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Abstract Structural code coverage criteria have been studied since the early seven-

ties, and now they are well supported by commercial and open source tools, and are

commonly embedded in several advanced industrial processes. Most industrial appli-

cations still refer to simple criteria, like statement and branch coverage, and consider

more complex criteria, like modified condition decision coverage, only rarely and often

driven by the requirements of certification agencies. The industrial value of structural

criteria is limited by the difficulty of achieving high coverage, due to both the complex-

ity of deriving test cases that execute specific uncovered elements and the presence of

many infeasible elements in the code.

In this paper, we propose a technique that both generates test cases that exe-

cute yet uncovered branches and identifies infeasible branches that can be eliminated

from the computation of the branch coverage. In this way, we can increase branch

coverage up to closely approximate full coverage, thus improving its industrial value.

The algorithm combines symbolic analysis, abstraction refinement, and a novel tech-

nique named coarsening, to execute unexplored branches, identify infeasible ones, and

mitigate the state space explosion problem. In the paper, we present the technique,

and illustrate its effectiveness through a set of experimental results obtained with a

prototype implementation.

⋆ This paper is an extended version of Baluda et al (2010).

Mauro Baluda
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1 Introduction

High code coverage has been longly advocated as a convenient way to assess test ad-

equacy (Weyuker, 1988; Frankl and Weyuker, 1988; RTCA, Inc., 1993). Over time,

researchers have defined several testing criteria based on code coverage, referring to

code elements (coverage targets) at increasing levels of granularity, from program

statements, to decisions, paths and data-flow associations (Pezzè and Young, 2007).

Recently, code coverage is experiencing a renewed interest, thanks to the availability of

both new tools that efficiently compute accurate coverage measures, and new studies

that provide additional empirical evidence of a strong correlation between the code

coverage and the ability to expose faults of test suites (Namin and Andrews, 2009).

Despite the encouraging experimental data and the many available criteria, a closer

look at the current industrial practice indicates an adoption of code coverage limited to

simple criteria, usually only statement coverage and, more rarely, branch coverage. The

gap between expected effectiveness and practical usage depends on two main factors.

First, generating test suites that execute many code elements is in general extremely

demanding, since the number of coverage targets rapidly increases with the size of the

program under test and the complexity of the criteria. Testing large programs referring

to sophisticated criteria can be often impractical within the limits of a typical testing

budget.

Second, covering all elements according to a coverage criterion (achieving 100%

code coverage) is impossible in general, since some coverage targets can be infeasible,

that is non executable under any possible condition. Typical causes of infeasible code

elements are, for example, changes in the source code that affect the executability of

some elements, reuse of components integrated by specialization that limits the set of

executed functionality, redundant code inserted for the sake of defensive programming,

and reachability dependencies between code regions. Infeasible targets impact both

on the testing effort and on the achievable coverage. They divert the testing effort,

since test designers may waste time trying to identify test cases that execute infeasible

elements, and produce bad approximations of the set of target elements that can be

statically identified, thus resulting in highly variable coverage. The amount of infeasible

elements grows with the complexity of the criteria, and quickly becomes a big hurdle

to the practical applicability of sophisticated criteria.

Both the problem of finding the inputs that exercise specific targets and the prob-

lem of identifying infeasible elements are undecidable in general and hard to solve

in practice. As a consequence mature practical processes refer mostly to statement

coverage, and use more sophisticated coverage criteria only when required by domain

regulations. For example the standard DO-178B for safety-critical avionic applications

requires the modified condition decision coverage (RTCA, Inc., 1993).

The problem of generating test cases that increase code coverage is being recently

tackled by approaches that generate test cases using symbolic and concolic (that is,

interwoven concrete and symbolic) execution (Visser et al, 2004; Godefroid et al, 2005;

Sen et al, 2005). These approaches explore the executable space of a program, typically

in depth-first order, and generate test cases accordingly. Since most programs have
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1 void scan1(int* array , int size , int startAt ){

2 while(startAt >= 0 && startAt < size){

3 do_something(array , size , startAt );

4 startAt = startAt + 1;

5 }

6 }

7

8 void scan2(int* array1 , int size1 , int startAt1 ,

9 int* array2 , int size2 , int startAt2 ){

10 while(startAt1 >= 0 && startAt1 < size1 ){

11 do_something(array1 , size1 , startAt1 );

12 startAt1 = startAt1 + 1;

13 }

14 while(startAt2 >= 0 && startAt2 < size2 ){

15 do_something(array2 , size2 , startAt2 );

16 startAt2 = startAt2 + 1;

17 }

18 }

19

20 inline void do_something(int *array , int size , int itemAt ){

21 if(itemAt < 0 || itemAt >= size){

22 printf("infeasible");

23 exit (-1);

24 }

25 printf("Doing something with %d... done!", array[itemAt ]);

26 }

Fig. 1 The source code of programs scan1 and scan2

infinitely many paths, a depth-first search is in general ill-suited for the goal of covering

a finite domain: It leads to a fine-grained exploration of only small portions of the

program state space, easily diverges, and often identifies many test cases that increase

the coverage of the program structure only marginally. Other search strategies use

heuristics to select paths that lead to uncovered elements in the control-flow graph

(Godefroid et al, 2008; Burnim and Sen, 2008). Heuristics can increase coverage, but

do not prevent the search to be stuck in attempting to execute infeasible targets.

The sample programs in Figure 1 exemplify the case of infeasible code due defensive

programming, and the limits of approaches that try to cover all code elements by means

of symbolic/concolic execution. Program scan1 implements a simple loop that scans

an array starting from a specified item (parameter startAt) until the end of the array,

and executes the same action do something on the scanned elements. Program scan2

is a variant of program scan1, and implements a sequence of two scanning loops on

two different arrays. Procedure do something is invoked by both scan1 and scan2, and

accesses the arrays at the specified index (parameter itemAt) after a safety check in

the typical style of defensive programming to ensure that the index is within the array

bounds. The safety check is redundant with respect to the conditions of the loops that

invoke do something (for instance, line 2). As a result, the code block at line 22 is

infeasible in the context of both scan1 and scan2.

Trying to cover the code by means of concolic (or symbolic) execution yields sub-

optimal results for these sample programs. Concolic execution evaluates the program

symbolically by following the path executed by a concrete test case, computes the path

condition up to a selected branching point along this path, flips the last clause of this

path condition by prefixing it with a negation operator, and solves the resulting pred-
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1 #define VALVE_NOT_WORKING(v) v == 0

2 #define TOLERANCE 3

3 int valves1(int valves[], unsigned int size) {

4 int count = 0, index = size;

5 while(index != 0){

6 if(VALVE_NOT_WORKING(valves[index ])) count ++;

7 index --;

8 }

9 if(count > TOLERANCE) printf("alarm\n");

10 return count;

11 }

Fig. 2 The source code of program valves1

icate to compute new input values that, once executed, steer the execution through

the not-yet-executed decision of the branching point under concern. For instance, let

us feed a concolic execution of program scan1 with a test case that calls the program

with a negative value of the parameter startAt, thus determinining an execution that

does not enter the loop. In the first iteration, based on a depth-first exploration of

the program execution space, concolic execution generates a new test case that enters

the loop. The new test case then covers all statements within the loop and executes

do something, but does not cover the infeasible block within do something. In the next

steps, concolic execution iterates forever through a complete depth-first exploration of

the (infinitely many) program paths through the loop, and eventually terminates for

resource shortage. In the case of bounded depth-first exploration, concolic execution

terminates after experiencing a few failures to generate a test case that covers the

infeasible block. Unbounded concolic execution might achieve even worse results on

scan2. When the initial test case does not enter either loops, concolic execution will be

stuck in the depth-first exploration of the first loop, without even attempting to cover

the second one. For all above cases, concolic execution reports that the code has been

only partially covered and can by no means conclude that the missed block is indeed

infeasible.

Heuristic path selection strategies, for example those proposed by Burnim and

Sen (2008) and by Xie et al (2009), can mitigate but not solve the problem. Such

strategies define heuristic metrics that determine, at each step of the exploration, the

program path with the highest chance of approaching an element not yet covered.

These strategies update the metric after exploring paths that do not increase coverage,

to avoid being trapped in unbounded attempts to explore paths in fruitless directions.

For example, the heuristic search defined by Burnim and Sen (2008) iteratively explores

paths where the condition holds true at most few times. In the case of scan2 it quickly

covers all feasible paths, and steadily reports the coverage of three out of four (75%)

branches per loop, since each loop contains an infeasible branch. The complete results

are discussed in Section 4. Heuristic strategies may discover feasible branches quicker

than simple depth-first symbolic and concolic executions, but they cannot identify

infeasible branches, and thus cannot eliminate them from the new execution attempts

nor from the final coverage measure.

In our experiments, we noticed that heuristic strategies often miss feasible branches

that belong to paths with low heuristic score. This is for example the case of branches

that are executed only under the combination of several decisions along a path. Let
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us consider for instance the program valves1 that scans an array of integer values,

tracks the count of all values equals to zero, and signals an alarm if the count is above

a given threshold (Figure 2). The branch at line 9 is hardly covered by the heuristic

concolic exploration proposed by Burnim and Sen (2008), because it is executed only

when the condition at line 6 holds true for several iterations of the loop. Since trying

to execute paths on which the condition at line 6 holds true for several but not enough

iterations fails in covering the target branch many times, the search quickly exceeds

the number of failed attempts that can be tolerated by the heuristic metric. Section 4

reports additional experiments with the open source testing tool Crest and Klee,

and confirms the limits of both depth-first and heuristic path selection strategies.

The approach presented in this paper combines the advantages of using concolic

execution to steer the generation of new test cases towards uncovered branches, with

a program analysis approach that proves the infeasibility of branches that cannot be

covered. Our approach explores the control flow graph looking for paths that lead to

uncovered elements, and concolically executes one of such paths to increase coverage. In

this way, it avoids being trapped in infinite iterations of unbounded loops as depth-first

explorations. When it does not find a test case that covers a target branch, it inves-

tigates the feasibility of the branch using an analysis based on abstraction refinement

of the control flow graph and backward propagation of preconditions for executing the

uncovered branches. In this way, it avoids being stuck in infinite unsuccessful attempts

to find test cases that execute infeasible elements, and increases the chances to cover

in next iterations those branches that require difficult combination of many decisions1.

It finally adjusts the coverage measurements according to the identified infeasible ele-

ments, thus increasing the precision of the computed coverage. For the sample codes

in Figures 1 and 2, our approach generates test suites that cover all feasible branches,

and correctly identifies all infeasible ones, thus reporting a 100% branch coverage of

the code. As shown in the experiments reported in Section 4, for increasingly complex

variants of the programs in Figures 1 and 2, our approach steadily converges to 100%

branch coverage, while concolic approaches degrade.

The approach presented in this paper leverages and extends recent results on com-

bining static and dynamic analysis to decide reachability of program states (Gulavani

et al, 2006; Beckman et al, 2010), and introduces a technique called coarsening to con-

trol the growth of the space to be explored by pruning useless details, while analyzing

increasingly large programs.

The paper is organized as follows. Section 2 presents the approach, and defines the

algorithm in details. Section 3 discusses the architecture of an analysis environment

based on the approach. Section 4 illustrates empirical results that show the effectiveness

of the approach comparing it with random testing, symbolic and concolic execution

approaches. Section 5 surveys the related work. Section 6 summarizes the results of

this paper.

1 Notice that both the problem of covering all feasible elements and the problem of revealing
all infeasible elements of a program are undecidable in general, and thus our approach may
not terminate on some programs. When this is the case, our approach stops after a timeout
and reports the elements that have been neither covered nor identified as infeasible.
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2 Abstraction refinement and coarsening

This section presents in details abstraction refinement and coarsening (arc), our pro-

cedure that automatically generates test suites with high structural coverage and com-

putes precise coverage information. arc systematically explores uncovered program

elements, accounts for infeasible elements, and abstracts from useless details to im-

prove scalability. As described in this section, arc applies to any structural coverage

criterion. Both the prototype implementation described in Section 3 and the experi-

mental evaluation reported in Section 4 illustrate the use of arc for branch coverage.

2.1 Rationale

arc extends an initial test suite with new test inputs that execute uncovered code

elements, and identifies infeasible code elements. Identifying infeasible elements allows

arc to drop these elements out of the coverage domain where it measures the code

coverage. In this way, arc can produce precise coverage measurements, up to 100%,

also in presence of non-anticipated infeasible elements.

arc works by integrating reachability information from concrete execution of tests

with the static analysis of a finite (abstract) model of the program state space. On one

hand, arc refers to the abstract model to identify code elements that are not covered

yet and are the most promising next targets, and then builds new test inputs that

traverse program paths increasingly closer to these code elements along the lines of

the approach of Godefroid et al (2005) and Sen et al (2005). On the other hand, arc

exploits the intuition that failing to build test inputs that cover a given element spots

elements that may be unreachable along some control paths. In this case, arc considers

the possibility that these elements are infeasible, and tries to prove their infeasibility by

iteratively refining the abstract model, along the lines of Ball et al (2004), Beyer et al

(2007), and Gulavani et al (2006). arc progressively refines the model by excluding

unreachable paths, thus reducing the number of paths that reach code elements. A

code element is infeasible when it is no more reachable in the refined model.

Reasoning over formal models of complex software systems does not scale due to

space explosion problems that are exacerbated when targeting many elements as in the

case of code coverage. Compared to previous techniques, arc stands out specifically for

its approach to mitigate the state space explosion problem: It introduces the novel idea

of coarsening into the basic abstraction refinement loop. Coarsening is the process of

partially re-aggregating the abstract states generated by refinement as the analysis of

the program progresses. Coarsening elaborates on the observation that every refinement

step aims to decide about the reachability of a code element. When arc meets a specific

goal by either covering the target element or proving its infeasibility, arc drops the

refinements generated throughout the decision process involved with this element, and

thus reduces the number of states of the abstract model. By means of coarsening arc

eliminates the states produced during the refinement process as soon as they become

useless for the analysis, and thus updates the reference abstract model, differently from

previous approaches, where models grow monotonically as refinement progresses.
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1 ARC(P, I, χ):
2 M := Mχ
3 T := Tχ
4 U := {}

5 split_for[nodes(M)] := {}

6 loop:

7 C := {n ∈ nodes(M) | n covered by run(P, I)}

8 coarsen(M, C, split_for)

9 T := T - (C ∪ U)

10 if T = {}:

11 return 〈I, U〉
12 e := choose_frontier(M, T, C, I)

13 i′ := try_generate(P, I, e)

14 if i′ = ǫ:
15 RP := refine(M, e)

16 if RP = false:

17 N := { n ∈ nodes(M) | no root(M)
stmt1−−−→ n1 . . .

stmtn−−−−→ nn ∈ paths(M) }

18 coarsen(M, N, split_for)

19 nodes(M) := nodes(M) - N

20 edges(M) := edges(M) -

21 { n0
stmt
−−−→ n1 ∈ edges(M) | n0 ∈ N ∨ n1 ∈ N}

22 U := U ∪ (T - nodes(M))

23 else:

24 split_for[npost] := split_for[npost] ∪ {〈npre, RP〉}

25 where e = npre
stmt
−−−→ npost

26 else:

27 I := I ∪ {i′}

28 forever

Fig. 3 The arc algorithm

2.2 arc

The arc algorithm takes a program P, a nonempty set I of program inputs (the initial

test suite) and a structural coverage criterion χ as inputs, and returns both a test suite

that extends I for P and a set U of unreachable targets in P. arc deals with imperative,

sequential and deterministic programs composed of single procedures, and analyzes

multi-procedural programs without recursive calls via inlining. The input programs

are written in a procedural language, like Java or C, with assignment, sequencing,

if-conditionals and while-loops statements, and are represented as control flow graphs

that contain a node for each program location that represents a value of the program

counter, and an edge for each statement. Nodes have at most two outgoing edges.

Edges are labelled with assignment statements X := expr. Pairs of edges exiting the

same node are also labelled with complementary test conditions, cond? and ¬cond?.

We assume, without loss of generality, that program control flow graphs have exactly

one entry node, which is connected to any other node in the graph by at least a path.

The arc algorithm outlined in Figure 3 works on a model M, a set of targets T and

a set of unreachable elements U. The model M is derived from the control flow graph of

the program under analysis (line 2 in Figure 3). The derivation of the model from the

control flow graph is discussed in details later in this section. in a nutshell, the model

defines the elements to be covered as abstract states. The set T of targets represents
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the code elements not yet proved to be either feasible or infeasible, and is initialized at

line 3 in Figure 3 with all the targets identified by the coverage criterion. arc records

the set U of unreachable code elements discovered during the analysis. The set U is

initialized to the empty set (line 4 in Figure 3). arc works as follows:

1. (lines 7–11) arc executes the test suite, and coarsens the model to eliminate all

the refinements associated with the nodes covered by the tests.

2. (line 12) arc identifies a frontier, that is an edge of the model that connects a

covered node npre to an uncovered node npost. If there exists no frontier, then the

program is completely covered according to the input criterion, and arc terminates,

otherwise arc continues with the next step.

3. (line 13) arc tries to generate a test input that covers npost by extending some of

the covered paths that reach npre.

4. (line 27) If it can generate a proper test input, arc adds it to the test suite.

5. (lines 15–25) Otherwise, it conservatively refines the model between npre and npost.

After refining the model, it removes all the unreachable nodes, coarsens the model

by dropping all the refinements associated with the removed nodes, and updates

the set of infeasible elements according to the removed nodes.

6. It repeats all the steps 1–5.

As discussed above, arc alternates generation of test inputs with model refine-

ment, progressing with either one of these activities. Thus at each iteration, arc either

generates a new test that covers a node that was not yet covered, or refines the model

by eliminating a path identified as unreachable. Since the problem of covering all fea-

sible elements of a program is undecidable in general, arc may not terminate on some

inputs.

The rest of this section discusses arc in details.

Data structures and initialization arc operates on a model M (line 2), and keeps a set

of targets T that represents the code elements not yet proved to be either feasible or

infeasible (line 3). arc also records the set U of unreachable code elements discovered

during the analysis (line 4). We discuss split for (line 5) below, when presenting

coarsening.

M is a rooted directed graph with labelled nodes and edges. Each node n corresponds

to a program location, and is annotated with a predicate over the program variables.

Edges are labelled with (blocks of) program statements. A node represents a region of

the concrete state space, i.e., a set of concrete states. The predicates associated with

the nodes identify the subsets of concrete states represented by the nodes. We say that

a concrete state covers a node when it satisfies the predicate associated with the node,

and thus belongs to the region represented by the node. An edge n
stmt
−−−→ n′ indicates

that the execution of stmt from a state that covers n may lead only to states that cover

n′.

arc derives the initial model Mχ and the initial set of targets Tχ from the control

flow graph of P according to the coverage criterion χ to be satisfied, as follows. arc

instruments P to ensure that every code element for χ is associated to a program

location such that the code element is covered for the criterion when the location is

covered in the model. This reduces the problem of deciding the feasibility of a set

of structural code elements, to the problem of deciding the reachability of a set of

program locations, and allows arc to initialize Tχ to the corresponding set of nodes



9

of the model. Similarly, U is a set of nodes of the model. The model may vary to take

into account the needs of specific coverage criteria. For example, when dealing with

branch coverage, arc adds a skip statement to each branch that does not contain a

statement. Slightly more complex instrumentations may be required to allow arc to

operate with other control-flow-based criteria. Finally, arc annotates each node of Mχ
with a predicate satisfied by all the states at the corresponding program location.

We refer to the arc data structures introduced above with the following notation:

– nodes(M) is the set of all the nodes n of M;

– root(M) is the entry node of M;

– edges(M) is the set of all the edges e of M, e = n0
stmt1−−−−→ n1;

– paths(M) is the set of all the (finite) paths π between two nodes in M, π = n0
stmt1−−−−→

n1 . . .
stmtn−−−−→ nn;

– predicate(n) is the predicate associated to the node n.

Execution of tests and target update arc starts each iteration by executing the test

suite I, and computes the set C of the nodes covered by at least one test (line 7).

Then, it simplifies the model by invoking function coarsen described below (line 8),

and updates the set of target elements by removing all the nodes covered and identified

as unreachable (line 9). If arc exhausts the set of targets, it terminates (lines 10–11).

arc executes the current test suite I by invoking function run(P, I) that returns the

set of all the computations c = s0
stmt1−−−−→ s1 . . .

stmtn−−−−→ sn produced by executing the

tests in I (since P is sequential and deterministic, run(P, I) returns one computation

for each test input).

Test generation After having executed the tests and updated the set of targets, arc

tries to generate a new test input to cover at least one uncovered node on a path

to a target element (lines 12–13). First, arc invokes function choose frontier that

returns a frontier edge of the model (line 12), that is an edge from a covered node npre
to the first node npost of an uncovered path to a target. Since we assume that every

node of the model is reachable from the entry node, there is always a frontier for each

target node. Next, arc invokes the function try generate that tries to generate a new

test that traverses the selected frontier and covers npost (line 13). Upon success, the

execution of the new test will move the frontier at least one step forward towards an

uncovered target.

Figure 4 illustrates a typical iteration of arc on the example function scan1 whose

code is given in Figure 1, considering branch coverage as target criterion. The initial

model of function scan1 is a control flow graph with six nodes: the entry point (top

node), the exit point reached by the explicit call to exit(-1) (bottom node) and

the four static branches in the code. The edges are labelled with the sequences of

statements that correspond to the sequences of assignments and conditional checks in

the original C code. Let us consider an initial test suite that includes only one test

input i1 (empty array, start at item 0). This test covers only the entry and the exit

nodes that are shown with a gray background in Figure 4 (a). The black dots in the

nodes represent the concrete states executed by the test suite. In this case, the frontier

includes only one edge in bold in the figure, and is represented as a curved line in

bold that separates the set of nodes covered by some test from the set of nodes not

yet covered. After having executed the initial test suite and computed the frontier,
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i1
def

= �[], 0, 0�

i2
def

= �[0], 1, 0�

i1 i2

Fig. 4 A possible execution of arc on scan1: (a) first iteration, (b) second iteration

arc tries to cross it by symbolically executing the code along a test execution up to a

node beyond the frontier. In this case, there is only one node immediately beyond the

frontier (node target1 in Figure 4 (a)). By symbolically executing the one-edge path

from the entry node to node target1, arc generates a new test input i2 (array with

one item with value 0, start at item 0) that reaches the node and extends the frontier

as shown in Figure 4 (b). arc then tries to further extend the frontier to a new target

target2 by symbolically executing the only feasible path to its pre-frontier, i.e., the

path root(M)
C1?−−→ target1

S1;C2?
−−−−→ target2. In this case, arc does not find a test that

reaches target2.

Figure 5 shows the algorithms choose frontier and try generate. The algorithm

choose frontier looks for a path π in the model from a covered node npre to an



11

1 choose_frontier(M, T, C, I):

2 π := some π ∈ paths(M) s.t.

3 π = npre
stmt
−−−→ npost(

def
= n0)

stmt1−−−→ n1 . . .
stmtn−−−−→ nn ∧

4 npre ∈ C ∧ nk /∈ C for all 0 ≤ k ≤ n ∧ nn ∈ T

5 return e = npre
stmt
−−−→ npost

6

7 try_generate(P, I, e = npre
stmt
−−−→ npost):

8 i := some i ∈ I s.t. run(P, i)|n ends in npre for some n
9 π := the π ∈ paths(M) s.t. run(P, i)|n covers π

10 π′ := π ⊕ e

11 〈σ,PC〉 := run_symbolic_lightweight(P, π′)

12 TC := PC ∧ eval_symbolic(predicate(npost), σ)
13 if exists i′ s.t. i′ |=TC:

14 return i′

15 else:

16 return ǫ

Legend: Given a computation c, c|n indicates the subcomputation that involves the first n
steps of c.

Fig. 5 Test input generation in arc

uncovered target nn, such that all the successors of npre along π are uncovered (lines

3–4), and returns the first edge in π (line 5). When there exist several candidate paths,

the choice can be arbitrary.

The algorithm try generate chooses a test input i that reaches npre (line 8), and

appends the frontier e to the concrete path corresponding to the execution of i up to

npre (lines 9–10), to build a path π′ to npost. Then, it executes π
′ symbolically to build a

predicate TC whose solutions, if exist, are test inputs that reach npost along π′ (line 11.)

Function run symbolic lightweight is similar to the ones described in Godefroid et al

(2005), Sen et al (2005), and Beckman et al (2010). It returns both the final symbolic

state σ and a path constraint PC, a predicate that is satisfied by all and only the test

inputs whose computations reach the location of npost along π′. For more details about

lightweight symbolic execution, the reader may refer to Beckman et al (2010). The

algorithm uses the path condition PC returned by run symbolic lightweight to build

the predicate TC that characterizes the inputs that reach npost from the path π′. The

predicate TC is the logical-and of PC and the region predicate of npost, evaluated on the

symbolic state σ (line 12). This corresponds to selecting the test inputs that satisfy

both PC and the region predicate of npost after the execution of the statement at the

frontier edge. The algorithm try generate returns either a solution i′ of TC (line 14)

or a failure value ǫ (line 16).

Refinement If the algorithm try generate fails to generate a test input, then the un-

covered node (npost) is unreachable along the control flow path π′. In this case, arc

conservatively refines the model by invoking the function refine, whose code is re-

ported in Figure 6. The function refine computes a predicate RP that identifies a

subregion of npre that cannot reach npost (line 6), and updates the model so it repre-

sents it. arc computes RP as the weakest precondition of ¬predicate(npost) through

the frontier statement. According to this definition, RP is the largest subregion of npre
that cannot reach npost. With this approach, the refinement predicate can be computed

syntactically, without invoking a decision procedure.
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1 refine(M, e = npre
stmt
−−−→ npost):

2 if npre = root(M):

3 edges(M) := edges(M) - e

4 return false
5 else:

6 RP := wp(stmt, ¬predicate(npost))

7 nodes(M) := nodes(M) + {n′pre}

8 predicate(npre) := predicate(npre) ∧ ¬RP
9 predicate(n′pre) := predicate(npre) ∧ RP

10 for all npre
stmt′

−−−→ n′post s.t. n′post 6= npost:

11 edges(M) := edges(M) ∪ {n′pre
stmt′

−−−→ n′post}

12 return RP

Fig. 6 Model refinement in arc

From nx 

s s 

From nx From nx 

To ny To ny To ny 

(a) (b) 

npre

npost npost

[¬RP]npre [RP]n�
pre

Fig. 7 Refinement of an infeasible transition: (a) before and (b) after refinement

After having computed the refinement predicate RP, arc splits npre along the com-

puted predicate, and removes the infeasible frontier edge from the model (lines 7–11).

Figure 7 illustrates visually the refining procedure: arc adds a clone of node npre

(n′pre) to the model, adds the clauses ¬RP and RP to the region predicates of npre and

n′pre, respectively, and removes the edge from node n′pre to node npost, while preserving

all other edges. Figure 7 (b) shows the splits of npre as [¬RP]npre and [RP]n′pre. The

coverages of the nodes of the models after the splitting can be computed easily: Since

RP is the largest subregion of npre that cannot reach node npost, and arc assumes

deterministic programs, all the tests that do not reach npost—i.e., all the tests—reach

[RP]npre, and do no reach [¬RP]npre.

The refinement step sets the frontier one step backwards, since it reduces the reach-

ability of npost to the reachability of [¬RP]npre. If successive refinements push the fron-

tier back to the entry node of the model, the function refine can safely conclude that

the whole frontier is infeasible, and can thus remove the corresponding edge from the

model (lines 3–4). The function refine returns either the refinement predicate or false

if the whole frontier is infeasible.
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Fig. 8 A possible execution of arc on scan1: (a) third iteration, (b) fourth iteration

Pruning and detecting infeasible targets Whenever a frontier is removed from the entry

node, arc prunes the portion of the model that is unreachable from the entry node.

The pruning procedure is shown in the algorithm in Figure 3 at page 7: arc detects the

unreachable portion (line 17), coarsens the model (line 18), eliminates the unreachable

portion from the model (lines 19–21), and marks as unreachable all the targets that

do not exist anymore in the refined model (lines 22).

Figure 8 illustrates the refining process referring to the example scan1 presented

in Figure 1 at page 3, and discussed in Figure 4. Figure 8 (a) illustrates the results

of the third iteration of arc, which refines the model shown in Figure 4 (b). arc

splits the pre-frontier node in two nodes, one labelled with predicate RP that may not

reach target2, and one labelled with predicate ¬RP that may reach target2. The node
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1 coarsen(M, N, split_for ):

2 for all npost ∈ N:

3 for all 〈npre, RP〉 ∈ split_for[npost]:

4 for all n′pre ∈ companions(M, npre):

5 remove RP (or ¬RP) from predicate(n′pre)

6 stmt := the statement between loc(npre) and loc(npost)

7 edges(M) := edges(M) ∪ {n′pre
stmt
−−−→ npost}

8 for all n′pre ∈ companions(M, npre):

9 if exists n′′pre 6= n′pre ∈ companions(M, npre) s.t.

10 predicate(n′′pre) =⇒ predicate(n′pre) is logically valid:

11 nodes(M) := nodes(M) - {n′pre}

12 edges(M) := edges(M) -

13 { n0
stmt
−−−→ n1 ∈ edges(M) | n0 = n′pre ∨ n1 = n′pre }

14 split_for[npost] := {}

Fig. 9 Model coarsening in arc

labeled with predicate P is not covered, and becomes the new target for test input

generation. At the fourth and last iteration (Figure 8 (b)), arc discovers that target3
cannot be reached from the entry point of the program, and thus refines the model by

simply eliminating the edge from the entry to this node. Then, it prunes the model

by deleting the three unreachable nodes that result from the refinement steps. arc

has therefore proved that the generated tests cover all the reachable branches of the

program, and terminates the analysis.

Coarsening The core contribution of arc is the coarsening step described by the pro-

cedure coarsen in Figure 9. In a nutshell, arc coarsens the model after either covering

a node or identifying a node as unreachable, since in both these cases the refinements

needed to decide the reachability of the node are not necessary anymore. To assist

coarsening, arc tracks the associations between the nodes and the refinements required

to investigate their reachability in a map split for. When function refine splits a

pre-frontier node npre according to a predicate RP, arc updates the map split for by

adding the pair 〈npre, RP〉 to the set of pairs associated to the post-frontier node npost.

In a nutshell, the map split for records the refinement step by tracking that node

npre has been split according to the predicate RP in order to investigate the reachability

of npost.

We present the coarsening step referring to the following notation:

– loc(n) is the program location, i.e., the value of the program counter, that corre-

sponds to the node n,

– companions(M, n) is the set of nodes of the model M that correspond to the same

program location of node n:

companions(M, n)
def

= {n′ ∈ nodes(M) | loc(n′) = loc(n)}.

We refer to this set as companion set of n.

The procedure coarsen (Figure 9) modifies an input model M and a corresponding

map split for to revert the refinements originated from a set of nodes N, as follows.

For each node npost that belongs to N and is recorded as a frontier node in split for,



15

(a)!

[ĀB̄C̄][ĀB̄C][ĀB][A]

(b)!

[A] [Ā] [ĀC] [ĀC̄]

(c)!

[A] [ĀC] [ĀC̄]

≡ Ā

Legend: X̄ stands for ¬X, XY stands for X ∧ Y

Fig. 10 Example of coarsening: (a) four companion nodes, (b) after dropping the B refinement
predicate, (c) after removing the redundant node

coarsen gets the originating refinements 〈npre, RP〉 from split for[npost], and identi-

fies the companion set of each node npre (line 4). The companion set collects all the

nodes that are obtained by splitting a common ancestor node in the initial model, and

thus correspond to the same program location. Then, the procedure simplifies the pred-

icates of all the nodes in companions(M, npre) by removing the pairs of complementary

predicates RP or ¬RP from the predicates associated to the nodes (line 5). Finally, it

connects all these nodes to the node npost, thus restoring the edges removed by the

previous refinement step (lines 6–7), and conservatively prunes the model by removing

all redundant nodes in each companion set (lines 8–13).

Redundant nodes may arise during the coarsening process because eliminating parts

of the predicates of the nodes may result in nodes that no longer represent different sub-

sets of concrete states. arc refines the model by partitioning the regions represented by

the nodes, thus ensuring that the nodes regions do not overlap. Coarsening may result

in a model where the region of a node n′pre is completely covered by the regions of some

of its companion nodes. When this happens (lines 9–10), n′pre is redundant, and can be

eliminated from the model, because its companions already represent that state space

region. Figure 10 exemplifies this situation. Figure 10 (a) depicts four companion nodes,

obtained by three consecutive refinements with predicates A, B and C, respectively. By

removing the refinement predicate B, coarsening transforms the predicates of the nodes

as shown in Figure 10 (b). The two rightmost companion nodes cover the same region

¬A that is also covered by the second node from the left. This node is thus redundant

since the two rightmost companion nodes fully describe the region ¬A and with better

precision. Coarsening eliminates the redundant node as shown in Figure 10 (c). More

formally, arc checks whether a node n′pre is redundant by checking whether its predi-

cate is logically implied by the predicate of at least one of its companions, n′′pre (lines

9–10). arc checks the logical validity of predicate(n′′pre) =⇒ predicate(n′pre) effi-

ciently by syntactically comparing the clauses that compose the refinement predicates

of the states.
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Fig. 11 Logical modules and workflow of the Arc-B tool

Coarsening eliminates useless predicates from nodes, and useless nodes from the

model. In this way, it reduces both the amount of memory needed to store the model

and the size and complexity of the predicates, thus increasing the scalability of the

approach. Our hypothesis is that the additional computational effort introduced by

the coarsening computation, and by the re-computation of some refinements that may

be lost by coarsening, is counterbalanced by the reduced solver time because of shorter

predicates.

3 An architecture for arc

In this section we describe the architecture of the Arc-B tool (Arc for Branch coverage

testing) that implements arc for branch coverage, and works for programs written in

C. Arc-B is built on top of Crest
2, an automatic test case generator for C, based on

concolic execution. Crest relies on Cil
3 for the instrumentation and static analysis of

C code, and on the Yices
4 SMT solver.

Figure 11 shows the logical modules and the basic workflow of Arc-B, and illus-

trates how it extends the functionality of Crest. White rectangles indicate the modules

of Crest reused in Arc-B, while grey rectangles indicate the new modules of Arc-B.

Arrows indicate both the computation steps, numbered from 0 to 10 according to the

execution order, and the control and data dependencies between the modules. The

distinction between control and data dependencies is clear from the context.

Arc-B first instruments the program under test with the Crest instrumenter

to enable concolic execution (step 0 in Figure 11), and then generates test cases and

analyzes the feasibility of code elements, by exploiting and refining a CFG-based model

of the program as discussed in the previous section. Arc-B extracts the initial model

2 http://code.google.com/p/crest/
3 http://sourceforge.net/projects/cil
4 http://yices.csl.sri.com
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from the static control flow graph, and records both the executed test cases and the

nodes of the model traversed by each test case.

Arc-B uses Crest to generate test cases and analyzes code elements for feasibility

as follows. The Crest test driver executes the instrumented program with some ran-

dom test inputs that represent the initial test suite (steps 1 and 2 in Figure 11). We

adapted the original Crest test driver to run the program through the Gdb
5 debug-

ger, in order to enable the Arc-B tool to dynamically intercept the execution of each

statement. The Arc-B coverage tracer inspects the executed branches by querying

Gdb on the validity of the model predicates at the executed branches (step 3), and

annotates the branches traversed by each test run (step 4).

After each test run, the Arc-B search engine selects the next target as a not-yet-

executed branch reachable on the model from the program entry point (step 5). Then,

the Arc-B search engine chooses a test case that executes the program up to a frontier

branch on a path towards the target, and executes this test case up to the frontier

(step 6).

As in Crest, running the instrumented program generates a concolic trace up

to the frontier branch (step 7). The Arc-B solver tries to satisfy the path condition

(step 8) to generate a new test case that traverses the frontier towards the new target

element. If the Arc-B solver succeeds in generating a test case that covers the new

target element, it passes the satisfying input values to the Crest test driver (step

9.1), and the analysis iterates from step 2. Otherwise, Arc-B passes the unsatisfiable

frontier to the Arc-B refiner (step 9.2) that refines the model as illustrated in Section 2

to prune the infeasible transitions from the model (step 10) before iterating step 5.

The Arc-B refiner does not produce false-positives upon recognizing infeasible

branches, since the refinement process is based on precise weakest pre-conditions. How-

ever, Arc-B may not cover all target elements, if the input values that result from solv-

ing the path conditions at step 9.1 do not execute the corresponding frontiers. This

problem occurs when the concolic execution at step 7 computes approximated path

conditions, as Crest drops any non-linear symbolic sub-expression to keep the solver

queries within theory of linear calculus. Where this problem occurs, Arc-B is unable to

classify as either feasible or infeasible the frontier transitions, and consequently cannot

decide the feasibility of any unreached branch that depends on these transitions, unless

these branches are executed during the prosecution of the analysis.

4 Experimental results

We validated the technique proposed in this paper using the Arc-B prototype to

estimate the ability of both generating test suites that cover feasible branches and

identifying infeasible branches. Below, we report empirical data from two sets of ex-

periments. First, we discuss the results obtained while experimenting with a sample

of artificial programs, built as variants of the codes of Figures 1 and 2 that we have

discussed earlier in this paper. The goal of these initial experiments was to evaluate

the ability of the arc approach to solve problems that cannot be addressed well by

concolic and symbolic tools, and to evaluate the performance of Arc-B for increasingly

complex instances of these problems. Second, we report the results obtained while ex-

perimenting with a sample of third-party programs that contains feasible and infeasible

5 http://www.gnu.org/software/gdb
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Arc-B Crestdfs Crestcfg Klee

subject br it tc cbr ibr cov cbr cov cbr cov cbr cov

scan1 8 11 3 6 2 100% 6 75% 6 75% 6 75%
scan2 16 23 5 12 4 100% 9 56% 12 75% 8 50%
scan5 40 59 11 30 10 100% 18 45% 30 75% 14 35%
scan10 80 119 21 60 20 100% 33 41% 60 75% 24 30%
scan20 160 239 41 120 40 100% 63 39% 120 75% 44 28%
scan50 400 599 101 300 100 100% 153 38% 300 75% 104 26%
scan100 800 1203 200 600 200 100% 303 37% 600 75% 204 26%
valves1 6 29 4 6 0 100% 5 83% 5 83% 5 83%
valves rep2 12 65 7 12 0 100% 7 58% 10 83% 8 67%
valves rep5 30 161 16 30 0 100% 13 43% 25 83% 17 57%
valves rep10 60 316 31 60 0 100% 23 38% 50 83% 32 53%
valves rep20 120 633 61 120 0 100% 43 36% 100 83% 62 52%
valves rep50 300 1594 151 300 0 100% 103 34% 250 83% 152 51%
valves rep100 600 10000 300 599 0 99% 203 34% 500 83% 302 50%
valves nest2 12 59 7 12 0 100% 5 42% 5 42% 5 42%
valves nest5 30 149 16 30 0 100% 5 17% 5 17% 5 17%
valves nest10 60 299 31 60 0 100% 5 8% 5 8% 5 8%
valves nest20 120 599 61 120 0 100% 5 4% 5 4% 5 4%
valves nest50 300 1499 151 300 0 100% 5 2% 5 2% 5 2%
valves nest100 600 10000 217 431 0 71% 5 1% 5 1% 5 1%

br: number of branches computed statically
it: number of iterations of Arc-B

tc: number of generated test cases
cbr: number of covered branches
ibr: number of identified infeasible branches
cov: reported coverage [as percentage], i.e.,

cbr / (br - ibr) , in the case of Arc-B

cbr / br , in the case of Crestdfs, Crestcfg and Klee

Table 1 Results ofArc-B, Crestdfs and Crestcfg on variants of programs scan1 and valves1

branches. Throughout the experiments, we also compare the results of Arc-B with the

ones obtained with a representative set of concolic, symbolic and random testing tools.

4.1 Experiments on artificial programs

Table 1 reports the results of analyzing increasingly complex instances of the programs

discussed in the introduction of this paper. The labels scan〈i〉 and valves rep〈i〉

denote programs that implement a sequence of i replicas of program scan1 (Fig-

ure 1) and valves1 (Figures 2), respectively. Programs valves nest〈i〉 are similar

to valves rep〈i〉 with the difference that all code replicas are nested within the body

of the last if, that is, within the hard-to-cover branch. Column br of Table 1 reports

the number of static branches in each subject program.

We generated test cases for the subject programs with Arc-B, Klee and Crest.

Klee implements the traditional approach based on static, depth-first symbolic exe-

cution (Cadar et al, 2008), while Crest exploits concolic execution and can be further

configured to use either depth-first search (Crestdfs) or control-flow graph guided

heuristic path exploration (Crestcfg) (Burnim and Sen, 2008). We ran the tools to

generate test cases for each subject program with the goal of maximizing branch cov-

erage, starting from a single input test case.



19

We report the output of each tool run as the number of covered branches (col-

umn cbr), the coverage measured based on the results of each tool (column cov), and,

only for Arc-B, the number of branches identified as infeasible (column ibr). Arc-B

generates test cases that cover all feasible branches in all the experiments except for

valves rep100 and valves nest100 where it achieves a coverage of 99% and 71%, re-

spectively. Since Arc-B calls the solver once per iteration, the number of iterations

reported in column it gives a clear indication of the complexity of the analysis. When

Arc-B did not terminate, we halted the analysis after 10,000 iterations. We report

the total number of generated test cases in column tc for Arc-B. Crest and Klee

invoke the solver once per iteration, and never terminate when applied to the subject

programs (recall from the introduction that unbounded depth-first path unrolling di-

verges for programs that contain loops). We limited all runs of Crest and Klee to

10,000 iterations. In the case of Crest and Klee, the number of generated test cases

is almost equal to the number of iterations; for space reasons we do not report the

precise number in the table.

The table shows that Arc-B steadily achieves high branch coverage while the other

tools cannot achieve the same coverage and their results vary largely among the set

of considered programs. Arc-B identifies all infeasible branches of programs scan〈i〉,

and covers all hard branches of both programs valves rep〈i〉 and valves nest〈i〉 up

to 50 code replicas. It covers all but one branch of valves rep100 and about 30%

of the brances of valves nest100. The performance of Crestdfs and Klee always

falls down to large extents for programs with increasing numbers of loops. Crestcfg

has stable performance on the programs scan〈i〉, where it covers all feasible branches,

and on programs valves rep〈i〉, where it only misses one feasible branch per code

replica, but has disastrous performance for programs valves nest〈i〉, where most code

is embedded in the hard-to-cover branches. All tools experience their worst performance

for program valves nest100, where Arc-B scores about 71% branch coverage, while

both Crestdfs, Crestcfg and Klee do not go beyond 1% coverage.

These preliminary experiments pinpoint the case in favor of combining test case

generation and iterative refinement of abstract program models, as in Arc-B. Arc-B

explicitly keeps the search focused on the uncovered branches and can precisely identify

and isolate the infeasible branches. Doing so, it outperforms Crestdfs and Klee that

engage themselves in the depth-first exploration of infinitely many program paths, and

outperforms Crestcfg that experiences bad results in presence of infeasible branches

that deceive its heuristic search strategy. Furthermore, the results on programs scan〈i〉

specifically indicate that identifying the infeasible branches allows Arc-B to increase

the accuracy of the coverage scores.

4.2 Experiments on third-party programs

Table 2 lists the 12 subject programs that we used in our experiments. We selected these

programs because they have both non-trivial branching structures and limited size.

Thus, while on one hand they challenge the task of achieving high branch coverage rates,

on the other hand they allow for the manual inspection of infeasible branches identified

by Arc-B. The programs linsearch and binsearch implement the linear and binary

search of an integer value in an array, respectively, tcas implements a component of an

aircraft traffic control and collision avoidance system, as available from the Software-

artifact Infrastructure Repository (Do et al, 2005), week0..7 are programs that call
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Arc-B

subject loc br tc cbr ibr cov1 it1 cov2 it2

linsearch 23 8 3 8 0 100% 3 100% 3
binsearch 39 12 4 12 0 100% 6 100% 6
tcas 180 106 21 99 7 93% 485 100% 1185
week0 154 58 15 53 3 91% 50 96% 50
week1 154 58 16 53 3 91% 65 96% 65
week2 154 56 17 52 4 93% 70 100% 121
week3 154 56 16 52 4 93% 50 100% 108
week4 154 58 16 43 13 74% 55 96% 125
week5 154 58 16 53 3 91% 85 96% 90
week6 154 56 18 52 4 93% 90 100% 128
week7 154 56 18 52 4 93% 110 100% 139
week 154 84 27 81 3 96% 135 100% 135

TOTAL 1628 666 187 610 48 - - - -

loc: number of lines of code
br: number of branches computed statically (after

unrolling decisions with multiple conditions in
equivalent cascade of single condition decisions)

tc: number of generated test cases
cbr: number of covered branches
ibr: number of identified infeasible branches

cov1: cbr / br [as percentage]
it1: number of iterations to achieve cbr

cov2: cbr / (br - ibr) [as percentage]
it2: number of iterations to achieve both cbr and ibr

Table 2 Results of Arc-B

function calc week (excerpted from the MySQL database management system) in

different specialized ways,6 week is a program that call function calc week with no

specific customization. Column loc reports the size of the programs in lines of code as

counted by the Gnu utility wc. Column br reports the number of static branches of

each program as counted by Arc-B.7

We used Arc-B to maximize the branch coverage of each subject program starting

from a randomly generated input test case. Table 2 reports the numbers of test cases

that Arc-B generated for each program (column tc), the numbers of covered branches

(column cbr), the number of branches that Arc-B identified as infeasible (column ibr),

the coverage computed with respect to the static branches both before (column cov1)

and after (column cov2) pruning the ones identified as infeasible, and the number

6 Function calc week takes two parameters, l time (a date) and week behavior (the week
counting options), and returns the corresponding week of the year (an integer value between
0 and 53). The parameter week behavior is interpreted as a sequence of bits that indicate the
day that starts the week (either Sunday or Monday), the baseline to count weeks (either 0 or
1), and the reference standard for the date representation (ISO standard 8601:1988 or not),
respectively. In the context of a specific application, calc week is typically used by passing
a fixed constant value of week behavior to all calls. This may cause some of the branches of
week behavior to be infeasible within a specific application, as it happens in general when
reusable libraries are integrated in systems that use only subsets of their functionalities. For
further details on this example, we refer the interested readers to Baluda et al (2010).

7 Arc-B counts the static branches after the Cil pre-compilation that unrolls decisions
with multiple conditions as a cascade of single condition decisions, and performs simple code
optimizations based on constant propagation. For calc week, this determines slightly different
counts of static branches across the different specializations of the program.
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of iterations (column it1 and column it2) to maximize the two coverage indicators,

respectively.

Arc-B generated a total of 187 test cases that cover 610 out of 666 branches,

and identified 48 infeasible branches, failing only on 8 branches that Arc-B could

neither cover nor identify as infeasible. All runs completed within minutes on a common

laptop.Arc-B produces test suites of manageable size that cover most feasible branches

(100% in many cases and 96% in the worst cases). The table shows also that the

value of the branch coverage that Arc-B computes after identifying and eliminating

infeasible elements (column cov2) is more accurate than the value thatArc-B computes

referring to the statically identified branches (column cov1), although computing the

former value requires more iterations (column it1) than computing the latter value

(column it2) in most cases. This can be observed for all programs that contain infeasible

elements, that is, tcas and all the week programs. The improvement ranges from 4%

for week where the coverage grows from 96% to 100%, to 22% for week4 where the

coverage grows from 74% to 96%. We notice that identifying the infeasible branches

requires a greater number of iterations (column it2) than

We compared the effectiveness of Arc-B against plain random testing, directed

random testing and automatic generation of test suites for branch coverage, as im-

plemented by Crest and Klee. We used Crest to generate test cases according to

three methods: depth-first concolic execution (Crestdfs), concolic execution driven by

control-flow search (Crestcfg) and random test search strategy (Crestrand).

Table 3 compares the values of branch coverage obtained withCrestrand,Crestdfs,

Crestcfg and Klee on the same subject programs of Table 2 with the value of coverage

obtained with Arc-B. To make the results comparable, we ran all tools on exactly the

same code, after the logical operators in the program conditionals were removed via

the code transformation done by Cil. We terminated the executions after 60 minutes

for each program.

Reported coverage (%)
subject Crestrand Crestdfs Crestcfg Klee Arc-B (cov2)

linsearch 100%= 37% 100%= 62% 100%
binsearch 100%= 83% 100%= 75% 100%
tcas 4% 93% 93% 93% 100%
week0 79% 79% 79% 91% 96%
week1 79% 79% 79% 91% 96%
week2 80% 82% 82% 93% 100%
week3 80% 82% 82% 93% 100%
week4 53% 53% 53% 74% 96%
week5 76% 76% 76% 91% 96%
week6 79% 77% 79% 93% 100%
week7 80% 80% 80% 93% 100%
week 67% 67% 67% 96% 100%

=: equals to cov2 from Table 2

Table 3 Result of Crest and Klee

In Table 3, a = marks the few cases where a tool performs as well as Arc-B. Crest

generates test suites that cover fewer branches than the tool suites generated with Arc-

B in all cases, except for linsearch and binsearch where both Crest and Arc-B cover

all branches. Conversely, Klee covers the same number of branches as Arc-B in most
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cases, except for linsearch and binsearch where the tool suites generated with Klee

cover a small number of branches. In all cases, after pruning the branches identified

as infeasible, Arc-B computes coverage scores greater than the ones computed by the

other tools.

4.3 Threats to validity

Arc-B is an early research prototype that has not been extensively used and validated

yet. Thus, the main threat to the internal validity of our experiments is the potential

incorrectness of the data computed by Arc-B on the subject programs. We contrasted

this threat in several ways. We systematically tested (and fixed) the prototype based on

several reference programs with known branch reachability data, including the sample

of artificial programs reported in this section. We confirmed all covered branches com-

puted by Arc-B by re-running the test cases generated by the tool under the Gcov

tool.8 We confirmed a sample of the infeasible branches identified by Arc-B by manual

inspection. We crosschecked that none of the other tools considered in the experiments

covers branches that Arc-B identifies as infeasible.

Klee and Crest/Arc-B use different constraint solvers, which may lead to ques-

tion which branches were not covered by either tool because of the limitations of the

constraint solver rather than the path exploration strategy. Unfortunately we could not

extract information on the failures of the decision procedure from the reports provided

by Klee. We are currently developing the support for multiple constraint solvers in

Arc-B to further study this issue.

One of the key contributions of Klee is its ability to close a program by having

a mock up of the system calls. For example Klee can handle the set of Gnu utility

programs in this way. Arc-B does not currently include such a support. Admittedly,

we suspect that our tool can experience problems with programs that are integrated in

large systems due to this limitation, and we aim at extending the tool in this direction

as future work.

The experimental results reported in this paper are encouraging but not conclusive

yet. The main threat to their external validity relates to the limited size of the pro-

grams considered so far, due to the limits of our early prototype implementation of the

technique. We are working on a second generation toolset that will allow us to exper-

iment with industrial-size programs. In particular, we are extending the prototype to

deal with functions, pointers and dynamic memory allocation, which are not currently

supported, and we are optimizing the prototype for performance.

5 Related work

Research in the field of automated structural testing dates back to the seminal works

by Boyer et al (1975), King (1976), and Clarke (1976). The last decade has seen an

increasing industrial and academic interest on the topic.

A well-established line of research exploits symbolic execution, i.e., the simulation

of program execution along a prescribed set of control flow paths to the code elements

8 Gcov is a test coverage program included in the Gnu development suite. Gcov can track
the branches and statements covered when executing a C program, provided that this has been
compiled with specific instrumentation options.
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to be covered. Symbolic execution calculates path constraints over program inputs,

and solves them to generate test cases. Approaches based on symbolic execution must

select a set of feasible paths leading to the code elements to be covered. Static analysis

of the control flow graph is perhaps the oldest, and best known, approach to identify

such paths. Recent tools adopting this approach are Java PathFinder (Visser et al,

2004), Exe (Cadar et al, 2006), and Klee (Cadar et al, 2008).

An essential problem that this approach must face is the infeasibility of statically

identifiable control flow paths: Paths found by static analysis may not correspond to

any program computation, and thus tools must decide about path feasibility, usually

by querying an external decision procedure. The problem of deciding about element

feasibility makes an automated test case generator strongly dependent on the theo-

ries that the solver of choice is able to manage efficiently. Yates and Malevris (1989)

provided experimental evidence that deciding about the feasibility of code elements

depends on the complexity of the path constraint associated to the elements and thus

on the depth of the elements in the control graph: The deeper an elements is in the

control flow graph, the harder is to decide about its feasibility. Usually, invoking a

decision procedure is the slowest step of test case generation.

To overcome these issues, several authors have studied dynamic test case genera-

tion techniques. Dynamic approaches learn about feasible control flow paths from the

execution of previous test cases, and use such knowledge to simplify the construction

of new test cases. Korel (1992) and Ferguson and Korel (1996) combined test case

execution and dynamic dataflow analysis to identify the variables responsible for steer-

ing the program towards a given control flow path. Csallner and Smaragdakis (2005)

introduced Check’n’Crash that generates test cases by trying to violate the verifica-

tion conditions produced by a static symbolic program analysis. Csallner et al (2008)

evolved Check’n’Crash into DSD-Crasher that strives at reducing the exploration

scope by dynamically inferring likely preconditions from the execution of tests, and

discarding all the executions that violates the inferred preconditions.

Concolic (concrete-symbolic) testing is a recent approach to test case generation,

which is attracting considerable interest. Introduced by Godefroid et al (2005) with

the Dart tool and by Sen et al (2005) with the Cute tool, concolic execution is a

lightweight form of symbolic execution that is performed along the feasible control

flow paths discovered by previous test cases. Concolic execution yields a set of path

constraints that are mangled to obtain path predicates that characterize unexplored

branches. Solving these path predicates yields test cases that both reach not-yet-covered

branches and discover new paths throughout these branches. On average, concolic ex-

ecution halves the number of solver invocations, and exploits input values from previ-

ous test cases to guess possible solutions to path conditions that do not belong to the

theories of the solver in use. With Sage, Godefroid et al (2008) specializes concolic

execution to target security faults.

Both static and dynamic test case generation techniques suffer from the state space

explosion problem, as they explore the possible program behaviors in search of suit-

able test cases, and may diverge by getting stuck on the analysis of an infinite set of

infeasible behaviors. Dynamic techniques also suffer from the fact that the initial set of

program paths that seed the analysis can bias the explored region of the state space.

Dart and Cute start from a set of random tests, and explore program paths in depth-

first order. As a consequence, they may generate massive test suites that cover only a

small subset of the code elements. For this reason, several studies investigated variants

of the approach based on different exploration strategies. Burnim and Sen (2008) de-
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fined heuristics that guide the exploration of the program execution space based on the

program control flow to speed up branch coverage, and implemented these heuristics

in Crest. Xie et al (2009) introduced heuristics based on a fitness function that mea-

sures the distance between paths and code elements not yet covered. The heuristics

proposed so far yield fast convergence in some practical cases, but they may as well

degrade convergence in other cases. Furthermore, heuristics do not solve the problem of

infeasible elements that may cause the analysis to diverge when an infeasible element

belongs to infinitely many static program paths.

Another strand of research aims at reducing the number of explored program paths

at the expense of some precision. Majumdar and Sen (2007) propose hybrid concolic

testing that alternates random and concolic testing: Random testing supports wide-

range exploration of the program state space, and concolic testing guarantees exhaus-

tive local search of the most promising regions. Chipounov et al (2011) introduce a

framework for the testing and analysis of programs based on Klee, which alternates

symbolic and concrete execution to reduce the number of explored paths, and discuss

how this framework allows to choose a performance/accuracy tradeoff suitable for a

given analysis. Other approaches exploit the computational power of multi-core pro-

cessors, and accelerate the exploration of the symbolic space by parallelizing it (Staats

and Pǎsǎreanu, 2010; Bucur et al, 2011).

A different line of research, pioneered by Callahan et al (1996), exploits model

checking techniques to generate test cases. These approaches recast the testing problem

as a model checking one by abstracting the program under test to a model, expressing

the target coverage criterion in temporal logic formulas, and then returning the coun-

terexamples produced by the model checker as test cases. Fraser et al (2009) provide

a comprehensive survey on these approaches. These techniques suffer the problem of

suitably reconciling tractability and precision when modeling the system under test,

must deal with state space explosion, and may diverge while trying to cover infeasible

elements.

Recently, some research groups investigated abstract interpretation techniques to

generalize the code coverage problem beyond the classic control and data flow abstrac-

tions. Ball (2003) suggests to cover the feasible states of predicate abstractions of the

systems under test as a new class of adequacy criteria, and proves that these criteria

subsume many classic control flow criteria (Ball, 2004). Beyer et al (2004) integrate

abstraction refinement and symbolic execution to better target coverage criteria. These

approaches can prove the infeasibility of some targets by successive model refinements,

and thus can converge even in presence of infeasible targets.

To the best of our knowledge, our approach is the first attempt to integrate test case

generation and infeasibility analysis to improve structural code coverage. Our approach

integrates test case generation and test case execution along the lines of Synergy

(Gulavani et al, 2006), and adopts an inexpensive approach to the computation of

refinement predicates based on weakest precondition as in Dash (Beckman et al, 2010).

Synergy and Dash focus on formal verification, while we target structural testing.

Furthermore, what clearly distinguishes arc from the approaches available in literature

is the introduction of coarsening, to control model size explosion in presence of multiple

targets.
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6 Conclusions

Sophisticated structural testing criteria are not yet widely adopted in industrial set-

tings, mostly because of the difficulty of obtaining decent levels of coverage. This paper

introduces abstraction refinement and coarsening (arc), a technique that combines

automatic test case generation and feasibility analysis to improve code coverage. arc

exploits static and dynamic techniques in an abstraction refinement framework, along

the lines of previous work on software verification, and introduces the new concept

of abstraction coarsening to adapt the approach for branch testing. Addressing multi-

ple code targets challenges automatic test case generation with demanding scalability

requirements. Coarsening increases the scalability of the analysis by dynamically bal-

ancing precision and memory requirements.

The experimental evaluation shows that arc is effective in focusing test case gen-

eration on feasible targets, enhancing the precision of coverage measurements, and

addressing non trivial programs. In most of the experiments, arc achieves higher cov-

erage with smaller test suites than popular state-of-the-research test case generation

tools. In the next future, we aim to extend the approach to support sophisticated

control- and data-flow coverage criteria, and investigate fallback strategies to handle

models that do not completely fall in the theory of the theorem provers integrated in

the prototype.
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