are accomplished
successfully. Then, the microservices that have applied the quota cache will get the event-
record and perform database commit. In other words, database commit will be done only
when all the events are successful.

As shown in Figure 3, when all the purchase events are successfully accomplished, a
successful message will be sent to the “finished-buy-event-queue” and both the Warehouse-
Service and the Billing-Service will get the event record. Finally, these two microservices
will run the eventual commit sync service to perform database commit. Therefore, the
proposed approach ensures that no incorrect commit to the main database will occur.

3.2.5. Orchestrator Module

In the orchestrator module, all the microservices were configured to the corresponding
web-client, and organized via the RxJava library which composes asynchronous and event-
based programs by using the observer pattern [23]. Due to the orchestrator module, all the
microservices can be managed easily and the workflow can be adjusted when needed.

3.2.6. Main Database

For the main database, PostgreSQL [24,25] was employed. PostgreSQL is an open-
source object- relational database that is suitable for java application development.

4. System Implementation

This section illustrates the implementation of the preceding illustrated system (see
the Supplementary Materials section). Two versions of the system will be implemented
for later comparison. The first version employs the baseline standard saga pattern and the
second version utilizes the proposed approach (i.e., enhanced saga pattern via the use of
the quota cache and the eventual commit sync service).

The implementation is mainly based on the spring boot. The communication between
the microservices is done via the REST API, which lets the other services obey the REST
rules. Moreover, several message queues middleware were utilized to handle the different
events, including: the buy events, the completion events, and the failure events. With these
message queues, higher throughput can be achieved for the entire system.

For the microservices architecture, there are two approaches to coordinate sagas: the
orchestration and the choreography. In our proposal, both the orchestration and the event
choreography techniques were utilized for implementation.

• With the orchestration-based saga, the manager controller manages all the communica-
tions among the microservices. As shown in Figure 3, in our proposal, the orchestrator
module is responsible for telling the corresponding microservice what transactions
have to be executed. Thus, the order of the workflow could easily be managed without
changing any microservices. When the orchestration module captures a “buy-event”,
it tells the Warehouse-Service to start fetching goods. Additionally, the orchestration
handles both the failure and the completion events via the message queue middleware
where each event happens in an asynchronous manner. When all transactions are
completed successfully, the orchestration publishes a “complete-event” to the message
queue middleware which enables the Warehouse-Service and the Billing-Service to
consume it and perform database commit.

• The choreography service applies a decentralized approach to service composition.
In our proposal, via the choreography-based saga, after a microservice finishes its
local transaction, it will publish domain events that will be subscribed by the other
microservices to trigger their local transactions.
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4.1. Version 1: A System with the Standard Baseline Standard Saga Pattern

In this version, the back-end components excluding the memory cache server and the
message queue middleware were employed for implementing the standard saga pattern.
The standard baseline system (see Figure 6) is a standard saga pattern that organizes all
the microservices via the orchestrator module, and each task will follow the workflow
explained in Section 3.1. The logic of the revert transaction that is responsible for the
rollbacks operation to the main database was implemented (i.e., to be used for the scenario
with the exception). Once the “buy event” is published, the orchestrator module will
start the event workflow: The Warehouse-Service fetches the goods based on the request,
the Order-Service initializes the order for the customer, the Billing-Service validates the
specified customer’s payment and collects it, the Shipping-Service dispatches the delivery
for a customer, and, finally, the Order-Service completes the created order. There may be a
need to perform the revert transaction in the case of an error after fetching the goods by the
Warehouse-Service.
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4.2. Version 2: A System Implemented the Proposed Approach (Enhanced Saga Pattern)

This version (see Figure 3) employs all the back-end components, including: the
memory cache server and the message queue middleware. As shown in the figure, the
memory cache server and the message queue middleware only apply to the Warehouse-
Service and the Billing-Service as only these two microservices may perform the rollbacks
operation when an error occurs in the system (i.e., the fetched goods and the collected
payment should be reverted in the case of exception).

The Warehouse-Service fetches goods in the memory layer using Redis, the Billing-
Service validates the customer’s payment and collects it in the memory layer, the Shipping-
Service dispatches the delivery for a customer, and the Order-Service completes the order.
Simultaneously, the system will publish the finished event to the corresponding message
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middleware. The subscribed services will consume it and commit the specified update to
their main database. Moreover, this system has compensation transactions that are run
in the case of an error. Compensation transactions affect only the allocated quota cache
instead of the main database (i.e., the memory layer instead of the disk). Moreover, the
microservices, which apply the quota cache, postpone the database commit which, in turn,
will be handled via the message queue middleware at the end of the workflow to achieve
eventual consistency [26]. Thus, by applying the quota cache and the eventual commit
sync service, the database commit will only be executed if all the involved events are
completed successfully.

5. System Validation and Performance Evaluation

To verify the capability of the proposed approach in resolving the lack of read-isolation
in the saga pattern, validation experiments that simulate a completion scenario with no
exception and with a failure scenario were designed. Several experiments will be conducted
on the two implemented versions based on both scenarios and the log of the systems will
be observed. In addition, the performance of both systems was evaluated.

5.1. System Validation

For system validation, the main database and the memory cache server-related logs
were exported from both versions in order to track and test the read-isolation in the saga
pattern. The traced log contains information, such as the timestamp, the thread name, and
the message. The experiment will show that by applying the proposed approach, there is
no need to do the rollbacks operation to the main database.

5.1.1. Monitoring Tools

To export and collect the logs from each microservice, logs were structured via the
logstash logback encoder, which provides log back encoder and appenders to log in
logstash’s JSON format [27]. In addition, Loki [28] was used for performing log aggregation.
For observability, Grafana [29], which is an open-source web interface, was deployed. For
the experiment, there is a need to push the logs to the log aggregation server from each
microservice; thus, the Promtail tool [30] was deployed for retrieving the specified local
logs to the Loki instance as it has strong integration with the Loki.

5.1.2. Experiment Results

Two scenarios were designed for validating the systems, one with no exception occur-
ring and the other with an exception occurring during the payment.

1. Experiment 1: Testing the Baseline Standard System (version 1: Utilizing the stan-
dard saga pattern) with Scenario 1

Once the orchestrator module captures a “buy-event”, the event workflow will be tack-
led by the corresponding microservices. The Warehouse-Service starts to fetch the specified
number of goods at the first step, as shown in Figure 7. As shown in the “logger_name”
field, this operation was handled in the main database. After that, the Order-Service initial-
izes the order. The payment validation then will be handled via the Billing-Service. In the
case of validation failure, the workflow will be terminated and the order will be marked
as “FAILED”. Since this scenario represents the case with zero error, the validation will be
completed successfully. In the third step, the Billing-Service collects the specified payment
(Figure 7 shows the steps performed from 1 to 4). The Shipping-Service then dispatches the
delivery based on the customer’s request. Figure 8 shows that the customer selects “boat”
as a delivery means. In the last step, the Order-Service completes the order and updates
the required information, including the order status, the shipping id, the amount, and the
order status.
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2. Experiment 1: Testing the improved System (version 2: Utilizing the enhanced
saga pattern) with Scenario 1

Step 1 and Step 2 performed by version 2 are almost the same as version 1 as only
the Warehouse-Service and the Billing-Service apply the proposed approach. Note that as
shown in (Figure 9), data access was handled by Redis, the memory cache server, instead
of the main database. In other words, no transactions on the main database are needed at
these steps. Step 3 is shown in Figure 9, where validating the payment is transferred from
the main database to the memory cache server. Step 4: After the validation is completed
successfully, the Billing-Service collects the payment and updates the specified fields at the
memory cache serve. Steps 5 and 6 are the same as version 1 except that the orchestrator
module publishes the completion event to the corresponding message queue middleware.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 26 
 

The update operation has already moved to the memory cache server in both the Ware-
house-Service and the Billing-Service. It will perform the relevant transactions to the main 
database as long as they get the completion event message. 

 

 
Figure 9. The Steps performed by version 2 (deploying enhanced saga pattern). 

Figure 9. The Steps performed by version 2 (deploying enhanced saga pattern).



Appl. Sci. 2022, 12, 6242 13 of 24

Once the Warehouse-Service and Billing-Service consume the “completion-event”
message, they will perform the specified transaction to the main database, respectively. The
update operation has already moved to the memory cache server in both the Warehouse-
Service and the Billing-Service. It will perform the relevant transactions to the main
database as long as they get the completion event message.

3. Experiment 2: Testing the Baseline Standard System (version 1: Deploying stan-
dard saga pattern) with Scenario 2

The event workflow of an e-commerce microservices-based system with a payment
exception is shown in Figure 10. This workflow will be deployed to test both versions of
the system.
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Figure 11 shows the steps performed by the standard version that applies the standard
saga pattern. The first and the second steps fetch goods and initialize the order. Step 3 shows
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that a large amount is given that the customer cannot afford so payment validation failure
will occur. As an exception occurs, rollbacks will be executed at step 4, the Warehouse-
Service reverts the fetched goods. After rolling back the fetched goods, the Order-Service
completes the order and marks it as failed.
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4. Experiment 2: Testing the improved System (version 2: Deploying the enhanced
saga pattern) with Scenario 2

Figure 12 shows the steps performed by version 2 that applies the proposed enhanced
saga pattern. In the first and second steps, the goods will be fetched and the order will be
initialized. Step 3 shows that a large amount is given that the customer cannot afford so
payment validation failure will occur. A “failure-event” will be published to the message
queue middleware instead of performing the rollbacks to the main database. In the last two
steps, it can be observed that the timestamp of both logs is almost the same which means
the system sent the failure event and completed the order at the same time. Figure 12
shows that the Warehouse-Service compensates for the fetched goods via the memory cache
server, with zero change to the original main database. The logs indicate that the improved
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proposed approach can handle the exception and never perform the rollbacks operation to
the main database when errors occur.
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6. System Evaluation

This section illustrates the system performance based on two-evaluation metrics:
(1) the number of requests that can be handled in a specified duration in order to compare
the throughput of both versions; (2) the consumed time in a scenario with errors occurring.
The response time will be measured to specify the time taken by both approaches for
processing. For testing the performance, the k6 [31] tool was utilized. This tool is considered
a powerful load-testing tool globally as it provides an approachable scripting API and a
flexible configuration. The following configurations were set in the tool.

• VUs: The number of the virtual users (VUs) to run the specified script concurrently;
• Iterations: The fixed number of iterations that specify the script, usually works together

with VUs;
• Duration: The string which specifies the total duration time to run the testing script.

Performance Analysis

1. Throughput: Number of requests that are handled in a specified duration

In this experiment, the duration was set to 1 min and 3 min. The VUs were set to 1, 10,
15, 50, 100, and 150. Moreover, there is a one-second sleep between every iteration.

• Throughput Results: 1 min duration

The results of the throughput for 1 min duration are shown in Figures 13–18. As shown
in the figures, the average values of the throughput for version 1 with (1 VU/10 VUs/15 VUs/
50 VUs/100 VUs/150 VUs) are 297.5, 592.8, 781.5, 2400, 3170, and 4378 respectively, where
the average of throughput for version 2 with (1 VU/10 VUs/ 15 VUs/50 VUs/100 VUs/
150 VUs) are 299.5, 596.4, 887.3, 2928, 4442, and 6393 respectively. Results indicate that the
system “version 2” that utilizes the proposed approach (enhances saga pattern) achieves
better throughput. Although the duration of this experiment is short, the difference between
the two versions can still be observed.
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Figure 18. Load Testing—150 virtual users with 1 min duration.

• Throughput Results: 3 min duration

The results of a 3 min duration are shown in Figures 19–24. The average of the
throughput for version 1 with (1 VU/10 VUs/15 VUs/50 VUs/100 VUs/150 VUs) are 889.4,
1779.3, 2526.1, 3485, 4530.5, and 6252, where the means of the throughput for version 2 with
the same number of VUs are 890.7, 1780.8, 2669.5, 4182, 6342 and 9128 respectively.
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Results show that both approaches are well performed with 1 virtual user and 10 vir-
tual users. However, there is a significant difference when 15 virtual users were configured,
as the mean value of the completed orders in version 1 is 2526.1 in 3 min, while version
2 completes on average 2669.5 orders in 3 min. Results show that the system that employs
the proposed approach achieves better throughput. Note that, there were no failures that
occurred with the two experiments performed.

The main factor behind achieving better throughput by the enhanced saga pattern is
reducing the hard-disk operations. The proposed approach decreases access to the main
database by utilizing the quota cache. To do that, the quota cache, which is implemented
by Redis, is applied to the microservices that require validation (i.e., in the workflow above
the Warehouse-Service and the Billing-Service). All CRUD operations are shifted to the
memory cache server instead of the main database. Accessing the main database occurs
only to perform database commit when all transactions are completed successfully.
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Additionally, the proposed approach applies Redis as an in-memory cache server
which plays a significant role in enhancing the performance. Redis is extremely fast as
it preserves data in the primary memory (in-memory) instead of the secondary memory.
Thus, data access latency is decreased. Moreover, via Redis, the read and write operations
are extremely fast which in turn allows the system to deliver sub-millisecond response
times that enables more requests to be handled in one second. As a result, increasing
the throughput of the system. In contrast, the standard saga pattern stores data in the
secondary memory; as a result, read and write operations will be much slower. Thus, it
affects the throughput of the system.

Moreover, the message queue middleware, implemented by Kafka, plays a key role
in improving the overall throughput. In our proposal, Kafka allows the communication
between the microservices by supporting the sent and received messages between them.
It also handles the failure and the completion events. Kafka enhances the performance as
it is capable of handling thousands of messages per second. The amount of time it takes
for a record that is produced to Kafka to be fetched by the consumer is short. Thus, more
records will be fetched and the throughput will be improved.

2. Response-time “Consumed time in a scenario with failure events”

Three scenarios were tested with different error rates. Each scenario contains two
kinds of error: The Warehouse-Service occurs error when goods are fetched, the Billing-
Service causes an error when processing the payment. Moreover, the proportion of the
Warehouse-Service error to the Billing-Service error is 9:1. Besides, 1 k requests were sent
without any sleep time to the message queue middleware. Test results are listed below.
Figure 25 shows the consumed time when
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• 10% error rate in 1000 requests (900 successful orders);
• 9% Warehouse-Service fetch goods occur error;
• 1% Billing-Service payment failed.
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• 70% error rate in 1000 requests (300 successful orders);
• 63% Warehouse-Service fetch goods occur error;
• 17% Billing-Service payment failed.

Figures 25–27 show that version 2 which applies the proposed enhanced saga pattern
consumes less time than version 1 which utilizes the baseline standard saga pattern even in
the scenario with errors. The reason behind this is employing the cache operations instead
of the database operation generally enhances the performance and reduces the latency time.
According to the proposal, CRUD operations are moved to the memory cache server to
enhance the performance instead of the main database, and a commit to the main database
occurs only when all requests are successful. In the case of error, no hard-disk operations
are performed, there is only a need to revert the change in the memory cache. In the case
where an error occurs, the compensation request will be sent to the corresponding message
queue middleware.
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In the standard saga pattern, updating data will be accomplished on the main database
directly. In the case of an error, the compensation transaction will be run to rollback the
changes, and the new update requires accessing the main database one more time. In
contrast, with the enhanced version, the CRUD operations are moved to the cache level
instead of the main database level. This will not cause a wrong database commit or update.
The compensation request will be sent to the corresponding message queue middleware in
the case of an error. As a result, with the enhanced saga pattern, database commit will only
be performed when the transaction is completely successful.

Results demonstrated that transferring the main database’s CRUD operations to the
memory cache server would provide benefits and resolve the read isolation issue, further
achieving better performance.

7. Conclusions and Future Work

This paper proposes an improved approach to resolve the missing read-isolation
property in the saga pattern. The proposal integrates the standard saga with the quota
cache and the eventual commit sync service. The importance of this research comes from the
ability of the proposed approach in handling the lack of read-isolation of the saga pattern
by moving some transactions from the database layer to the memory layer. According
to the proposal, CRUD (create, read, update, and delete) tasks will be handled via quota
cache (i.e., the memory cache server) instead of the main database. This will never cause
a wrong commit to the main database. If a microservice fails to be completed, the other
microservices will run compensation transactions to rollback the changes which affect only
the cache level. Database commit will be postponed and handled via the message queue
middleware at the end of the workflow when all transactions are completed successfully to
achieve eventual consistency.

For demonstration, a lightweight microservices-based e-commerce system was imple-
mented to compare the standard baseline version of the saga pattern with the proposed
enhanced version. Several experiments were conducted for validation and evaluation.
Results demonstrate that the proposed approach has the capability of resolving the lack
of read-isolation in the saga pattern. Results also indicate that the proposed approach
achieves better performance than the standard baseline version not only in typical cases
but also in the scenario that needs to handle exceptions as employing the cache operations
instead of the database operation enhances the performance and reduces the latency time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/LittlePaulHi/enhanced-saga-pattern-demo.
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