
Enhancing Software DSM for Compiler-Parallelized Applications

Pete Keleher Chau-Wen Tseng
keleher@cs.umd.edu tseng@cs.umd.edu

Dept. of Computer Science
University of Maryland

College Park, MD 20742

Abstract

Current parallelizing compilers for message-passing machines only support a limited class of data-parallel applica-
tions. One method for eliminating this restriction is to combine powerful shared-memory parallelizing compilers
with software distributed-shared-memory (DSM) systems. We demonstrate such a system by combining the SUIF
parallelizing compiler and the CVM software DSM. Innovations of the system include compiler-directed techniques
that: 1) combine synchronization and parallelism information communication on parallel task invocation, 2) em-
ploy customized routines for evaluating reduction operations, and 3) select a hybrid update protocol that pre-sends
data by flushing updates at barriers. For applications with sufficient granularity of parallelism, these optimizations
yield very good speedups eight processors on an IBM SP-2 and DEC Alpha cluster, usually matching or exceeding
the speedup of equivalent HPF and message-passing versions of each program. Based on our experimental results,
we point out areas where additional compiler analysis and software DSM improvements can be used to achieve
good performance on a broader range of applications.

1 Introduction

Increasingly powerful processor and network architectures make so-called “meta-computers” (loosely-coupled computers
communicating via messages) a tempting platform on which to run large parallel and distributed applications. Unfortunately,
writing efficient message-passing programs is difficult, error-prone, and tedious, and data-parallel languages such as High
Performance Fortran (HPF) [18] may prove overly restrictive. We believe that the combination of shared-memory parallelizing
compilers and sophisticated runtime systems presents one of the most promising approaches towards addressing this key
problem.

This paper presents our experience using the CVM [15] software distributed shared memory (DSM) system as a compilation
target for the SUIF [12] shared-memory compiler. SUIF automatically parallelizes sequential applications and allows users
to benefit from sophisticated program analysis. The use of CVM as a compilation target hides the details of the underlying
message-passing architecture and allows the compiler-generated code to assume shared memory semantics.

By combining these two technologies, we create a programming environment that is flexible and easy to use, since scientists
are no longer required to write message passing programs or use data-parallel languages such as HPF. Instead, they can
write mostly sequential programs, rewriting a few computation-intensive procedures and adding parallelism directives where
necessary. This combination has the advantage of producing programs that can run on the large-scale parallel machines as
well as the low-end, but more pervasive multiprocessor workstations. This portability is important for scientists and engineers
who want to develop applications that run well on their multiprocessor workstations, but who desire the ability to scale their
applications up for larger parallel machines as needed. The combination of ease of use and scalability of software is a key
appeal of shared-memory compilers.

By studying the performance of compiler-parallelized programs on CVM, we are also helping to validate the efficiency
of software DSMs in general. Previous studies have relied on carefully hand-tuned parallel programs such as the Splash
Benchmarks. By achieving good performance for compiler-parallelized applications, which are much less tuned for the
underlying memory system, we show that software DSMs are efficient enough to support a wider class of applications than
previously demonstrated.

This research was supported by NSF CAREER Development Awards #CCR9624803 in Operating Systems and #ASC9625531 in New Technologies.
The IBM SP-2 and DEC Alpha Cluster were provided by NSF CISE Institutional Infrastructure Award #CDA9401151 and grants from IBM and DEC.

1



1.1 Contributions

Shared-memory parallelizing compilers are easy to use, flexible, and can accept a wide range of applications. The important
question is whether shared-memory compilers targeting software DSMs can approach the performance of current message-
passing compilers or explicitly-parallel message-passing programs on distributed-memory machines. This paper makes a
number of contributions towards answering this question:� experimental evaluation of an actual compiler/DSM system on two machine architectures� DSM enhancements to

1. combine synchronization and application data messages with parallel task invocation

2. eliminate synchronization and piggyback messages for reduction operations

3. selectively use an update flush protocol for dynamically shared data� comparison with data-parallel (HPF) and message-passing (MPI) versions of each program

We begin by considering the parallelization and run-time model of the compiler, the coherence and communication model
of the software DSM, and their interactions. We describe three techniques for improving the compiler/software DSM interface.
We present our prototype system, followed by experimental results. We conclude with a discussion of potential improvements
to our system and related work.

2 Background

2.1 Shared-Memory Compiler Model

The goal of parallelizing compilers is to identify parallel loops or tasks in sequential programs, using data-flow and data
dependence analysis combined with program transformations. Once a parallel portion of the program is identified, it is typically
made into the body of a procedure which can be invoked by all the processors in parallel.

Shared-memory parallelizing compilers typically employ a fork-join programming model, where a single master thread
executes the sequential portions of the program, assigning (forking) computation to additional worker threads when a parallel
loop or task is encountered. After completing its portion of the parallel loop, the master waits for all workers to complete
(join) before continuing execution. During the parallel computation, the master thread participates by performing a share of the
computation just like a worker. After each parallel computation worker threads spin or go to sleep, waiting for additional work
from the master thread.

The fork-join model is flexible and can easily handle sequential portions of the computation; however, it imposes two
synchronization events per parallel loop. First, a broadcast barrier is inserted before the loop body to wake up available worker
threads and provide workers with the address of the computation to be performed and parameters if needed. A barrier is then
inserted after the loop body to ensure all worker threads have completed before the master can continue. Between the broadcast
and the barrier threads execute computation in parallel.

Shared-memory parallelizing compilers usually rely on a small run-time system to manage parallelism operations. Typical
functions supported in the run-time system include routines for: 1) thread creation at the beginning of the program, 2) assigning
parallel computation to workers, 3) performing barrier and lock operations, 4) accumulating the results of global reductions. The
run-time system may also support a variety of scheduling policies (e.g., block, round-robin, dynamic) for scheduling iterations
of parallel loops to processors.

Shared-memory compilers enjoy a significant advantage over HPF compilers because they do not need precise information
on all interprocessor communication. Because of this generality, current shared-memory compilers can efficiently support
a much larger set of applications than current HPF compilers. In this paper we show that for many applications, slightly
extending analysis in a shared-memory compiler (for data likely to be communicated to other processors) can yield comparable
performance to full-blown communication analysis in HPF compilers, with much greater flexibility and less effort.

2.2 CVM

The DSM target used in this work is CVM, a software DSM that supports multiple protocols and consistency models. Like
commercially available systems such as TreadMarks [17], CVM is written entirely as a user-level library and runs on most
UNIX-like systems. Unlike TreadMarks, CVM was created specifically as a platform for protocol experimentation.

The system is written in C++, and opaque interfaces are strictly enforced between different functional units of the system
whenever possible. The base system provides a set of classes that implement a generic protocol, lightweight threads, and
network communication. The latter functionality consists of efficient, end-to-end protocols built on top of UDP.

2



New shared memory protocols are created by deriving classes from the base Page and Protocol classes. Only those
methods that differ from the base class’s methods need to be defined in the derived class. The underlying system calls protocol
hooks before and after page faults, synchronization, and I/O events take place. Since many of the methods are inlined, the
resulting system is able to perform within a few percent of TreadMarks, a severely optimized system, running a similar protocol.
However, CVM was designed to take advantage of generalized synchronization interfaces, as well as to use multi-threading for
latency toleration. We therefore expect the performance of the fully functional system to improve over the existing base. In
order to simplify the comparison process, however, we do not use either of these techniques in this study.

Memory Consistency - CVM’s primary protocol implements a multiple-writerversion of lazy release consistency [16], which
is a derivation of release consistency (RC) [9]. Release consistency a processor to delay making modifications to shared data
visible to other processors until special acquire or release synchronization accesses occur. The propagation of modifications can
thus be postponed until the next synchronization operation takes effect. Programs produce the same results for the two memory
models provided that (i) all synchronization operations use system-supplied primitives, and (ii) there is a release-acquire pair
between conflicting ordinary accesses to the same memory location on different processors [9]. In practice, most shared-memory
programs require little or no modifications to meet these requirements.

Lazy release consistency (LRC) allows the propagation of modifications to be further postponed until the time of the next
subsequent acquire of a released synchronization variable. At this time, the acquiring processor determines which modifications
it needs to see according to the definition of LRC. To do so, the execution of each process is divided into intervals, each
denoted by an interval index. Every time a process executes a release or an acquire, a new interval begins and the interval
index is incremented. Intervals of different processes are partially ordered by assigning a vector timestamp to intervals for each
processor. At an acquire, processor p sends its current vector timestamp to the previous releaser of the same synchronization
variable, q. Processor q then piggybacks on the release-acquire message to p write notices for all intervals named in q’s current
vector timestamp but not in the vector timestamp it received from p. Experiments show alternative implementations of release
consistency generally cause more communication than LRC [7].

False Sharing - False sharing occurs when two or more processors access different variables within a page, with at least
one of the accesses being a write. False sharing is problematic for software DSMs because of the large page-size coherence
units. Multiple-writer coherence protocols [3] such as that implemented by CVM avoid false sharing by allowing two or more
processors to simultaneously modify local copies of the same shared page.

These concurrent modifications are merged using diffs to summarize the updates. A diff is created by performing a page-
length comparison between the current contents of the page and a twin of the page that was created at the first write access.
If each concurrent writer summarizes its modifications as a diff, the system can create a copy that reflects all modifications
by applying the concurrent diffs to the same copy. Concurrent diffs only overlap if the same location is written by multiple
processors without intervening synchronization, which is probably a data race.

Access misses - CVM uses the UNIX mprotect system call to control access to shared pages. Any attempt to perform
a restricted access on a shared page generates a SIGSEGV signal. The SIGSEGV signal handler examines local information
determine the page’s state. If the local copy is read-only, the handler allocates a page from the pool of free pages and performs
a bcopy to create a twin. Finally, the handler upgrades the access rights to the original page and returns. If the local page
is invalid, the handler requests a copy from the page’s owner. If write notices are present for the page, the faulting processor
obtains the list of missing diffs maintained by the system and sends out requests in parallel to all the processors that may have
modified the page. When all necessary diffs have been received, they are applied to the page in increasing timestamp order.

3 Compiler/Software DSM Interface

Our system consists of the Stanford SUIF parallelizing compiler [12] and the CVM software DSM system [15]. A simple
interface was produced by porting the SUIF run-time system to the CVM API. Because shared data in CVM must be global, we
also implemented passes in the compiler to promote all shared local variables to globals, and to pack all shared global variables
into a single contiguous global structure.

3.1 Optimizations

The simple interface presented for SUIF and CVM produces a working system, but contains many inefficiencies, some of which
may be eliminated with enhancements to the software DSM that rely on lightweight compiler analysis. One of the properties of
software DSMs that can lead to poor performance is the use of an invalidation protocol for maintaining coherence. Invalidation
protocols are preferred because they reduce excessive communication. However, they are inefficient for producer-consumer
communication patterns, particularly if there are multiple consumers.

3



To see why this problem exists, consider what happens when processor p produces data X consumed by processor q. By
defining X, p invalidates the copy of X held by q. Using release consistency, the invalidation message is piggybacked on the
barrier synchronization message, so there is little overhead for the invalidation. However, when q attempts to consume X, it
has to take a page fault and wait for the fault handler to initiate a round-trip communication to p to fetch the page containingX.
If multiple processors need to consume X, producer p receives a large number of requests, adding a serial bottleneck. Further,
if X overlaps more than one page, the pages are retrieved serially as they are accessed.

3.1.1 Parallelism Startup

To eliminate these effects, we considered places where producer-consumer relationships occur in compiler-parallelized programs.
We consider three opportunities for customizing the software DSM to improve performance. The first is in the parallelism
startup code, the portion of the compiler run-time system responsible for awakening worker threads and assigning them work.
This operation is a prime example of a producer-consumer relationship, since the master thread produces data (the location of
parallel computation to be performed and parameters for the computation) which is consumed by multiple worker threads.

To improve performance for parallelism startup, we enhanced the software DSM to automatically piggyback certain marked
locations along with barrier messages. Since the master processor also owns the broadcast barrier preceding each parallel
loop, it can combine the broadcast message to the workers acknowledging barrier completion with the information needed for
parallelism startup. All that is required is to insert code in the compiler run-time system to mark the section of the global shared
memory reserved for the compiler run-time system. Those variables are then automatically updated with new values with the
synchronization messages for the barrier.

3.1.2 Customized Reductions

Another opportunity for improving the compiler/software DSM interface is in customized support for reductions. Reductions
are commutative actions (e.g., sum, max) identified by the compiler that can be performed on local data and then accumulated
into global locations using routines from the compiler run-time library. A straightforward implementation would use ordinary
accesses to shared memory, guarded by lock variables in order to guarantee mutual exclusion. In addition to the usual
inefficiencies with produce-consumer communication under an invalidationprotocol, the need for mutual exclusion in reductions
impose a serial bottleneck as well as synchronization traffic for lock acquires and releases.

Fortunately, customized support for reductions can be easily added to a software DSM. The compiler has already identified
the operation as a reduction to the run-time system, and the software DSM can take advantage of this information by eliminating
lock operations, instead combining the results directly based on each processor’s contribution to the accumulated result. The
process is simplified because the current SUIF compiler only performs reductions at the end of a parallel region.

CVM supports reductions by copying the reduction operator and local reduction data into a local reduction record. All such
records are appended to the next outgoing barrier arrival message. The master thread then performs all reductions from the last
barrier interval, updating the value of the global shared data. The advantage of centralizing the reduction process at the master
thread is two-fold. First, synchronization to ensure mutual exclusion is eliminated because the master performs all reductions.
Second, since reductions are performed on shared memory, the page containing the reduction data must be valid locally, and
a diff describing the reduction is created later. Centralizing the process at the barrier master therefore saves on diff creations,
remote misses, and total messages.

3.1.3 Flush protocol

Finally, we consider the application data communicated between threads during parallel program execution. Good parallelizing
compilers such as SUIF typically choose computation partition and loop scheduling policies that promote co-location of data
and computation. In loop-intensive numeric codes, the assignment of computation to threads is thus usually fairly stable,
yielding consistent sharing patterns for many iterations. By relying on a consistent computation partition, we may be able to
obtain a good estimate of communication without doing compile-time analysis by using copyset information collected by the
underlying software DSM system.

CVM track copies of shared pages by using copysets, which are bitmaps that specify which processors cache a given
page. This information can be used to improve performance by selectively employing a hybrid invalidate/update coherence
protocol. Coherence for pages which are consistently communicated between the same set of processors can be flushed rather
than invalidated after writes, eliminating access misses. Coherence for the remaining pages is maintained using an invalidate
protocol to avoid excessive communication. On the first iteration of the time step loop, the copysets of each page are empty
and access misses occur. By the second iteration, however, copyset information indicates the processors that need each page,
accurately reflecting stable sharing patterns. Under the flush protocol, access misses can be then be eliminated by updating
processors on the copyset for each page, sending the data before it is accessed.

4



We modified the compiler to automatically insert calls to DSM routines to mark pages to be flushed at barriers. For a given
page, local modifications are then flushed to all other processors in the page’s local copyset at each barrier. A processor p is
inserted into processor q’s copyset for a page if p requests a diff for the page, or if q sees a write notice for the page that was
created by q.

Compiler analysis needed to use such a protocol is much simpler than communication analysis needed in HPF compilers.
The identities of the sending/receiving processors do not need to be computed at compile time, and the compiler does not need
to be 100% correct since the only effect is on efficiency, not correctness. Instead, the compiler only needs to locate data that will
likely be communicated in a stable pattern, then insert calls to DSM routines to apply the flush protocol for those pages at the
appropriate time. More precise compiler analysis can be used to explicitly clear or set the copysets of data to be communicated.

As previously discussed, barrier flushes of updates (essentially a restricted update model) have both advantages and
disadvantages. On the plus side, flushes ideally move data before it is needed, allowing computation and communication to
be wholly overlapped. The results can be fewer page invalidations and page faults. A second advantage is that lost flush
messages do not affect correctness, only performance. Flush messages do not have to be reliable, and therefore do not need
to be acknowledged. A “flush” therefore consists of only a single message, whereas a miss to shared data incurs at least one
request and response message pair.

All consistency information in lazy-release-consistency systems is piggybacked on synchronization messages (barrier
messages in the case of compiler-parallelized applications). By contrast, diff requests are inherently two-way, and so cost two
messages. On the minus size, if sharing patterns are not stable, out-of-date copysets will cause data to be sent to processors that
do not need it. Correctness is not affected, but the unneeded flushes cause unnecessary overhead.

The basic flush protocol as described above was modified in two ways for this study. First, we flush updates for data at
barrier synchronization points to enable data to be piggybacked on synchronization messages (where possible) and multiple
updates to be aggregated in a single message. Second, we provide a flexible user-level (i.e., non-kernel) interface for specifying
the coherence for a page or range of pages. This flexibility is important because applications typically have phase shifts when
data access patterns change. CVM allows 1) dynamically changing the coherence type of a page to either invalidate or update,
2) clearing the copyset of a page, 3) adding or removing processors from the copyset of a page.

4 Experimental Results

This section presents our experimental results. We discuss our experimental environment, present our overall results, discuss
the effect of two compiler-directed optimizations, and then summarize our results.

4.1 Experimental Environment

We evaluated our optimizations on a cluster of DEC Alpha workstations and an IBM SP-2. Our DEC Alpha cluster consists of
eight DEC Sables multiprocessors with four 250MHz Alpha 20064 processors and 256 megabytes of memory each, operated
under DEC Unix version 3.2D. The nodes are connected by a 155-MBit/sec ATM switch. Results use only a single processor per
node. Using more than one processor per node resulted in up to 15% performance degradation relative to a system containing
the same number of processors, but only a single processor per node. This degradation arises primarily from contention at the
network interface, and has been documented on similar systems elsewhere [8, 25].

On the DEC cluster, CVM processes communicate via unreliable UDP sockets over the ATM switch. Simple RPCs take
160 �sec, and eight-processor barriers take a minimum of 1836 �secs. Misses on shared data take a minimum of 1388 �secs,
including both system time and the cost of retrieving a 8192-byte page across the switch. Misses are detected by changing page
protections and specifying handlers to be called on an inappropriate access. The operating system overhead of such a handler
call is 128 �secs. Operating system overhead for calling handlers for incoming messages is similar.

We also present results from an IBM SP-2 with 66MHz RS/6000 Power2 processors operating AIX 4.1 connected by a 120
Mbit/sec bi-directional Omega switch. Simple RPCs on the SP-2 require 160 �secs. A one-hop page miss, where the page
manager is also the owner, requires two messages and 939 �secs. Two-hop page misses require three messages and 1376 �secs.
In the best case, AIX requires 128 �secs to call user-level handlers for page faults, and mprotect system calls require 12�secs. However, virtual memory primitive costs in the current system are location-dependent, occasionally increasing these
costs to a millisecond or more.

4.2 Applications

We evaluated the performance of our compiler/software DSM interface with the nine programs shown in Table 1. ADI, EXPL, and
RB are dense stencil kernels typically found in iterative PDE solvers. JACOBI is a stencil kernel combined with a convergence
test that checks the residual value using a max reduction. DOT calculates the inner product of two vectors using a sum reduction.

5



IRREG models an iterative PDE solver on a randomly generated irregular mesh. MULT performs matrix multiplication. SWM

and TOMCATV are programs from the SPEC benchmark suite containing a mixture of stencils and reductions. The arrays in
TOMCATV have been transposed to improve data locality.

Name
Description

Problem Sizes Granularity (secs)
Small Large Small Large

adi ADI Fragment (Livermore 8) 32K 64K 0.31 0.63
dot Dot Product (Livermore 3) 256K 512K 0.10 0.28
expl Explicit Hydrodynamics (Livermore 18) 2562 5122 0.06 0.34
irreg Irregular Solve Over Mesh 500K 1000K 0.06 0.12

jacobi Jacobi Iteration w/Convergence Test 5122 10242 0.06 0.91
mult Matrix Multiply 3002 4002 1.83 4.33

rb Red-Black Successive-Over-Relax. 5122 10242 0.01 0.14
swm Shallow Water Model (SPEC) 5122 7502 0.10 0.20

tomcatv Vector Mesh Generation (SPEC) 2562 5122 0.04 0.15

Table 1 Applications

In Table 1, the “Granularity” column refers to the average length in seconds of a parallelized loop. Except where indicated,
numbers below refer to the larger data set for each application. All applications were originally written in Fortran, and
typically contain an initialization section followed by iterations of a time step loop. Statistics and timings are collected after the
initialization section.

4.3 Programming Models

In our experiments, CVM applications written in Fortran 77 were automatically parallelized by the Stanford SUIF parallelizing
compiler version 1.0, with close to 100% of the computation in parallel regions. A simple block scheduling policy assigns
contiguous iterations of equal or near-equal size to each processor, resulting in a consistent computation partition that encourages
good locality. The resulting C output code was compiled by g++ version 2.6.3 with the -O2 flag, then linked with the SUIF
run-time system and the CVM libraries to produce executable code on the DEC Alphas and IBM SP-2.

We also evaluated the efficiency of our CVM shared-memory interface by comparing its performance against data-parallel
(HPF) and message-passing (MPI) versions of each program. High Performance Fortran (HPF) applications were created by
manually translating from Fortran to Fortran 90, with HPF data decompositions added for each array. On the IBM SP-2 we
used the IBM HPF compiler [11] with the -O2 flag. On the DEC cluster we used the DEC HPF compiler f90 version 2.0-1
with the -O2 -wsf -fast flags.

Message-passing versions of each program were created using calls to communication routines specified under Message
Passing Interface (MPI). On the IBM SP-2 we used the MPL version 2 implementation of MPI; on the DEC Alpha cluster
we used the MPICH version 1.0.12 implementation of MPI. MPI versions of ADI, DOT, EXPL, and JACOBI were generated
using the Fortran D compiler [13]. Previous experiments show the resulting programs achieve performance close to optimized
hand-written message-passing programs [14]. MPI versions of MULT and RB were created by hand. These programs represent
message-passing programs written with a reasonable amount of effort, not programs highly customized for performance.

Figures 1 and 2 show CVM, HPF, and MPI speedups for both large and small data sets for each of our applications on the IBM
SP-2 and DEC Alpha cluster, respectively. Speedup is calculated relative to the sequential versions of each program, without
any calls to the parallel run-time system. Although we were careful to ensure that paging does not occur in the single-processor
runs of any applications, cache effects are enough to cause superlinear speedup in some cases. Sequential execution times for
CVM and HPF programs differ slightly, since HPF programs have been rewritten in Fortran 90, but are generally comparable.

The performance of our applications cover a broad range. As expected, both systems perform better with larger data sets.
CVM speedups are quite good. For the larger data sets over eight processors, CVM has an average speedup of 7.2 on the DEC
Alpha cluster and 5.0 on the IBM SP-2. These results show that shared-memory compilers targeting an enhanced software
DSM can achieve excellent results on message-passing systems for a moderate number of processors, at least for applications
with sufficient granularity of parallelism.

6



ADI (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Dot (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Explicit (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Irreg (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Jacobi (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

ADI

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Dot

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Explicit

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Irreg

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Jacobi

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Mult (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

RedBlack (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Swm (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Tomcatv (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Mult

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

RedBlack

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Swm

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Tomcatv

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

0

1
0

2
0

CVM

HPF

MPI

Figure 1 Speedups for IBM SP-2

7



ADI (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Dot (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Explicit (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Irreg (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Jacobi (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

ADI

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Dot

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Explicit

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Irreg

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Jacobi

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Mult (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

RedBlack (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Swm (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Tomcatv (small)

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Mult

0

2

4

6

8

10

1 2 3 4

Processors

S
p

ee
d

u
p

RedBlack

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Swm

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

Tomcatv

0

2

4

6

8

10

1 2 4 8

Processors

S
p

ee
d

u
p

0

1
0

2
0

CVM

HPF

MPI

Figure 2 Speedups for DEC Alpha Cluster

8



4.4 Comparing CVM Performance against HPF and MPI

Figure 1 shows that on the IBM SP-2, HPF speedups were generally slightly higher than CVM and even MPI speedups. This
indicates the IBM HPF compiler is quite powerful and is able to efficiently exploit low-level communication primitives. CVM
speedups were nevertheless quite close to HPF speedups, with the major exceptions of SWM and TOMCATV which experience
excessive paging during parallel execution. We plan on fixing this problem by tuning the page allocation policy in AIX.

Figure 2 shows that on the DEC Alpha cluster, CVM speedups match or exceed the HPF speedups in every case except DOT

with the large data set. The DOT kernel has the highest incidence of reduction operations, which are somewhat more efficient
on the HPF system. Otherwise, CVM almost always outperformed the corresponding HPF programs on the DEC cluster.

Examining the DEC Alpha results in more detail, we see that with the DEC HPF compiler programs execute slower than
sequential Fortran 90 programs due to the overhead from invoking message passing routines. This overhead is significant, in
many cases doubling the execution time of a one-processor HPF program. As a result overall speedups and execution times
are reduced for HPF programs. However, because data is communicated efficiently (and only data actually used is transferred),
we expect HPF programs to achieve good scalability in performance for larger numbers of processors. In comparison, CVM
programs have virtually no overhead for one-processor execution.

One program that stands out is IRREG, since CVM was able to achieve speedups significantly better than HPF on both
architectures. CVM was able to capture the pattern of irregular remote accesses at runtime and handle it almost as efficiently
as for regular dense matrix accesses. In comparison, HPF compilers were unable to analyze the nonlocal accesses at compile
time, resulting in inefficient execution. This example emphasizes the advantages of a combined compile/runtime approach for
less regular computations.

Our experiments show that speedups of message passing programs using MPI were generally comparable to those of HPF
and CVM programs on both parallel architectures. For the dense-matrix applications evaluated, it appears that both HPF and
CVM are sufficiently efficient that it would require a fair amount of effort to customize message-passing programs for better
performance under MPI.

Overall, the performance of CVM programs is comparable to that of the HPF programs for applications with sufficient
computation. This result is encouraging, since most of the applications we examined have very regular access patterns, and
hence represent the best case for HPF compilers. These results show that with enhanced software DSMs, the same performance
can be achieved with much less compiler analysis for many applications on moderate-size parallel systems.

4.5 Detailed Evaluations

Figure 3 breaks CVM execution time down into five categories: application processing time, time spent waiting at barriers,
miss handling time, time spent “flushing” data in our update protocol, and time spent in communication routines. Barrier wait
time is almost entirely load imbalance. While the compiler-generated code is perfectly balanced, time spent handling faults,
diff requests, and flush messages delays processors unequally between barriers under CVM.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

adi dot expl irr jacob mult rb swm tom

Comm

Flush

Miss

Wait

App

Figure 3 Breakdown of Execution Time

9



“Miss” time includes system time spent calling the fault handler and changing page protections, as well as all remote requests
needed to validate shared pages. This category is deceptively small, since variation in miss handling time among processors
appears to be the primary cause of load imbalance. Hence, any reduction of miss handling time is likely to reduce barrier wait
time as well.

Recall that when enabled, our compiler automatically insert calls to DSM routines that mark address ranges to be kept coherent
using a flush protocol; updates are flushed at barriers to eliminate nonlocal misses. For a given page, local modifications are
flushed to processors named by the local copyset prior to each barrier. For applications with non-adaptive reference patterns,
such as those in our test suite, copyset information accurately reflects stable sharing patterns by the second iteration. The current
algorithm used to select data is fairly imprecise, and marks all arrays accessed in parallel as data requiring updates.

Table 2 contains statistics on diffs created, pages invalidated, remote misses, and messages both with and without compiler-
generated barrier flushes. Because of the interference with lazy diffing, described below, barrier flushes uniformly create more
diffs. However, the difference is minor for most of the programs, indicating that they have stable sharing patterns. In all cases,
barrier flushes reduce the number of page invalidations and remote misses.

If sharing patterns are not stable, out-of-date copysets will cause data to be sent to processors that do not need it. Correctness
is not affected, but the unneeded flushes cause unnecessary overhead. The “Useful Diffs” column shows that this is significant
only for TOMCATV. The problem appears to be due to a less obvious disadvantage of barrier flushes, which occurs when data is
consumed less frequently than it is modified. For example, consider a three-barrier application executing on processors p and q.
Processor p modifies page i during each of the first two barrier epochs, and q reads page i in the third. Multi-writer DSMs such
as CVM typically use a lazy diffing diffing scheme, which means that they delay actually creating a diff until it is requested. In
the above case, without barrier flushes, the lazy scheme would not create a diff until q requests the modified data from p in the
third epoch. Hence, only one diff for page i is created during each iteration. With barrier flushing enabled, diffs are created
and flushed in each of the first two epochs, resulting in twice as many diffs being created overall. We intend to improve our
compiler analysis to eliminate these unnecessary flushes. Despite the relatively large percentage of unused diffs, performance
for TOMCATV is significantly improved because the large number of page misses eliminated.

Table 3 contains statistics describing executions with and without customized reduction support for the applications that
use reductions. Without customized reductions, accumulations occur through mutually exclusive updates to shared memory,
incurring lock synchronization overhead. The percentage of overall execution time spent waiting for lock access is listed in the
“Sync Overhead” column. For applications with many reductions such as DOT, the time lost becomes a large fraction of total
execution time. With customized reduction support, reduction records are created and piggybacked on barrier synchronization
messages. No locks are needed to enforce mutual exclusion, eliminating synchronization overhead altogether. The results show
that customizing reductions is quite effective for reducing access misses in those applications that have frequent reductions,
such as DOT.

Table 4 shows the improvement in bandwidth requirements of the multiple-writer coherence protocol versus a single-writer
protocol, as well as message and bandwidth totals for the applications with both optimizations turned on. Timings show that
performance for some programs degrade significantly when using a single-writer coherence protocol. “Diff” requests are used
to bring a page up to date. The message total reflects the fact that all messages except barrier flushes require a response. These
numbers show CVM can handle communicating large amounts of data.

4.6 Discussion

Our experimental results demonstrate that compiler-generated code can perform well on DSM systems, provided that they have
sufficient granularity of parallelism and are able to provide hints to DSM system as to how data is being used. The programs in
our study average a speedup of approximately 5 to 7 out of eight for large problem sizes. However, the super-linear speedup of
two applications indicates that at least some of this speedup is due to caching effects. We plan to quantify this effect in the near
future.

Our applications gain an average benefit of 14% from our compiler/DSM interface improvements for the large data sizes on
eight processors. The optimizations have greater impact for more processors and smaller data sizes, and significantly improve
performance for a few programs. Based on our experiences, we point out some likely avenues for further optimizations in the
next section.

5 Additional Improvements

We believe that significant improvements are possible in both the compiler and the software DSM. We begin by discussing
improvements to the compiler.

Better Update Classification
First, we anticipate doing a much better job on providing annotations for variables to guide flushing updates at barriers.

10



Invals Misses Diffs Msgs Useful Speedup
w/o w/ w/o w/ w/o w/ w/o w/ Diffs With

adi 655 270 655 0 649 649 1828 626 97% 19.6%
dot 105 105 105 0 99 100 6811 2968 100% 0.9%
expl 2538 241 2545 0 2215 2378 6616 2174 93% 7.8%
irr 1926 108 1933 107 559 560 8596 4098 99% 36.0%
jacobi 756 44 763 0 541 541 2548 1238 99% 6.8%
mult 135 2 135 0 129 130 508 334 100% 1.3%
rb 1008 64 1015 0 577 1081 4060 2462 99% 11.4%
swm 5071 114 16683 11669 5495 6148 56774 47176 99% 18.0%
tomcat 5834 74 5848 2 4024 7814 15454 5565 72% 30.8%

Table 2 Flush Protocol (IBM SP-2, 8 processors, large data sizes)

Invals Misses Diffs Msgs Sync Speedup
w/o w/ w/o w/ w/o w/ w/o w/ Overhead With

dot 950 105 950 105 944 99 6811 2968 23.7% 44.3%
irreg 2019 1926 2026 1933 922 559 10364 8596 6.3% 15.1%
jacobi 15336 15176 995 840 87 104 3738 2870 9.4% 12.5%
swm 5078 5071 16690 16683 5501 5495 56811 56774 0.0% 0.6%
tomcat 5850 5834 5864 5848 4040 4024 15882 15454 3.4% 5.4%

Table 3 Reduction Support (IBM SP-2, 8 processors, large data sizes)

Programs
Improvement vs. Messages Bandwidth

Single Writer Barrier Flush Diff Total (kbytes)

adi 3610% 630 240 258 1128 532
dot 7% 2884 0 56 2940 297
expl 18% 1754 722 308 2784 7408
irreg 4% 1015 1851 214 3080 7572
jacobi 12% 1190 468 80 1738 4906
mult 0% 352 120 2332 2804 9747
rb 33% 2310 960 54 3324 5563
swm 1226% 1976 4132 24196 30304 100608
tomcat 444% 3542 1797 4 5343 20597

Table 4 Multiple Writer Communication Requirements (IBM SP-2, 8 processors)

Currently, our compiler analysis is imprecise and does little better than mark entire shared regions as “update”, and the compiler
currently does not mark phase changes in the programs. We plan to extend the compiler so it can differentiate between data
that is accessed with stable sharing patterns, and data that whose sharing pattern changes dynamically. The first category is
appropriate for “update” annotations; the second is not.

Many applications go through different stages, where sharing patterns are stable within stages but change between them.
Since our compiler does not yet detect phase changes, copysets would become poor predictors of future accesses for such
applications. Merely detecting such changes and directing the DSM to clear copysets would eliminate most problems associated
with phase changes. Creating new sharing annotations to add processors to copysets at this point would eliminated almost all
of the rest. We expect this type of support to be essential for large, complex applications.

Improving Memory Layout
Message-passing programs have good spatial locality, since data assigned to each processor is placed in contiguous memory

11



locations. The same may not be true for shared-memory programs, since the data assigned to each program may be scattered
through the address space depending on how it has been partitioned. Poor spatial locality for data can cause false sharing
in single-writer protocols and increase diff creation in multi-writer protocols. To improve spatial locality of local data, the
compiler may decide to reindex array references to make local sections of each array contiguous. However, scalar optimizations
are required to clean up modulo and division operations inserted into array subscripts [1]. Since the compiler is already building
a structure for all shared variables, it should also attempt to page align shared data to improve spatial locality at the page level.

Packing Nonlocal Data
Software DSM systems may waste significant communication bandwidth for nonlocal data accesses with poor spatial locality.
Extra swapping of pages to disk may occur if the number of pages exceed available memory. Message-passing programs avoid
these problems by combining nonlocal accesses in a single message to reduce communication costs. Shared-memory compilers
can obtain also benefit by copying nonlocal data with poor spatial locality into contiguous buffers. The compiler must first
apply communication analysis to detect nonlocal accesses. If the nonlocal data is not contiguous, then the compiler must insert
code to copy the data to contiguous buffers (one for each processor). The placement copy code can be determined by data
dependences using message vectorization [13]. The compiler must also modify the code so data so nonlocal accesses are made
to the buffers.

Message Library Support
Figure 3 shows that a large amount of time is spent performing system-related chores, even in these relatively simple applications.
Part of the problem is the underlying communication mechanism. The numbers in this paper reflect using UDP sockets as a
communication substrate. Sockets are very inefficient; round-trip latency is usually thousands of cycles, even on a system with
a fast network, such as the SP-2. CVM also runs on top of IBM’s implementation of MPI, which has much lower latencies and
supports large message sizes. Even with the basic performance advantages, however, MPI-based DSM usually performs less
well than UDP-based DSM. The reason is that MPI (as well as the current draft of MPI2) provides no support for asynchronous
invocation of handlers upon message receipt. These handlers are necessary for timely handling of diff, lock, and page requests.
Our port currently uses the standard solution, i.e. relying on polling whenever messages are sent. By using the compiler to
automatically insert probes into application code, we should be able to obtain consistent performance from MPI.

Retargeting DSM Support
Synchronization usage of automatically-parallelized scientific codes often clashes with the synchronization model assumed
by DSMs. Many DSMs support a broader range of synchronization models than needed for most automatically parallelized
scientific code. Synchronization in scientific codes consists primarily of barriers and reductions, i.e. global operations. DSMs
usually target end users directly, so they support many different synchronization types, including local synchronization such as
locks and condition variables. Such support has a price, much of the consistency-related machinery in systems such as CVM
is dead weight when running scientific codes. We are working on a pared-down version of CVM that is specifically tailored to
support barriers, reductions, and limited producer-consumer interaction.

Reduction Support
We currently support reductions by centralizing all reduction operations at the master processor, which can cause a bottleneck
for applications with large amounts of reductions. Reductions in such systems can be distributed on a per-page, or per-reduction
variable basis. For example, we could require all reductions to be performed at the processor that owns the page that contains
the reduction variable. A disadvantage of the distributed approach is that it requires additional messages. In the centralized
approach, all reduction traffic is piggybacked on existing barrier messages. More experiments will be needed.

6 Related Work

While there has been a large amount of research on software DSMs [3, 7, 22], we are aware of only a few projects combining
compilers and software DSMs. Bershad et al. maintain coherence by using a compiler to update a software dirty bit on shared-
memory accesses [2]. Scales et al. designed Shasta, a software-only approach that supports fine-grain coherence through binary
rewriting [24]. Using a number of optimizations, Shasta limits software overhead to within 5–35% for the Splash benchmarks
on a DEC Alpha cluster. In comparison, CVM, like most software DSMs, relies on the virtual memory system to detect
shared memory updates. Results, however, show that this is not a problem since the software communication overhead usually
dominates the memory management overhead.

Mukherjee et al. compared the performance of explicit message-passing programs with shared-memory programs [21] on
Typhoon, a Flexible-Shared-Memory machine implemented on top of a CM-5 [23]. Results show that with suitable extensions
to the coherence protocol, the shared-memory program was able to match the performance of the optimized message-passing
program utilizing Chaos [5]. The authors point out that a compiler like SUIF can take advantage of the extensible coherence
protocol to improve performance. Compared with their approach, we use a single general coherence protocol in the CVM

12



for all applications, exploiting compile-time analysis to provide hints to the software DSM. The large number of customized
coherence protocols they used for each application does not appear to be necessary for compiler-parallelized applications.

The SUIF compiler draws on a large body of work on techniques for identifying parallelism [12]. Previous researchers
have examined shared-memory compilation issues such as improving locality [19] and reducing false sharing [26], but their
techniques were mostly needed for single-writer hardware coherence protocols. Granston and Wishoff suggest a number of
compiler optimizations for software DSMs [10]. These include tiling loop iterations so computation is on partitioned matching
page boundaries, aligning arrays to pages, and inserting hints to use weak coherence. No implementation or experiments are
provided. CVM uses a multi-writer release consistency protocol, so these optimizations are not as vital as for a sequentially-
consistent single-writer protocol.

Mirchandaney et al. described the design of a compiler for TreadMarks, a software DSM [20]. They propose section locks
and broadcast barriers to guide eager updates of data, integrating send, recv and broadcast operations with the software DSM,
and reductions based on multiple-writer protocols. Their proposal is similar to portions of our SUIF/CVM interface; we differ
in requiring less analysis and by providing a more fine-grained API to control the behavior of individual pages.

Dwarkadas et al. recently described applying compiler analysis to explicitly parallel programs to improve the performance
of software DSM [6]. By combining analysis in the ParaScope programming environment with TreadMarks, they were
able to compute data access patterns at compile time and use it to help the runtime system aggregate communication and
synchronization. Results for five programs were within 9% of equivalent HPF programs on the IBM SP-2. Compared to
their system, the SUIF/CVM interface is targeted towards optimizing compiler-parallelized programs which are less tuned for
software DSMs.

Finally, Chandra and Larus have preliminary results from a system combining the PGI HPF compiler and the Tempest
software DSM system [4]. The PGI HPF compiler can generate either message-passing code or shared-memory code relying
on Tempest. Preliminary results on a network of workstations connected by Myrinet indicates shared-memory versions of
dense matrix programs achieve performance close to the message-passing codes generated. Tempest is significantly more
efficient than message-passing for programs with irregular access patterns not analyzed at compile time. Unlike CVM, Tempest
provides fine-grain access control for units smaller than a page [23]. However, since CVM supports multiple writers, the main
performance advantage is in avoiding page faults traps for shared data. Large units of coherence can exploit spatial locality, so
the PGI compiler can actually improve performance by using larger coherence units [4]. In comparison to PGI/Tempest, we
implement and evaluate enhancements to the software DSM to improve performance. We are also able to demonstrate good
performance on architectures with much longer communication latencies than the Myrinet interconnect, a more difficult task.

7 Conclusions

Current parallelizing compilers for message-passing machines only support a limited class of data-parallel applications. In this
paper we investigate whether we can eliminate this restriction by combining a powerful shared-memory parallelizing compiler
with an advanced software DSM system. Our results show that a few simple enhancements to the compiler/system interface can
allow our system to approach the performance of commercially available HPF compilers and MPI message-passing programs.
Our improvements: 1) combine synchronization and parallelism information communication on parallel task invocations,
2) employ customized routines for evaluating reduction operations, and 3) select a em flush protocol to pre-send data by
flushing updates at barriers. Though these optimizations yield good speedups for program kernels with coarse-grain parallelism,
performance for programs with smaller granularity of parallelism still has room for improvement. Nonetheless, our experiences
lead us to believe that even a small amount of additional compiler analysis may allow our system to approach our long-term
goal: effectively running applications that are too complex to be compiled directly to message-passing code.

References

[1] J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformation for multiprocessors. In Proceedings of
the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Santa Barbara, CA, July 1995.

[2] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway distributed shared memory system. In Proceedings of the
’93 CompCon Conference, pages 528–537, February 1993.

[3] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and performance of Munin. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles, pages 152–164, October 1991.

[4] S. Chandra and J.R. Larus. HPF on fine-grain distributed shared memory: Early experience. In Proceedings of the Ninth
Workshop on Languages and Compilers for Parallel Computing, San Jose, CA, August 1996.

13



[5] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communication optimizations for irregular scientific computations on
distributed memory architectures. Journal of Parallel and Distributed Computing, 22(3):462–479, September 1994.

[6] S. Dwarkadas, A. Cox, and W. Zwaenepoel. An integrated compile-time/run-time software distributed shared memory
system. In Proceedings of the Eighth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VIII), Boston, MA, October 1996.

[7] S. Dwarkadas, P. Keleher, A.L. Cox, and W. Zwaenepoel. Evaluation of release consistent software distributed shared
memory on emerging network technology. In Proceedings of the 20th Annual International Symposium on Computer
Architecture, pages 244–255, May 1993.

[8] Andrew Erlichson, Neal Nuckolls, Greg Chesson, and John Hennessy. SoftFLASH: Analyzing the performance of clustered
distributed virtual shared memory. In Proceedings of the 7th Symposium on Architectural Support for Programming
Languages and Operating Systems, October 1996.

[9] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency and event ordering
in scalable shared-memory multiprocessors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15–26, May 1990.

[10] E. Granston and H. Wishoff. Managing pages in shared virtual memory systems: Getting the compiler into the game. In
Proceedings of the 1993 ACM International Conference on Supercomputing, Tokyo, Japan, July 1993.

[11] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K.-Y. Wang, W.-M. Ching, and T. Ngo. An HPF compiler
for the IBM SP2. In Proceedings of Supercomputing ’95, San Diego, CA, November 1995.

[12] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam. Detecting coarse-grain parallelism using an interprocedural
parallelizing compiler. In Proceedings of Supercomputing ’95, San Diego, CA, December 1995.

[13] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD distributed-memory machines. Commu-
nications of the ACM, 35(8):66–80, August 1992.

[14] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Preliminary experiences with the Fortran D compiler. In Proceedings of
Supercomputing ’93, Portland, OR, November 1993.

[15] P. Keleher. The relative importance of concurrent writers and weak consistency models. In 16th International Conference
on Distributed Computing Systems, Hong Kong, May 1996.

[16] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software distributed shared memory. In
Proceedings of the 19th Annual International Symposium on Computer Architecture, pages 13–21, May 1992.

[17] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Treadmarks: Distributed shared memory on standard workstations
and operating systems. In Proceedings of the 1994 Winter Usenix Conference, pages 115–131, January 1994.

[18] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance Fortran Handbook. The MIT
Press, Cambridge, MA, 1994.

[19] E. Markatos and T. LeBlanc. Using processor affinity in loop scheduling on shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 5(4):379–400, April 1994.

[20] R. Mirchandaney, S. Hiranandani, and A. Sethi. Improving the performance of DSM systems via compiler involvement.
In Proceedings of Supercomputing ’94, Washington, DC, November 1994.

[21] S. Mukherjee, S. Sharma, M. Hill, J. Larus, A. Rogers, and J. Saltz. Efficient support for irregular applications on
distributed-memory machines. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Santa Barbara, CA, July 1995.

[22] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and algorithms. IEEE Computer, 24(8):52–60,
August 1991.

[23] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon: User-level shared memory. In Proceedings of the
21th International Symposium on Computer Architecture, April 1994.

[24] D. Scales, K. Gharachorloo, and C. Thekkath. Shasta: A low overhead, software-only approach for supporting fine-
grained shared memory. In Proceedings of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VIII), Boston, MA, October 1996.

[25] Per Stenstrom. MP nodes don’t need dedicated protocol processors. DRAFT: submitted for publication, October 1995.

[26] J. Torrellas, M. Lam, and J. Hennessy. False sharing and spatial locality in multiprocessor caches. IEEE Transactions on
Computers, 43(6):651–663, June 1994.

14


