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Abstract

In computational models of argumentation, the justification of statements has drawn less atten-

tion than the construction and justification of arguments. As a consequence, significant losses of

sensitivity and expressiveness in the treatment of statement statuses can be incurred by otherwise

appealing formalisms. In order to reappraise statement statuses and, more generally, to support a

uniform modelling of different phases of the argumentation process we introduce multi-labelling

systems, a generic formalism devoted to represent reasoning processes consisting of a sequence of

labelling stages. In this context, two families of multi-labelling systems, called argument-focused

and statement-focused approach, are identified and compared. Then they are shown to be able to

encompass several prominent literature proposals as special cases, thereby enabling a systematic

comparison evidencing their merits and limits. Further, we show that the proposed model supports

tunability of statement justification by specifying a few alternative statement justification labellings,

and we illustrate how they can be seamlessly integrated into different formalisms.

1. Introduction

A full formalism for argument-based reasoning is required to cover various aspects of the argumen-

tation process like argument construction, argument assessment and statement assessment. It can

be observed, however, that while generally argument construction and assessment have been inves-

tigated in great detail in the literature, statement statuses have often been treated as a byproduct of

the previous phases and their assessment has drawn less attention.

As a consequence, losses of expressiveness and sensitivity can be incurred in the treatment

of statement statuses by otherwise appealing formalisms, possibly leading to puzzling differences

among formalisms and their outcomes, even in very simple common sense cases. This can occur in

particular in some basic situations, such as two mutually attacking arguments, an argument attacking

another one without being counterattacked, or the absence of any argument about a given statement.

An instance of these three situations is provided in Example 1.1 below.

Example 1.1 (Adapted from Baroni, Governatori, Lam, & Riveret, 2016a; Baroni, Governatori, &

Riveret, 2016b). Suppose that Dr. Smith says to you: ‘Given your clinical data I conclude you are

affected by disease D1’. Suppose then that another equally competent physician Dr. Jones says to

you: ‘Given your clinical data I conclude you are not affected by disease D1’. Your view on the

justification of the statements s1 =‘I am affected by disease D1’ and ¬s1 =‘I am not affected by

disease D1’ may become quite uncertain.
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In a different situation, at home, you use an off-the-shelf test kit suggesting you have caught

disease D2. You then undertake a serious and reliable clinical test, which excludes disease D2.

Would you consider the same status for the statement s2 =‘I am affected by disease D2’ and the

statement s1?

In addition to statements which are supported by some evidence (i.e. those which can be re-

garded intuitively as the conclusion of some arguments, like those exemplified above), one may

consider also statements which are not supported by any evidence given the currently available

information (i.e. those which are not the conclusion of any argument). Consider for instance the

statement s3 =‘I am affected by D3’, where D3 is a poorly studied and initially asymptomatic

disease you only know by name. It should be possible to ascribe a justification status (intuitively

representing a situation of full ignorance) also to such a statement and it seems reasonable and

useful that such justification status is distinct with respect to those of s1 and s2. Actually, such a

distinction may be decisive.

Distinctions between statement justification statuses can be certainly achieved by some argu-

mentation formalisms, but surprisingly enough, there are well-known argumentation formalisms

where not all the desirable distinctions are captured (depending on the argumentation semantics

adopted). For instance, there are formalisms equating the justification status of s3 with the one of

s2, or with that of s1 and ¬s1. There are also situations (in particular under specific choices of

the applied argumentation semantics) where the justification status of s2 is equated with those of s1
and ¬s1. As to our knowledge, these differences in the treatment of statement justification statuses

have received limited attention in the literature, and a systematic formal framework to analyse and

compare different formalisms in this respect, also supporting the introduction of possible fixes where

needed, is lacking. �

To fill the gap mentioned above and to support the reappraisal of the evaluation of statement

statuses, we propose in this paper the general model of multi-labelling systems1, i.e. systems based

on multiple stages of labellings, and we illustrate its ability to support both the analysis and further

development of different argument-based formalisms, in particular by establishing a set of general

formal properties useful for their characterisation and comparison.

1.1 Contribution.

This paper first introduces the novel model of multi-labelling systems (MLSs) and defines some

fundamental properties therein. To demonstrate the applicability of the proposed model, we identify

two main classes of MLSs for argument-based reasoning, namely the argument-focused approach

and the statement-focused approach. We compare these two approaches, and then show that several

existing formalisms can be regarded as instances of MLSs under one (or possibly both) of the

two approaches. The investigation leads then us to propose diverse statement labellings that can

be ‘plugged’ into existing argument-based approaches, thus allowing a variety of tunable attitudes

towards statement justification, all ensuring a uniform treatment of the Example 1.1 across different

formalisms.

The main contribution lies in a general framework, lacking in the previous literature, encom-

passing phases of argument and statement labellings in a unitary context. The formalism supports

1. The ideas underlying multi-labelling systems and their application to argumentation have been preliminarily pre-

sented in (Baroni et al., 2016a, 2016b). The model presented in this paper has been redefined from scratch to achieve

a full generalisation of these ideas and a systematic applicability to a variety of argumentation formalisms.
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the identification of the two main classes of MLSs for argumentation mentioned above, of which

we provide, as a further contribution, a formal comparison of expressiveness. The reconciliation

of statement justification of different formalisms at various levels of details through pluggable la-

bellings demonstrates the applicability of the framework and its ability to support the systematic

study of novel solutions. Given their illustrative purpose, each of the proposed labellings is rela-

tively simple and in principle could have been conceived independently of the formal framework

we propose. However the fact that, simple as they are, these labellings have not been previously

introduced in the literature, while their analysis is straightforward in our framework shows its utility

in the systematic design and comparison of diverse statement justification approaches.

1.2 Outline.

In Section 2, our investigation is further motivated. We present in Section 3 the model of MLSs

for argumentation and some general properties useful to characterize its instances. We analyse in

Section 4 the application of MLSs to argumentation by characterising an argument-focused ap-

proach and a statement-focused approach. In Section 5 we compare the expressiveness of the two

approaches, and in Section 6 we specialise some properties of MLSs to them. To demonstrate the

applicability of the proposed model, we show in Section 7 that several literature proposals can be

reconstructed as instances of it, and that this reconstruction supports their analysis and comparison.

Sections 8, 9, and 10 illustrate how argumentation formalisms can be tuned to support a variety

of statement justification labellings by exploiting the model of MLSs. Section 11 discusses some

relationships with existing literature and Section 12 concludes.

2. Motivations

Motivations to reappraise statement assessment with multi-labelling systems are partitioned into

motivations for the reappraisal and motivations to do it with multi-labelling systems.

2.1 Motivations to Reappraise Statement Assessment

The reappraisal of statement assessment is motivated by the observation that, in studies of formal

argumentation, there is an unbalanced treatment between the construction of arguments and the

assessment of their statuses on one hand, and the assessment of statement statuses on the other

hand.

At a general level, various models of structured argumentation and argument-related logic

frameworks for defeasible reasoning (see e.g. Modgil & Prakken, 2014; Toni, 2014; Garcı́a &

Simari, 2014) can be cast into a generic process consisting of three main phases:

• construction of arguments;

• assessment of argument statuses;

• assessment of statement statuses.

A major line of research on argument assessment is based on Dung abstract argumentation frame-

works and their semantics (Dung, 1995) which are employed by several formalisms, like AS-

PIC+(Modgil & Prakken, 2014) andABA (Toni, 2014), while other formalisms likeDeLP (Garcı́a

& Simari, 2014) do not rely on Dung’s system and include their own methods of evaluation. Given

this diversity, different assessment criteria corresponding to different attitudes may be adopted,
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even in the context of the same formalism. In this sense, argument assessment is generally seen as

a pluggable and tunable component, and this has given rise to a large corpus of studies on differ-

ent argumentation semantics and on their principle-based evaluation and comparison. In contrast,

statement assessment has mostly been treated as a direct byproduct of argument assessment. Typ-

ically formalisms include their own specific definition of statement assessment. A possible variety

of approaches is not considered, it is not seen as a pluggable or tunable component, there is no

systematic investigation of general properties and relevant comparisons. Hence, the reappraisal of

statement assessment is motivated by this evident unbalance and by the goal of extending the rich

expressiveness and adaptability of argumentation formalisms to this phase too.

2.2 Motivations to Multi-labelling Systems

To achieve the reappraisal of statement assessment, we have devised MLSs, whose main features

result from three main motivations.

A first motivation originates from the desire to reflect common stages in argumentation models

which can be found in the literature. Statement assessment can be reappraised in various ways,

including those not featuring a direct correspondence with stages of natural argumentation. For

example, Brewka and Woltran (2010) proposed a powerful formalism, called Abstract Dialectical

Frameworks, which can be used to capture arbitrary relationships in a network of statements through

a variety of statement acceptance conditions. However, such a framework and similar proposals do

not directly address the articulation of the process into common stages such as those pertaining to

argument construction, argument assessment and statement assessment. MLSs aim at reappraising

statement assessment by reflecting the common stages found in structured argumentation models.

Accordingly, as a second motivation, the proposed model aims at capturing formalisms found

in the literature as instances of MLSs. In this sense, the formalism of MLSs can be seen as a sort

of meta-model2 of argumentation, supporting a systematic analysis and comparison of different

formalisms.

A third motivation of the multi-labelling model comes from the intention to support the design

of ‘argument-based software systems’ based on well-established software engineering principles.

As MLSs support a rigorous and formal separation of concerns corresponding to different stages

of the argumentation process, one may decompose an argument-based software system into well-

defined independent modules, for example by developing a module for each labelling stage. The

modules can be then tested in isolation before their integration, leading to a better maintainability.

As each module can be tuned, for instance to implement a different type of labelling, this modular

design favours reusability of the different modules. Any modules may be plugged into other systems

thanks to abstract interfaces of the different argumentation stages, towards higher interoperability

and thus (re)usability. By doing so, a multi-labelling software system could also be reused to reflect

different argumentation systems without major changes to the conceptual integrity of the underlying

software architecture.

To sum up, the reappraisal of statement assessment is motivated by the evidenced unbalance of

treatment between argument construction and assessment on the one hand, and statement assessment

on the other hand. To achieve this reappraisal, we propose the general model of MLSs, which

supports an explicit articulation of ordinary stages found in argumentation formalisms, and which is

2. This is different from the so called meta-argumentation models where, for example, one may advance arguments

about arguments.
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tailored to account for different argument-based approaches, while keeping in mind well-established

principles of software engineering.

3. Multi-labelling Systems

MLSs provide a generic model for any form of reasoning or evaluation process which can be con-

ceived as a sequence of stages, where the result of each stage consists in one or more labellings of a

set of objects. The set of labelled objects may vary through the stages, the general idea being that,

starting from an initial stage, the outcome of each stage is derived from the outcome of the previ-

ous stage on the basis of some relationships between the sets of labelled objects considered in the

two stages. Formally, multi-labelling systems can be understood as finite compositions of labelling

generators yielding sequences of ‘labellings collections’. Such compositions are defined in this sec-

tion at an abstract general level, and will be applied in later sections to the case of argumentation

systems.

3.1 Basic Concepts

For the sake of generality, our definition of MLSs resorts to multisets rather than ordinary sets,

i.e. collections admitting repetitions of their elements or, in other words, where elements have a

multiplicity.

Definition 3.1 (Multiset). A multiset is a pair 〈S,m〉 where S is a set and m : S → N≥1 is a

function where for every s ∈ S, m(s) is the multiplicity of s.

Notation 3.1. An element of a multiset may be denoted as a pair (s, k) where s ∈ S and k ∈ N≥1

is its multiplicity. Given a multiset Ŝ = 〈S,m〉, we may write s ∈m Ŝ iff s ∈ S.

Definition 3.2 (Multisubset). Given a set S, a multiset 〈S′,m〉 is a multisubset of S iff S′ ⊆ S.

Notation 3.2. The set of all the multisubsets of a set S is denoted as Ω∗(S).

Clearly, ordinary sets are multisets where the multiplicity of every element is 1. Concerning

ordinary sets, we use the following notation for power sets.

Notation 3.3. Given a set S, the powerset of S is denoted pow(S), i.e. pow(S) = {S′ | S′ ⊆ S}.

Multi-labelling systems are based on the notion of labelling.

Definition 3.3 (Labelling). Given a set of labels Λ and a set S, a Λ-labelling L of S is a possibly

partial3 function L : S → Λ.

Notation 3.4. The set of all possible Λ-labellings of a set S is denoted L(S,Λ), and the set of all

possible multisubsets of Λ-labellings of a set S is denoted L
∗(S,Λ), i.e. L∗(S,Λ) = Ω∗(L(S,Λ)).

A generic unspecified labelling will be denoted by an italic symbol L, whereas an upright symbol L
indicates a specific labelling (similar typographic arrangements hold for other constructs).

3. All the functions in this paper are possibly partial, unless differently specified.
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Example 3.1. To illustrate the basic concepts of MLSs in general, we provide an example not

regarding argumentation systems. Consider a set of three students S0 = {John,Kris,Laura} and

assume that each member of an evaluation committee assigns a label of merit to each student from

the set of labels Λ0 = {A,B,C,D}. If the committee is composed of four members, then four (non

necessarily distinct) Λ0-labellings of S0 are produced to represent their evaluations, e.g.

L1
0 = {(John,C), (Kris,A), (Laura,B)},

L2
0 = {(John,C), (Kris,B), (Laura,B)},

L3
0 = {(John,C), (Kris,A), (Laura,A)},

L4
0 = L3

0.

Then in general the labellings produced by the committee members give rise to a multisubset L̂ in

L
∗(S0,Λ0). In the example, we get L̂ = {(L1

0, 1), (L
2
0, 1), (L

3
0, 2)}. �

A significant class of computational activities (including some related to argument-based rea-

soning) can be represented as a sequence of labellings produced at different stages starting from an

initial one. Moving across the stages, the labellings produced at one stage are used as input to pro-

duce new labellings at the next stage, where the labels, their meaning and/or the labelled elements

change. At an abstract level, the transition from a stage to another stage is captured by the notion of

labelling generator.

Definition 3.4 (Labelling generator). Given two sets S1 and S2, a Λ2-labelling generator for S2
based on the pair (S1,Λ1) is a function gen : L∗(S1,Λ1) → L

∗(S2,Λ2).

Example 3.2 (continues Example 3.1). Suppose that the evaluation of students is subsequently ex-

ploited to rank their schools, such that, given the set of schools S1 = {School1, School2, School3},

every school can be labelled with the set of labels Λ1 = {Excel(lent),Good,Med(iocre),Poor}.

The evaluation can be performed with a Λ1-labelling generator for S1 based on the pair (S0,Λ0).
In turn, suppose that these schools are either public (Pub) or private (Priv), and that one wants to

decide for each of these sectors whether it should be collectively subject to an investigation (Invest)

or not (NoInvest), depending on the evaluations obtained by the schools in the sector. Letting

S2 = {Pub,Priv} and Λ2 = {Invest,NoInvest}, a Λ2-labelling generator for S2 based on the pair

(S1,Λ1) is needed to cover this subsequent evaluation stage. �

The elements introduced above provide the basis for defining the general notion of MLSs,

namely a formal setting to capture the production of a cascading sequence of labellings starting

from an initial one.

Definition 3.5 (Multi-labelling system). A multi-labelling system is a finite composition of labelling

generators genm◦genm−1◦. . .◦gen1, where for 1 ≤ i ≤ m, geni : L
∗(Si−1,Λi−1) → L

∗(Si,Λi).

Notation 3.5. In order to make apparent the set of elements and labels in consideration, a MLS

may be denoted as a sequence of stages (Ξ0, . . . ,Ξm), where:

• Ξ0 = 〈S0,Λ0〉 is a pair including a set S0 (of elements to be labelled) and a set Λ0 of labels;

• Ξi = 〈Si,Λi, geni〉 (for 0 < i ≤ m) where Si is a set, Λi is a set of labels and geni is

Λi-labelling generator for Si based on the pair (Si−1,Λi−1).

The idea is that, given a multiset of Λ0-labellings of S0 as starting point, say L̂0 ∈ L
∗(S0,Λ0),

defining a MLS corresponds to deriving a sequence of multisets of labellings L̂i ∈ L
∗(Si,Λi)

(1 ≤ i ≤ m) where L̂i = geni(L̂i−1).
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3.2 Monolabelling and Polylabelling Generators

Having laid down a general notion of MLSs, we now introduce two specific families of labelling

generators, namely polylabelling and monolabelling generators, which will be useful for our pur-

pose of capturing argumentation formalisms. Both generators share the idea that labels are projected

from a stage to the subsequent stage on the basis of some ‘influence’, and then the projected labels

are synthesised into a new label. For this reason, the generators share the basic formal elements of

influences, n-influences, label projections, and n-synthesizers; as defined next.

In general, each element of the set Si to be labelled at stage i can be influenced by some elements

belonging to the set Si−1 at the previous stage. Thus, for each element s of Si, a set of influencing

elements in Si−1 can be identified. We call this simple correspondence influence.

Definition 3.6 (Influence). Given two sets S and U , an influence of U on S is a function fl : S →
pow(U).

The idea is that the generation of Λi-labellings of Si from Λi−1-labellings of Si−1 is based, for each

element s of Si, on the elements of Si−1 influencing it, namely fl(s). In the simplest case, a single

influence of Si−1 on Si is sufficient, and in the case where Si−1 = Si the identity function id can be

used as a trivial form of influence. In general, one can consider an arbitrary number of influences

between two subsequent stages, leading us to define n-influences.

Definition 3.7 (N-influence). Given two sets S and U and an integer n ≥ 1, a n-influence of U on

S is a tuple 〈fl1, . . . , f ln〉 where for all 1 ≤ i ≤ n fli is an influence of U on S .

Example 3.3 (continues Example 3.1). To evaluate the schools on the basis of their students, we

may distinguish those students (called full students for brevity) who did their education entirely in

the school (intuitively they should count more in the evaluation of the school) from those (called

partial students) who did their education only partially in the school. Hence, two distinct influences

of the set of students {John,Kris,Laura} on {School1, School2, School3} are needed: one for full

students and one for partial students. The relations between schools and their students can be thus

represented by a 2-influence Stud = 〈fullStuds, partStuds〉 where fullStuds and partStuds iden-

tify full and partial students respectively. For instance, if John had his entire education at School1,

while Kris attended both School1 and School2, and Laura attended both School2 and School3, then

the influences fullStuds and partStuds can be represented as follows (with the obvious meaning):

School1 School2 School3
fullStuds(·) {John} ∅ ∅
partStuds(·) {Kris} {Kris,Laura} {Laura}

In another stage assessing public and private schools, one can set down an influence of schools

in {School1, School2, School3} on the evaluation of different types of schools {Pub,Priv}, clas-

sifying schools as Pub or Priv. Suppose that the schools School1 and School2 are public, while

School3 is private. This corresponds to the following 1-influence Schools = 〈schools〉:

Pub Priv
schools(·) {School1, School2} {School3}

�

Given an influence fl belonging to some n-influence, the labels of influencing elements can be

taken into account by means of their projections through fl on the influenced elements.
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Definition 3.8 (Label projection). Given a set L∗(S1,Λ1), a set S2, and an influence fl of S1
on S2, the projection of a multiset L̂ ∈ L

∗(S1,Λ1) on S2 based on fl is a function prj[fl] :
L
∗(S1,Λ1)× S2 → pow(Λ1) such that for every L̂ ∈ L

∗(S1,Λ1) and for every s2 ∈ S2:

prj[fl](L̂, s2) =
⋃

L∈mL̂

{L(s1) | s1 ∈ fl(s2)}.

In words, each element s2 of S2 receives, according to L̂, the set of labels ‘coming’ from the

elements of the influence fl(s2). Note that projections are defined as regular sets as this is sufficient

for the purposes of this paper. The study of more general versions is left to future work.

Example 3.4 (continues Example 3.1). One can think of a context where each labelling of S1 is

projected separately (i.e. as a singleton) on the elements of S2. Continuing our example, for the

singletons {L1
0}, {L2

0} and {L3
0} of the set of students, and the functions fullStuds and partStuds

from schools to students, we get the following projections:

School1 School2 School3
prj[fullStuds]({L1

0}, ·) {C} ∅ ∅
prj[partStuds]({L1

0}, ·) {A} {A,B} {B}

prj[fullStuds]({L2
0}, ·) {C} ∅ ∅

prj[partStuds]({L2
0}, ·) {B} {B} {B}

prj[fullStuds]({L3
0}, ·) {C} ∅ ∅

prj[partStuds]({L3
0}, ·) {A} {A} {A}

In another context, the evaluation of full or partial students can be performed collectively,

i.e. the labellings in L̂ are collectively projected from students to schools through the influences

fullStuds and partStuds, as follows:

School1 School2 School3

prj[fullStuds](L̂,·) {C} ∅ ∅

prj[partStuds](L̂,·) {A,B} {A,B} {A,B}

�

As to the last ingredient needed to define polylabelling and monolabelling generators, we intro-

duce synthesis operators of n-tuples of sets of labels (n-synthesizers for short). The idea is that the

labels coming from a previous stage are synthesised into a label for the subsequent stage. In other

words, a n-synthesizer takes in input a n-tuple of sets of labels (each of these sets being a subset of

a given set of labels Λ1) and converts them into a single label taken from a set of labels Λ2.

Definition 3.9 (N -synthesizer). Given two sets of labels Λ1 and Λ2 and an integer n ≥ 1, a n-

synthesizer from Λ1 to Λ2 is a function syn : (pow(Λ1))
n → Λ2.

Notation 3.6. The domain of definition of a n-synthesizer syn is denoted dom(syn); it is

the set of elements of (pow(Λ1))
n for which the function syn is defined. For 1 ≤ i ≤ n

and Λ ⊆ Λ1 we say that Λ ∈ domi(syn) iff ∃Λ′
1, . . . ,Λ

′
i−1,Λ

′
i+1, . . .Λ

′
n ⊆ Λ1 such that

(Λ′
1, . . . ,Λ

′
i−1,Λ,Λ

′
i+1, . . .Λ

′
n) ∈ dom(syn).
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Intuitively, the n-tuple of sets of labels comes in some way from a previous stage through a

n-influence, then a n-synthesizer is applied to to obtain a resulting synthetic label from the set Λ2

in the next stage. In this paper, we will be interested in 1-synthesizers, namely functions syn :
pow(Λ1) → Λ2; and in 2-synthesizers, namely functions syn : pow(Λ1)× pow(Λ1) → Λ2.

As anticipated, n-influences, label projections and n-synthesizers are key elements in the defini-

tion of two main types of labelling generators. While being quite generic, these families are oriented

to reflect some typical features of the argumentation formalisms we aim at capturing.

Definition 3.10 (Monolabelling and polylabelling generators). Given two sets S1 and S2, with rel-

evant sets of labels Λ1 and Λ2, a n-influence Fl = 〈fl1, . . . , f ln〉 of S1 on S2 and a n-synthesizer

syn from Λ1 to Λ2, the monolabelling and polylabelling Λ2-generators for S2 based on Fl and syn
are defined as follows:

• the monolabelling Λ2-generator is such that for each L̂ ∈ L
∗(S1,Λ1):

mgen[Fl, syn](L̂) = {L | ∀s ∈ S2, L(s) = syn(prj[fl1](L̂, s), . . . , prj[fln](L̂, s))};

• the polylabelling Λ2-generator is such that for each L̂ ∈ L
∗(S1,Λ1):

pgen[Fl, syn](L̂) =
⋃

L′∈mL̂

{L | ∀s ∈ S2, L(s) = syn(prj[fl1]({L
′}, s), . . . , prj[fln]({L

′}, s))}.

In words, a monolabelling generator produces a singleton {L} where for each element s of S2,

L(s) is obtained by applying syn to the projections of L̂ based on the influences fl1, . . . f ln in

the n-influence Fl. A polylabelling generator in general produces instead multiple labellings such

that each labelling L in pgen[Fl, syn](L̂) corresponds to a labelling L′ in L̂. More precisely, L is

obtained from L′ by applying syn to the projections of {L′} based on the influences fl1, . . . f ln in

the n-influence Fl.

Example 3.5 (continues Example 3.1). Suppose the following (quite simplified) criterion to rank

schools from the evaluation of their students: a school is Excellent if all its full students and all

partial students got a mark A; a school is Good if all its full students got a mark A, and all its

partial students a mark A or B, a school is Mediocre if all its full students got a mark A or B, and

all its partial students got A or B or C, a school is poor otherwise. This criterion can be captured by

a 2-synthesizer syn1 from Λ0 = {A,B,C,D} to Λ1 = {Excel,Good,Med,Poor} which, assuming

that the first argument of the 2-synthesizer concerns full students while the second one concerns

partial students, can be defined for all U, V ∈ pow(Λ0) as follows:

• syn1(U, V ) = Excel iff U ⊆ 4{A} and V ⊆ {A};

• syn1(U, V ) = Good iff syn1(U, V ) 6= Excel and U ⊆ {A} and V ⊆ {A,B};

• syn1(U, V ) = Med iff syn1(U, V ) 6= Excel and syn1(U, V ) 6= Good and U ⊆ {A,B} and

V ⊆ {A,B,C};

• syn1(U, V ) = Poor otherwise.

Then on the basis of syn1 and the 2-influence Stud = 〈fullStuds, partStuds〉 as defined previously,

by applying a polylabelling generator, the set L̂ = {(L1
0, 1), (L

2
0, 1), (L

3
0, 2)} gives rise to the set

of labellings of the schools pgen[Stud, syn1](L̂) = {L1
1,L

2
1} where, from the projections of L1

0, we

get:

4. The use of ⊆ covers the case of an empty set of students.

801



BARONI & RIVERET

L1
1(School1) = syn1({C}, {A}) (= Poor),

L1
1(School2) = syn1(∅, {A,B}) (= Good),

L1
1(School3) = syn1(∅, {B}) (= Good);

and from the projections of L2
0 we get the same labelling L1

1, though in a different way:

L1
1(School1) = syn1({C}, {B}) (= Poor),

L1
1(School2) = syn1(∅, {B}) (= Good),

L1
1(School3) = syn1(∅, {B}) (= Good);

and from the projections of L3
0 we get:

L2
1(School1) = syn1({C}, {A}) (= Poor),

L2
1(School2) = syn1(∅, {A}) (= Excel),

L2
1(School3) = syn1(∅, {A}) (= Excel).

Alternatively, considering a monolabelling generator, we get mgen[Stud, syn1](L̂) = {L1} where

from the collective projections of the labellings in L̂ we get:

L1(School1) = syn1({C}, {A,B}) (= Poor),
L1(School2) = syn1(∅, {A,B}) (= Good),
L1(School3) = syn1(∅, {A,B}) (= Good).

Starting from the evaluations of students in L̂, two distinct outcomes concerning schools have been

produced, namely pgen[Stud, syn1](L̂) and mgen[Stud, syn1](L̂). The evaluations of schools can

be then employed to assess the sectors of private and public schools, possibly leading to an investi-

gation or not on the sectors, based on the set of labels Λ2 = {Invest,NoInvest} where Invest holds

for ‘Investigation’ and NoInvest marks ‘No investigation’. We have already defined a 1-influence

Schools between the two sectors and schools, so we need a 1-synthesizer from Λ1 to Λ2. Suppose

the following 1-synthesizer syn2 is applied, where an investigation is performed if schools are not

excellent or good, defined for each S ∈ pow(Λ1) as:

• syn2(S) = NoInvest iff S = ∅ or S = {Excel} or S = {Excel,Good};

• syn2(S) = Invest otherwise.

Based on Schools and syn2, a monolabelling generator can then be applied to derive an assessment

of public and private schools from pgen[Stud, syn1](L̂) = {L1
1,L

2
1} and mgen[Stud, syn1](L̂) =

{L1}. In particular, letting mgen[Schools, syn2]({L
1
1,L

2
1}) = {L2}, we get:

L2(Pub) = syn2({Poor,Good,Excel}) (= Invest),
L2(Priv) = syn2({Good,Excel}) (= NoInvest),

and, letting mgen[Schools, syn2]({L1}) = {L′
2}, we obtain:

L′
2(Pub) = syn2({Poor,Good}) (= Invest),

L′
2(Priv) = syn2({Good}) (= Invest).

Altogether, through the sequence of examples we have presented two distinct multi-labelling

systems for the students-school-sector evaluation pipeline. In particular letting:

• Ξ0 = 〈{John,Kris,Laura}, {A,B,C,D}〉,

• Ξ1 = 〈{School1, School2, School3}, {Excel,Good,Med,Poor}, pgen[Stud, syn1]〉,

• Ξ′
1 = 〈{School1, School2, School3}, {Excel,Good,Med,Poor},mgen[Stud, syn1]〉,
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• Ξ2 = 〈{Pub,Priv}, {Invest,NoInvest},mgen[Schools, syn2]〉,

we have illustrated both the multi-labelling system Ξ0,Ξ1,Ξ2 (with final outcome L2) and the multi-

labelling system Ξ0,Ξ
′
1,Ξ2 (with final outcome L′

2).

As a final remark, besides illustrating the various components of MLSs, the examples have also

evidenced their intrinsic modularity, since a different MLS can be obtained from another one by

replacing one stage with another one (in the example Ξ1 with Ξ′
1) provided that their ‘interface’

with the previous and following stage remains the same. �

3.3 Some Properties of MLSs

We will use MLSs to analyse and compare actual argumentation formalisms on a common ground

consisting of abstract general properties. In particular we consider the notions of ‘coverage’, ‘indis-

tinguishability’, and ‘refinement’.

The first property concerns labelling generators and requires that all output labellings are total.

Definition 3.11 (Coverage). A labelling generator gen : L∗(S1,Λ1) → L
∗(S2,Λ2) satisfies the

property of coverage iff for every Ŝ1 ∈ dom(gen) every labelling L ∈m gen(Ŝ1) is total.

The second property concerns n-synthesizers and has to do with (in)distinguishability. In a few

words, two sets of labels are indistinguishable at position i if, when present in the i-th argument

of the synthesizer they give rise to the same result. In other words, a n-synthesizer is able to

distinguish sets of labels at position i if there is at least a case where these sets of labels, as inputs

at position i, make some difference. In that regard, we define two notions, namely, strong and weak

i-indistinguishability.

Strong syn-i-indistinguishability accounts for the indistinguishability of sets of labels together

with other labels, whereas weak syn-i-indistinguishability consists just in giving the same outcome

when taken in isolation.

Definition 3.12 (Strong syn-i-indistinguishability). Given a n-synthesizer syn : (pow(Λ1))
n →

Λ2, and 1 ≤ i ≤ n, two sets of labels Λa,Λb ⊆ Λ1 are strongly syn-i-indistinguishable,

denoted as Λa ≡ [i, syn]Λb, iff for every sequence (Λ1, . . . ,Λn) ∈ (pow(Λ1))
n such that

(Λ1, . . . ,Λi−1,Λi∪Λa,Λi+1, . . . ,Λn), (Λ1, . . . ,Λi−1,Λi∪Λb,Λi+1, . . . ,Λn) ∈ dom(syn) it holds

that syn(Λ1, . . . ,Λi−1,Λi ∪ Λa,Λi+1, . . . ,Λn) = syn(Λ1, . . . ,Λi−1,Λi ∪ Λb,Λi+1, . . . ,Λn).

Definition 3.13 (Weak syn-i-indistinguishability). Given a n-synthesizer syn : (pow(Λ1))
n → Λ2,

and 1 ≤ i ≤ n, two sets of labels Λa,Λb ⊆ Λ1 are weakly syn-i-indistinguishable, denoted as

Λa∼ [i, syn]Λb, iff for every sequence (Λ1, . . . ,Λi−1,Λi+1, . . .Λn) ∈ (pow(Λ1))
n−1 such that

(Λ1, . . . ,Λi−1,Λa,Λi+1, . . . ,Λn), (Λ1, . . . ,Λi−1,Λb,Λi+1, . . . ,Λn) ∈ dom(syn) it holds that

syn(Λ1, . . . ,Λi−1,Λa,Λi+1, . . . ,Λn) = syn(Λ1, . . . ,Λi−1,Λb,Λi+1, . . . ,Λn).

Example 3.6 (continues Example 3.1). Given the 1-synthesizer syn2 in Example 3.5, it can be seen

that ∀Λ′ ⊆ {Excel,Good,Med,Poor} such that Λ′ ∪ {Med},Λ′ ∪ {Poor} ∈ dom(syn2), it holds

that syn2(Λ
′ ∪ {Med}) = syn2(Λ

′ ∪ {Poor}). Therefore, we have that {Med} ≡ [1, syn2]{Poor}.

�

It is easy to see that the relation of strong syn-i-indistinguishability is reflexive and symmetric.

In general it may not be transitive. For example, for a 1-synthesizer, suppose Λa
1 ≡ [1, syn]Λb

1

and Λb
1 ≡ [1, syn]Λc

1, it may be the case that ∃Λ′ ⊆ Λ1 such that Λ′ ∪ Λb
1 /∈ dom(syn) while
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Λ′ ∪Λa
1,Λ

′ ∪Λc
1 ∈ dom(syn) and syn(Λ′ ∪Λa

1) 6= syn(Λ′ ∪Λc
1). Transitivity holds if such a case

does not occur, as formalized by the following proposition whose proof is omitted.

Proposition 3.1. Given a n-synthesizer syn : (pow(Λ1))
n → Λ2, and three sets of labels

Λa
1,Λ

b
1,Λ

c
1 ⊆ Λ1, if

• Λa
1 ≡ [i, syn]Λb

1 and

• Λb
1 ≡ [i, syn]Λc

1 and

• {(Λ1, . . . ,Λn) ∈ (pow(Λ1))
n | (Λ1, . . . ,Λi−1,Λi ∪ Λa,Λi+1, . . . ,Λn), (Λ1, . . . ,Λi−1,Λi ∪

Λc,Λi+1, . . . ,Λn) ∈ dom(syn)} ⊆ {(Λ1, . . . ,Λn) ∈ (pow(Λ1))
n | (Λ1, . . . ,Λi−1,Λi ∪

Λb,Λi+1, . . . ,Λn) ∈ dom(syn)}

then Λa
1 ≡ [i, syn]Λc

1.

Completely analogous considerations apply to weak syn-i-indistinguishability.

A basic property of the strong syn-indistinguishability relation will be useful in the following

to simplify the analysis of actual formalisms: if a set Λa
1 is strongly syn-i-indistinguishable from

Λb
1 then it is also strongly syn-i-indistinguishable from the union of Λb

1 and any of the subsets of

Λa
1 (and hence in particular from Λb

1 ∪ Λa
1).

Proposition 3.2. Given a n-synthesizer syn : (pow(Λ1))
n → Λ2, and three sets of labels

Λa
1,Λ

b
1,Λ

c
1 ⊆ Λ1 such that Λc

1 ⊆ Λa
1 and Λa ≡ [i, syn]Λb, it holds that Λa ≡ [i, syn]Λb ∪ Λc

1.

Proof. From Λa ≡ [i, syn]Λb and the facts that (Λ1, . . . ,Λi−1,Λi ∪ Λa
1 ∪ Λc

1,Λ
i+1, . . .Λn) =

(Λ1, . . . ,Λi−1,Λi ∪ Λa
1,Λ

i+1, . . .Λn) ∈ dom(syn) and (Λ1, . . . ,Λi−1,Λi ∪ Λb
1 ∪ Λc

1,
Λi+1, . . .Λn) ∈ dom(syn) it follows that syn(Λ1, . . . ,Λi−1,Λi ∪ Λa

1,Λ
i+1, . . .Λn) =

syn(Λ1, . . . ,Λi−1,Λi ∪ Λa
1 ∪ Λc

1,Λ
i+1, . . .Λn) = syn(Λ1, . . . ,Λi−1,Λi ∪ Λb

1 ∪ Λc
1,Λ

i+1, . . .Λn)
as desired.

Based on strong indistinguishability, it is possible to define also a notion of (in)sensitivity of a

n-synthesizer to one of its parameters. The idea is that syn is i-insensitive if the actual value of the

i-th parameter does not affect in any case the label returned by syn.

Definition 3.14 (i-(in)sensitivity). Letting 1 ≤ i ≤ n, a n-synthesizer syn : (pow(Λ1))
n → Λ2 is:

• i-insensitive iff for all Λa,Λb ⊆ Λ1 it holds that Λa and Λb are strongly syn-i-indistinguishable;

• i-sensitive otherwise.

Finally, we are also interested in comparing different labellings and the n-synthesizer which

generates them in terms of refinement. Intuitively, a labelling is more refined than another one if the

former provides a more articulated representation of every label encompassed by the latter. Then

a n-synthesizer can be said more refined than another one if it produces more refined labellings

when employed in a labelling generator. Formally, the definition of refinement for labellings and

n-synthesizers can be based on the definition of refinement for partitions (Ellerman, 2010).

Definition 3.15 (Partition). A partition π on a set U is a set {B}B∈π of nonempty subsets (or

‘blocks’) B ⊆ U that are disjoint and whose union is U .

Every total function f : D → C defines a partition of its domain of definition D, denoted πf . Each

block of this partition is a set Bf (c) = {d ∈ D | f(d) = c}, and corresponds to an element c ∈ C
such that c = f(d) for some d ∈ D. In particular, a total Λ-labelling L of a set S defines a partition

πL of S, where each block consists of the elements of S having the same label. In the following,

for the sake of conciseness, λ(L) denotes the block BL(λ) = {u|L(u) = λ}.
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Definition 3.16 (Distinction). A pair (u, u′) ∈ U × U is a distinction of the partition π if there are

distinct subsets B,B′ ∈ π with u ∈ B and u′ ∈ B′.

The set of distinctions of a partition π, called its distinction set and denoted dit(π) ⊆ U ×U , is

the partition seen as a relation:

dit(π) =
⋃

B,B′∈π,B 6=B′

B ×B′ (1)

A refinement can be then defined in terms of inclusion of distinctions.

Definition 3.17 (Refinement). Given two total functions f1 : D → C1 and f2 : D → C2, f2 refines

(or is a refinement of) f1 iff dit(πf1) ⊆ dit(πf2).

Thus f2 refines f1 if it allows to make more (or at least the same) distinctions with respect to the

elements of their common domain. Equivalently, we can say that f2 refines f1 iff for every c2 ∈ C2,

there is c1 ∈ C1 such that Bf2(c2) ⊆ Bf1(c1). In words, for each c2 in the codomain of f2 there

is c1 in the codomain of f1, denoted in the following as coa(c2), such that c2 is returned by f2 in a

subset of the cases where c1 is returned by f1. Conversely, for each c1 in the codomain of f1, there is

a subset ref(c1) , {c2 ∈ C2 | Bf2(c2) ⊆ Bf1(c1)} such that c1 is returned by f1 in all and only the

cases where f2 returns one of the elements of ref(c1). Thus the elements of ref(c1) can be regarded

as refining c1 in the output of f2 with respect to f1. Note that ref(c1) = {c2 ∈ C2 | c1 = coa(c2)}.

In the case of (total) labellings, we can say that a Λ2-labelling refines a Λ1-labelling iff for every

label λ2 ∈ Λ2, there is a label λ1 ∈ Λ1 such that λ2(L2) ⊆ λ1(L1). An analogous observation

applies to (total) n-synthesizers.

It is useful to note that, in the context of labelling generators, the refinement relation between n-

synthesizers induces a refinement relation between the generated labellings for both monolabelling

and polylabelling generators.

Proposition 3.3. Given two sets S1 and S2, a n-influence Fl = 〈fl1, . . . , f ln〉 of S1 on S2, a

n-synthesizer syn1 from Λ to Λ1, and an n-synthesizer syn2 from Λ to Λ2, such that syn2 refines

syn1, let mgen[Fl, syn1] be the monolabelling Λ1-labelling generator based on Fl and syn1 and

mgen[Fl, syn2] be the monolabelling Λ2-labelling generator based on Fl and syn2. For every

L̂ ∈ L
∗(S1,Λ1), letting mgen[Fl, syn1](L̂) = {L1}, and mgen[Fl, syn2](L̂) = {L2}, it holds

that L2 is a refinement of L1.

Proof. For every s ∈ S2 we have that L1(s) = syn1(prj[fl1](L̂, s), . . . , prj[fln](L̂, s)) and

L2(s) = syn2(prj[fl1](L̂, s), . . . , prj[fln](L̂, s)). From syn2 being a refinement of syn1 it fol-

lows that for every λ2 ∈ Λ2, there is λ1 = coa(λ2) ∈ Λ1, such that Bsyn2
(λ2) ⊆ Bsyn1

(λ1). It

follows that, for every s ∈ S2, if L2(s) = λ2 for some λ2 ∈ Λ2 then L1(s) = coa(λ2). Then for

every λ2 ∈ Λ2 there is λ1 ∈ Λ1 such that λ2(L2) ⊆ λ1(L1) and the conclusion follows.

Proposition 3.4. Given two sets S1 and S2, a n-influence Fl = 〈fl1, . . . , f ln〉 of S1 on S2, a

n-synthesizer syn1 from Λ to Λ1, and a n-synthesizer syn2 from Λ to Λ2, such that syn2 refines

syn1, let pgen[Fl, syn1] be the polylabelling Λ1-labelling generator based on Fl and syn1 and

pgen[Fl, syn2] be the polylabelling Λ2-labelling generator based on Fl and syn2. For every L̂ ∈
L
∗(S1,Λ1), letting pgen[Fl, syn1](L̂) = L1, and pgen[Fl, syn2](L̂) = L2, it holds that for every

L2 ∈ L2 there is L1 ∈ L1 such that L2 is a refinement of L1.

805



BARONI & RIVERET

Proof. For every labelling L2 ∈ L2 there exists a labelling L′ ∈m
L̂ : ∀s ∈ S2, L2(s) =

syn2(prj[fl1]({L
′}, s), . . . , prj[fln]({L

′}, s)). Then there exists also L1 ∈ L1 such that ∀s ∈
S2, L1(s) = syn1(prj[fl1]({L

′}, s), . . . , prj[fln]({L
′}, s)). The fact that L2 is a refinement of L1

can then be proved following the same line of the proof of Proposition 3.3.

Example 3.7 (continues Example 3.1). Instead of the 1-synthesizer syn2 as defined in Example

3.5, suppose the following operator syn′2 is applied such that a deep investigation (DeepInvest) is

performed if a school is poorly rated, defined for every S ∈ pow(Λ1) as:

• syn′2(S) = NoInvest iff S = ∅ or S = {Excel} or S = {Excel,Good};

• syn′2(S) = DeepInvest iff Poor ∈ S;

• syn′2(S) = RegInvest otherwise.

Letting {L′
2} = mgen[Schools, syn′2]({L

1
1,L

2
1}) we get:

L′
2(Pub) = syn′2({Poor,Good,Excel}) (= DeepInvest),

L′
2(Priv) = syn′2({Good,Excel}) (= NoInvest),

and letting {L′′
2} = mgen[Schools, syn′2]({L1}) we get:

L′′
2(Pub) = syn′2({Poor,Good}) (= DeepInvest),

L′′
2(Priv) = syn′2({Good}) (= RegInvest).

Clearly, syn′2 refines syn2, with ref(Invest) = {RegInvest,DeepInvest} and ref(NoInvest) =
{NoInvest}. Hence, if the last stage Ξ2 = 〈{Pub,Priv}, {Invest,NoInvest},mgen[Schools, syn2]〉
is replaced with Ξ′

2 = 〈{Pub,Priv}, {RegInvest,DeepInvest,NoInvest},mgen[Schools, syn′2]〉,
then every final labelling produced by Ξ′

2 is a refinement of the final labelling produced by Ξ2 for

the same input. �

4. Modeling the Evaluation of Arguments and Statements with Multi-labelling

Systems

In this section, we discuss how multi-labelling systems can describe different forms of evaluation

of arguments and statements in the context of argumentation processes. In very general terms, we

assume that the argumentation process consists in three main phases:

1. building arguments which support conclusions expressed in a given language;

2. evaluating the status of the arguments;

3. evaluating the status of the statements of the language, given the status of the arguments.

Describing the process backwards, the final goal is the evaluation of statements, which may

concern what to believe (as, in the leading example, assessing whether I should believe I have a

certain disease) and/or what to do (which would occur in the example if there were rules indicating

which therapy to undertake for a given disease). The evaluation of statements results from the

evaluation of arguments, which are assumed to be the essential entities representing the reasoning

or dialectical activities of one or more agents in a given context. Clearly, arguments (and typically

their relationships) must be formed by the involved agent(s) before they can be assessed.

Multi-labelling systems provide a general modelling tool based on labellings for the phases 2

and 3, taking for granted that a set of arguments has been produced in phase 1. The general idea is

that the evaluation activities carried out in the phases 2 and 3 are represented as a multi-labelling

system (Ξ0, . . . ,Ξm) where:
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• in the first stage Ξ0 = 〈S0,Λ0〉, S0 is the set of arguments, and Λ0 is the set of labels assigned

to arguments in the first evaluation step concerning argument acceptance. As commonly set up

in many argumentation formalisms, we assume that the outcome of the argument acceptance

evaluation consists of a set of Λ0-labellings of S0;

• in the last stage Ξm = 〈Sm,Λm, genm〉, Sm is the set of language statements whose status

has to be evaluated using the set of labels Λm, this final evaluation being generated using the

generator genm;

• the stages Ξ1, . . . ,Ξm−1 capture the intermediate evaluation steps leading from the initial as-

sessment of argument acceptance to the final evaluation of statements carried out in stage Ξm.

In this context, we identify two main approaches: the argument-focused approach and the

statement-focused approach. These two approaches differ in the way the initial assessment of argu-

ment acceptance is used in subsequent stages (see Figure 1).

Figure 1: Overview of multi-labelling systems for argumentation (AF and SF approaches).

In the argument-focused (AF) approach, argument acceptance gives rise to argument justifi-

cation at a second stage, from which statement justification is derived at a third stage. In the

statement-focused (SF) approach, argument acceptance is projected on statements, giving rise to

statement acceptance at a second stage, from which statement justification is again derived at a third

stage. The description and formal definitions of these different stages are provided in the sequel,

preceded by some basic concepts.

4.1 Argument Production

The first phase of the process regards the production of a set of arguments A whose structure and

mutual relationships are left unspecified. Argument production being taken for granted, the only

relevant property for our purposes is that each argument A ∈ A has a conclusion, denoted as

con(A), belonging to a language L, which is a set of statements.

Definition 4.1 (Language). A language L is a set of statements.
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We do not make any assumptions on the set of arguments, while we assume that the language

is equipped with a contrariness relation. In its simplest form, the contrariness relation corresponds

to the traditional notion of negation but other more general forms of contrariness have been consid-

ered in the literature (Modgil & Prakken, 2013; Baroni, Giacomin, & Liao, 2015). To encompass

this wider view, we assume a contrariness relation cnt, allowing the existence of multiple (or no)

contraries for each statement, and a larger compatibility with a variety of argumentation formalisms.

Definition 4.2 (Contrariness). Given a language L, a contrariness relation is a function cnt : L →
pow(L) identifying for each statement ϕ a set cnt(ϕ) of statements, called the contraries of ϕ.

The language can be closed under negation (i.e. every negation of its statements are included in

the language), but in general, this constraint is not necessary.

Example 4.1 (continues Example 1.1). For the sake of conciseness, we do not define a full language

for representing all the details of our example (e.g. we do not consider statements concerning

the ‘clinical pictures’) as this would make the presentation longer while being irrelevant to the

contribution of the paper. Thus we focus on a restricted set of statements which is sufficient for

illustrating our proposal: the language L for our medical enquiry is the set of statements s1, ¬s1,

s2 and its negation denoted ¬s2, and s3 (we do not include ¬s3 in the language for the sake of

conciseness, because it would not introduce any significant difference).

L = {s1,¬s1, s2,¬s2, s3}.

The contrariness relation over this language is as follows:

cnt(s1) = ¬s1, cnt(¬s1) = s1, cnt(s2) = {¬s2}, cnt(¬s2) = {s2}, cnt(s3) = ∅.

�

The outcomes of the argument production stage can be summarised in an abstract form as an

argument-conclusion structure.

Definition 4.3 (Argument-conclusion structure). An argument-conclusion structure (ACS) is a triple

〈L,A, con〉 where L is a language, A is a finite set of arguments and con : A → L is a relation

associating every argument with its conclusion.

Argument-conclusion structures differ from common argumentation frameworks (Dung, 1995; Am-

goud, Cayrol, Lagasquie-Schiex, & Livet, 2008), because they do no cater for attacks or other struc-

tural relations over arguments while they include the notion of conclusion which is abstracted away

in those frameworks.

Example 4.2 (continues Example 1.1). Let us model our medical enquiry with an ACS AC1 =
〈L,A, con〉 where:

• the language is as in Example 4.1:

L = {s1,¬s1, s2,¬s2, s3};

• the set of arguments A is such that every statement of the language L is the conclusion of one

and only one argument, except for statement s3 which has no supporting argument:

A = {A1,A2,A3,A4};

808



ENHANCING STATEMENT EVALUATION IN ARGUMENTATION VIA MULTI-LABELLING SYSTEMS

A1 A2 A3 A4

s1 ¬s1 s2 ¬s2 s3

Figure 2: Argumentation framework superposed with its ACS.

• the relation con associating every argument with its conclusion is such that:

con(A1) = s1, con(A2) = ¬s1, con(A3) = s2, con(A4) = ¬s2.

Note that, again for the sake of conciseness, we abstract away the underlying argument con-

struction process. Intuitively each argument is built using as premises some evidences (e.g. the

opinion of a doctor or the outcome of a test) and applying some rules (e.g. that if a doctor for-

mulates a diagnosis about the presence/absence of a disease this provides a reason to believe that

the disease is present/absent). A detailed modelling would also possibly involve some ancillary ar-

guments (e.g. in some argumentation formalisms evidences are regarded as arguments themselves)

which we again leave implicit since they would lengthen the presentation and possibly involve some

formalism-specific issues without playing any actual role in the discussion.

As to attacks, they are not captured by ACSs but will play a role when we discuss the behaviour

of formalisms from the literature. In that regard, we remark again that the example could be for-

malised in slightly different ways in the context of different formalisms, but, leaving these differences

apart, it is meant to capture some common basic patterns: two mutually attacking arguments, one

argument defeating another one, and a statement not involved in the current argumentation process

(and therefore not being the conclusion of any argument). Accordingly, we assume that arguments

A1 and A2 attack each other, and that attacks can be determined also by preferences (as commonly

adopted in structured argumentation formalisms) and argument A4 is preferred to A3, and conse-

quently that argument A4 attacks argument A3 but not vice versa. Eventually, the corresponding

argumentation framework can be superposed with its ACS. as illustrated in Figure 2, where directed

arrows represent attacks.

�

Note that some elements of L may not play the role of conclusions, e.g. if L encompasses negation

as failure.

In general each statement ϕ ∈ L is supported by a (possibly empty) set of arguments denoted as

sup(ϕ). This notion can obviously be extended to sets of statements as in the following definition.

Definition 4.4 (Supporting arguments). Given an ACS 〈L,A, con〉 and a set Φ ⊆ L, the set of

supporting arguments of Φ is defined as

sup(Φ) , {A ∈ A | con(A) ∈ Φ}.

Summing up, at this stage, arguments are produced and related to statements of the consid-

ered language to build ACSs. The next stage concerns the labelling of arguments to reflect their

acceptance statuses.
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4.2 Argument Acceptance

Assuming that an ACS 〈L,A, con〉 is given, the first stage, which is common to the argument-

focused approach and the statement-focused approach, concerns the acceptance evaluation of the

arguments in A using a set of labels ΛAA. Each label in ΛAA represents an individual argument

acceptance status and a labelling LAA altogether represents a ‘reasonable’ viewpoint (in general

among many possible ones) about the acceptance of the arguments in A.

Thus, at this stage, a set of argument acceptance labellings has to be generated by using a set of

labels ΛAA: we assume that there is a mechanism that produces this set of acceptance labellings of

arguments, without specifying any detail of how it works and of how it relies on argument structure

and/or their relationships.

Definition 4.5 (Argument acceptance labelling and evaluation). Given an ACS AC = 〈L,A, con〉
and a set of acceptance labels ΛAA, an argument acceptance ΛAA-labelling for A is a ΛAA-labelling

of A. A ΛAA-acceptance evaluation for A, denoted as LAA(A), is a set of argument acceptance

ΛAA-labellings for AC.

Example 4.3 (continues Example 1.1). As argument acceptance labellings, we may consider Dung

style complete {IN,OUT, UN}-labellings (a brief recall of the essentials of Dung’s theory is given in

Appendix A.), such that:

• an argument is labelled IN iff all its attacking arguments are OUT;

• an argument is labelled OUT iff there exists an attacking argument labelled IN.

Assuming that arguments A1 and A2 attack each other, and that argument A4 attacks argument

A3, as illustrated in Figure 2, we have three complete {IN,OUT, UN}-labellings:

A1 A2 A3 A4
L1

AA(·) IN OUT OUT IN

L2
AA(·) OUT IN OUT IN

L3
AA(·) UN UN OUT IN

The {IN,OUT, UN}-acceptance evaluation is thus LAA = {L1
AA,L

2
AA,L

3
AA}.

�

In the MLS model, the first stage is defined by the pair Ξ0 = 〈A,ΛAA〉 which indicates that

for every possible acceptance evaluation for LAA(A) it holds that LAA(A) ⊆ L(A,ΛAA). Different

ways of using the set of acceptance labellings LAA(A) give rise to two alternatives for the subse-

quent stages. In a nutshell, in the argument-focused approach, the set of acceptance labelling is

projected on arguments and then synthesised, giving rise to an argument justification stage, while in

the statement-focused approach, the focus is transferred from arguments to their conclusions, giving

rise to a statement acceptance stage.

4.3 Argument-Focused (AF) Approach

In the AF approach, acceptance labellings are projected on arguments and then synthesised, thus

yielding an argument justification stage, eventually leading to a statement justification stage.

ARGUMENT JUSTIFICATION

The assessment of argument justification consists in assigning to each argument A a justification la-

bel, taken from a set ΛAJ of argument justification labels, based on the acceptance labels assigned to

810



ENHANCING STATEMENT EVALUATION IN ARGUMENTATION VIA MULTI-LABELLING SYSTEMS

A by the elements of LAA(A). In words, the justification label ofA can be regarded as a synthesis (or

aggregation) of the acceptance labels ofA itself. This is captured by a stage ΞAF
1 = 〈A,ΛAJ,mgenAJ〉

where mgenAJ = mgen[ID, synAJ] is a monolabelling generator based on the identity 1-influence

ID , 〈id〉 and on a 1-synthesizer synAJ from ΛAA to ΛAJ.

Example 4.4 (continues Example 1.1). Assume that ΛAJ = {SKJ, CRJ,NOJ} and the 1-synthesizer

synAJ from ΛAA = {IN,OUT, UN} to ΛAJ is defined, for every S ∈ pow(ΛAA), as follows:

• synAJ(S) = SKJ iff S = {IN},

• synAJ(S) = CRJ iff S ) {IN},

• synAJ(S) = NOJ otherwise.

Then, applying Definition 3.10, and letting {LAJ} = mgenAJ(LAA), we get for each argument A
LAJ(A) = synAJ(prj[id](LAA, A)). The global projection of LAA on every argument is as follows:

A1 A2 A3 A4
prj[id](LAA, ·) {IN,OUT, UN} {IN,OUT, UN} {OUT} {IN}

Applying synAJ it then follows that:

A1 A2 A3 A4
LAJ(·) CRJ CRJ NOJ SKJ

�

AF STATEMENT JUSTIFICATION.

The subsequent and last stage in the AF approach deals with the justification status of statements.

We assume that the justification status of statements is represented by a labelling LASJ, based on a

set of statement justification labels ΛSJ, which is derived from the argument justification labelling

produced in the previous stage. In particular, we assume that, for a statement ϕ, both the argu-

ments whose conclusion is ϕ and the arguments whose conclusion is a contrary of ϕ play a role

in determining the justification of ϕ. To capture that a statement is influenced by these two sets

of arguments, we introduce the 2-influence of A on L defined as: SC = 〈supp, cntr〉 where, for

each statement ϕ, supp(ϕ) = sup({ϕ}) and cntr(ϕ) = sup(cnt(ϕ)). Then we can define the

last stage of the AF approach: ΞAF
2 = 〈L,ΛASJ,mgenASJ〉 where mgenASJ = mgen[SC, synASJ] is a

monolabelling generator based on SC and on a 2-synthesizer synASJ from ΛAJ to ΛASJ.

Example 4.5 (continues Example 1.1). Applying Definition 3.10 and letting {LASJ} =
mgenASJ({LAJ}), for each statement ϕ we get:

LASJ(ϕ) = synASJ(prj[supp]({LAJ}, ϕ), prj[cntr]({LAJ}, ϕ)).

As to the projections of labellings from supporting arguments to statements through influence supp
we get:

s1 ¬s1 s2 ¬s2 s3
prj[supp]({LAJ}, ·) {CRJ} {CRJ} {NOJ} {SKJ} ∅

As to the projections of labellings from contrary-supporting arguments to statements through influ-

ence cntr we get:
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s1 ¬s1 s2 ¬s2 s3
prj[cntr]({LAJ}, ·) {CRJ} {CRJ} {SKJ} {NOJ} ∅

As to the statement justification labels and the relevant 2-synthesizer, we can consider here two

variants, both very simple and ignoring the contrary-supporting arguments (as we will see this

choice is not uncommon in the literature). First, assuming ΛASJ = {inj, noj}, the 2-synthesizer

synASJ from ΛAJ to ΛSJ can be defined for S1, S2 ∈ pow(ΛAJ) as follows:

• synASJ(S1, S2) = inj iff SKJ ∈ S1;

• synASJ(S1, S2) = noj otherwise.

According to this specification, we get the following {inj, noj}-labelling as a result for statement

justification:

s1 ¬s1 s2 ¬s2 s3
LASJ(·) noj noj noj inj noj

As variant, if Λ′
ASJ = {skj, crj, noj} and the 2-synthesizer syn′ASJ from ΛAJ to ΛSJ is defined for

S1, S2 ∈ pow(ΛAJ) as follows

• syn′ASJ(S1, S2) = skj iff SKJ ∈ S1;

• syn′ASJ(S1, S2) = crj iff CRJ ∈ S1 and SKJ /∈ S1;

• syn′ASJ(S1, S2) = noj otherwise;

then we get the following{skj, crj, noj}-labelling L′
ASJ for statement justification:

s1 ¬s1 s2 ¬s2 s3
L′

ASJ(·) crj crj noj skj noj

In this example, syn′ASJ refines synASJ, and hence, in particular, the {skj, crj, noj}-labelling L′
ASJ

refines the {inj, noj}-labelling LASJ. �

4.4 Statement-Focused (SF) Approach

In the SF approach, every argument acceptance labelling results into a statement acceptance la-

belling (the statement acceptance stage), and then statement acceptance labellings are projected on

statements to obtain the justification labellings of statements.

STATEMENT ACCEPTANCE.

At this stage each argument labelling belonging to LAA(AC) generates a statement labelling. The

idea is that, to generate an acceptance label for a statement ϕ in the context of each labelling in

LAA(AC), the justification labels of the (generally many) arguments whose conclusion is ϕ and the

justification labels of the (generally many) arguments whose conclusion is a contrary of ϕ are taken

into account. This is captured by a stage ΞSF
1 = 〈L,ΛSA, pgenSA〉 where pgenSA = pgen[SC, synSA]

is a polylabelling generator based on the same 2-influence SC defined in the previous section and

on a 2-synthesizer synSA from ΛAA to ΛSA.

Example 4.6 (continues Example 1.1). Given the set of argument labellings LAA = {L1
AA,L

2
AA,L

3
AA},

the labelling generator pgenSA yields a set {L1
SA,L

2
SA,L

3
SA} such that for every statement ϕ:

Li
SA(ϕ) = synSA(prj[supp]({L

i
AA}, ϕ), prj[cntr]({L

i
AA}, ϕ)).
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Let us first examine prj[supp](Li
AA, ϕ) and prj[cntr](Li

AA, ϕ) for all statements for the three la-

bellings and then illustrate an example of 2-synthesizer synSA. We have the following projections:

s1 ¬s1 s2 ¬s2 s3
prj[supp]({L1

AA}, ·) {IN} {OUT} {OUT} {IN} ∅
prj[cntr]({L1

AA}, ·) {OUT} {IN} {IN} {OUT} ∅

prj[supp]({L2
AA}, ·) {OUT} {IN} {OUT} {IN} ∅

prj[cntr]({L2
AA}, ·) {IN} {OUT} {IN} {OUT} ∅

prj[supp]({L3
AA}, ·) {UN} {UN} {OUT} {IN} ∅

prj[cntr]({L3
AA}, ·) {UN} {UN} {IN} {OUT} ∅

Let us now assume that ΛSA = {in, no} and introduce the (again rather simple and ignoring

contraries) 2-synthesizer synSA from ΛAA to ΛSA defined for S1, S2 ∈ pow(ΛAA) as follows:

• synSA(S1, S2) = in iff IN ∈ S1;

• synSA(S1, S2) = no otherwise.

According to the above definitions, we obtain the following acceptance statement labellings:

s1 ¬s1 s2 ¬s2 s3
L1

SA(·) in no no in no

L2
SA(·) no in no in no

L3
SA(·) no no no in no

and thus:

pgenSA(LAA) = {L1
SA,L

2
SA,L

3
SA}.

�

SF STATEMENT JUSTIFICATION

In the last stage of the SF approach, the idea is that a single justification labelling for statements,

based on a set of statement justification labels ΛSJ, is derived from the set of (in general many)

statement acceptance labellings produced in the previous step. In particular, to derive the justifica-

tion label for each statement ϕ, the acceptance labels assigned to ϕ itself and to its contraries are

taken into account. To capture that a statement is influenced both by itself and its contraries, we

introduce the 2-influence of L on L, defined as: IC = 〈id, cnt〉. Then we can define the last stage of

the SF approach: ΞSF
2 = 〈L,ΛSSJ,mgenSSJ〉 where mgenSSJ = mgen[IC, synSSJ] is a monolabelling

generator based on IC and on a 2-synthesizer synSSJ from ΛSA to ΛSSJ.

Example 4.7 (continues Example 1.1). Let LSA = pgenSA(LAA) be the set of statement accep-

tance labellings produced in the previous stage. Applying Definition 3.10 and letting {LSSJ} =
mgenSSJ(LSA) for each statement ϕ we get:

LSSJ(ϕ) = synSSJ(prj[id](LSA, ϕ), prj[cnt](LSA, ϕ)).

The projections of LSA on each statement through the identity influence id and the contrary influence

cnt are as follows:
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s1 ¬s1 s2 ¬s2 s3
prj[id](LSA, ·) {in, no} {in, no} {no} {in} {no}
prj[cnt](LSA, ·) {in, no} {in, no} {in} {no} ∅

Then, assuming ΛSSJ = {skj, crj, noj}, a 2-synthesizer synSSJ from ΛSA to ΛSSJ can be defined for

S1, S2 ∈ pow(ΛSA) as follows:

• synSSJ(S1, S2) = skj if S1 = {in};

• synSSJ(S1, S2) = crj iff S1 ) {in};

• synSSJ(S1, S2) = noj otherwise.

Accordingly, we have:

s1 ¬s1 s2 ¬s2 s3
LSSJ(·) crj crj noj skj noj

�

To recap, we have identified two families of multi-labelling systems (MLSs) for argumentation,

namely argument-focused (AF) MLSs and statement-focused (SF) MLSs. Both AF and SF MLSs

are based on an ACS 〈L,A, con〉, and on a set of acceptance labels ΛAA for arguments, giving rise

to the initial stage Ξ0 = 〈A,ΛAA〉. Then a generic AF MLS consists of the sequence (Ξ0,Ξ
AF
1 ,Ξ

AF
2 ),

such that ΞAF
1 = 〈A,ΛAJ,mgenAJ〉 and ΞAF

2 = 〈L,ΛASJ,mgenASJ〉, and, referring to Definition 3.5,

it can be simply defined as the composition mgenASJ ◦mgenAJ. A generic SF MLS consists of

the sequence (Ξ0,Ξ
SF
1 ,Ξ

SF
2 ), such that ΞSF

1 = 〈L,ΛSA, pgenSA〉 and ΞSF
2 = 〈L,ΛSSJ,mgenSSJ〉, and,

referring to Definition 3.5, it can be simply defined as the composition mgenSSJ ◦ pgenSA.

5. Comparing AF and SF Approaches

In the AF approach, the outcomes of the second stage (i.e. the acceptance labellings of arguments)

are first projected and synthesised on the argument themselves, giving rise to argument justification.

Then argument justification outcomes are transferred to statements and synthesised in turn, taking

contraries into account, to get statement justification. On the other hand in the SF approach the

outcomes of the argument acceptance stage are immediately transferred and synthesised on state-

ments, giving rise to statement acceptance. Then the acceptance outcomes of a statement and of its

contraries are taken into account to derive statement justification.

One may wonder whether, under the assumptions we made, the two approaches feature the same

expressiveness, i.e. whether any statement justification labelling produced by an AF MLS can be

obtained by a corresponding SF MLS and vice versa.

In general, it turns out that the AF and SF approaches are incomparable in terms of expressive-

ness. This can be shown by using some simple examples with the set of argument acceptance labels

ΛAA = {IN,OUT}.

5.1 A Distinction Expressible only by the SF Approach

C1. Consider a first case C1 where there are (possibly among others) two arguments A and B such

that, for some statement ϕ, sup({ϕ}) = {A,B} (i.e. they have the same conclusion ϕ and no other

arguments conclude ϕ). For simplicity, let us also assume that sup(cnt(ϕ)) = ∅. Suppose that the

outcome of the argument acceptance stage consists of two labellings, i.e. LAA(AC) = {L1
AA,L

2
AA}

such that L1
AA(A) = IN and L1

AA(B) = OUT, while L2
AA(A) = OUT and L2

AA(B) = IN.
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• In the AF approach, at the argument justification stage, and whatever adopted 1-synthesizer

synAJ, we get

LAJ(A)= synAJ(prj[id](LAA, A)) LAJ(B)= synAJ(prj[id](LAA, B))
= synAJ({IN,OUT}) = synAJ({IN,OUT})
= λ = λ

for some λ ∈ ΛAJ. At the statement justification stage, we have prj[supp]({LAJ}, ϕ) = {λ} and

prj[cntr]({LAJ}, ϕ) = ∅. Then, whatever 2-synthesizer synASJ is adopted, LASJ(A) functionally

depends on the pair ({λ}, ∅) i.e. LASJ(ϕ) = synASJ({λ}, ∅).

• In the SF approach, at the statement acceptance stage, we get

L1
SA(ϕ)= synSA(prj[supp]({L

1
AA}, ϕ), ∅) L2

SA(ϕ)= synSA(prj[supp]({L
2
AA}, ϕ), ∅)

= synSA({IN,OUT}, ∅) = synSA({IN,OUT}, ∅)
= λ0 = λ0

for some λ0 ∈ ΛSA. At the statement justification stage, prj[id](LSA, ϕ) = {λ0} and thus

LSSJ(ϕ) = synSSJ({λ
0}, ∅).

C2. Consider a second case C2 where there is a single argument A with conclusion ϕ, i.e.

sup({ϕ}) = {A}, and assume again that sup(cnt(ϕ)) = ∅ and that the outcome of the argument

acceptance stage consists of two labellings, i.e. LAA(AC) = {L1
AA,L

2
AA} such that L1

AA(A) = IN

while L2
AA(A) = OUT.

• In the AF approach, at the argument justification stage, as in the case C1,

LAJ(A)= synAJ(prj[id](LAA, A))
= synAJ({IN,OUT})
= λ

Hence, at the statement justification stage, we get prj[supp]({LAJ}, ϕ) = {λ} and

prj[cntr]({LAJ}, ϕ) = ∅ from which LASJ(ϕ) = synASJ({λ}, ∅) must be the same as in case

C1.

• In the SF approach, at the statement acceptance stage, we get

L1
SA(ϕ)= synSA(prj[supp]({L

1
AA}, ϕ), ∅) L2

SA(ϕ)= synSA(prj[supp]({L
2
AA}, ϕ), ∅)

= synSA({IN}, ∅) = synSA({OUT}, ∅)
= λ1 = λ2

for some λ1, λ2 ∈ ΛSA. At the statement justification stage, prj[id](LSA, ϕ) = {λ1, λ2}, and

LSSJ(ϕ) = synSSJ({λ
1, λ2}, ∅), which may give rise to a different outcome than in case C1.

In the cases C1 and C2 the statement justification of ϕ must be the same by the AF approach,

while the statement justification of ϕ may be different by the SF approach. Hence, we conclude that

the AF approach is unable to capture some distinctions that can be captured by the SF approach.

5.2 A Distinction Expressible only by the AF Approach

C3. Consider a case C3, where, similarly to case C1, there are two arguments A and B such that,

for some statement ϕ, sup({ϕ}) = {A,B} and sup(cnt(ϕ)) = ∅. Suppose also that the outcome
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of the argument acceptance stage consists of two labellings, i.e. LAA(AC) = {L1
AA,L

2
AA} such that

L1
AA(A) = IN and L1

AA(B) = IN, while L2
AA(A) = IN and L2

AA(B) = OUT.

• In the AF approach, at the argument justification stage, we get

LAJ(A)= synAJ(prj[id](LAA, A)) LAJ(B)= synAJ(prj[id](LAA, B))
= synAJ({IN}) = synAJ({IN,OUT})
= λ = λ′

It follows that prj[supp]({LAJ}, ϕ) = {λ, λ′} while prj[cntr]({LAJ}, ϕ) = ∅, from which

LASJ(ϕ) = synASJ({λ, λ
′}, ∅).

• In the SF approach, at the statement acceptance stage, we get

L1
SA(ϕ)= synSA(prj[supp]({L

1
AA}, ϕ), ∅) L2

SA(ϕ)= synSA(prj[supp]({L
2
AA}, ϕ), ∅)

= synSA({IN}, ∅) = synSA({IN,OUT}, ∅)
= λ1 = λ2

for some λ1, λ2 ∈ ΛSA. Then prj[id](LSA, ϕ) = {λ1, λ2} on which LSSJ(ϕ) functionally de-

pends.

C4. Consider now a case C4 which differs from case C3 because there is an additional argument

labelling L3
AA, and thus LAA(AC) = {L1

AA,L
2
AA,L

3
AA} where L1

AA and L2
AA are as in case C3, while

L3
AA(A) = OUT and L3

AA(B) = IN.

• In the AF approach, at the argument justification stage, we get

LAJ(A)= synAJ(prj[id](LAA, A)) LAJ(B)= synAJ(prj[id](LAA, B))
= synAJ({IN,OUT}) = synAJ({IN,OUT})
= λ′ = λ′

It follows that prj[supp]({LAJ}, ϕ) = {λ′} and LASJ(ϕ) = synASJ({λ
′}, ∅), which may give rise

to a different outcome than in case C3.

• In the SF approach, at the statement acceptance stage, we get L1
SA(ϕ) and L2

SA(ϕ) as above and

L3
SA(ϕ)= synSA(prj[supp]({L

3
AA}, ϕ), ∅)

= synSA({IN,OUT}, ∅)
= λ2

hence L3
SA(ϕ) = L2

SA(ϕ) = λ2. Then also in the case C4 we get prj[id](LSA, ϕ) = {λ1, λ2} and

LSSJ(ϕ) must be the same as in case C3.

In the cases C3 and C4 the statement justification of ϕ may be different by the AF approach,

while the statement justification of ϕ must be the same by the SF approach. Hence, we conclude

that the SF approach is unable to capture some distinctions that can be captured by the AF approach.
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While, as shown above, in general the two approaches are not comparable, if one restricts to the

case where LAA is a singleton5 it turns out that the SF approach is strictly more expressive than the

AF approach.

Proposition 5.1. Let AC be an ACS. For any AF MLS mgenASJ ◦mgenAJ, there exists a SF

MLS mgenSSJ ◦ pgenSA such that for every LAA ∈ L
∗(A,ΛAA) with |LAA| = 1, it holds that

mgenASJ ◦mgenAJ(LAA) = mgenSSJ ◦ pgenSA(LAA).

Proof. The basic idea is that, in any case where |LAA| = 1, for any AF MLS mgenASJ ◦mgenAJ

one can build a SF MLS mgenSSJ ◦ pgenSA such that LSA = {LASJ} and then build the trivial SF

statement justification labelling such that LSSJ = LASJ. Details of the proof follow.

• For any AF MLS mgenASJ ◦mgenAJ assume |LAA| = 1 and let in particular LAA = {L1
AA}. For

every A ∈ A we get prj[id](LAA, A) = {L1
AA(A)}. Then LAJ(A) = synAJ({L

1
AA(A)}) and for

every statement ϕ ∈ L, LASJ(ϕ) = synASJ(prj[supp]({LAJ}, ϕ), prj[cntr]({LAJ}, ϕ)).

• The same labelling can be obtained for every statement ϕ ∈ L in the SF approach as follows.

We have pgenSA({L
1
AA}) = {L1

SA} where for each statement ϕ ∈ L we have:

L1
SA(ϕ)= synSA(prj[supp]({L

1
AA}, ϕ), prj[cntr]({L

1
AA}, ϕ)).

Let us assume that ΛSA = ΛASJ and define the function FAJ : pow(ΛAA) → pow(ΛAJ) such that

FAJ(Λ) = {synAJ({λ}) | λ ∈ Λ} for every Λ ⊆ ΛAA. For Λ1,Λ2 ⊆ ΛAA one can then define

synSA(Λ1,Λ2) = synASJ(FAJ(Λ1), FAJ(Λ2)). Hence, for each statement ϕ ∈ L we have:

L1
SA(ϕ)= synASJ(FAJ(prj[supp]({L

1
AA}, ϕ)), FAJ(prj[cntr]({L

1
AA}, ϕ)))

= synASJ({synAJ({λ}) | λ ∈ prj[supp]({L1
AA}, ϕ)},

{synAJ({λ}) | λ ∈ prj[cntr]({L1
AA}, ϕ)})

= synASJ(prj[supp]({LAJ}, ϕ), prj[cntr]({LAJ}, ϕ)).

That is, one can define synSA such that, given any acceptance labelling L1
AA, for every statement

ϕ ∈ L, L1
SA(ϕ) = LASJ(ϕ). Letting then, for any Λ1,Λ2 ⊆ ΛSA (= ΛASJ), synSSJ(Λ1,Λ2) = λ

whenever Λ1 = {λ} (the actual definition of synSSJ in the cases where Λ1 is not a singleton is

irrelevant since Λ1 is guaranteed to be a singleton under the hypothesis |LAA| = 1), we finally

get that for every statement ϕ ∈ L, LSSJ(ϕ) = LASJ(ϕ).

The converse does not hold: indeed even with a single-status semantics there are distinctions

which can be expressed by the SF approach while they cannot be captured by the AF approach, as

shown by the following example.

C5. Consider three arguments A,B and C such that con(A) = ϕ, con(B) = ψ, con(C) = χ and

suppose cnt(ϕ) = {ψ, χ}, cnt(ψ) = {ϕ}, cnt(χ) = {ϕ}. Suppose now that LAA = {LAA} with

LAA(A) = λ1, LAA(B) = λ2, LAA(C) = λ3.

• In the SF approach we first observe that:

LSA(ϕ) = synSA({λ1}, {λ2, λ3}),
LSA(ψ) = synSA({λ2}, {λ1}),
LSA(χ) = synSA({λ3}, {λ1}),

5. This case is significant since, in abstract argumentation, it corresponds to the adoption of a single-status semantics

(see Appendix A).
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and it is possible that the three labels LSA(ϕ), LSA(ψ) and LSA(χ) are pairwise different. Then,

for the statement ϕ, we get LSSJ(ϕ) = synSSJ({LSA(ϕ)}, {LSA(ψ),LSA(χ)}).

• In the AF approach we get

LAJ(A) = synAJ({λ1}),
LAJ(B) = synAJ({λ2}),
LAJ(C) = synAJ({λ3}).

For the statement ϕ, LASJ(ϕ) = synASJ({synAJ({λ1})}, {synAJ({λ2}), synAJ({λ3})}).

C6. Consider now a variant of case C5 where the only difference is that cnt(χ) = {ϕ, ψ}. We

suppose that the acceptance evaluation is the same, i.e. LAA = {LAA} with LAA(A) = λ1, LAA(B) =
λ2, LAA(C) = λ3.

• In the SF approach, letting L′
SA be the statement acceptance labelling produced, we get:

L′
SA(ϕ) = synSA({λ1}, {λ2, λ3}),

L′
SA(ψ) = synSA({λ2}, {λ1}),

L′
SA(χ) = synSA({λ3}, {λ1, λ2}),

thus it may be the case that L′
SA(χ) 6= LSA(χ), while L′

SA(ϕ) = LSA(ϕ) and L′
SA(ψ) =

LSA(ψ). Letting L′
SSJ be the statement acceptance labelling produced in this case we

get L′
SSJ(ϕ) = synSSJ({LSA(ϕ)}, {LSA(ψ),L

′
SA(χ)}) which may differ from LSSJ(ϕ) =

synSSJ({LSA(ϕ)}, {LSA(ψ),LSA(χ)}).

• In the AF approach it can be easily seen that the difference introduced in the set cnt(χ) does not

affect the argument justification labelling, i.e. letting L′
AJ be the argument justification labelling

produced in this case we get

L′
AJ(A) = synAJ({λ1}),

L′
AJ(B) = synAJ({λ2}),

L′
AJ(C) = synAJ({λ3}),

hence L′
AJ = LAJ. Letting L′

ASJ be the statement justification labelling produced in this case

we get L′
ASJ(ϕ) = synASJ({synAJ({λ1})}, {synAJ({λ2}), synAJ({λ3})}). Therefore L′

ASJ(ϕ) =
LASJ(ϕ), i.e. the evaluation of statement ϕ must be the same as the evaluation in case C5.

Summing up, in the cases C5 and C6, where |LAA| = 1, the statement justification of ϕ may

be different by the SF approach, while the statement justification of ϕ must be the same by the AF

approach. Hence, we conclude that the AF approach is unable to capture some distinctions which

can be captured by the AF approach. In combination with Proposition 5.1 this shows that, in the

context of our formalization, under the hypothesis that |LAA| = 1 the AF approach is strictly less

expressive than the SF approach.

It can be observed6 that while the incomparability in terms of expressiveness of the AF approach

and the SF approach at a general level does not depend on the use of contraries in the evaluation

(in fact in sections 5.1 and 5.2 we could assume for simplicity sup(cnt(ϕ)) = ∅), the fact that the

AF approach is strictly less expressive than the SF approach under the hypothesis that |LAA| = 1
strictly depends on the role of contraries in evaluation. In particular, if one additionally assumes

that cnt(ϕ) = ∅ for every statement ϕ, the AF and the SF approach have the same expressiveness.

This ensues from the following proposition (in combination with the result of Proposition 5.1).

6. The authors are grateful to one of the anonymous reviewers for pointing out this fact.
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Proposition 5.2. Let AC be an ACS with L such that for every ϕ ∈ L cnt(ϕ) = ∅. For any SF MLS

mgenSSJ ◦ pgenSA, there exists a AF MLS mgenASJ ◦mgenAJ such that for every LAA ∈ L
∗(A,ΛAA)

with |LAA| = 1, it holds that mgenASJ ◦mgenAJ(LAA) = mgenSSJ ◦ pgenSA(LAA).

Proof. For any SF MLS mgenASJ ◦mgenAJ assume |LAA| = 1 and let in particular LAA = {L1
AA}.

The labelling generator pgenSA then yields a set {L1
SA} consisting of a single labelling L1

SA such that

for every ϕ ∈ L

L1
SA(ϕ) = synSA(prj[supp]({L

1
AA}, ϕ), ∅).

Letting {LSSJ} = mgenSSJ({L
1
SA}) for each statement ϕ we get:

LSSJ(ϕ) = synSSJ({L
1
SA(ϕ)}, ∅).

The same labelling can be obtained for every statement ϕ ∈ L in the AF approach as follows.

Assume a trivial argument justification stage where synAJ is the identity function, i.e. such that

for each argument A LAJ(A) = synAJ(prj[id](LAA, A)) = synAJ(L
1
AA(A)) = L1

AA(A). Then letting

{LASJ} = mgenASJ({LAJ}), for each statement ϕ we get:

LASJ(ϕ) = synASJ(prj[supp]({L
1
AA}, ϕ), ∅)

and it is possible to obtain LASJ(ϕ) = LSSJ(ϕ) by defining for any Λ1,Λ2 ⊆ ΛASJ, synASJ(Λ1,Λ2) =
synSSJ({synSA(Λ1,Λ2)}, ∅).

5.3 The AF and SF Approaches in Perspective

The AF and SF approaches are two prominent alternative ways to conceive the derivation of state-

ment justification labellings from argument acceptance labellings. Indeed, both approaches can be

put in correspondence with the design choices of several formalisms in the literature, as it will be

shown in Section 7. In that regard, we will see that some literature formalisms can be reconstructed

both in the AF and in the SF approach, while others belong to just one of the two camps. Whether

other sensible ways of deriving statement justification can be devised appears to be an interesting

question for future research.

The incomparability results between the AF and SF approaches suggest that there would be

no point in debating about which of the two approaches is better in general. However, as shown

in Proposition 5.1, the SF approach turns out to be more expressive in the specific case where

the starting point is represented by a unique argument acceptance labelling and the contrariness

relation is taken into account. While our general analysis establishes some sort of upper limit to the

expressiveness of each approach, an actual argumentation formalism may share the limits of both.

For this reason, also a question like ‘For which kind of application an approach is better than

the other?’ would not be appropriate, since application-oriented evaluations should be carried out

at the level of actual formalisms and with reference to their expressiveness (crucially depending on

the synthesizers adopted) rather that at the level of the approach they belong to (possibly both).

That being stated, membership in one approach clearly implies inheriting its limitations, and can

be used to draw some high level considerations. In particular, at an intuitive level, it can be noted

that the AF approach ‘forgets’ earlier the information about the multiplicity of argument acceptance

labellings (synthesised by a unique justification labelling), while the SF approach ‘forgets’ earlier
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the relation between arguments and conclusions, by moving from argument acceptance labellings

to statement accepance labellings.

As it will be discussed extensively in Section 11, such limitations have some consequences on

the treatment of the so-called floating conclusions. In particular, the SF approach is able to capture

a specific notion of skeptical acceptance of these conclusions which is not encompassed by the AF

approach. On the other hand, however, examples in Section 5.2 show that the AF approach can

‘react’ to an addition to the set of argument acceptance labellings (which might correspond to an

additional viewpoint in a judgement aggregation context (Caminada & Pigozzi, 2011)), while (at

least in some cases) such an addition may have no effect in the SF approach. Floating conclusions

and the treatment of multiple viewpoints are largely debated issues in the literature, with a variety

of proposals available, some inherently subjective facets involved, and many research questions still

open.

While not aiming at providing definite answers to inherently open questions, we believe that

further studies of the AF and SF approaches may be useful to identify, at a general level, theoretical

and practical limits of argumentation formalisms in various contexts, like those mentioned above.

Moreover, these studies can stimulate, in a formalism agnostic manner, the investigation of

alternative proposals aimed at overcoming, if possible, the limits of both approaches.

6. MLS Properties in the AF and SF Approaches

In this section we provide some useful terminology and notation for the instantiation of MLS prop-

erties in the AF and SF approaches and discuss the relationships of our approach with consistency

and rationality postulates.

6.1 Instantiating Properties

To support the analysis of particular argumentation formalisms as AF or SF MLSs in Section 7, it is

useful to introduce a suitable terminology concerning the instances of the properties introduced in

Section 3.3 in the context of the AF and SF approaches.

Before doing this, we recall that a generic AF MLS consists of the composition

mgenASJ ◦mgenAJ where mgenAJ = mgen[ID, synAJ] and mgenASJ = mgen[SC, synASJ]. Since

the n-influences ID and SC are fixed, the properties of a specific AF MLS depend on the adopted

synthesizers synAJ and synASJ.

Similarly, a generic SF MLS consists of the composition mgenSSJ ◦ pgenSA where pgenSA =
pgen[SC, synSA] and mgenSSJ = mgen[IC, synSSJ]. Also in this case, SC and IC being fixed, the

properties of a specific SF MLS depend on the adopted synthesizers synSA and synSSJ.

First, we introduce a terminology for coverage at the different stages of AF and SF MLSs.

Definition 6.1 (AF Coverage). An AF MLS mgenASJ ◦mgenAJ is said to satisfy:

• coverage of argument justification iff mgenAJ satisfies coverage, and

• coverage of statement justification iff mgenASJ satisfies coverage.

Definition 6.2 (SF Coverage). A SF MLS mgenSSJ ◦ pgenSA is said to satisfy:

• coverage of statement acceptance iff pgenSA satisfies coverage, and

• coverage of statement justification iff mgenSSJ satisfies coverage.
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Clearly, in actual instances, the four coverage properties orderly introduced in the definitions

6.1 and 6.2 depend essentially on the synthesizers synAJ, synASJ, synSA, and synSSJ respectively.

Second, concerning indistinguishability, we introduce a terminology for the 2-synthesizers

synASJ, synSA and synSSJ, which share the property that their first argument is obtained through

a projection based on support while their second argument is obtained through a projection based

on contrariness.

Notation 6.1 (Support and contrary-based indistinguishability). Given syn ∈
{synASJ, synSA, synSSJ} and Λa,Λb ∈ dom1(syn), we say that Λa and Λb are support-based

strongly (weakly) syn-indistinguishable if they are strongly (weakly) syn-1-indistinguishable.

Similarly, given Λa,Λb ∈ dom2(syn) we say that Λa and Λb are contrary-based strongly (weakly)

syn-indistinguishable if they are strongly (weakly) syn-2-indistinguishable.

We also aim at providing a direct formal counterpart to the fact that, while there is some notion

of contrariness between statements in every argumentation formalism, this notion does not always

play an explicit role in the definition of acceptance and justification labellings of statements. To this

purpose we introduce a notion of contrary-(in)sensitivity for the relevant operators.

Notation 6.2 (Contrary-(in)sensitivity). Let syn ∈ {synASJ, synSA, synSSJ}. We say that syn is

contrary-insensitive iff it is 2-insensitive, contrary-sensitive otherwise.

Eventually, for the 1-synthesizer synAJ we will directly speak of synAJ-indistinguishabilty in-

stead of synAJ-1-indistinguishability, given that specifying -1- is unnecessary for such a synthetizer.

6.2 On Consistency and Rationality Postulates

In the discussion of the various formalisms in Section 7 we will take into account a basic consistency

property which is satisfied by all of them at the level of argument acceptance labellings: stated

in general terms, arguments whose conclusions are contraries cannot be accepted together in a

consistent assessment.

This property is related to the notion of direct consistency, one of the rationality postulates intro-

duced by Caminada and Amgoud (2007) for the family of rule-based argumentation systems where

a distinction between strict and defeasible rules is encompassed and an extension-based mechanism

for argument acceptance is used. Note that while direct consistency has effects on how formalisms

satisfying it are modelled as MLSs, this property is not affected (and cannot be affected) by the

mechanism of derivation of statement labellings from argument labellings, since it simply lies at a

different level, i.e. it holds or not at the argument acceptance level independently of what processing

is done later. Other properties considered by Caminada and Amgoud (2007) are closure, namely

the fact that if a set of statements Φ is accepted according to an extension then also the statements

derivable from Φ using strict rules should be accepted according to the same extension, and indirect

consistency, namely the fact that if a set of statements Φ is accepted according to an extension, then

the statements derivable from Φ using strict rules should not include contraries.

Our approach is completely agnostic with respect to the argument production mechanism (in

particular we do not assume the existence of rules nor the distinction between strict and defeasible

rules) and the argument acceptance mechanism (in particular we do not assume the existence of an

underlying set of extensions). Hence, strictly speaking, rationality postulates as introduced by Cam-

inada and Amgoud (2007) are outside the scope of the MLS formalism and no direct relationships
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can be drawn with them. Designing novel generalised notions of rationality postulates, suitable for

the wider context of MLSs and possibly tailored for the AF and SF approaches is beyond the scope

of the present paper and appears to be an interesting direction of future work.

7. Argumentation Formalisms as Multi-labelling Systems

In this section, several argument-based formalisms are interpreted and analysed in the model of

multi-labelling systems. For each formalism we first recall its essential definitions and provide

a corresponding formulation as a multi-labelling system, discussing its membership to the AF or

the SF approach. Then we analyse and comment the status of the formalism with respect to the

properties introduced in Sections 3.3 and 6. Finally, we provide some instantiated elements of

comparison by describing the application to our leading example.

Notation 7.1. To ease readability in the rest of the paper, we use short names for synthesizers in the

context of specific formalisms. For instance, the synthesizer concerning argument justification in the

context of ASPIC+ will be denoted as AJA
+

rather than synA+

AJ and similarly for other synthesizers.

7.1 ASPIC
+

ASPIC+ (denoted as A+ for short) is a rich rule-based argumentation formalism (Prakken, 2010;

Modgil & Prakken, 2013, 2014). Recalling in detail the full formal apparatus of ASPIC+ is beyond

the scope of the present paper and we limit ourselves to quickly review the basic elements which are

relevant to interpret ASPIC+ as a MLS. The reader is referred to the cited references for a complete

view of the formalism.

First of all, ASPIC+assumes the existence of a generic language L equipped with a generic

contrariness relation (see Definition 2 of Modgil & Prakken, 2013) which directly corresponds

to our Definition 4.2. ASPIC+arguments are built by using (strict and defeasible) rules and each

argument has a conclusion, which is an element of L. Abstracting away the underlying construction

mechanism, the set of arguments produced by an ASPIC+argumentation system (see Definition 5

of Modgil & Prakken, 2013) can thus be regarded as an argument-conclusion structure according to

our Definition 4.3, and for each set of statements Φ it is possible to identify the set of supporting

arguments according to our Definition 4.4.

ASPIC+arguments may attack and defeat each other (see Definitions 8 and 9 of Modgil &

Prakken, 2013), and on the basis of the attack/defeat relation an abstract argumentation framework

(Dung, 1995) can be built (see Definition 11 of Modgil & Prakken, 2013).

Argument acceptance is then based on the use of a semantics for abstract argumentation

frameworks (Dung, 1995; Baroni, Caminada, & Giacomin, 2011). Accordingly, it is possible to

refer to the labelling-based version of abstract argumentation semantics (Caminada & Gabbay,

2009; Baroni et al., 2011), where a set of three argument acceptance labels is adopted, namely

ΛIOU
AA = {IN,OUT, UN} (see Appendix A). We can note that the ΛIOU

AA -based argument acceptance

labellings based on the various abstract argumentation semantics proposed in the literature are all

total. It has to be remarked however that stable semantics does not admit the UN label and that it

fails to produce any labelling in some cases.

Accordingly, in the MLS model, we can identify the first stage as the pair Ξ0 = 〈A,ΛIOU
AA 〉, where

A is the set of arguments produced by the considered ASPIC+argumentation system. On this basis,

we proceed to discuss the interpretation of ASPIC+as an AF or SF MLS in the next subsections.
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7.1.1 ASPIC+
AS AN AF MLS

On the basis of argument acceptance labellings, ASPIC+provides a definition of argument justifica-

tion, hence it can be naturally regarded as belonging to the AF approach. In particular it adopts the

traditional notion of skeptical and credulous justification (see Definition 1 of Modgil & Prakken,

2013) which states that an argument is skeptically justified (denoted SKJ) if it is labelled IN in all

labellings prescribed by the adopted semantics, while it is credulously justified (denoted CRJ) if it

is labelled IN in some labellings. We slightly adapt the original definition to keep the two notions

disjoint.

Definition 7.1. Given a set of arguments A and a set LAA of ΛIOU
AA -labellings of A, for every argument

A ∈ A,

• A is skeptically justified iff ∀LAA ∈ LAA LAA(A) = IN;

• A is credulously justified iff ∃LAA ∈ LAA : LAA(A) = IN and ∃LAA ∈ LAA : LAA(A) 6= IN.

It is easy to see that, letting ΛA+

AJ = {SKJ, CRJ}, Definition 7.1 corresponds to a stage ΞAF
1 =

〈A,ΛA+

AJ ,mgenAJ〉 where mgenAJ = mgen[ID,AJA
+
] and the synthesizer AJA

+
: pow(ΛIOU

AA ) → ΛA+

AJ

is defined, for any S ⊆ ΛIOU
AA , as follows

• AJA
+
(S) = SKJ iff S = {IN};

• AJA
+
(S) = CRJ iff S ) {IN}.

The correspondence can be formally stated with the following proposition.

Proposition 7.1. Given a set of arguments A and a set LAA of ΛIOU
AA -labellings of A, the argument

justification labelling LA+

AJ prescribed by ASPIC+according to Definition 7.1 is such that {LA+

AJ } =
mgenAJ(LAA).

Proof. For the sake of conciseness let mgenAJ(LAA) = {L′
AJ}, we need to show that for every ar-

gument A, LA+

AJ (A) = L′
AJ(A). According to Definition 7.1, given an argument A, LA+

AJ (A) = SKJ

iff it is labelled IN in all the labellings in LAA (i.e. those prescribed by the chosen argumentation

semantics), which occurs iff prj[id](LAA, A) = {IN} leading to AJA
+
(prj[id](LAA, A)) = SKJ and

then L′
AJ(A) = SKJ. Similarly, LA+

AJ (A) = CRJ iff it is labelled IN in some but not all the labellings

in LAA, which occurs iff prj[id](LAA, A) ) {IN} leading to AJA
+
(prj[id](LAA, A)) = CRJ and then

L′
AJ(A) = CRJ.

In ASPIC+, statements inherit directly the justification status of the ‘best justified’ argument

supporting them (see Definition 15 of Modgil & Prakken, 2013): a statement is skeptically justified

if and only if it is the conclusion of a skeptically justified argument, while it is credulously justified

if and only if it is the conclusion of a credulously justified argument. Also in this case we introduce

a little modification to keep the two notions disjoint.

Definition 7.2. Given a language L, a set of arguments A with conclusions in L, and a ΛA+

AJ -

justification labelling LA+

AJ of A, for every statement ϕ ∈ L,

• ϕ is skeptically justified iff ∃A ∈ sup({ϕ}) such that A is skeptically justified (i.e. LA+

AJ (A) =
SKJ);

• ϕ is credulously justified iff ∃A ∈ sup({ϕ}) such that A is credulously justified (i.e. LA+

AJ (A) =
CRJ) and ∄A ∈ sup({ϕ}) such that A is skeptically justified;
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Letting ΛA+

ASJ = {skj, crj}, Definition 7.2 corresponds to a stage ΞAF
2 = 〈L,ΛA+

ASJ,mgenASJ〉 where

mgenASJ = mgen[SC,ASJA
+
] and ASJA

+
: pow(ΛA+

AJ ) × pow(ΛA+

AJ ) → ΛA+

ASJ is defined, for any

S,U ∈ pow(ΛA+

AJ ), as follows

• ASJA
+
(S,U) = skj iff SKJ ∈ S;

• ASJA
+
(S,U) = crj iff CRJ ∈ S and SKJ /∈ S.

The correspondence is formally stated by the following proposition.

Proposition 7.2. Given a language L, a set of arguments A with conclusions in L, and a

ΛA+

AJ -justification labelling LA+

AJ of A, the statement justification labelling LA+

ASJ prescribed by

ASPIC+according to Definition 7.2 is such that {LA+

ASJ} = mgenASJ({L
A+

AJ }).

Proof. For the sake of conciseness let mgenASJ({L
A+

AJ}) = {L′
ASJ}, we need to show that

for every statement ϕ LA+

ASJ(ϕ) = L′
ASJ(ϕ). According to Definition 7.2, LA+

ASJ(ϕ) = skj

iff ∃A ∈ sup({ϕ}) such that LA+

AJ (A) = SKJ iff SKJ ∈ prj[supp]({LA+

AJ}, ϕ) leading to

ASJA
+
(prj[supp]({LA+

AJ}, ϕ), prj[cntr]({L
A+

AJ}, ϕ)) = skj and then L′
ASJ(ϕ) = skj. Similarly,

LA+

ASJ(ϕ) = crj iff ∃A ∈ sup({ϕ}) such that LA+

AJ (A) = CRJ and ∄A ∈ sup({ϕ}) such

that LA+

AJ (A) = SKJ iff CRJ ∈ prj[supp]({LA+

AJ}, ϕ) and SKJ /∈ prj[supp]({LA+

AJ}, ϕ) leading to

ASJA
+
(prj[supp]({LA+

AJ}, ϕ), prj[cntr]({L
A+

AJ}, ϕ)) = crj and then L′
ASJ(ϕ) = crj.

Having reconstructed ASPIC+as an AF MLS, we can proceed to analyse its properties.

Coverage. It can be first observed that both AJA
+

and ASJA
+

do not satisfy coverage. AJA
+

does

not cover the cases where IN /∈ prj[id](LAA, A), i.e. the justification status of arguments which

do not appear in any extension is left undefined, while ASJA
+

does not cover the cases where

prj[supp]({LA+

AJ}, ϕ)∩ {SKJ, CRJ} = ∅, i.e. the justification status is left undefined in all the various

cases where a statement is not supported by any justified argument. These observations lead directly

to the following proposition

Proposition 7.3. The AF MLS mgen[SC,ASJA
+

] ◦ mgen[ID,AJA
+

] corresponding to the

ASPIC+formalism does not satisfy coverage of argument justification nor of statement justifica-

tion.

The lack of the coverage property can be explained by the emphasis on acceptance in the definitions

provided for ASPIC+. It can be observed however that this limitation is, in a sense, more formal

than substantial, since, both for arguments and statements, it is easy to recover a full coverage by

introducing a third status corresponding to the absence of justification, while preserving the same

meaning. This is achieved by the following definitions.

Definition 7.3. Letting ΛA+·fc
AJ = {SKJ, CRJ,NOJ}, the 1-synthesizer AJA

+·fc from ΛIOU
AA to ΛA+·fc

AJ is

defined for S ∈ pow(ΛIOU
AA ) as

• AJA
+·fc(S) = SKJ iff S = {IN};

• AJA
+·fc(S) = CRJ iff S ) {IN};

• AJA
+·fc(S) = NOJ otherwise.

Definition 7.4. Letting ΛA+·fc
ASJ = {skj, crj, noj}, the 2-synthesizer ASJA

+·fc from ΛA+·fc
AJ to ΛA+·fc

SJ is

defined for S,U ∈ pow(ΛA+·fc
AJ ) as

• ASJA
+·fc(S,U) = skj iff SKJ ∈ S;
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• ASJA
+·fc(S,U) = crj iff CRJ ∈ S and SKJ /∈ S;

• ASJA
+·fc(S,U) = noj otherwise.

Table 1 illustrates the statement justification labelling prescribed by Definition 7.4 depending on

projections prj[supp]({LA+

AJ}, ϕ) and prj[cntr]({LA+

AJ}, ϕ). In this table and similar tables in other

sections, grey cells with n.a. indicate impossible cases (i.e. pairs not belonging to the domain

dom(ASJA
+·fc)), to be commented in more detail later. For the sake of conciseness the row and

column indicated with ‘⊇ {SKJ}’ synthesise all the equal rows and columns corresponding to the

sets {SKJ}, {SKJ,NOJ}, {SKJ, CRJ} and {SKJ, CRJ,NOJ}.

Table 1: Justification status of a statement for ASPIC+.

prj[cntr] \ prj[supp] ∅ {NOJ} {CRJ} {NOJ, CRJ} ⊇ {SKJ}

∅ noj noj crj crj skj

{NOJ} noj noj crj crj skj

{CRJ} noj noj crj crj n.a.

{NOJ, CRJ} noj noj crj crj n.a.

⊇ {SKJ} noj noj n.a. n.a. n.a.

It is then immediate to see that the AF MLS mgen[SC,ASJA
+·fc]◦mgen[ID,AJA

+·fc] satisfies both

coverage of argument justification and of statement justification and still satisfies the correspon-

dences with ASPIC+stated in Proposition 7.1 for arguments labelled SKJ or CRJ and in Proposition

7.2 for statements labelled skj or crj.

Distinguishability. To analyse the properties of ASPIC+ with respect to the (in)distinguishability

of sets of labels, we treat the versions of the operators with and without full coverage (this difference

has no actual effects for the purposes of the present subsection).

Let us start the analysis with the argument justification stage and the relevant 1-synthesizers AJA
+

and AJA
+·fc. First, it can be noted that for both operators the actual domain of definition depends on

the adopted semantics and that AJA
+

is defined only for sets of labels including IN. This gives rise to

the following cases.

1. In the case of a single-status semantics (like grounded or ideal semantics), each argument gets

one and only one label, thus

• dom(AJA
+
) = {{IN}} and

• dom(AJA
+·fc) = {{IN}, {OUT}, {UN}}.

2. In the case of a multiple-status semantics which always prescribes at least a labelling (i.e. all the

multiple-status semantics considered in this paper, except stable semantics), it has been proved

(Baroni, Giacomin, & Guida, 2004) that all combinations of labels (but the empty one) are

possible, hence

• dom(AJA
+
) = {Λ ⊆ ΛIOU

AA | IN ∈ Λ} and

• dom(AJA
+·fc) = pow(ΛIOU

AA ) \ ∅.

3. In the case of stable semantics, the label UN is not possible but it may happen that no labelling

is prescribed, hence

• dom(AJA
+
) = {{IN}, {IN,OUT}} and

• dom(AJA
+·fc) = pow({IN,OUT}).
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In all cases, it can be noted that the set of labels {OUT} and {UN} are strongly indistinguishable with

respect to both AJA
+

and AJA
+·fc.

Proposition 7.4. It holds that {OUT} ≡ [1,AJA
+

]{UN} and {OUT} ≡ [1,AJA
+·fc]{UN}

Proof. Consider first AJA
+
. With reference to Definition 3.12, let Λ1 = {IN,OUT, UN}: we have to

prove that ∀Λ′ ⊆ Λ1 such that Λ′∪{OUT},Λ′∪{UN} ∈ dom(AJA
+
), it holds that AJA

+
(Λ′∪{OUT}) =

AJA
+
(Λ′ ∪ {UN}). The following cases hold:

• IN ∈ Λ′: then, if (Λ′ ∪ {OUT}), (Λ′ ∪ {UN}) ∈ dom(AJA
+
), we get AJA

+
(Λ′ ∪ {OUT}) =

AJA
+
(Λ′ ∪ {UN}) = CRJ;

• IN /∈ Λ′ then (Λ′ ∪ {OUT}), (Λ′ ∪ {UN}) /∈ dom(AJA
+
).

Therefore, it holds that {OUT} ≡ [1,AJA
+
]{UN}.

Consider now AJA
+·fc. Referring again to Definition 3.12 and letting Λ1 = {IN,OUT, UN}, we

have to prove similarly that ∀Λ′ ⊆ Λ1 such that Λ′ ∪ {OUT},Λ′ ∪ {UN} ∈ dom(AJA
+·fc), it holds

that AJA
+·fc(Λ′ ∪ {OUT}) = AJA

+·fc(Λ′ ∪ {UN}). The following cases hold:

• IN ∈ Λ′ then if (Λ′ ∪ {OUT}), (Λ′ ∪ {UN}) ∈ dom(AJA
+·fc) then AJA

+·fc(Λ′ ∪ {OUT}) =
AJA

+·fc(Λ′ ∪ {UN}) = CRJ;

• IN /∈ Λ′ then if (Λ′ ∪ {OUT}), (Λ′ ∪ {UN}) ∈ dom(AJA
+·fc) then AJA

+·fc({OUT}) =
AJA

+·fc({UN}) = NOJ.

Therefore, it holds that {OUT} ≡ [1,AJA
+·fc]{UN}.

Corollary 7.1. The sets of labels {OUT}, {UN} and {OUT, UN} are pairwise strongly AJA
+

-

indistinguishable and strongly AJA
+·fc-indistinguishable.

Proof. Follows directly from Proposition 7.19 and Proposition 3.2.

Turning to ASJA
+

and ASJA
+·fc, it has to be observed that ASPIC+satisfies some basic ra-

tionality constraints. In particular, two arguments with contrary conclusions cannot belong to

the same extension. It follows that for every statement ϕ if SKJ ∈ prj[supp]({LA+

AJ}, ϕ) then

{SKJ, CRJ}∩prj[cntr]({LA+

AJ}, ϕ) = ∅ and vice versa if SKJ ∈ prj[cntr]({LA+

AJ}, ϕ) then {SKJ, CRJ}∩
prj[supp]({LA+

AJ}, ϕ) = ∅. This leads to identify the following domains of definition:

• dom(ASJA
+
) = pow({SKJ, CRJ})× {∅} ∪ {∅} × pow({SKJ, CRJ}) ∪ {({CRJ}, {CRJ})};

• dom(ASJA
+·fc) = pow({SKJ, CRJ,NOJ})×pow({NOJ})∪pow({NOJ})×pow({SKJ, CRJ,NOJ})∪

pow({CRJ,NOJ})× pow({CRJ,NOJ}).

In all cases, the empty set and {NOJ} are support-based strongly ASJA
+·fc-indistinguishable.

Proposition 7.5. The sets of labels ∅ and {NOJ} are support-based strongly ASJA
+·fc-

indistinguishable.

Proof. With reference to Notation 6.1 and Definition 3.12, let Λ1 = {SKJ, CRJ,NOJ}: we have

to prove that ∀Λ′,Λ′′ ⊆ Λ1 such that (Λ′,Λ′′), (Λ′ ∪ {NOJ},Λ′′) ∈ dom(ASJA
+·fc) it holds that

ASJA
+·fc(Λ′,Λ′′) = ASJA

+·fc(Λ′ ∪ {NOJ},Λ′′). The following cases hold:

• SKJ ∈ Λ′ then for every Λ′′ ∈ pow({NOJ}) it holds that ASJA
+·fc(Λ′,Λ′′) = ASJA

+·fc(Λ′ ∪
{NOJ},Λ′′) = skj;

• SKJ /∈ Λ′ and CRJ ∈ Λ′, then for every Λ′′ ∈ pow({CRJ,NOJ}) it holds that ASJA
+·fc(Λ′,Λ′′) =

ASJA
+·fc(Λ′ ∪ {NOJ},Λ′′) = crj;
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• Λ′ ⊆ {NOJ} then for every Λ′′ ∈ pow({SKJ, CRJ,NOJ}) it holds that ASJA
+·fc(Λ′,Λ′′) =

ASJA
+·fc(Λ′ ∪ {NOJ},Λ′′) = noj.

Therefore, the sets of labels ∅ and {NOJ} are support-based strongly ASJA
+·fc-indistinguishable.

Moreover, both ASJA
+

and ASJA
+·fc are contrary-insensitive, i.e. all sets of labels are strongly

contrary-based indistinguishable with respect to these operators. This follows from the fact that

ASJA
+

and ASJA
+·fc do not actually use their second parameter, i.e. prj[cntr]({LA+

AJ}, ϕ) has no effects

in the definition of LA+

SJ (ϕ) and LA+·fc
SJ (ϕ).

Corollary 7.2. ASJA
+

and ASJA
+·fc are contrary-insensitive.

Nevertheless, the fact that ASJA
+

and ASJA
+·fc are contrary-insensitive, which may appear as a

technical limitation, can be partially compensated by other considerations. First of all, the con-

straints on the domain reveal a sort of (partial and implicit) contrary-sensitiveness, at least in the

case SKJ ∈ prj[cntr]({LA+

AJ}, ϕ). Moreover, the set of rules used in a specific instance of AS-

PIC+might be defined in such a way as to induce further constraints on the actual possible val-

ues of the pair (prj[supp]({LA+

AJ}, ϕ), prj[cntr]({L
A+

AJ}, ϕ)), thus somehow capturing some form of

contrary-sensitiveness (again partial and implicit).

Example 7.1 (continues Example 1.1). Referring to the acceptance evaluation given in Example

4.3, which corresponds to the set of acceptance labellings prescribed by Dung’s complete semantics,

arguments are labelled according to the labelling LA+·fc
AJ as follows:

A1 A2 A3 A4

LA+·fc
AJ (·) CRJ CRJ NOJ SKJ

On this basis, statements obtain the following justification statuses:

s1 ¬s1 s2 ¬s2 s3

LA+·fc
ASJ (·) crj crj noj skj noj

As a first comment we can remark that the inability to distinguish the status of s2 and s3 is

related to the fact that {NOJ} and ∅ are support-based strongly ASJA
+·fc-indistinguishable, thus a

statement (s3) which is the conclusion of no argument is equated to one (s2) which is the conclusion

of a rejected argument. It can be also be observed that the same outcome would be obtained using

preferred, stable and semi-stable semantics, which would prescribe LAA = {L1
AA,L

2
AA}. The fact

that the presence or absence of L3
AA in LAA does not make any difference is related to the fact that

{OUT} and {UN} are strongly indistinguishable with respect to AJA
+·fc. Hence the addition of L3

AA

has no effect on the justification labels of arguments A1 and A2 (labelled UN by L3
AA), given that

they are labelled OUT respectively by L2
AA and L1

AA.

The outcome would instead be different with the adoption of grounded, ideal, or eager semantics

which would prescribe LAA = {L3
AA}. In this case we would get labelling LA+·fc

AJ as follows:

A1 A2 A3 A4

LA+·fc
AJ (·) NOJ NOJ NOJ SKJ

and

s1 ¬s1 s2 ¬s2 s3

LA+·fc
ASJ (·) noj noj noj skj noj
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In this case the inability to distinguish also the status of s1 and ¬s1 with respect to the one of s2
is again rooted in the fact that {OUT} and {UN} are strongly (hence weakly) indistinguishable with

respect to AJA
+·fc leading to the same justification status for A1, A2, and A3. �

7.1.2 ASPIC+
AS A SF MLS: A NEGATIVE RESULT

With the above analysis and in particular with propositions 7.1 and 7.2, we have built an AF MLS

corresponding to ASPIC+. It can be shown (using the same line of reasoning presented in the

second part of Section 5) that it is impossible to build a SF MLS which, starting from the evaluation

LAA(AC), produces the same statement justification labelling as ASPIC+in all cases. This can seen

by instantiating cases C3 and C4 presented in Section 5 as follows.

C3. The situation of argumentsA andB in the case C3 can be obtained, for instance7, with a Dung’s

argumentation framework consisting of three arguments, A, B, C, where A is unattacked while B
and C mutually attack each other. Applying stable semantics to this framework gives rise to two

labellings L1
AA and L2

AA whose restriction on A and B is as described in Section 5.

C4. The situation of argumentsA andB in the case C4 can be obtained with a Dung’s argumentation

framework consisting of four arguments, A, B, C, D where A and D mutually attack each other,

B and C mutually attack each other, and in addition D attacks C. Again, applying stable semantics

to this framework gives rise to three labellings L1
AA, L2

AA,L3
AA whose restriction on A and B is as

described in Section 5.

Under the assumption that sup({ϕ}) = {A,B}, we get that in case C3, LA+

AJ (A) = SKJ,

LA+

AJ (B) = CRJ, from which LA+

SJ (ϕ) = skj. In case C4 we get LA+

AJ (A) = LA+

AJ (B) = CRJ from

which LA+

ASJ(ϕ) = crj. So the justification of the statement ϕ is different in the two cases, while

as shown in Section 5 this difference cannot be obtained in the statement-focused model. This

shows that the argument and statement justification mechanisms adopted in ASPIC+, as defined by

Modgil and Prakken (2014), belong exclusively to the AF camp. Since ASPIC+ is a generic for-

malism admitting many instances, note also that this does not show that it is in general impossible

to reconstruct actual instances of ASPIC+ in the SF approach: there can be some instance-specific

constraints preventing cases like the ones illustrated above to actually occur.

7.2 Assumption-Based Argumentation

Assumption-based argumentation (denoted asABA for short) is a rule-based argumentation formal-

ism whose essential features are recalled below, the reader may refer to the tutorial by Toni (2014)

for a more extensive treatment. ABA assumes the existence of a generic language L including a

non-empty set of assumptions As ⊆ L. It is assumed that a contrariness relation ¯: As → L is given

identifying for each assumption α exactly one contrary in L (denoted as ᾱ), while contraries are

not defined for non assumption elements of the language, i.e. for the members of L \ As. Clearly

this can be reconstructed as a special case of our contrariness relation in Definition 4.2 by putting

cnt(α) = {ᾱ} for every α ∈ As and cnt(ϕ) = ∅ for every ϕ ∈ L \ As.

ABA assumes then the existence of a set of rules which are used to build arguments supporting

a conclusion (or claim) in L. In words, an argument for a claim ϕ is a deduction for ϕ, built

7. We omit the underlying rule based-reasoning and admit that these small ad-hoc examples can be felt as somehow

unrealistic: the same situation for A and B could be obtained in a realistic rule-based reasoning scenario with a

larger number of arguments.
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using some rules and a set of assumptions. Thus also for ABA, abstracting away the underlying

construction mechanism, the set of arguments can be regarded as an argument-conclusion structure

according to our Definition 4.3, and for each set of statements Φ it is possible to identify the set of

supporting arguments according to Definition 4.4.

In ABA rules are assumed to be strict and assumptions are the only weak, hence attackable,

parts of an argument. Accordingly a relation of attack between arguments8 is defined. In particular,

an argumentA attacks another argumentB if the claim ofA is the contrary of one of the assumptions

of B. On the basis of the attack relation, an abstract argumentation framework can be built.

Then, as in the case of ASPIC+, acceptable sets of arguments are identified by applying a se-

mantics for abstract argumentation frameworks. Accordingly, in the MLS model, we can identify

the first stage as the pair Ξ0 = 〈A,ΛIOU
AA 〉, where A is the set of arguments produced by the consid-

eredABA system. On this common basis, an articulated situation concerning the subsequent stages

must be set down, since both a credulous and a skeptical9 stance (Dimopoulos et al., 2002, Section

3) concerning statement justification have been considered in the literature. We discuss next the

interpretation of these stances within the MLS model.

7.2.1 ABA (CREDULOUS STANCE) AS AN AF MLS

In the credulous stance, see a detailed description in the tutorial by Toni (2014), each acceptance

labelling identifies a so-called winning set of arguments and an argument is in turn winning if it

belongs to a winning set. This can be directly reconstructed in the AF approach: a winning argument

corresponds to an argument labelled IN in at least one argument acceptance labelling.

Definition 7.5. Given a set of arguments A and a set LAA of ΛIOU
AA -labellings of A, for every argument

A ∈ A, A is winning iff ∃LAA ∈ LAA : LAA(A) = IN.

Given the set of argument justification labels ΛAB·cr
AJ = {WIN}, Definition 7.5 corresponds to a

stage ΞAF
1 = 〈A,ΛAB·cr

AJ ,mgenAJ〉 where mgenAJ = mgen[ID,AJAB·cr] and AJAB·cr : pow(ΛIOU
AA ) →

ΛAB·cr
AJ is defined, for any S ⊆ ΛIOU

AA , as AJAB·cr(S) = WIN iff S ) {IN}. The correspondence can be

formally stated by the following proposition whose easy proof is omitted.

Proposition 7.6. Given a set of arguments A and a set LAA of ΛIOU
AA -labellings of A, the argument

justification labelling LAB·cr
AJ prescribed by ABA according to Definition 7.5 is such that {LAB·cr

AJ } =
mgenAJ(LAA).

In the credulous stance of ABA, statements inherit directly the justification status from ar-

guments: a statement is winning if it is the conclusion of a winning argument (quoting Toni,

2014, Section 5: ‘Given an acceptable/winning set of arguments, a sentence can be deemed ac-

ceptable/winning if it is the claim of an argument in the set.’).

Definition 7.6. Given a language L, a set of arguments A with conclusions in L, and a ΛAB·cr
AJ -

justification labelling LAB·cr
AJ of A, for every statement ϕ ∈ L, ϕ is winning iff ∃A ∈ sup({ϕ}) such

that A is winning (i.e. LAB·cr
AJ (A) = WIN).

8. The notion of attack can be formulated in two equivalent ways in ABA, involving arguments or sets of assumptions.

We recall the form concerning arguments, which more directly corresponds to our formalisation.

9. Unfortunately these terms are overloaded in the literature. In particular the skeptical stance adopted by Dimopoulos,

Nebel, and Toni (2002) is significantly different e.g. from the notion of skeptical justification in ASPIC+. To avoid

to introduce a new terminology we are forced to the use of the same term with different meanings in different

formalisms.
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Letting ΛAB·cr
ASJ = {win}, Definition 7.6 corresponds to a stage ΞAF

2 = 〈L,ΛAB·cr
ASJ ,mgenASJ〉 where

mgenASJ = mgen[SC,ASJAB·cr] and ASJAB·cr : pow(ΛAB·cr
AJ ) × pow(ΛAB·cr

AJ ) → ΛAB·cr
ASJ is defined, for

any S,U ∈ pow(ΛAB·cr
AJ ), as ASJAB·cr(S,U) = win iff WIN ∈ S. The correspondence is formally

stated by the following proposition, whose proof is also obvious.

Proposition 7.7. Given a language L, a set of arguments A with conclusions in L, and a ΛAB·cr
AJ -

justification labelling LAB·cr
AJ of A, the statement justification labelling LAB·cr

ASJ prescribed by ABA
according to Definition 7.6 is such that {LAB·cr

ASJ } = mgenASJ({L
AB·cr
AJ }).

Having reconstructed ABA as a (simple) AF MLS, we can proceed to analyse its properties.

Coverage. Both AJAB·cr and ASJAB·cr do not satisfy coverage. Indeed AJAB·cr does not cover

the cases where WIN /∈ prj[id](LAA, A), while ASJAB·cr does not cover the cases where WIN /∈
prj[supp]({LAB·cr

AJ }, ϕ). These observations lead directly to the following proposition.

Proposition 7.8. The AF MLS mgen[SC,ASJAB·cr] ◦mgen[ID,AJAB·cr] corresponding to the ABA
formalism does not satisfy coverage of argument justification nor of statement justification.

Nevertheless, full coverage can be straightforwardly provided by introducing a complementary ‘not

winning’ labels NOWIN for arguments and nowin for statements (one could argue that this was left

implicit in the definition of the formalism).

Definition 7.7. Letting ΛAB·cr·fc
AJ = {WIN,NOWIN} the 1-synthesizer AJAB·cr·fc from ΛIOU

AA to ΛAB·cr·fc
AJ

is defined for S ∈ pow(ΛIOU
AA ) as

• AJAB·cr·fc(S) = WIN iff S ⊇ {IN};

• AJAB·cr·fc(S) = NOWIN otherwise.

Definition 7.8. Letting ΛAB·cr·fc
ASJ = {win, nowin} the 1-synthesizer ASJAB·cr·fc from ΛAB·cr·fc

AJ to

ΛAB·cr·fc
ASJ is defined for S,U ∈ pow(ΛAB·cr·fc

AJ ) as

• ASJAB·cr·fc(S,U) = win iff WIN ∈ S;

• ASJAB·cr·fc(S,U) = nowin otherwise.

Table 2 illustrates the statement justification labelling prescribed by Definition 7.8 depending on

prj[supp]({LAB·cr·fc
AJ }, ϕ) and prj[cntr]({LAB·cr·fc

AJ }, ϕ).

Table 2: Justification status of a statement for ABA (credulous stance).

prj[cntr] \ prj[supp] ∅ {WIN} {NOWIN} {WIN,NOWIN}

∅ nowin win nowin win

{WIN} nowin win nowin win

{NOWIN} nowin win nowin win

{WIN,NOWIN} nowin win nowin win

An AF MLS mgen[SC,ASJAB·cr·fc] ◦ mgen[ID,AJAB·cr·fc] satisfies both coverage of argument

justification and of statement justification and still satisfies the correspondences with ABA stated

in Proposition 7.6 for arguments labelled WIN and in Proposition 7.12 for statements labelled win.
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Distinguishability. The (in)distinguishability of sets of labels in ABA can be examined for the

versions of the operators with and without full coverage.

Regarding the argument justification labellings LAB·cr
AJ and LAB·cr·fc

AJ and the relevant 1-

synthesizers AJAB·cr and AJAB·cr·fc, for both operators the actual domain of definition depends on

the adopted semantics and on the fact that AJAB·cr is defined only for sets of labels including IN.

Accordingly, we develop the following considerations, analogous to those drawn in Section 7.1.1.

In the case of a single-status semantics, each argument gets one and only one label, thus

• dom(AJAB·cr) = {{IN}} and

• dom(AJAB·cr·fc) = {{IN}, {OUT}, {UN}}.

In the case of a multiple-status semantics except the stable semantics, each argument gets at least

one label, hence

• dom(AJAB·cr) = {Λ ⊆ ΛIOU
AA | IN ∈ Λ} and

• dom(AJAB·cr·fc) = pow(ΛIOU
AA ) \ {∅}.

In the case of stable semantics, an argument may have no labels, hence

• dom(AJAB·cr) = {{IN}, {IN,OUT}} and

• dom(AJAB·cr·fc) = pow({IN,OUT}).

In all cases, for the argument justification labellings LAB·cr
AJ and LAB·cr·fc

AJ , the set of labels {OUT} and

{UN} are indistinguishable.

Proposition 7.9. It holds that {OUT} ≡ [1,AJAB·cr]{UN} and {OUT} ≡ [1,AJAB·cr·fc]{UN}.

Proof. The statement follows from the fact that in every case, for every Λ ∈ dom(AJAB·cr) the value

of AJAB·cr(Λ) depends only on whether IN ∈ Λ. The same holds for AJAB·cr·fc.

Corollary 7.3. The sets of labels {OUT}, {UN} and {OUT, UN} are pairwise strongly AJAB·cr-

indistinguishable and strongly AJAB·cr·fc-indistinguishable.

As to ASJAB·cr and ASJAB·cr·fc, we have the following domains of definition:

• dom(ASJAB·cr) = pow({WIN})× pow({WIN});

• dom(ASJAB·cr·fc) = pow({WIN,NOWIN})× pow({WIN,NOWIN}).

In all cases, the empty set and {NOWIN} are support-based strongly indistinguishable.

Proposition 7.10. The sets of labels ∅ and {NOWIN} are support-based strongly ASJAB·cr-

indistinguishable and support-based strongly ASJAB·cr·fc-indistinguishable.

Proof. The statement follows from the fact that in every case, for every (Λ,Λ′) ∈ dom(ASJAB·cr)
the value of ASJAB·cr(Λ,Λ′) depends only on whether WIN ∈ Λ. The same holds for ASJAB·cr·fc.

The simple consideration in the proof above (see also Table 2) shows as well that ASJAB·cr and

ASJAB·cr·fc are contrary-insensitive, i.e. all sets of labels are contrary-based indistinguishable.

Corollary 7.4. ASJAB·cr and ASJAB·cr·fc are contrary-insensitive.

Example 7.2 (continues Example 1.1). Referring to the acceptance evaluation prescribed by com-

plete semantics given in Example 4.3, arguments are labelled according to the labelling LAB·cr·fc
AJ as

follows:
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A1 A2 A3 A4

LAB·cr·fc
AJ (·) WIN WIN NOWIN WIN

Accordingly, statements obtain the following justification statuses:

s1 ¬s1 s2 ¬s2 s3

LAB·cr·fc
ASJ (·) win win nowin win nowin

Similarly to the case of ASPIC+, the inability to distinguish the status of s2 and s3 is related to

the fact that ∅ and {NOWIN} are support-based strongly ASJAB·cr·fc-indistinguishable and the same

outcome would be obtained with preferred, stable, and semi-stable semantics given that {OUT} and

{UN} are pairwise strongly AJAB·cr·fc-indistinguishable.

The outcome would instead be different with the adoption of grounded, ideal, or eager semantics

which would prescribe LAA = {L3
AA}. In this case we would get:

A1 A2 A3 A4

LAB·cr·fc
AJ (·) NOWIN NOWIN NOWIN WIN

and

s1 ¬s1 s2 ¬s2 s3

LAB·cr·fc
ASJ (·) nowin nowin nowin win nowin

The inability to distinguish also the status of s1 and ¬s1 with respect to the one of s2 is again

rooted in the fact that {OUT} and {UN} are strongly AJAB·cr·fc-indistinguishable leading to the same

justification status for A1, A2, and A3. �

We conclude this section by remarking that ABA in the credulous stance can be easily recon-

structed also as a SF MLS. We omit the details of this alternative reconstruction for the sake of

conciseness.

7.2.2 ABA (SKEPTICAL STANCE) AS A SF MLS

In addition to the credulous statement justification presented by Toni (2014) and reviewed above,

Dimopoulos et al. (2002) considered a skeptical notion of justification: essentially a statement ϕ is

skeptically justified if all acceptance labellings support ϕ, i.e. in every acceptance labelling there

is one argument labelled IN with conclusion ϕ. On this basis, a more articulated classification of

statement justification, distinguishing credulously, skeptically and not justified statements can be

introduced. This stance, denoted as AB · sk, can be reconstructed in the SF approach as illustrated

below. First, we formalise the notion of a labelling supporting a statement in Definition 7.9.

Definition 7.9. Given a language L, a set of arguments A and a labelling LAA in a set LAA of

ΛIOU
AA -labellings of A, for every statement ϕ ∈ L:

• ϕ is supported iff ∃A ∈ sup({ϕ}) : LAA(A) = IN;

• ϕ is not supported otherwise.

Letting ΛAB·sk
SA = {in, nin}, Definition 7.9 corresponds to a stage ΞSF

1 = 〈L,ΛAB·sk
SA , pgenSA〉

where pgenSA = pgen[SC, SAAB·sk] and SAAB·sk : pow(ΛIOU
AA ) × pow(ΛIOU

AA ) → ΛAB·sk
SA is defined, for

any S,U ∈ pow(ΛIOU
AA ), as

• SAAB·sk(S,U) = in iff IN ∈ S;

• SAAB·sk(S,U) = nin otherwise.
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The correspondence is formally stated by the following proposition whose trivial proof is omitted.

Proposition 7.11. Given a set of arguments A and a set LAA of ΛIOU
AA -labellings of A, the set of

statement acceptance labellings LAB·sk
SA prescribed by ABA according to Definition 7.9 is such that

L
AB·sk
SA = pgenSA(LAA).

The three possible statement justification statuses are then formalised in Definition 7.10

Definition 7.10. Given a language L, a set of arguments A with conclusions in L, and a set of

statement acceptance ΛAB·sk
SA -labellings LAB·sk

SA , for every statement ϕ ∈ L,

• ϕ is skeptically justified iff ∀L ∈ L
AB·sk
SA : L(ϕ) = in.

• ϕ is credulously justified iff ∃L ∈ L
AB·sk
SA : L(ϕ) = in and ∃L ∈ L

AB·sk
SA : L(ϕ) 6= in.

• ϕ is not justified otherwise.

Letting ΛAB·sk
SSJ = {skj, crj, noj}, Definition 7.10 corresponds to a stage ΞSF

2 =
〈L,ΛAB·sk

SSJ ,mgenSSJ〉 where mgenSSJ = mgen[SC, SSJAB·sk] and SSJAB·sk : pow(ΛAB·sk
SA ) ×

pow(ΛAB·sk
SA ) → ΛAB·sk

SSJ is defined, for any S,U ∈ pow(ΛAB·sk
SA ),

• SSJAB·sk(S,U) = skj iff S = {in};

• SSJAB·sk(S,U) = crj iff S ) {in};

• SSJAB·sk(S,U) = noj otherwise.

The correspondence is formally stated by the following proposition, whose proof is again straight-

forward.

Proposition 7.12. Given a language L, a set of arguments A with conclusions in L, and a set of

statement acceptance ΛAB·sk
SA -labelling L

AB·sk
SA , the statement justification labelling LAB·sk

SSJ prescribed

by AB · sk ABA according to Definition 7.10 is such that {LAB·sk
SSJ } = mgenSSJ(L

AB·sk
SA ).

Table 3 illustrates the statement justification labelling prescribed by Definition 7.10 depending on

prj[supp](LAB·sk
SA , ϕ) and prj[cntr](LAB·sk

SA , ϕ).

Table 3: Justification status of a statement for ABA (skeptical stance).

prj[cntr] \ prj[supp] {nin} {in} {nin, in}

{nin} noj skj crj

{in} noj n.a. n.a.

{nin, in} noj n.a. crj

Let us now turn to to the properties of AB · sk. First of all, coverage is obviously satisfied.

Coverage. The 2-synthesizers SAAB·sk and SSJAB·sk provide full coverage of statement acceptance

and justification respectively, and thus the SF MLS mgenSSJ ◦ pgenSA provides coverage for the two

stages.

Proposition 7.13. The SF MLS mgenSSJ ◦ pgenSA does satisfy coverage of statement acceptance

and of statement justification.

Distinguishability. As to dom(SAAB·sk), it can be observed that in general a statement can be the

conclusion of many arguments (with different acceptance labels) and possibly also of no argument

at all. Thus in any case dom(AJAB·cr·fc) = pow(ΛIOU
AA )× pow(ΛIOU

AA ).
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In all cases, the sets of labels ∅, {OUT}, {UN} are support-based strongly SAAB·sk-

indistinguishable.

Proposition 7.14. It holds that ∅ ≡ [1, SAAB·sk]{UN}, ∅ ≡ [1, SAAB·sk]{OUT}, and {OUT} ≡
[1, SAAB·sk]{UN}.

Proof. The statement follows from the fact that for every (Λ,Λ′) ∈ dom(SAAB·sk) the value of

SAAB·sk(Λ,Λ′) depends only on whether IN ∈ Λ.

Corollary 7.5. The sets of labels ∅, {OUT}, {UN} and {OUT, UN} are pairwise support-based

strongly SAAB·sk-indistinguishable.

From the simple consideration in the proof of Proposition 7.14 the following proposition also

follows.

Proposition 7.15. SAAB·sk is contrary-insensitive.

Turning to SSJAB·sk, we have that dom(SSJAB·sk) = {({in}, {nin}), ({in, nin}, {nin}),
({in, nin}, {in, nin}) , ({nin}, {nin}), ({nin}, {in}), ({nin}, {in, nin})} (see also Table 3). This is

due to the fact that if a statement ϕ is labelled in in a statement acceptance labelling, none of

its contraries can be labelled in in the same labelling. It follows that if ϕ is labelled in in all

statement acceptance labellings, i.e. prj[supp]({LAB·sk
AJ }, ϕ) = {in}, it cannot be the case that

in ∈ prj[cntr]({LAB·sk
AJ }, ϕ). A dual observation applies to the case prj[cntr]({LAB·sk

AJ }, ϕ) = {in}.

It is easy to see that the sets {in}, {nin}, {in, nin} are support-based distinguishable SSJAB·sk,

while they are all strongly contrary-based indistinguishable since SSJAB·sk is contrary-insensitive, as

evident from its definition.

Proposition 7.16. SSJAB·sk is contrary-insensitive.

Example 7.3 (continues Example 1.1). Referring to the acceptance evaluation given in Example

4.3, with LAA = {L1
AA,L

2
AA,L

3
AA}, we get pgenSA(LAA) = {LAB·sk·1

SA ,LAB·sk·2
SA ,LAB·sk·3

SA } as follows:

s1 ¬s1 s2 ¬s2 s3

LAB·sk·1
SA (·) in nin nin in nin

LAB·sk·2
SA (·) nin in nin in nin

LAB·sk·3
SA (·) nin nin nin in nin

Applying then mgenSSJ, we get the following statement justification labelling.

s1 ¬s1 s2 ¬s2 s3

LAB·sk
SSJ (·) crj crj noj skj noj

Statements s2 and s3 get the same justification status noj, due to the fact that ∅, {OUT}, {UN}
are support-based strongly SAAB·sk-indistinguishable, and, as in the previous examples, the outcome

would be the same applying preferred, stable or semi-stable semantics. With grounded, ideal, or

eager semantics, which would prescribe LAA = {L3
AA}, we would get pgenSA(LAA) = {LAB·sk·3

SA }
and then all statements but ¬s2 would get the justification label noj. The inability to distinguish the

status of s1 and ¬s1 with respect to s2 and s3 in this case is again due to the fact that ∅, {OUT},

{UN} are support-based strongly SAAB·sk-indistinguishable. �
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To conclude this section we observe that a reconstruction of AB · sk is not possible in the AF

approach. This can be proved with the same line of reasoning used in the first part of Section 5 and

in particular by instantiating cases C1 and C2 as follows.

C1. The situation of arguments A and B in the case C1 can be obtained, for instance with a Dung’s

argumentation framework consisting of four arguments, A, B, C, D, where C and D mutually

attack each other and C attacks A, while D attacks B. Applying stable semantics to this framework

gives rise to two labellings L1
AA and L2

AA whose restriction on A and B is as described in Section 5.

C2. The situation of argument A in the case C2 can be obtained with a Dung’s argumentation

framework consisting of three arguments, A, B, C, where B and C mutually attack each other, and

B attacks A. Again, applying stable semantics to this framework gives rise to two labellings L1
AA,

L2
AA, whose restriction on A is as described in Section 5.

Under the assumption that sup({ϕ}) = {A,B}, we get that in case C1, two statement accep-

tance labellings in both of which ϕ is labelled in, from which LAB·sk
SSJ (ϕ) = skj. In case C4 we get

two statement acceptance labellings: one where ϕ is labelled in and the other where ϕ is labelled

nin, from which LAB·sk
SSJ (ϕ) = crj. So the justification of statement ϕ is different in the two cases,

while as shown in Section 5 this difference cannot be obtained in the argument-focused model.

7.3 Defeasible Logic Programming

Defeasible Logic Programming (denoted as DeLP ) ‘provides a computational reasoning system

that uses an argumentation engine to obtain answers from a knowledge base represented in a logic

programming language extended with defeasible rules’ (Garcı́a & Simari, 2014).

DeLP assumes a language based on a set of atoms Atoms and equipped with two forms of

negation, namely strong negation (denoted as ∼) and default negation (denoted as not). A literal

of the language is either an atom or an atom preceded by strong negation, while atoms preceded

by default negation are called extended literals. As it will be explained later, DeLP does not

encompass the evaluation of extended literals, whose existence can therefore be abstracted away in

our formalisation. Accordingly, for our purposes we can assume a language L = Atoms ∪ {∼α |
α ∈ Atoms} and the notion of strong negation can be captured by our contrariness relation in

Definition 4.2 by letting cnt(α) = {∼α}, cnt(∼α) = {α} for every α ∈ Atoms. Using the

teminology of Garcı́a and Simari (2014), α and ∼α are complement of each other.

A DeLP program consists of facts, i.e. information holding with certainty in the application

domain, strict rules and defeasible rules. An argument for a conclusion ϕ is a minimal set S of

defeasible rules such that ϕ can be derived from S together with facts and strict rules and some in-

ternal consistency requirements are satisfied. Abstracting away the construction mechanism and the

consistency requirements, the set of arguments built on the basis of a DeLP program can therefore

be regarded as an argument-conclusion structure according to Definition 4.3, and for each set of

statements Φ ⊆ L it is possible to identify the set of supporting arguments.

Differently from the approaches surveyed in the previous sections, DeLP does not use Dung’s

framework for argument acceptance evaluation, rather it adopts a dialectical procedure correspond-

ing to a single-status approach where each argument is marked as D(efeated) or U(ndefeated). Let-

ting ΛDe
AA = {D,U}, in the MLS model we can then identify the first stage as the pair Ξ0 = 〈A,ΛDe

AA〉,
where A is the set of arguments produced by the consideredDeLP program and the set LAA of ΛDe

AA-

labellings of A is a singleton by construction.
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7.3.1 DeLP AS AN AF MLS

In order to reconstruct DeLP as an AF MLS, we first observe that when the set LAA of argument

acceptance labellings is always a singleton, the distinction between argument acceptance and ar-

gument justification becomes substantially void and the two notions coincide. Accordingly it is

possible to define a simple stage ΞAF
1 = 〈A,ΛDe

AA,mgenAJ〉 where mgenAJ = mgen[ID,AJDe] and

AJDe : {{D}, {U}} → {D,U} is defined, as AJDe({D}) = D; AJDe({U}) = U.

A statement is said ‘warranted’ if it is the conclusion of an argument whose justification label

is U. On this simple basis, an articulated notion of justification status for a literal ϕ based on four

labels (corresponding to the possible answers to a DeLP query) is introduced (see Section 4 of

Garcı́a & Simari, 2014 and Definition 5.3 of Garcı́a & Simari, 2004).

Definition 7.11. Given a literal ϕ, there are four possible anwers for a DeLP query about ϕ:

• yes iff ϕ is warranted;

• no iff the complement of ϕ is warranted;10

• und(ecided) iff neither ϕ nor its complement are warranted;

• unk(nown) iff ϕ is not in the signature of the program11.

Letting ΛDe
ASJ = {yes, no, und, unk}, Definition 7.11 can be formulated as a stage ΞAF

2 =
〈L,ΛDe

ASJ,mgenASJ〉 where mgenASJ = mgen[SC,ASJDe] and ASJDe : pow(ΛDe
AA)×pow(ΛDe

AA) → ΛDe
ASJ

is defined, for any S,U ∈ pow(ASJDe), as

• ASJDe(S,U) = yes iff U ∈ S;

• ASJDe(S,U) = no iff U ∈ U ;

• ASJDe(S,U) = und iff S ∪ U = {D};

• ASJDe(S,U) = unk iff S ∪ U = ∅.

To prove the correspondence of the above defined stage ΞAF
2 with Definition 7.11, a suitable

relevance hypothesis is required for literals included in the signature of a program.

Definition 7.12. A literal ϕ is relevant for a DeLP program Pr if there is at least an argument

whose conclusion is ϕ or its complement.

Proposition 7.17. Given a language L, let Pr be a DeLP program based on L such that every

literal in the signature of Pr is relevant for Pr, A be the set of arguments built from Pr, and LDe
AJ be

a ΛDe
AA-justification labelling of A. The statement justification labelling LDe

ASJ prescribed by DeLP
according to Definition 7.11 is such that {LDe

ASJ} = mgenASJ({L
De
AJ}).

Proof. For the sake of conciseness let mgenASJ({L
De
AJ}) = {L′

ASJ}, we need to show that for every

literal ϕ LDe
ASJ(ϕ) = L′

ASJ(ϕ).

• According to Definition 7.11, LDe
ASJ(ϕ) = yes iff ϕ is warranted, iff ∃A ∈

sup({ϕ}) such that LDe
AJ(A) = U, iff U ∈ prj[supp]({LDe

AJ}, ϕ) leading to

ASJDe(prj[supp]({LDe
AJ}, ϕ), prj[cntr]({L

De
AJ}, ϕ)) = yes and then L′

ASJ(ϕ) = yes.

• Similarly, LDe
ASJ(ϕ) = no iff the complement of ϕ is warranted iff ∃A ∈

sup({cnt(ϕ)}) such that LDe
AJ(A) = U iff U ∈ prj[cntr]({LDe

AJ}, ϕ) leading to

ASJDe(prj[supp]({LDe
AJ}, ϕ), prj[cntr]({L

De
AJ}, ϕ)) = no and then L′

ASJ(ϕ) = no.

10. Note that the formalism guarantees that a statement and its complement cannot be warranted at the same time.

11. The signature of the program is the set of all literals mentioned in the facts and rules of the program. We do not recall

the relevant detailed formalisation for the sake of conciseness.
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• As to LDe
ASJ(ϕ) = unk, the condition holds iff ϕ is not in the signature of the program which

implies that sup({ϕ}) = sup({cnt(ϕ)}) = ∅ leading to L′
ASJ(ϕ) = ASJDe(∅, ∅) = unk.

• Finally, as to LDe
ASJ(ϕ) = und the condition holds iff ϕ is in the signature of the program,

which, by the relevance hypothesis, implies that sup({ϕ}) 6= ∅ or sup({cnt(ϕ)}) 6= ∅. We

have also that neither ϕ nor ∼ϕ are warranted, which implies that U /∈ prj[supp]({LDe
AJ}, ϕ)

and U /∈ prj[cntr]({LDe
AJ}, ϕ) which, together with the previous non emptiness condi-

tions, implies prj[supp]({LDe
AJ}, ϕ) ∪ prj[cntr]({LDe

AJ}, ϕ) = {D} and then L′
ASJ(ϕ) =

ASJDe(prj[supp]({LDe
AJ}, ϕ), prj[cntr]({L

De
AJ}, ϕ)) = und.

Table 4 illustrates the statement justification labelling prescribed by Definition 7.11 depending on

prj[supp]({LDe
AJ}, ϕ) and prj[cntr]({LDe

AJ}, ϕ).

Table 4: Justification status of a statement for DeLP .

prj[cntr] \ prj[supp] ∅ {U} {D} {U,D}

∅ unk yes und yes

{U} no n.a. no n.a.

{D} und yes und yes

{U,D} no n.a. no n.a.

As a remark, we may note that if one drops the hypothesis of relevance, the coincidence stated

in Proposition 7.17 might fail for those literals which are in the signature of the program but are

not relevant: they would be labelled und according to Definition 7.11, while would be labelled unk

by mgen[SC,ASJDe]. We suggest that this remark shows a little conceptual incongruence in the

original definition of DeLP : a literal ϕ such that sup({ϕ}) = sup({cnt(ϕ)}) = ∅ is labelled

unk if it is not included in the signature of the program, and is labelled und otherwise. However,

under the condition sup({ϕ}) = sup({cnt(ϕ)}) = ∅, the fact that ϕ is included in the signature

of the program means that ϕ is mentioned in a rule included in the program but which actually

is never applied, and it seems reasonable that rules which are never applied should not affect the

justification status of a statement. To put it in other words, if the hypothesis of relevance is removed,

the labelling produced by mgen[SC,ASJDe] can be regarded as an improved version of the one given

by Definition 7.11 as far as the statements where they disagree are concerned.

Having reconstructed DeLP as an AF MLS, we can proceed to analyse its properties.

Coverage. It is immediate to see that both AJDe and ASJDe satisfy coverage, leading to the following

proposition.

Proposition 7.18. The AF MLS mgen[SC,ASJDe] ◦ mgen[ID,AJDe] corresponding to the DeLP
formalism satisfies coverage of argument justification and of statement justification.

Distinguishability.

As to argument justification, dom(AJDe) = {{D}, {U}} and clearly {D} and {U} are distin-

guishable.

As to statement justification, we have that dom(ASJDe) = pow({D}) × pow({D,U}) ∪
{{U}, {D,U}} × pow({D}) and it can be noted that the set of labels {U} and {D,U} are strongly

indistinguishable with respect to ASJDe.
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Proposition 7.19. It holds that {U} ≡ [1,ASJDe]{D,U} and {U} ≡ [2,ASJDe]{D,U}.

Proof. With reference Definition 3.12, let Λ1 = {D,U}. For the first part of the statement we have

to prove that ∀Λ′,Λ′′ ⊆ Λ1 such that (Λ′ ∪{U},Λ′′), (Λ′ ∪{D,U},Λ′′) ∈ dom(ASJDe) it holds that

ASJDe(Λ′∪{U},Λ′′) = ASJDe(Λ′∪{D,U},Λ′′). By inspection of the definition of ASJDe it is evident

that the statement holds with ASJDe(Λ′ ∪ {U},Λ′′) = ASJDe(Λ′ ∪ {D,U},Λ′′) = yes. The proof of

the second part of the statement is analogous: ∀Λ′,Λ′′ ⊆ Λ1 such that (Λ′,Λ′′ ∪ {U}), (Λ′,Λ′′ ∪
{D,U}) ∈ dom(ASJDe) it is easy to see that ASJDe(Λ′,Λ′′ ∪ {U}) = ASJDe(Λ′,Λ′′ ∪ {D,U}) =
no.

As a direct consequence, when an argument for a literal (or its complement) is warranted, the

presence of other arguments (warranted or not) for the same literal makes no difference, i.e. the sets

{U} and {D,U} are both support-based and contrary-based strongly ASJDe indistinguishable.

Corollary 7.6. The sets of labels {U} and {D,U} are support-based and contrary-based strongly

ASJDe-indistinguishable.

It can also be noted that statement justification labelling distinguishes three cases of non accep-

tance (while non acceptance was somehow overlooked in the previously surveyed formalisms): this

is also related to the fact that this approach is contrary-sensitive, as it is clear from the definition of

ASJDe.

Proposition 7.20. ASJDe is contrary-sensitive.

Example 7.4 (continues Example 1.1). According to the dialectical semantics of DeLP , only the

uncontroversial argument A4 is undefeated, giving rise to the acceptance labelling LAA = {LDe
AA}

where LDe
AA is as follows:

A1 A2 A3 A4
LDe

AA(·) D D D U

and then to an identical justification labelling LDe
AJ = LDe

AA formally obtained by applying mgenAJ to

LAA. Accordingly, theddd statements obtain the following justification statuses:

s1 ¬s1 s2 ¬s2 s3
LDe

ASJ(·) und und no yes unk

Thus DeLP is able to fully distinguish the status of the statements involved in our simple ex-

ample, regarding as undecided the statements s1 and ¬s1 as the arguments supporting them are

involved in a mutual conflict, recognising that s2 is strongly rejected since ¬s2 is warranted, and

labelling s3 as unknown. �

To conclude, we observe that, in virtue of Proposition 5.1, the DeLP statement justification

labelling can be reconstructed in the SF approach too.

7.4 Towards Tunable Justification Notions

It emerges that different argumentation formalisms adopt quite different notions of justification,

both at the level of arguments and of statements, featuring different properties and sometimes fail-

ing to satisfy some intuitive requirements like full coverage and contrary-sensitivity. However,

these differences do not seem to be caused by technical motivations, but rather depend on specific
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choices based on the intended use of the notion of justification in the presentation of the formalisms

themselves.

These observations back up our claim that the notion of justification (and in particular of state-

ment justification) has received comparatively less attention in the development of argumentation

formalisms, often more focused on the notion of argument acceptance. Moreover they suggest that

justification notions, instead of being ‘hardwired’ in the definitions could be better conceived as

tunable components of any argumentation formalism, with a role similar to those played by argu-

mentation semantics in ASPIC+or ABA. These formalisms do not stick to a single argumentation

semantics, rather they assume that one is chosen among the various available ones (including pos-

sibly those to be developed in the future).

Further, it is interesting to appreciate the different advantages of the reviewed approaches. For

instance, DeLP has shown the best ability to distinguish statement justification statuses in our

simple example. However, since DeLP is single-status at the stage of argument acceptance, it en-

compasses a single notion of positive justification for arguments, while a multiple-status approach

could induce a finer distinction. This suggests that combining the most expressive aspects of differ-

ent approaches may give rise to a more general treatment of the notion of argument and statement

justification.

On the basis of these considerations, we show in the next sections that, as in the case of argu-

mentation semantics, a portfolio of alternatives can be conceived for statement justification notions.

To this purpose we will provide several examples of generic approaches to statement justification

and illustrate how they can be integrated within the formalisms we have reviewed.

8. Bivalent Labellings

Bivalent labellings assume a simple binary justification for statements (say, ‘yes’ or ‘no’) without

further sophistication. Assuming accordingly that Λyn
SJ = {yes, no} and regarding full coverage

as a basic requirement, the adoption of a bivalent labelling in a formalism essentially amounts to

specify a criterion to determine whether a statement ϕ is justifed, and to regard ϕ as not justified if

the criterion is not satisfied. In the context of the AF approach, this can be formalised by a stage

ΞAF
2 = 〈L,Λyn

SJ ,mgenASJ〉 where mgenASJ = mgen[SC, synASJ] and synASJ is a 2-synthesizer from

ΛAJ to Λyn
SJ (with ΛAJ the set of argument justification labels used in the stage ΞAF

1 ). Similarly, in

the context of the SF approach this can be formalised by a stage ΞSF
2 = 〈L,Λyn

SJ ,mgenSSJ〉 where

mgenSSJ = mgen[IC, synSSJ] and synSSJ is a 2-synthesizer from ΛSA to Λyn
SJ (with ΛSA the set of

statement acceptance labels used in the stage ΞSF
1 ). Let us now see how this idea can be plugged into

the formalisms we considered.

8.1 ASPIC
+

Let us first look at ASPIC+ as an AF MLS (Section 7.1.1) and assume ΛA+·fc
AJ = {SKJ, CRJ,NOJ}

(Definition 7.3). Two basic versions of bivalent statement labelling can be set up. A first option,

which is skeptically oriented, corresponds to the idea that a statement is labelled yes if it is supported

by a skeptically justified argument, no otherwise. A second option, which is credulously oriented,

labels a statement yes if it is supported by a skeptically or credulously justified argument, no oth-

erwise. They can be captured in our scheme by ‘plugging’ in the AF MLS scheme the following

2-synthesizers respectively.
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Definition 8.1. The skeptical bivalent 2-synthesizer for ASPIC+, denoted as ASJA
+·yn·sk, is defined

as follows

• ASJA
+·yn·sk(S,U) = yes iff SKJ ∈ S;

• ASJA
+·yn·sk(S,U) = no otherwise.

Definition 8.2. The credulous bivalent 2-synthesizer for ASPIC+, denoted as ASJA
+·yn·cr, is defined

as follows

• ASJA
+·yn·cr(S,U) = yes iff {SKJ, CRJ} ∩ S 6= ∅;

• ASJA
+·yn·cr(S,U) = no otherwise.

Tables 5 and 6 illustrate the statement justification labellings prescribed by Definitions 8.1 and 8.2

respectively.

Table 5: Bivalent labelling for ASPIC+ (skeptical version)

prj[cntr] \ prj[supp] ∅ {NOJ} {CRJ} {NOJ, CRJ} ⊇ {SKJ}

∅ no no no no yes

{NOJ} no no no no yes

{CRJ} no no no no n.a.

{NOJ, CRJ} no no no no n.a.

⊇ {SKJ} no no n.a. n.a. n.a.

Table 6: Bivalent labelling for ASPIC+ (credulous version)

prj[cntr] \ prj[supp] ∅ {NOJ} {CRJ} {NOJ, CRJ} ⊇ {SKJ}

∅ no no yes yes yes

{NOJ} no no yes yes yes

{CRJ} no no yes yes n.a.

{NOJ, CRJ} no no yes yes n.a.

⊇ {SKJ} no no n.a. n.a. n.a.

Clearly both ASJA
+·yn·sk and ASJA

+·yn·cr ensure full coverage and are contrary-insensitive. We can

also note that they represent two alternatives which are less refined versions than ASJA
+·fc (Definition

7.4). In particular (compare Table 1 with Tables 5 and 6 respectively):

• ASJA
+·fc refines ASJA

+·yn·sk with ref(yes) = {skj} and ref(no) = {crj, noj};

• ASJA
+·fc refines ASJA

+·yn·cr with ref(yes) = {skj, crj} and ref(no) = {noj}.

Example 8.1. Applying ASJA
+·yn·sk in the context of Example 7.1 in the case of complete semantics

we get the following statement justification labelling:

s1 ¬s1 s2 ¬s2 s3

LA+·yn·sk
ASJ (·) no no no yes no

while applying ASJA
+·yn·cr we get:

s1 ¬s1 s2 ¬s2 s3

LA+·yn·cr
ASJ (·) yes yes no yes no �
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It is worth noting that the two proposed bivalent labellings for ASPIC+ are probably the simplest

possible ones (in particular they are contrary-insensitive). It can be observed, however, that the

simplistic choice of bivalent labelling does not prevent that a contrary-sensitive synthesizer can be

devised. For instance a ‘semi-credulous’ approach might be defined as follows.

Definition 8.3. The semi-credulous bivalent 2-synthesizer for ASPIC+, denoted as ASJA
+·yn·sc, is

defined as follows

• ASJA
+·yn·sc(S,U) = yes iff (SKJ ∈ S) ∨ (CRJ ∈ S ∧ CRJ /∈ U);

• ASJA
+·yn·sc(S,U) = no otherwise.

The idea underlying the semi-credulous can be viewed as a novel intermediate attitude between

the traditional skeptical and credulous views, inspired by the property of contrary-sensitivity. We

leave the investigation of this kind of developments to future work, and remark that they can be

regarded as a further confirmation of the expressiveness of our approach.

8.2 ABA

We discuss bivalent labellings in distinct subsections for the two stances of ABA.

8.2.1 ABA (CREDULOUS STANCE)

As to the credulous stance of ABA (Section 7.2.1), it can be noted that it already implicitly adopts

a bivalent credulous labelling if one replaces win with yes and nowin with no (we will refer to this

replacement as SSJAB·yn·cr). Hence the case of the credulous stance of ABA does not require further

discussion.

8.2.2 ABA (SKEPTICAL STANCE)

As to integrating bivalent labelling in the skeptical stance of ABA, it amounts to replacing the 2-

synthesizer SSJAB·sk introduced in Section 7.2.2 with a 2-synthesizer SSJAB·yn·sk from ΛAB·sk
SA to Λyn

SJ .

Among various possible ways of defining SSJAB·yn·sk we propose the following one12 (illustrated in

Table 7).

Definition 8.4. The skeptical bivalent 2-synthesizer for ABA, denoted as SSJAB·yn·sk, is defined as

follows

• ASJAB·yn·sk(S,U) = yes iff S = {in};

• ASJAB·yn·sk(S,U) = no otherwise.

Table 7: Bivalent labelling for ABA (skeptical stance).

prj[cntr] \ prj[supp] {nin} {in} {nin, in}

{nin} no yes no

{in} no n.a. n.a.

{nin, in} no n.a. no

12. Though belonging to a different context, SSJAB·yn·sk has clearly a similarity with ASJ
A

+
·yn·sk defined in Section 8.1.

Other variants similar to ASJ
A

+
·yn·cr and ASJ

A
+
·yn·sc could also be conceived. This is left to future work.
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Clearly SSJAB·yn·sk ensures full coverage, is contrary-insensitive and represents a less refined

version of SSJAB·sk where ref(yes) = {skj} and ref(no) = {crj, noj}.

Example 8.2. Applying SSJAB·yn·sk in the context of Example 7.3 in the case of complete semantics

we get the following statement justification labelling:

s1 ¬s1 s2 ¬s2 s3

LAB·yn·sk
SSJ (·) no no no yes no

�

8.3 DeLP

As to DeLP , in order to define a bivalent statement labelling, it is rather natural to assign the label

yes to the statements already labelled yes, and the label no to all the other cases. This leads to

introduce the bivalent 2-synthesizer ASJDe·yn as follows (see Table 8).

Definition 8.5. The bivalent 2-synthesizer for DeLP , denoted as ASJDe·yn, is defined as follows:

• ASJDe·yn(S,U) = yes iff U ∈ S;

• ASJDe·yn(S,U) = no otherwise.

Table 8: Bivalent labelling for DeLP .

prj[cntr] \ prj[supp] ∅ {U} {D} {U,D}

∅ no yes no yes

{U} no n.a. no n.a.

{D} no yes no yes

{U,D} no n.a. no n.a.

Clearly ASJDe·yn ensures full coverage, is contrary-insensitive and represents a less refined ver-

sions of ASJDe, where ref(yes) = {yes} and ref(no) = {no, und, unk}.

Example 8.3. Applying ASJDe·yn in the context of Example 7.4 we get the following statement justi-

fication labelling:

s1 ¬s1 s2 ¬s2 s3

LDe·yn
ASJ (·) no no no yes no

�

8.4 Considerations on Bivalent Labellings

In summary, whilst bivalent labellings can be regarded as the simplest common conceptual basis for

statement justification, they are generally less refined than various proposals for statement justifi-

cation. Indeed, existing approaches differ in the way they specialise and extend the notions of raw

justification (yes) and its complement (no).

Simple as they are, bivalent labellings make easy the task of ensuring full coverage, while they

tend to be (but not necessarily are) contrary-insensitive. Moreover, in the case of multiple status
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argument acceptance evaluation there is a design dilemma, since one has to decide whether the

label yes coincides with skeptical acceptance or covers both skeptical and credulous acceptance. We

provided a definition for either alternative in ASPIC+and showed that further intermediate options

are possible. In the considered example, an agreement on statement labelling is reached among

the different formalisms in the context of the skeptical and credulous perspective since for each

statement S ∈ {s1,¬s1, s2,¬s2, s3} we get LA+·yn·sk
ASJ (S) = LA+·yn·sc

ASJ (S) = LAB·yn·sk
SSJ (S) = LDe·yn

ASJ (S)

and LA+·yn·cr
ASJ (S) = LAB·yn·cr

ASJ (S) respectively.

9. Doubt-Tolerant Labellings

Bivalent labellings do not give any particular reason why a statement is labelled no. It may be

because it is falsified in some way or just because it lacks sufficient support. As a first step to

support this distinction one may assume the set of labels Λdt
SJ = {yes, fal, ni} where fal indicates that

the statement is falsified, while ni captures a less clearcut situation, intermediate between yes and

fal. Labellings based on Λdt
SJ are called doubt-tolerant because they encompass an explicit distinction

between explicit rejection and unresolved doubt, not captured by bivalent labellings.

In this section, we examine how this idea can be integrated in the formalisms reviewed in this pa-

per by defining suitable doubt-tolerant 2-synthesizers. Note that all the doubt-tolerant 2-synthesizers

are defined so as to be a refinement of their bivalent counterpart and to be contrary-sensitive.

9.1 ASPIC
+

ASPIC+ can be equipped with a skeptically or a credulously oriented option for doubt-tolerant

statement labellings. In the former, a statement is labelled yes if it is supported by a skeptically

justified argument, fal if one of its contraries is supported by a skeptically justified argument, and

ni otherwise. In the latter option, a statement is labelled yes if it is supported by a skeptically or

credulously justified argument, fal if it is not supported by a skeptically or credulously justified

argument and one of its contraries is supported by a skeptically or credulously justified argument,

and ni otherwise. The corresponding 2-synthesizers are introduced in the following definitions and

illustrated in Tables 9 and 10.

Definition 9.1. The skeptical doubt-tolerant 2-synthesizer for ASPIC+, denoted as ASJA
+·dt·sk, is

defined as follows

• ASJA
+·dt·sk(S,U) = yes iff SKJ ∈ S;

• ASJA
+·dt·sk(S,U) = fal iff SKJ ∈ U ;

• ASJA
+·dt·sk(S,U) = ni otherwise.

Definition 9.2. The credulous doubt-tolerant 2-synthesizer for ASPIC+, denoted as ASJA
+·dt·cr, is

defined as follows

• ASJA
+·dt·cr(S,U) = yes iff {SKJ, CRJ} ∩ S 6= ∅;

• ASJA
+·dt·cr(S,U) = fal iff {SKJ, CRJ} ∩ S = ∅ and {SKJ, CRJ} ∩ U 6= ∅ ;

• ASJA
+·dt·cr(S,U) = ni otherwise.

Clearly both ASJA
+·dt·sk and ASJA

+·dt·cr ensure full coverage, are contrary-sensitive, and are a

refinement of the corresponding bivalent 2-synthesizers. In particular:
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Table 9: Skeptical doubt-tolerant labelling for ASPIC+.

prj[cntr] \ prj[supp] ∅ {NOJ} {CRJ} {NOJ, CRJ} ⊇ {SKJ}

∅ ni ni ni ni yes

{NOJ} ni ni ni ni yes

{CRJ} ni ni ni ni n.a.

{NOJ, CRJ} ni ni ni ni n.a.

⊇ {SKJ} fal fal n.a. n.a. n.a.

Table 10: Credulous doubt-tolerant labelling for ASPIC+.

prj[cntr] \ prj[supp] ∅ {NOJ} {CRJ} {NOJ, CRJ} ⊇ {SKJ}

∅ ni ni yes yes yes

{NOJ} ni ni yes yes yes

{CRJ} fal fal yes yes n.a.

{NOJ, CRJ} fal fal yes yes n.a.

⊇ {SKJ} fal fal n.a. n.a. n.a.

• ASJA
+·dt·sk refines ASJA

+·yn·sk with ref(yes) = {yes} and ref(no) = {fal, ni};

• ASJA
+·dt·cr refines ASJA

+·yn·cr with ref(yes) = {yes} and ref(no) = {fal, ni}.

It can also be noted that neither ASJA
+·dt·sk nor ASJA

+·dt·cr is a refinement of ASJA
+·fc nor vice-

versa. This can be regarded as further indication of the variety of possible design options whose

investigation appears to be a fertile research area.

Example 9.1. Applying ASJA
+·dt·sk in the context of Example 7.1 in the case of complete semantics

we get the following statement justification labelling:

s1 ¬s1 s2 ¬s2 s3

LA+·dt·sk
ASJ (·) ni ni fal yes ni

while applying ASJA
+·dt·cr we get

s1 ¬s1 s2 ¬s2 s3

LA+·dt·cr
ASJ (·) yes yes fal yes ni

It can be observed that the statement justification prescribed by ASPIC+ for complete semantics

(LA+·fc
ASJ in Example 7.1) has some similarity with LA+·dt·sk

ASJ , since both labellings distinguish the

statuses of s1 and ¬s1 (crj and ni, respectively), s2 (noj and fal), and ¬s2 (skj and yes). A difference

can be noted in the treatment of s3 which has the same status as s2 (noj) in LA+·fc
ASJ , while it has the

same status as s1 and ¬s1 (ni) according to LA+·dt·sk
ASJ . While one may remark that equating ignorance

to either a status of rejection or of controversy is anyway debatable, this shows that our proposal

provides alternative choices not encompassed by the current version of existing formalisms.

Another significant difference which is worth pointing out with respect to Example 7.1 concerns

the case of a single-status semantics (like grounded or ideal semantics) where we get:

s1 ¬s1 s2 ¬s2 s3

LA+·dt·sk
ASJ (·) ni ni fal yes ni

and applying ASJA
+·dt·cr yields the same outcome
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s1 ¬s1 s2 ¬s2 s3

LA+·dt·cr
ASJ (·) ni ni fal yes ni

We remark that, with a single-status semantics, while the statements s1 (or ¬s1) and s2 have

the same status (namely noj ) in Example 7.1 under the contrary-insensitive statement justification

labelling LA+·fc
ASJ (·), with the same semantics the contrary-sensitive statement justification labellings

LA+·dt·sk
ASJ (·) and LA+·dt·cr

ASJ (·) allow us to distinguish the status of statements s1 (or ¬s1) and s2. This

illustrates the ability of the doubt-tolerant 2-synthesizers to allow finer distinctions about statements

when ‘plugged’ into ASPIC+ in the case of a single-status semantics while keeping any other aspect

of the formalism unchanged. In fact such a finer distinction is achieved in the original formulation of

ASPIC+ only by resorting to multiple-status semantics, while our proposal shows that single-status

semantics are not inherently limited in this respect and can yield analogous distinctions, provided

that a suitable statement labelling is adopted. �

9.2 ABA

We discuss doubt-tolerant labellings in distinct subsections for the two stances of ABA.

9.2.1 ABA (CREDULOUS STANCE)

In the credulous stance, ABA has been reconstructed as an AF MLS using the set of labels

ΛAB·cr·fc
AJ = {WIN,NOWIN} for argument justification. Taking into account that there can be winning

arguments both for a statement and its contraries, also in this case two alternatives (one skeptically

oriented and one credulously oriented) for defining a doubt-tolerant statement labelling can be con-

sidered (see Table 11 and 12). In a skeptical orientation, a statement is labelled yes if it supported

by at least a winning argument and there are no winning arguments for any of its contraries, fal if it

is not supported by a winning argument and there are winning arguments for any of its contraries, ni

in the other cases. In a credulous orientation, a statement is labelled yes if it supported by at least a

winning argument, fal if it is not supported by a winning argument and there are winning arguments

for any of its contraries, ni in the other cases. The corresponding 2-synthesizers are introduced in

the following definitions.

Definition 9.3. The skeptical doubt-tolerant 2-synthesizer for ABA in the credulous stance, de-

noted as ASJAB·dt·sk, is defined as follows

• ASJAB·dt·sk(S,U) = yes iff WIN ∈ S and WIN /∈ U ;

• ASJAB·dt·sk(S,U) = fal iff WIN /∈ S and WIN ∈ U ;

• ASJAB·dt·sk(S,U) = ni otherwise.

Definition 9.4. The credulous doubt-tolerant 2-synthesizer for ABA in the credulous stance, de-

noted as ASJAB·dt·cr, is defined as follows

• ASJAB·dt·cr(S,U) = yes iff WIN ∈ S;

• ASJAB·dt·cr(S,U) = fal iff WIN /∈ S and WIN ∈ U ;

• ASJAB·dt·cr(S,U) = ni otherwise.

Tables 11 and 12 illustrate, respectively, the skeptical and credulous doubt-tolerant labelling for

ABA depending on prj[supp]({LAB·cr·fc
AJ }, ϕ) and prj[cntr]({LAB·cr·fc

AJ }, ϕ).
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Table 11: Skeptical doubt-tolerant labelling for ABA (credulous stance).

prj[cntr] \ prj[supp] ∅ {WIN} {NOWIN} {WIN,NOWIN}

∅ ni yes ni yes

{WIN} fal ni fal ni

{NOWIN} ni yes ni yes

{WIN,NOWIN} fal ni fal ni

Table 12: Credulous doubt-tolerant labelling for ABA (credulous stance).

prj[cntr] \ prj[supp] ∅ {WIN} {NOWIN} {WIN,NOWIN}

∅ ni yes ni yes

{WIN} fal yes fal yes

{NOWIN} ni yes ni yes

{WIN,NOWIN} fal yes fal yes

Clearly both ASJAB·dt·sk and ASJAB·dt·cr ensure full coverage and are contrary-sensitive. More-

over it is easy to see that ASJAB·dt·cr is a refinement of ASJAB·cr·fc with ref(win) = {yes} and

ref(nowin) = {fal, ni}.

Example 9.2. Applying ASJAB·dt·sk in the context of Example 7.1 in the case of complete semantics

we get the following statement justification labelling:

s1 ¬s1 s2 ¬s2 s3

LAB·dt·sk
ASJ (·) ni ni fal yes ni

while applying ASJAB·dt·cr we get

s1 ¬s1 s2 ¬s2 s3

LAB·dt·cr
ASJ (·) yes yes fal yes ni

�

9.2.2 ABA (SKEPTICAL STANCE)

Analogously to what we have remarked in Section 8.2.2 on bivalent labellings, there are various

ways to integrate a doubt-tolerant labelling in the skeptical stance of ABA. Among them we con-

sider the 2-synthesizer SSJAB∗·dt·sk, which can be regarded as conceptually similar to ASJA
+·dt·sk (see

Table 13)

Definition 9.5. The skeptical doubt-tolerant 2-synthesizer for ABA, denoted as SSJAB∗·dt·sk, is de-

fined as follows

• SSJAB∗·dt·sk(S,U) = yes iff S = {in};

• SSJAB∗·dt·sk(S,U) = fal iff U = {in};

• SSJAB∗·dt·sk(S,U) = ni otherwise.

Clearly SSJAB∗·dt·sk ensures full coverage, is contrary-sensitive and represents a refinement of

SSJAB·yn·sk where ref(yes) = {skj} and ref(no) = {fal, ni}.
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Table 13: Doubt-tolerant labelling for ABA (skeptical stance).

prj[cntr] \ prj[supp] {nin} {in} {nin, in}

{nin} ni yes ni

{in} fal n.a. n.a.

{nin, in} ni n.a. ni

Example 9.3. Applying SSJAB∗·dt·sk in the context of Example 7.3 in the case of complete semantics

we get the following statement justification labelling:

s1 ¬s1 s2 ¬s2 s3

LAB∗·dt·sk
SSJ (·) ni ni fal yes ni

�

9.3 DeLP

Taking into account that DeLP is a single status approach (hence skeptically oriented) and that

there can not be two undefeated arguments for contrary statements, a rather straighforward way

of defining a doubt-tolerant statement justification labelling emerges, with an operator ASJDe·dt,

conceptually similar to ASJA
+·dt·sk (see Table 14).

Definition 9.6. The doubt-tolerant 2-synthesizer for DeLP , denoted as ASJDe·dt, is defined as fol-

lows:

• ASJDe·dt(S,U) = yes iff U ∈ S;

• ASJDe·dt(S,U) = fal iff U ∈ U ;

• ASJDe·dt(S,U) = ni otherwise.

Table 14: Doubt-tolerant labelling for DeLP .

prj[cntr] \ prj[supp] ∅ {U} {D} {U,D}

∅ ni yes ni yes

{U} fal n.a. fal n.a.

{D} ni yes ni yes

{U,D} fal n.a. fal n.a.

The synthesizer ASJDe·dt ensures full coverage and is contrary-sensitive. It refines ASJDe·yn with

ref(yes) = {yes}, ref(no) = {fal, ni}. Moreover it represents a less refined versions of ASJDe,

where ref(yes) = {yes}, ref(fal) = {no} and ref(ni) = {und, unk}.

Example 9.4. Applying ASJDe·dt in the context of Example 7.4 we get the following statement justi-

fication labelling:

s1 ¬s1 s2 ¬s2 s3

LDe·dt
ASJ (·) ni ni fal yes ni

�
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9.4 Considerations on Doubt-Tolerant Labellings

Doubt-tolerant labellings refine bivalent labellings, by distinguishing the case of explicit rejection

from other cases where a statement is not justified. As such, doubt-tolerant labellings are intrinsi-

cally contrary-sensitive.

As to the example, for every statement S in {s1,¬s1, s2,¬s2, s3} we get:

• LA+·dt·sk
ASJ (S) = LAB·dt·sk

ASJ (S) = LAB∗·dt·sk
SSJ (S) = LDe·dt

ASJ (S), and

• LA+·dt·cr
ASJ (S) = LAB·dt·cr

ASJ (S).

Thus, as it was also the case with the bivalent labelling, in our example the doubt-tolerant

labelling provides (separately for the skeptical and the credulous stance) outcomes in agreement

for all the considered formalisms, while the results were different with the original definitions of

statement justification.

This confirms the merits of a high-level formalism-independent analysis of statement justifi-

cation and suggests that further more articulated approaches in addition to the basic bivalent and

doubt-tolerant labellings are worth exploring, in order to gain further discriminative capabilities. In

this regard, a simple development is the (so-called ignorance-aware) labelling investigated next.

10. Ignorance-Aware Labellings

In doubt-tolerant labellings, a statement is labelled ni if it is not labelled yes or fal. This may occur

due to some lack of knowledge or because the available knowledge carries some undecidedness.

To support this distinction, we thus assume the set of labels Λia
SJ = {yes, fal, unk, ni}, where the

label unk stands for ‘unknown’. The labelling is called ignorance-aware because it can be obtained

as a refinement of the doubt-tolerant labelling, where absence of support is distinguished from

conflicting support, a distinction which is not captured by doubt-tolerant and bivalent labellings.

10.1 ASPIC
+

We obtain a skeptically oriented and a credulously oriented ignorance-aware labelling for ASPIC+

as refined variations of Definitions 9.1 and 9.2 respectively, by distinguishing the case of total ab-

sence of arguments, which gets the label unk (see also Tables 15 and 16).

Definition 10.1. The skeptical ignorance-aware 2-synthesizer for ASPIC+, denoted as ASJA
+·ia·sk,

is defined as follows

• ASJA
+·ia·sk(S,U) = yes iff SKJ ∈ S;

• ASJA
+·ia·sk(S,U) = fal iff SKJ ∈ U ;

• ASJA
+·ia·sk(S,U) = unk iff S ∪ U = ∅;

• ASJA
+·ia·sk(S,U) = ni otherwise.

Definition 10.2. The credulous ignorance-aware 2-synthesizer for ASPIC+, denoted as ASJA
+·ia·cr,

is defined as follows

• ASJA
+·ia·cr(S,U) = yes iff {SKJ, CRJ} ∩ S 6= ∅;

• ASJA
+·ia·cr(S,U) = fal iff {SKJ, CRJ} ∩ S = ∅ and {SKJ, CRJ} ∩ U 6= ∅;

• ASJA
+·ia·cr(S,U) = unk iff S ∪ U = ∅;

• ASJA
+·ia·cr(S,U) = ni otherwise.
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Table 15: Skeptical ignorance-aware labelling for ASPIC+.

prj[cntr] \ prj[supp] ∅ {NOJ} {CRJ} {NOJ, CRJ} ⊇ {SKJ}

∅ unk ni ni ni yes

{NOJ} ni ni ni ni yes

{CRJ} ni ni ni ni n.a.

{NOJ, CRJ} ni ni ni ni n.a.

⊇ {SKJ} fal fal n.a. n.a. n.a.

Table 16: Credulous ignorance-aware labelling for ASPIC+.

prj[cntr] \ prj[supp] ∅ {NOJ} {CRJ} {NOJ, CRJ} ⊇ {SKJ}

∅ unk ni yes yes yes

{NOJ} ni ni yes yes yes

{CRJ} fal fal yes yes n.a.

{NOJ, CRJ} fal fal yes yes n.a.

⊇ {SKJ} fal fal n.a. n.a. n.a.

Clearly both ASJA
+·ia·sk and ASJA

+·ia·cr ensure full coverage, are contrary-sensitive, and are a

refinement of the corresponding doubt-tolerant 2-synthesizers.

Example 10.1. The only difference with respect to the doubt-tolerant labellings is that s3 is labelled

unk in both the skeptical and credulous version.

s1 ¬s1 s2 ¬s2 s3

LA+·ia·sk
ASJ (·) ni ni fal yes unk

s1 ¬s1 s2 ¬s2 s3

LA+·ia·cr
ASJ (·) yes yes fal yes unk

�

10.2 ABA

We discuss ignorance-aware labellings in distinct subsections for the two stances of ABA.

10.2.1 ABA (CREDULOUS STANCE)

Analogously to the case of ASPIC+, ignorance-aware labellings for ABA in the credulous stance

are obtained as refined variations of Definitions 9.3 and 9.4 (see also Tables 17 and 18).

Definition 10.3. The skeptical ignorance-aware 2-synthesizer for ABA in the credulous stance,

denoted as ASJAB·ia·sk, is defined as follows

• ASJAB·ia·sk(S,U) = yes iff WIN ∈ S and WIN /∈ U ;

• ASJAB·ia·sk(S,U) = fal iff WIN /∈ S and WIN ∈ U ;

• ASJAB·ia·sk(S,U) = unk iff S ∪ U = ∅;

• ASJAB·ia·sk(S,U) = ni otherwise.
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Definition 10.4. The credulous ignorance-aware 2-synthesizer for ABA in the credulous stance,

denoted as ASJAB·ia·cr, is defined as follows

• ASJAB·ia·cr(S,U) = yes iff WIN ∈ S ;

• ASJAB·ia·cr(S,U) = fal iff WIN /∈ S and WIN ∈ U ;

• ASJAB·ia·cr(S,U) = unk iff S ∪ U = ∅;

• ASJAB·ia·cr(S,U) = ni otherwise.

Table 17: Skeptical ignorance-aware labelling for ABA (credulous stance).

prj[cntr] \ prj[supp] ∅ {WIN} {NOWIN} {WIN,NOWIN}

∅ unk yes ni yes

{WIN} fal ni fal ni

{NOWIN} ni yes ni yes

{WIN,NOWIN} fal ni fal ni

Table 18: Credulous ignorance-aware labelling for ABA (credulous stance).

prj[cntr] \ prj[supp] ∅ {WIN} {NOWIN} {WIN,NOWIN}

∅ unk yes ni yes

{WIN} fal yes fal yes

{NOWIN} ni yes ni yes

{WIN,NOWIN} fal yes fal yes

Clearly both ASJAB·ia·sk and ASJAB·ia·cr ensure full coverage, are contrary-sensitive, and are a

refinement of the corresponding doubt-tolerant 2-synthesizers.

Example 10.2. Again, the only difference w.r.t. the doubt-tolerant labellings is that s3 is labelled

unk.

s1 ¬s1 s2 ¬s2 s3

LAB·ia·sk
ASJ (·) ni ni fal yes unk

s1 ¬s1 s2 ¬s2 s3

LAB·ia·cr
ASJ (·) yes yes fal yes unk

�

10.2.2 ABA (SKEPTICAL STANCE)

The skeptical stance ofABA, belonging to the SF approach, requires some additional consideration:

the absence of any argument concerning a given statement or its contraries needs to be ‘detected’ at

the level of the stage ΞSF
1 , where the projection from arguments to statements occurs, and then taken

into account at the level of the subsequent stage ΞSF
2 . This can be achieved by revising Definition

7.9.

Definition 10.5 (revised Def. 7.9). Given a language L, a set of arguments A and a labelling in a

set LAA of ΛIOU
AA -labellings of A, for every statement ϕ ∈ L:
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• ϕ is supported iff ∃A ∈ sup({ϕ}) : LAA(A) = IN;

• ϕ is ignored iff sup({ϕ}) = sup(cnt(ϕ)) = ∅;

• ϕ is not supported otherwise.

Letting ΛAB·sk′

SA = {in, nin, ign}, Definition 10.5 corresponds to a stage ΞSF
1 =

〈L,ΛAB·sk′

SA , pgenSA〉 where pgenSA = pgen[SC, SAAB·sk] and SAAB·sk : pow(ΛIOU
AA ) × pow(ΛIOU

AA ) →
ΛAB·sk

SA is defined, for any S,U ∈ pow(ΛIOU
AA ), as

• SAAB·sk(S,U) = in iff IN ∈ S;

• SAAB·sk(S,U) = ign iff S ∪ U = ∅;

• SAAB·sk(S,U) = nin otherwise.

On this basis, we introduce in Definition 10.6 an ignorance-aware 2-synthesizer for

ABA in the skeptical stance denoted as SSJAB∗·ia·sk (see also Table 19). Note in par-

ticular that dom(SSJAB∗·ia·sk) = ({{nin}, {in}, {in, nin}} × {{ign}, {nin}, {in}, {in, nin}} ∪
{({ign}, {ign}), ({ign}, {nin})}) \{({in}, {in}), ({in}, {ni, in}), ({ni, in}, {in})}. We can remark

here that if a statement ϕ is labelled ign in one acceptance labelling, it must be labelled ign in

every other acceptance labelling. Hence it cannot be the case that prj[supp](LAB·sk′

SA , ϕ) ) {ign},

and this also holds for prj[cntr](LAB·sk′

SA , ϕ) given that ϕ has at most one contrary. Moreover, when

prj[supp](LAB·sk′

SA , ϕ) = {ign}, by Definition 10.5, it holds sup(cnt(ϕ)) = ∅, hence it cannot be the

case that in ∈ prj[cntr](LAB·sk′

SA , ϕ).

Definition 10.6. The skeptical ignorance-aware 2-synthesizer for ABA, denoted as SSJAB∗·ia·sk, is

defined as follows

• SSJAB∗·ia·sk(S,U) = yes iff S = {in};

• SSJAB∗·ia·sk(S,U) = fal iff U = {in};

• SSJAB∗·ia·sk(S,U) = unk iff S ∪ U = {ign};

• SSJAB∗·ia·sk(S,U) = ni otherwise.

Table 19: Ignorance-aware labelling for ABA (skeptical stance).

prj[cntr] \ prj[supp] {ign} {nin} {in} {nin, in}

{ign} unk ni yes ni

{nin} ni ni yes ni

{in} n.a. fal n.a. n.a.

{nin, in} n.a. ni n.a. ni

Clearly SSJAB∗·ia·sk ensures full coverage and it is contrary-sensitive.

Example 10.3. Referring to Example 7.3, the only difference in each of the three statement accep-

tance labellings is that s3 is labelled ign. As a consequence, concerning statement justification the

only difference w.r.t. the doubt-tolerant labellings is that s3 is labelled unk.

s1 ¬s1 s2 ¬s2 s3

LAB∗·ia·sk
SSJ (·) ni ni fal yes unk

�
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10.3 DeLP

As to DeLP , its original definition of statement justification is ignorance-aware (see Definition

7.11), modulo two label names: no for fal, and und for ni. Thus no further specific discussion is

needed.

Example 10.4. Again, the only difference in the example w.r.t. the doubt-tolerant labelling is that

s3 is labelled unk.

s1 ¬s1 s2 ¬s2 s3

LDe·ia
ASJ (·) ni ni fal yes unk

�

10.4 Considerations on Ignorance-Aware Labellings

In the context of the AF approach, ignorance-aware labellings provide a simple, yet useful, re-

finement of doubt-tolerant labellings by adding a separate treatment of the case of total lack of

knowledge for a statement, while keeping the other desirable properties and the inter-formalism

agreement in the considered example, as commented in previous sections. In the context of the SF

approach, exemplified by the skeptical stance of ABA, the case of total lack of knowledge needs

to be ‘captured earlier’, i.e. at the stage of argument acceptance, thus requiring a more extensive

adjustment. This provides another concrete illustration of the structural difference between the two

approaches.

11. Discussion of Related Works

The idea of modelling argumentation formalisms as multi-labelling systems and of extending tun-

ability to various phases of the argumentation process has not been considered up to now in the

literature, where tunability is usually encompassed only at the level of argumentation semantics.

Thus, strictly speaking, there are no direct terms of comparison for the overall approach we are

proposing and for the analysis of its main properties we have carried out. However, various aspects

of MLSs for modelling argumentation formalisms can be discussed with respect to the literature,

especially in relation to the general distinction between the AF and the SF approach and the various

stages therein.

As to the AF and SF approach, it is worth recalling that two alternative approaches for assessing

the justification status of conclusions in argument-based reasoning have been studied as part of a

debate about defining an appropriate notion of skeptical acceptance (Horty, 2002; Prakken, 2002;

Makinson & Schlechta, 1991). In the context of this debate13, it is assumed, as usual, that an intelli-

gent agent produces a set of alternative reasonable positions, called extensions, each consisting of a

set of arguments with relevant conclusions, and then the agent faces the problem of deciding which

conclusions to regard as justified. In particular, the agent may adopt a skeptical policy according

to which conclusions are justified if, roughly speaking, they get support by every alternative and

belong to the intersection of the alternatives. As discussed by Horty (2002, page 59) (see also the

similar discussion by Makinson & Schlechta, 1991 in the context of inheritance networks), there

13. Actually this debate is not limited to argument-based reasoning but spans over various forms of defeasible reasoning.

We limit our discussion to the aspects which are directly relevant to the present paper while referring the reader to

the cited literature sources for a more extensive view of the subject.
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are actually two approaches to implement this rough idea. One approach computes first the inter-

section of justified arguments at the level of extensions, i.e. the set of arguments that are present

in all extensions, then the conclusions of these arguments are viewed as skeptically justified. The

second approach derives first the conclusions at the level of individual extensions, i.e. identifies a

set of supported conclusions for each extension, and then computes the intersection of these sets of

conclusions to obtain the set of conclusions which can be deemed skeptically justified. Clearly, the

first notion of skeptical justification can be regarded as an instance of the AF approach, while the

second notion as an instance of the SF approach. Moreover they can be put in correspondence with

the notion of skeptical justification in ASPIC+ and with the skeptical stance of ABA, respectively.

The two competing notions of skeptical justification gave rise to a vivid discussion, in particular

because they differ in the treatment of the so-called floating conclusions, namely those conclusions

that are supported by at least one argument in each extension, but not by the same argument in all ex-

tensions. Floating conclusions are not justified according to the first notion of skeptical justification,

while they are according to the second one. This led Makinson and Schlecta (1991) to argue that the

first approach, called directly skeptical, has to be regarded as problematic as it is intrinsically unable

to deal with floating conclusions (and has also difficulties with another related phenomenon called

zombi paths). To address this kind of criticism Horty (2002) proposed various reasoning examples

where it is intuitive to regard floating conclusions as not justified, thus in turn questioning the va-

lidity of the second notion of skeptical justification. Prakken (2002) discussed Horty’s examples by

suggesting that the controversy can be solved by a more appropriate modelling of the underlying

reasoning activity, in particular by the explicit consideration of additional information (e.g. some

missing default rules or assumptions) left implicit in Horty’s discussion. This would ensure that the

desired intuitive results are obtained in Horty’s examples, while still regarding floating conclusions

as skeptically justified in other examples.

Our distinction between the AF and SF approaches provides a well-founded and more general

theoretical framework where the above debate about different notions of skeptical justification (and,

in a wider perspective, the analysis of alternative notions of justification) can be placed. In particular,

the expressiveness comparison developed in Section 5 generalises the specific observations about

the different behaviour of the two approaches presented, for specific cases, in the papers mentioned

above. The comparison also provides a definite negative answer to any claim of prevalence of either

choice, by showing that neither of the two approaches subsumes the other in the general case.

We in particular agree with a remark given by Horty (2002, page 68) where it is acknowledged

that part of the conundrum concerning skeptical acceptance is related to the adoption of a binary

notion of acceptance (a bivalent labelling using the terminology of the present paper). Horty then

admits that an alternative approach to solve the problem would consist in overcoming the binary

view and ‘placing statements into several categories, depending on the degree to which they are

supported by a set of premises, with floating conclusions then classified, not necessarily as un-

supported, but perhaps only as less firmly supported than statements that are justified by the same

argument in every extension.’

Somehow similar considerations are also drawn by Prakken and Vreeswijk (2001), where an

extensive discussion of the issue of floating conclusions is developed and it is observed in partic-

ular that ‘some of the different consequence notions are not mutually exclusive but can be used in

parallel, as capturing different senses in which belief in a proposition can be supported by a body

of information’. Furthermore it is remarked that ‘in general the existence of different definitions is

not a problem for, but a feature of the field of defeasible argumentation’.
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This is exactly the direction pursued by this paper, which provides a formal setting supporting

a systematic study of alternative, possibly more or less refined, notions of justification embeddable

and tunable in a variety of argumentation formalisms.

It is worth noting that some similar intuition can also be identified in a recent work (Caminada,

Sá, Alcântara, & Dvorák, 2015), devoted to the study of the relationships between logic program-

ming semantics and argumentation semantics. This work uses the set of complete labellings as a

main reference for argumentation semantics and relies on the characterisation of the set of labellings

prescribed by other semantics in terms of some maximisation or minimisation condition with respect

to complete labellings (e.g. preferred labellings are complete labellings where the set of arguments

labelled in is maximal w.r.t. inclusion, semi-stable labellings are complete labellings where the set

of arguments labelled und is minimal and so on).

It is then observed that two ways to extend these labellings to statements are possible. The

first one consists in first restricting the set of labellings by applying the maximisation/minimisation

conditions at the level of arguments and then projecting each resulting labelling on the conclusions

(selecting the ‘best’ label according to the order in > und > out if a statement is the conclusion

of more than one argument). The second one consists in first projecting all complete labellings

on the argument conclusions (again selecting the ‘best’ label when needed) and then restricting

the resulting set of labellings by applying the maximisation/minimisation conditions at the level of

statements. Clearly, the first way bears some similarity with the AF approach while the second one

with the SF approach. It is shown by Caminada et al. (2015) that in most cases applying the same

maximisation/minimisation condition either at the argument level or at the statement level gives the

same result, but, as one may expect, this does not hold in general. In particular, it turns out that

minimising the und label at the argument level does not give the same result as minimising it at the

statement level. Due to different interests, the issue of deriving a synthetic justification assessment

for statements is not considered by Caminada et al. (2015), and therefore a full comparison with

our approach cannot be directly drawn. Exploring in more detail the possible connections among

MLSs, logic programming and argumentation semantics represents an interesting subject for future

work.

Let us now turn to a discussion of the stages we have handled in the context of the AF and SF

approaches.

As to the stage of argument acceptance, common to the AF and SF approaches, Dung’s abstract

argumentation semantics, expressible in terms of ΛIOU
AA -labellings is widely adopted as an essential

element of other formalisms, as in the cases of ASPIC+ and ABA, and is among the most inves-

tigated subjects in formal argumentation literature. Notable exceptions to this largely dominating

position are anyway available. As we have seen in the paper, DeLP provides an example of a full

formalism not relying on Dung’s model. Further, it is worth mentioning that a four-valued labelling

for abstract argumentation has been proposed by Jakobovits and Vermeir (1999), where a status of

‘don’t care’ is added to the three statuses of accepted, rejected, and undecided.

As to the notion of argument justification encompassed by the AF approach, the simple tradi-

tional distinction between credulous and skeptical justification (implicitly completed by the notion

of no-justification) is by far the one most often considered in the literature and, in fact, the problems

of checking credulous and skeptical justification of an argument are among the standard problems

in the analysis of computational complexity in relation to argumentation semantics (see e.g. Dunne

& Wooldridge, 2009). It has to be mentioned however that more articulated notions of argument

justification have also been proposed in the literature. For instance Cayrol and Lagasquie-Schiex
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(2003) examined a classification encompassing four states, namely: uni-accepted (corresponding

to traditional skeptical justification), not-accepted (corresponding to traditional no-justification),

cleanly-accepted and only-exi-accepted. The two latter states provide a refinement of the traditional

notion of credulous justification: an argument is cleanly accepted if it is credulously accepted and

is not attacked by any credulously accepted argument, while an argument is only-exi-accepted if it

is credulously accepted and is attacked by a credulously accepted argument. Baroni et al. (2004),

in the context of the study of skepticism relations among argumentation semantics, seven argument

justification states were identified. Essentially, these states are defined in terms of the set of the la-

bels that are assigned to an argument in the various acceptance labellings considered in the argument

acceptance stage. For instance the status called JS1 by Baroni et al. (2004) applies to arguments

which get the label IN in all acceptance labellings (and so corresponds to traditional skeptical jus-

tification). The status JS2 concerns arguments which get the label OUT in all labellings (and so is

a special case of traditional no-justification), JS3 concerns arguments which get the label UN in all

labellings (another subcase of no-justification), JS4 concerns arguments which are labelled UN and

OUT, but never IN, in the acceptance labellings: thus altogether JS2, JS3, and JS4 refine the notion

of no-justification. Finally JS5, JS6, and JS7 refine the traditional notion of credulous justification

by considering the cases where an argument is labelled IN in some acceptance labellings but gets

other labels in some other acceptance labellings (also UN in JS5, also OUT in JS6, both UN and

OUT in JS7). The actual possibility of occurrence of the 7 justification statuses is proved by Baroni

et al. (2004) with reference to Dung’s preferred semantics. Essentially the same kind of argument

justification labelling has been independently proposed by Wu and Caminada (2010) where argu-

ment justification statuses are directly defined as subsets of the set of labels {IN,OUT, UN}, which in

principle gives rise to 8 justification statuses. The additional status with respect to the seven others

treated by Baroni et al. (2004) corresponds to the empty set of labels, i.e. to the case where no

argument acceptance labelling is produced (in Dung’s abstract argumentation this can only happen

when stable semantics is applied). In the work by Wu and Caminada (2010) attention is focused on

the case of complete semantics, under which only 6 argument justification states are possible, the

ones corresponding to the empty set and to {IN,OUT} not being achievable. Dvorák (2011) extended

the analysis showing which of the 8 justification states may actually occur under the main argumen-

tation semantics in the literature. In particular the 7 statuses considered by Baroni et al. (2004)

are shown to possibly appear under preferred, semi-stable, stage, and resolution-based grounded

semantics. Moreover, a complexity analysis of the problem of deciding whether a given argument

has a given justification status for a given semantics has been carried out (Dvorák, 2011).

Some correspondences for the notion of statement acceptance encompassed by the SF approach

can also be found in the literature. The conversion of argument labellings to conclusion labellings

considered by Wu and Caminada (2010, Section 6) and Caminada et al. (2015, Section 3.3) corre-

sponds, in fact, to a simple statement acceptance stage where the same set of labels ΛIOU
AA is used for

arguments and statements and the max operator is used as synthesizer. It can be observed that the

same conversion is used implicitly by Dimopoulos et al. (2002) as an intermediate step towards the

definition of various computational problems concerning statement justification.

Let us now turn to statement justification, which, though obtained in different ways, is the com-

mon final step for the AF and the SF approach. Several considerations on this point have already

been drawn in sections 7, 8, 9 and 10 and will not be repeated here. We only add that the most

articulated notion of statement justification we are aware of, encompassing eight statuses, has been

proposed by Wu and Caminada (2010). In short, as already mentioned above, first from each ar-
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gument acceptance labelling a conclusion acceptance labelling is derived, thus obtaining a set of

conclusion acceptance labelling based on the set of labels ΛIOU
AA . Then, the final justification state

of each conclusion is represented by the set of labels it collectively gets from the set of conclu-

sion acceptance labelling. For instance, if there are two conclusion acceptance labellings and a

conclusion gets the label in in one, and the label und in the other one, the final justification state

will be represented by the set {in, und}. It is shown by Wu and Caminada (2010) that, under com-

plete semantics, this articulated notion of justification allows one to distinguish the state of floating

conclusions ({in, und}) from the state of conclusions supported by skeptically justified arguments

({in}) and of credulously justified but non floating conclusions ({in, out} or {in, out, und}). These

distinctions can be useful to solve the dilemmas posed by some problematic examples raised in the

above mentioned debate about floating conclusions (Horty, 2002; Prakken, 2002), by pointing out

that these conclusions feature an intermediate status which can be regarded as sufficient or not to

support a decision depending on the proof standard adopted in a given context.

Altogether, the works reviewed above show a significant interest in the literature towards inves-

tigating notions of argument and statement justification which are more expressive than the simpler

‘traditional’ ones and allow one to capture more articulated forms of reasoning. Our work addresses

the need of a general formal framework supporting a full development of these heterogeneous but

related research lines, and it provides a set of reference properties, including in particular the relation

of refinement, which are essential for a systematic analysis and comparison of different approaches.

12. Conclusions

Motivated by possible losses of sensitivity or expressiveness arising in various argument-based for-

malisms and to facilitate the comparison of such formalisms in the evaluation of statement statuses,

we have proposed a framework for multi-labelling systems which model reasoning processes as a

sequence of evaluation steps.

By using the framework of multi-labelling systems, general abstract properties can be defined

in order to analyse and compare on a principled basis various approaches to the evaluation of ar-

gument and statement statuses. Accordingly, it has been shown that the argument and statement

evaluation encompassed by several well-known argumentation formalisms can be modelled and

compared through multi-labelling systems.

The proposed framework has allowed us to identify, in the context of argument-based reasoning,

two alternative approaches for the derivation of statement justification labellings from argument

acceptance labellings, namely the argument-focused and the statement-focused approach. They

have been formalised as classes of multi-labelling systems and some general results about their

expressiveness have been obtained.

The formalisation provides the basis for a systematic analysis and comparison of these particular

formalisms and, possibly more interestingly, it enables the investigation of alternative and ‘tunable’

notions of statement justification, featuring different levels of refinement, in the context of the same

formalism. It has been demonstrated that all these alternative notions are able to reconcile the

differences in statement justification arising among different formalisms in some basic paradigmatic

patterns of reasoning and that in some cases they can overcome the limitations of some current

definitions, e.g. by enabling finer statement justification distinctions when using a single-status

semantics.
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An immediate future work direction concerns extending the use of multi-labelling systems to

gradual argumentation formalisms (Baroni, Rago, & Toni, 2019). In particular it can be observed

that most studies concerning gradual argumentation have been focused up to now on gradual evalu-

ation at the stage of argument acceptance, while not considering explicitly gradual statement eval-

uation: multi-labelling systems appear to be a suitable conceptual and formal tool to fill this gap,

developing proposals along the same lines considered in this paper for traditional qualitative la-

bellings. Another interesting development concerns investigating the use of multi-labelling systems

to model other forms of reasoning in argumentation contexts, like judgement aggregation (Cam-

inada & Pigozzi, 2011) and labelling approaches to probabilistic argumentation (Riveret, Baroni,

Gao, Governatori, Rotolo, & Sartor, 2018). On a wider horizon, it would be also interesting to

further develop the theoretical analysis of multi-labelling systems as a generic formal tool and to

explore its applicability outside the area of argumentation formalisms.

Appendix A. Abstract Argumentation

This appendix provides a quick recall of the basic notions of abstract argumentation and its se-

mantics. The reader may refer to the original Dung’s (1995) paper and the survey by Baroni et al.

(2011) for more details. Abstract argumentation theory is based on the simple notion of argumenta-

tion framework.

Definition A.1. An argumentation framework is a pairAF = 〈A,→〉 where A is a set of arguments

and →⊆ A×A is a binary relation on it, called attack relation.

The fact that (A,B) ∈→, also denoted as A → B, indicates that the argument A attacks the

argument B. For conciseness, given a set of arguments S ⊆ A we write S → B to indicate that

there exists A ∈ S such that A→ B.

The simple idea behind this formalism is to capture only the fact that arguments may attack

each other, while abstracting away any other property or detail, as this is sufficient for a study of

argument acceptability.

The notions of conflict-freeness, defense and admissibility, recalled in Definition A.2 lie at the

heart of Dung’s argumentation semantics.

Definition A.2. Given an argumentation framework AF = 〈A,→〉:

• a set S ⊆ A is conflict-free if ∄A,B ∈ S s.t. A→ B;

• an argument A ∈ A is acceptable with respect to a set S ⊆ A (or, equivalently, is defended by

S) if ∀B ∈ A s.t. B → A, S → B;

• the function FAF : 2A → 2A such that FAF (S) = {A | A is acceptable w.r.t. S} is called the

characteristic function of AF ;

• a set S ⊆ A is admissible if S is conflict-free and every element of S is acceptable with respect

to S, i.e. S ⊆ FAF (S).

In Dung’s original proposal, an argumentation semantics identifies for any argumentation frame-

work a set of extensions, where each extension is a set of arguments which are ‘collectively accept-

able’, or, in other words, are able to survive together the conflict represented by the attack relation.

In general, a semantics may prescribe several extensions for an argumentation framework (such a

semantics is said to be multiple-status) but some semantics are defined in a way so as to ensure that
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exactly one extension is identified for each argumentation framework (such a semantics is said to

be single-status). The following definition recalls the semantics originally introduced14 by Dung

(1995), namely complete, grounded, preferred, and stable semantics. All of them are multiple-

status, but grounded semantics which is single-status. Further, stable semantics is the only one

which, in some cases, may fail to prescribe any extension.

Definition A.3. Given an argumentation framework AF = 〈A,→〉:

• a set S ⊆ A is a complete extension if S is admissible and ∀A ∈ A s.t. A is acceptable w.r.t.

S, A ∈ S (i.e. S = FAF (S));

• a set S ⊆ A is the grounded extension if S is the least (w.r.t. set inclusion) fixed point15 of the

characteristic function FAF ;

• a set S ⊆ A is a preferred extension if S is a maximal (w.r.t. set inclusion) admissible set;

• a set S ⊆ A is a stable extension if S is conflict-free and ∀A ∈ A \ S, S → A.

Abstract argumentation semantics can be equivalently formulated in terms of labellings (Cami-

nada & Gabbay, 2009; Baroni et al., 2011) based on the set of labels ΛIOU
AA = {IN,OUT, UN}. In short,

this formalisation is based on the fact that any extension S induces a partition of the set of arguments

into three subsets and hence any extension can be put in correspondence with a ΛIOU
AA -labelling L, as

follows:

• the arguments belonging to the extension are labelled IN, formally: ∀A ∈ S L(A) = IN;

• the arguments attacked by the extension are labelled OUT, formally: ∀A ∈ A such that S → A
L(A) = OUT;

• the remaining arguments (not belonging to and not attacked by the extension) are labelled UN,

formally: ∀A ∈ A such that A /∈ S and S 6→ A L(A) = UN.
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