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ABSTRACT

Significant TCP unfairness in ad hoc wireless networks has
been reported during the past several years. This unfair-
ness results from the nature of the shared wireless medium
and location dependency. If we view a node and its in-
terfering nodes to form a “neighborhood”, the aggregate of
local queues at these nodes represents the distributed queue
for this neighborhood. However, this queue is not a FIFO
queue. Flows sharing the queue have different, dynamically
changing priorities determined by the topology and traf-
fic patterns. Thus, they get different feedback in terms of
packet loss rate and packet delay when congestion occurs.
In wired networks, the Randomly Early Detection (RED)
scheme was found to improve TCP fairness. In this paper,
we show that the RED scheme does not work when running
on individual queues in wireless nodes. We then propose
a Neighborhood RED (NRED) scheme, which extends the
RED concept to the distributed neighborhood queue. Sim-
ulation studies confirm that the NRED scheme can improve
TCP unfairness substantially in ad hoc networks. More-
over, the NRED scheme acts at the network level, without
MAC protocol modifications. This considerably simplifies
its deployment.
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1. INTRODUCTION

In this paper we address TCP performance within a mul-
tihop wireless ad hoc network. This has been an area of
active research recently, and progress has been reported in
several directions. Three different types of challenges are
posed to TCP design by such networks. First, as the topol-
ogy changes, the path is interrupted and TCP goes into re-
peated, exponentially increasing time-outs with severe per-
formance impact. Efficient retransmission strategies have
been proposed to overcome such problems [4, 5, 9]. The
second problem has to do with the fact that TCP perfor-
mance in ad hoc multihop environment depends critically
on the congestion window in use. If the window grows too
large, there are too many packets (and ACKs) on the path,
all competing for the same medium. Congestion builds up
and causes “wastage” of the broadcast medium with con-
sequent throughput degradation [7]. The third problem is
significant TCP unfairness which has been revealed and re-
ported through both simulations and testbed measurements
recently [17, 18, 19].

This paper focuses on the third problem, namely, enhanc-
ing TCP fairness in ad hoc networks. Previous work on this
topic mostly dealt with the underlying factors causing TCP
unfairness. So far, no successful attempts on TCP fairness
restoration have been reported. Many specific factors have
been identified as the triggers of TCP unfairness, such as:
channel capture, hidden and exposed terminal conditions,
and the binary exponential backoff of IEEE 802.11 MAC
etc [18, 19]. Most of the factors can be traced back to the
unfairness of the IEEE 802.11 MAC protocol. However, the
“greedy” behavior of TCP and its poor interaction with the
MAC layer further exacerbate the unfairness situation [18].

In this paper we argue that two unique features of ad hoc
wireless networks are the key to understand unfair TCP be-
haviors. One is the spatial reuse constraint; the other is the
location dependency. The former implies that space is also a
kind of shared resource. TCP flows, which do not even tra-
verse common nodes, may still compete for “shared space”
and thus interfere with each other. The latter, location de-
pendency, triggers various problems mentioned above, which
are often recognized as the primary reasons for TCP un-
fairness. TCP flows with different relative positions in the
bottleneck may get different perception of the bottleneck sit-
uation in terms of packet delay and packet loss rate. Since



getting correct feedback of the bottleneck is critical to the
fairness of TCP congestion control, limited information of
the bottleneck situation causes significant unfairness (e.g.
some flows experience more packet loss and thus tend to re-
duce their congestion window more frequently than others).

If we view a node and its interfering neighbors to form a
neighborhood, the local queues at these nodes can be con-
sidered to form a distributed queue for this neighborhood.
This distributed queue is not a FIFO queue. Flows sharing
this queue have different and dynamic priorities determined
by the topology and traffic patterns due to channel capture,
hidden and exposed terminal situations etc. Thus, they get
different feedback in terms of packet loss rate and packet de-
lay when congestion happens. The uneven feedback makes
TCP congestion control diverge from the fair share. Similar
situations may occur in wired networks when a buffer is full
and drop tail queue management scheme is used. The Ran-
domly Early Detection (RED) [6] scheme can improve TCP
fairness under such situations by keeping the queue size rel-
atively small and dropping or marking packets roughly pro-
portional to the bandwidth share of each flow through the
gateway.

In this paper, we propose a Neighborhood RED (NRED)
scheme, which extends the original RED scheme to operate
on the distributed neighborhood queue. As RED does, each
node keeps estimating the size of its neighborhood queue.
Once the queue size exceeds a certain threshold, a drop prob-
ability is computed by using the algorithm from the original
RED scheme. Since a neighborhood queue is the aggregate
of local queues at neighboring nodes, this drop probabil-
ity is then propagated to neighboring nodes for cooperative
packet drops. Each neighbor node computes its local drop
probability based on its channel bandwidth usage and drops
packets accordingly. The overall drop probability will realize
the calculated drop probability on the whole neighborhood
queue. Thus, the NRED scheme is basically a distributed
RED suitable for ad hoc wireless networks.

The rest of the paper is organized as follows. We briefly
review previous work in section 2 and describe in short re-
lated protocols as well as the simulation environment in
section 3. Section 4 presents the concept of the neighbor-
hood of a node and its distributed queue. We then give
the detailed algorithms of the NRED scheme in section 5.
Section 6 gives verification of our queue size estimation al-
gorithm and guidelines for setting configurable parameters.
The usefulness of NRED is also evaluated under simple but
fundamental scenarios in this section. Further performance
evaluations under more general scenarios are performed in
section 7. Some related issues and future work are discussed
in section 8 and we conclude the paper in section 9.

2. RELATED WORK

Recently, several techniques have been proposed to im-
prove TCP performance in ad hoc networks. Most of these
techniques address mobility, link breakages and routing al-
gorithm failures. Schemes such as ELFN [9], TCP-F [4],
Fixed-RTO [5], and TCP-DOOR [22] belong to this cate-
gory. Together, this work gives reasonable understanding
on mobility related TCP inefficiencies. There is, however,
another important problem area in wireless ad hoc networks,
namely TCP unfairness. This area has received less atten-
tion in the past, although the problem is significant. As
shown in section 3, 6 and 7, substantial unfairness and even

flow starvation exists. This unfair behavior may seriously
delay or even lock out a critical application.

Some efforts have addressed the TCP fairness issue in ad
hoc networks. In [8, 17], Tang and Gerla et al investigated
TCP fairness over different MAC protocols, namely CSMA,
FAMA, MACAW and IEEE 802.11. In all the investigated
scenarios, IEEE 802.11 always came on top in terms of both
throughput and fairness. However, even IEEE 802.11 could
not achieve acceptable fairness in the ring and grid topolo-
gies with TCP congestion window size allowed to grow larger
than 1 packet. A simple MAC layer technique was proposed
by the authors. An additional yield time was used to restrain
the node that used the channel last. It shows improved fair-
ness under the ring topology.

In [19, 20], Xu et al investigated TCP fairness over IEEE
802.11 MAC in ad hoc wireless networks. Their work pro-
vides a good understanding of the underlying reasons that
trigger TCP unfairness. No remedy, however, is proposed in
that work. In [18], Gerla et al investigated TCP unfairness
on a path across a wired and multihop wireless network.
Again, they found that the problem resides in the wireless
segment. More precisely, they identified hidden and exposed
terminals and the interaction of IEEE MAC and TCP con-
gestion control as the key factors that prevent TCP from
stabilizing at fair-share.

Most of the prior work is focused on channel and MAC
protocol features in an attempt to identify the factors trig-
gering TCP unfairness. However, so far, no complete solu-
tion to this problem has yet been reported. In this paper,
we attack the problem at the network layer. We explore the
relationship between T'CP unfairness and early network con-
gestion. RED was helpful in detecting congestion in wired
networks and in enhancing fairness. We wish to extend the
RED scheme into mobile multihop ad hoc networks. Such
an extension is not trivial as ad hoc wireless networks have
very unique features such as location dependency.

3. RELATED PROTOCOLS AND SIMULA-
TION PLATFORM

3.1 Random Early Detection (RED)

The proposed NRED scheme is an extension of the RED
[6] scheme developed for the wired Internet. RED is an
active queue management scheme for congestion avoidance.
It monitors the average queue size at each buffer. Once
the average queue size exceeds a predefined threshold, it
will start dropping or marking packets with given proba-
bility. RED has two independent algorithms. One is for
computing the average queue size and the other is to cal-
culate the drop probability as a function of average queue
size. Suppose current queue size is ¢, then the average
queue size is computed as avg = (1 — wq) * avg + wq * q,
where wq is called “queue weight” for smoothing the av-
erage queue size and tolerating burstness. Upon a packet
arrival, the drop probability is calculated according to the
minimum threshold min:, and maximum threshold maxp,
as pp = maxp(avg — ming,)/(maxe, — ming,) and p, =
v/ (1 —count*py). Here maz) is the maximum packet drop
probability and count is the number of packets arrived since
last packet drop. When the average queue size is larger
than max., the drop probability is set to 1. RED was
shown to improve network performance by avoiding heavy



congestion, eliminating global synchronization etc. It also
improves fairness by dropping packets proportional to a con-
nection’s share of buffers and thus bandwidth.

3.2 Simulation Environment

This paper and the evaluation of the proposed NRED
scheme rely heavily on simulation experiments. Unless ex-
plicitly mentioned, all the simulation experiments in this
paper use the configurations described here. The simulation
platform we used is the QualNet simulator [15], which is the
successor of the previous GloMoSim simulation library [21].
Most configuration parameters of the protocol stack in our
simulations use the default values. The channel bandwidth
is 2Mbps, channel propagation model is the two-ray ground
reflection model [16], transmission range is 367m. IEEE
802.11 MAC DCF is adopted. TCP NewReno is used with
Maximum Segment Size set to 512 Bytes. The buffer size at
each node is 66 packets. Static routing is used in most sce-
narios. In most of the simulations, TCP connections start
at 10s and end at 130s. The simulation time is 150s.

4. TCPUNFAIRNESSAND REDINADHOC
NETWORKS

4.1 Why RED does not Work?

We first tested whether the original RED scheme can help
improving TCP unfairness in ad hoc networks. The simula-
tion scenario is shown in Figure 1. This scenario is very sim-
ilar to those scenarios used in the wired networks for testing
RED scheme. However, it is a wireless specific scenario. The
3 FTP/TCP connections in Figure 1 do not share any com-
mon node. However they still contend with each other for
the medium. The implementation of RED used in our exper-
iments follows the algorithm presented in [6]. The minimum
and maximum queue size thresholds (min., and maz.) are
set to 5 packets and 15 packets. The queue weight (e.g. wq)
is 0.002. We vary the maximum drop probability max, from
0.02 to 0.2.

In all the simulations, we found that FTP 2 is always
starved. Typical results are given in Figure 2, where the
throughput of the 3 connections at the end of simulation is
plotted. As a contrast, we also show the throughput when
the default “drop tail” queue management scheme is used.
Apparently, no visible advantage in terms of improving TCP
unfairness can be found when RED is adopted. However one
interesting point we observe is that RED still manages to
improve the TCP throughput in ad hoc networks. Since this
paper mainly focuses on TCP fairness, further discussion of
this point is deferred to a follow up study.

Detailed analysis of the results shows that there are 3
major factors that impede RED from improving TCP un-
fairness in the ad hoc environment. First, a TCP connection
which is penalized in channel contention may experience a
queue buildup. However, dropping packets of the penalized
flow may actually increase the unfairness. Second, conges-
tion does not happen in a single node, but in an entire area
involving multiple nodes. The queue at any single node can-
not completely reflect the network congestion state. Third,
since multiple nodes are involved in the congestion, they
should coordinate their packet drops, rather than act inde-
pendently. Thus, an appropriate RED scheme for ad hoc
wireless networks should consider an aggregate of multiple
queues in the bottleneck.
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Figure 1: A wireless specific scenario for testing TCP
unfairness with RED.
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Figure 2: Overall throughput of flows at the end of
simulation with RED’s maz, equal to 0.06.

4.2 Neighborhood and Its Distributed Queue

In ad hoc wireless networks, there is no pre-defined link
between any two nodes. Instead, nodes, which share the
same space, compete for the channel under the control of the
MAC protocol. Thus, the congestion in an ad hoc network
cannot be traced to a specific node, but to the entire space
around it. We refer to this space as the “neighborhood” of
a node. A more formal definition follows.

Neighborhood: A node’s neighborhood consists of the
node itself and the nodes which can interfere with this node’s
stgnals.

Apparently, a node’s neighborhood includes both its 1-
hop neighbors and 2-hop neighbors. Interference between a
node and its 1-hop neighbors is straightforward. For 2-hop
neighbors, they may also interfere with the node when they
are transmitting to any 1-hop neighbor since collisions may
happen at the 1-hop neighbor. Thus 2-hop neighbors indi-
rectly interfere with the node. If we consider the fact that
interference range is usually much larger than the transmis-
sion range, nodes more than 2-hops away from a node may
also be involved in its neighborhood. In this paper, we sim-
plify the problem by ignoring such situations.

In the RED scheme, the early congestion is detected by
monitoring the queue size of each outgoing buffer. Similarly,
the queue size of a neighborhood reflects the degree of local
network congestion. But, where is the queue of a node’s
neighborhood? In the wired net, there is at least one buffer
for each outgoing interface. The queue size can be measured
by counting the number of packets in the buffer. However,



Figure 3: Illustration of a node’s neighborhood and
its distributed queue.
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Figure 4: Simplified express of the distributed
neighborhood queue.

a node’s neighborhood includes multiple nodes each with its
local queue. The neighborhood queue should account for
all those packets whose transmissions will affect the channel
usage within this neighborhood. We view all nodes partic-
ipating in a node’s neighborhood form a distributed queue
of that neighborhood with packets scattered among these
nodes. The concepts of a node’s neighborhood and its dis-
tributed queue are illustrated in Figure 3.

In Figure 3, not all packets in the local queue of each node
can be considered as packets in the neighborhood queue.
Let us examine in detail which packet should be counted.
Clearly, the packets in the queues of node A and its 1-hop
neighbors are in the distributed queue of node A’s neigh-
borhood. Packets in the queues of node A’s 2-hop neighbors
may or may not be in this distributed queue. More pre-
cisely, only the packets directed to a 1-hop neighbor of node
A should be considered as a contribution to node A’s neigh-
borhood queue size.

4.3 A Simplified Neighborhood Queue Model

The distributed queue illustrated in Figure 3 has 2-hop
neighbors involved. Only some packets in the queues of
the 2-hop neighbors should be counted. This distributed
queue model is not easy to implement and evaluate since it
is difficult to get information of 2-hop neighbors without in-
troducing significant communication overhead. We simplify
this model to the one illustrated in Figure 4, which only in-
cludes 1-hop neighbors. We move those packets in the 2-hop
neighbors that are directed to a 1-hop neighbor, to the cor-
responding 1-hop neighbor. Thus, now each node has two
queues. One is its original queue of outgoing packets. The
other one is an incoming queue that represents the packets
from 2-hop neighbors. The original queue at a node is now
referred to as the outgoing queue.

We treat the distributed queue of a neighborhood in an ad
hoc network the same way as we would on a single link queue
in the wired net and apply RED to it - after proper modifi-
cations. This is the basic idea behind the proposed Neigh-
borhood RED scheme. Here, we point out several unique
characteristics of the distributed neighborhood queue.

(i) A neighborhood queue consists of multiple queues lo-
cated at the neighboring nodes that are part of the
same spatial reuse constraint set.

(ii) The distributed queue is not a FIFO queue due to loca-
tion dependency. Instead, multiple sub-queues forming
it have different relative priorities in terms of acquiring
the wireless channel due to various factors including
MAC unfairness, channel capture, hidden and exposed
terminal etc.

(iii) The priority of a sub-queue may change dynamically
due to topology or traffic pattern changes .

With the concepts of a node’s neighborhood and its dis-
tributed queue, we can now model TCP unfairness from a
transport layer view. As suggested in the previous subsec-
tion, multiple TCP flows actually share a distributed queue
with different but dynamic priorities. This feature will make
TCP diverge from fair-share since they get different feedback
in terms of packet drop rate and delay from the congested
neighborhood.

5. NEIGHBORHOOD RANDOM EARLY DE-
TECTION

Recognizing the underlying reasons why TCP cannot con-
verge to the fair share, the proposed solution for reestab-
lishing TCP fairness is how to feed the contending flows
with the same congestion feedback from the bottleneck (e.g.
packet drop probability and packet delay proportional to
the share of bandwidth used by each TCP flow). Some form
of TCP unfairness, although by far not as dramatic as in
the multihop case, manifests itself also in the wired Inter-
net when drop tail queue management scheme is used. The
RED active queue management scheme solves that problem
by keeping the queue size relatively small and dropping or
marking packets of a flow proportionally to its buffer occu-
pancy and thus bandwidth share. This has prompted us to
apply a RED-like scheme to the distributed neighborhood
queue, which we call Neighborhood Random Early Detec-
tion (NRED). To do so, we need to solve 3 problems. 1)
How to detect the early congestion of a neighborhood? More
precisely, how to compute the average queue size of the dis-
tributed neighborhood queue? 2) When and how does a
node inform its neighbors about the congestion? 3) How do
the neighbor nodes calculate their local drop probabilities
so that they add up to the targeted overall drop probabil-
ity? Correspondingly, three sub-schemes are then proposed,
namely Neighborhood Congestion Detection (NCD), Neigh-
borhood Congestion Notification (NCN), and Distributed
Neighborhood Packet Drop (DNPD), which are explained
in the next subsections.

5.1 Neighborhood Congestion Detection

A direct way to monitor the neighborhood queue size is
to let every node broadcast a control packet throughout its



neighborhood to announce its queue size (and destinations of
queued packets) upon each packet arrival or departure. By
this method, a node can count its neighborhood queue size
precisely. However, in a mobile ad hoc wireless network the
topology and traffic pattern may continually change. Even
if there is no mobility, queue size changes are frequent. A
lot of control overhead will be caused by this propagation of
queue size information. It is counterproductive to monitor
congestion by triggering a lot of extra traffic overhead, which
actually worsens the congestion.

Instead of actively advertising queue size information, we
opt for a passive measurement technique. Moreover, instead
of measuring queue size, we choose an alternate measure re-
lated to queue size - namely, channel utilization - which
is much easier to monitor than “neighborhood queue size”.
Naturally, there is a relationship between channel utilization
and the size of both outgoing and incoming queues. When
these queues are busy, channel utilization around the node
is more likely to increase. Now, the trick is to figure out how
to measure and account for the various components of chan-
nel utilization. To this end, let us carefully examine node
A’s neighborhood queue shown in Figure 4. When a packet
in any outgoing queue is transmitted, node A will detect
the medium as busy. If a packet is received to any incoming
queue, node A can also learn this through the CTS packet
(we assume IEEE 802.11 MAC layer). These two measure-
ments can derive inputs needed for NRED implementation.

More precisely, a node will monitor five different radio
states 1) Transmitting, 2) Receiving, 3) Carrier sensing busy,
4) Virtual carrier sensing busy (e.g. deferral to RTS, CTS
etc.), and 5) Idle (i.e., no activity on the channel). These
radio states can be divided into 3 categories. States 1) and
2) are the contribution of the current node to the total chan-
nel utilization within its neighborhood. States 3) and 4) are
the contribution of the node’s neighbors to the channel uti-
lization. We will assume state 5 means empty queue. This
assumption is slightly optimistic, since an idle channel state
may also mean all nodes are in backoff stage. In the future,
we will improve the scheme by considering more channel
statistics such as the collision rate.

By monitoring the five radio states, a node can now esti-
mate 3 channel utilization ratios, namely total channel uti-
lization ratio (Upusy), transmitting ratio (Uz,) and receiving
ratio (Urg). Accordingly, a node constantly monitors the
channel condition and records the time period in each of the
five radio states. Let Tiz, Trz, Tes, Tves and Tigie represent
the time period spent at each state during last time period
Tinterval- Then the three utilization ratios are defined as:

Tinter’val - T’idle

Upusy = T (1)
Ttac

Upw = —1 2

¢ Tinterval ()
T'mc

Uy = —/——— 3

Tinterval ()

Her67 Tinterval = th + Trz + Tcs + T’ch + Tidle- Ubusy re-
flects the size of the neighborhood queue. U, and Uy, re-
flect the channel bandwidth usage of the outgoing queue and
incoming queue at current node. Later, the local drop prob-
ability will be calculated proportional to a node’s channel
bandwidth usage. When the total channel utilization ratio
(Ubusy) exceeds a certain threshold, we define the neighbor-
hood to be in early congestion.

To facilitate the implementation of the RED algorithm,
which is based on packet queue lengths rather than chan-
nel utilization, we translate the channel utilization into an
index of the queue size. Assume the channel bandwidth is
W bps and the average packet size is C' bits. We translate

the Upusy to the queue size index as ¢ = M The
variable g is not dimensionally correct, as it is expressed in
pkts/sec rather than packets as the queue length should be.
However, ¢ is an index that tracks the average queue length,
and allows us to manipulate channel utilizations using the
conventional RED algorithms. The average packet size C' is
a constant. Its actual value is irrelevant, as it is only a scal-
ing factor that affects the choice of the values for minimum
and maximum threshold (min:, and mazp). In the rest of
the paper, we may still use the term “number of packets”
for ease of explanation, where we actually mean this “queue
size index”.

We translate the U, and U, into indices qi; and grq
using the same equation as Upysy. After this transformation,
we now can apply the original RED scheme. We start by
computing the average queue size as avg = (1 — wq) * avg +
wq * q. The initial value of avg is 0. Similarly, we can also
get avgi, and avgrz using qiz and @rz. avgir and avgr, are
the average queue size of the outgoing queue and incoming
queue (see Figure 4) at current node, which will be used in
next two subsections.

The estimation algorithm is independent of the other com-
ponents of the NRED scheme. Unlike the original RED
scheme, which samples queue size on each packet arrival,
our scheme samples utilization, and thus “queue size index”,
periodically. The accuracy of the estimation is controlled by
the time interval Tjptervai-

5.2 Neighborhood Congestion Notification

Under NRED, a node checks the estimated average queue
size avg periodically and compares it with a minimum thresh-
old mingy,. If queue is larger than threshold, early congestion
is detected. Then the node calculates a drop probability py
based on the average queue size and broadcasts it to its
neighbors. Here, we present the algorithm for calculating pp
using pseudocode. The algorithm is based on the original
scheme of RED [6].

Algorithm 5.1: CALCULATEPB()

comment: Procedure to calculate Drop Probability ps

Saved Variables:

avg: average queue Size

Fixed Parameters:

ming, : minimum threshold for queue

maxy,: mazimum threshold for queue

mazyp: mazimum value for py

Tncen: time interval for performing this action

for each Txen

avg — estimatedQueueSize()

if ming, < avg < maxin
Py — mazy * (avg — ming, )/ (Mmaxen, — ming,)
normalizeP, — py/avg
else if maxy, < avg
pp 1
normalizedP, «— 1



In the above pseudocode, function estimatedQueueSize()
gets the estimated neighborhood queue size from channel
utilization as discussed in the previous subsection. We also
define normalized p, referred as normalizedP, by dividing
pp by average queue size avg. This normalizedP, is the
probability which will be broadcasted to neighbor nodes.
Based on it, they will compute their local drop probabilities.

If py is larger than 0, the neighborhood of this node is in
early congestion. In principle, the node should immediately
notify the neighbors. However, to avoid “overreaction”, we
put several conditions before a node broadcasts a congestion
notification. These conditions include

(i) The calculated py is larger than 0.

(ii) Current node must be on the path of one or more flows.
If no traffic goes through it, it should not take any
action.

(iii) Current node is suffering in channel contention. We as-
sume mobile nodes are cooperative, yet selfish. Thus,
the suffering nodes must speak out to ask neighbors
for cooperation. This is realized by comparing the
(avgie + avgra) (see subsection 5.1) with a certain
threshold. If (avgiz + avgre) is small, it means cur-
rent node is suffering in terms of channel contention.

(iv) Current node didn’t receive any congestion notification
packet in the past interval which contained a larger
normalizedP,. Otherwise, that neighbor node’s neigh-
borhood is more congested. No need for this node to
broadcast a notification since congestion situation may
change after some packets are dropped.

Only when all above conditions are met, will a node broad-
cast a Neighborhood Congestion Notification (NCN) packet
to inform neighbors about its congestion situation. The
NCN packet must contain enough information for a neighbor
node to calculate its local drop probability. In our imple-
mentation, the NCN packet includes 3 fields as <packetType,
normalizedPy, lifeTime>. The packetType field indicates
that this packet is a NCN packet. normalizedP, is used for
neighbors to calculate their local drop probabilities. The
lifetime field indicates the effective duration of this conges-
tion notification. In the NRED scheme, no explicit packet is
needed to notify neighbors that congestion has been cleared.
A node will simply stop dropping packets after lifetime pe-
riod. This effective period should be at least twice the NCN
broadcast interval Tycn to ensure that a new NCN packet
will reach the neighbor nodes if congestion persists.

Once a node receives a NCN packet, it will record the
normalizedP, and lifetime fields of the NCN packet. If
multiple NCN packets from different nodes are received, only
the packet with the largest normalizedP; is stored. Both
fields are updated when a new NCN packet from the same
node as the last stored NCN packet is received. The stored
normalizedP, will be cleared to 0 after lifetime period, if
no new NCN packet comes.

From our experiments, we found that broadcast is unre-
liable when congestion builds up. Thus, it is very likely
that the node that is abusing the channel may not receive
the NCN packet successfully. To improve the chance that
the NCN packet can reach every neighbor successfully, the
sender randomly selects a neighbor and “unicasts” the packet
to it. Assuming that nodes run in promiscuous mode, all the

neighbors can overhear this packet. By using this simple
technique, the propagation of NCN packets is much more
reliable than with conventional broadcast with more than
20% improvement.

5.3 Distributed Neighborhood Packet Drop

In this sub-scheme, we explain how neighboring nodes co-
operatively drop packets to realized the expected drop prob-
ability py over the distributed neighborhood queue. The key
is to calculate a node’s local share of this overall drop prob-
ability according to its channel bandwidth usage, which has
been translated into equivalent queue size for our compu-
tational convenience. Suppose a node has received a NCN
packet with normalizedP, larger than 0. Then the local
share of p, at this node should be proportional to its contri-
bution to the average neighborhood queue size avg, which
is given as (avgits + avgrz). Thus the share of py at this
node can be calculated as py * (avgiz + avgrz)/avg. Recall
that normalizedPy = py/avg, so the local drop probability
is calculated as normalizedPy * (aVgtz + aVgrz ).

In our simplified neighborhood queue model, there are
two queues at each node, the outgoing queue and incom-
ing queue. Packet drop probabilities will be computed and
implemented separately on the two queues. The detailed ac-
tions performed on the outgoing queue upon a packet arrival
from upper layer is given in pseudocode as below.

Algorithm 5.2: RANDOMDROP()

comment: Actions performed at the outgoing queue

Saved Variables:

countiy: outgoing pkts arrived since last drop
avgiy: average outgoing queue size

Other Parameters:

Pa: current packet dropping probability

for each packet arrival
countiy < countey + 1
if normalizedP, < 1
Pb < normalizedPy * av gy
Pa — Db/ (1 — countiy * pp)
else pg, — 1
if po >0
aRandomNumber — random([0, 1])
if aRandomNumber < pq
drop the arriving pkt
countyy <— 0
else countiy — —1

In the above pseudocode, random([0,1]) is a function
which generates a random number between 0 and 1. When
normalized P, is equal to 1, it means the average queue size
avg has exceeds the maximum threshold. p, should be 1 no
matter what the value count: is since the drop probability
on the neighborhood queue is 1 according to the original
RED scheme.

The actions performed at the incoming queue are the same
as in the pseudocode above, except that avg:, and countis
are replaced by avg,, and count,,. It may be a little con-
fusing that we drop packets from the incoming queue, as
the original RED only drops outgoing packets. Referring
back to the neighborhood queue model in Figure 3 and its
simplified expression in Figure 4, we recall that the incom-
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Figure 5: Scenario for verifying queue size estima-
tion algorithm.

ing queue at a 1-hop neighbor is actually moved from the
2-hop neighbors. Thus, dropping packets in the incoming
queue represents the packet drops at corresponding 2-hop
neighbors. Since there is no real incoming queue, the ac-
tions are triggered each time a packet is received. Dropping
incoming packets at the 1-hop neighbors wastes some band-
width since those packets have consumed bandwidth. To
avoid this, a better way would be also propagate the con-
gestion notification to 2-hop neighbors and ask them drop
packets correspondingly. However, as we mentioned in sec-
tion 4.3, coordinating 2-hop neighbors requires non-trivial
overhead. First, all 1-hop neighbors must re-broadcast the
NCN packets to 2-hop neighbors, much more bandwidth is
consumed by such broadcasts. Second, to properly drop
packets, a 2-hop neighbor has to know a complete list of 1-
hop neighbors of the congested node since it only needs to
drop packets intended to the congested area. Propagation
of such information will also bring much overhead. Thus, in
our NRED scheme, we propose to drop incoming packets at
1-hop neighbors rather than asking 2-hop neighbors to drop
them.

6. VERIFICATION AND PARAMETER TUN-
ING

In the proposed NRED scheme, there are several param-
eters which may affect the performance. In this section, we
try to determine their optimal values. Moreover, our scheme
for estimating the average queue size of the neighborhood
queue is realized by estimating the channel utilization. In
this section, we also want to verify that it can indeed ap-
proximate the real average queue size. Also in this section,
performance of NRED in simple scenarios is investigated.

6.1 Verification of Queue Size Estimation

Recall that NRED is based on channel utilization rather
than queue size. In fact, we believe that channel utiliza-
tion is a more appropriate measure than queue size for our
problem. Nevertheless, we are still interested to verify that
channel estimation is a good approximation to the real queue
size.

We did a series of simulation experiments to verify and
validate our queue estimation algorithm. Also, at the same
time, we determined the optimal values of parameters re-
lated to the estimation. Major parameters are Tintervar and
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Figure 6: Estimated average queue size and the real
average queue size of Node 5’s neighborhood under
FTP/TCP connections.
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Figure 7: Estimated average queue size and the real
average queue size of Node 5’s neighborhood under
HTTP/TCP connections.

wq (see subsection 5.1). The topology of the experiments
is given in Figure 5. 9 wireless nodes are involved in the
scenario with their coordinates as given in the figure. 6
TCP connections are established. The first TCP connection
starts at 20s. The rest of them start one after the other 10s
apart. All connections end at 120s and the simulation time
is 150s. We record in real time the estimated queue size
of Node 5’s neighborhood queue. We also record the queue
size changes of the local queue at each node and calculate
the corresponding real average queue size of Node 5’s neigh-
borhood. By comparing the estimated average queue size
and the real value, we can then verify the accuracy of our
estimation algorithm.

To find the optimal values of Tintervar and wgq, experi-
ments with different values of Tintervar and wg were per-
formed using the same scenario described above. The values
of Tintervar ranged from 1ms to 1s and w, ranged from 0.02
to 0.8. 20 scenarios were generated using different random
seeds, although the figures are not reported in this paper.
The conclusion drawn from the experiments is that the op-
timal values of Tintervar lie between 100ms and 1s. If it
is too short (e.g. shorter than the transmission time of a
packet), the estimation is too rugged. If it is too long, it
cannot react to channel changes promptly. In practice, this
parameter can be set based on the frequency of topology and
traffic pattern changes. A smaller value is preferred if the
mobility speed is high. The estimation results are not very



sensitive to wg. The best values are found from 0.1 to 0.4.
Larger wq has better adaption to sudden channel utilization
changes caused by mobility or new flows. Smaller values
give more smoothly estimation. In our future simulations,
we set Tinterval as 100ms and wq as 0.2.

Figure 6 and Figure 7 plotted the typical simulation re-
sults with Tintervai and wg as 100ms and 0.2 respectively.
In the simulation of Figure 6, the 6 TCP connections are
FTP flows. Since FTP tends to utilize all bandwidth, the
neighborhood queue quickly builds up and keeps in a high
level during the rest of time. We clearly observe a limitation
of our estimation algorithm. After the real average queue
size exceeds a certain threshold (e.g. after passed the dotted
time line in Figure 6), the estimation cannot reflect future
increase of the queue size. Except for this limitation, the
estimation algorithm approximately matches the real val-
ues. Note, the absolute magnitude of the estimated queue
size is meaningless, since we translate the channel utilization
to number of packets by dividing it by a fixed packet size.
The absolute value only affects the values of the minimum
threshold (min.,) and maximum threshold (maz:s).

Since in the FTP case, queue size does not change much.
To further verify that our estimation algorithm adaptive to
frequent queue size changes, we replaced the FTP flows with
HTTP flows. The simulation results are shown in Figure 7.
When HTTP traffic is used, the average queue size is small
and changes frequently. We observe that our estimation still
matches the real values quite well.

Two problems must be justified here. First, channel uti-
lization ratio is past information. Queue size is current state.
That means we are estimating the current state based on
historical information. Second, when the queue size is too
large and channel is fully utilized, further increase of the
queue size has no any effect to the channel utilization ratio
as observed in Figure 6. Thus, our estimation is bounded
to a upper threshold of the queue size. The first problem is
not an issue for NRED scheme, as only the average queue
size is needed, not the exact current queue size. The orig-
inal RED scheme also uses a “low pass filter” to average
the queue size. For the second problem, it is true that our
scheme has this limitation. However, the purpose of NRED
is to detect early congestion and keep running the network
below heavy congestion by keep the queue size small. Under
such conditions, our estimation algorithm should be precise
enough.

6.2 Parameter Tuning with Basic Scenarios

In previous subsection, we have verified our queue size
estimation algorithm and have tuned related parameters.
In this subsection, we focus on another important part of
NRED scheme, the calculation of packet drop probability.
Once early congestion is detected, the suffering node will
notify its neighbor nodes for cooperative packet drops to re-
lieve congestion. The related configuration parameters here
are the maximum packet drop probability mazx,, minimum
threshold min:, and maximum threshold max,. We choose
the values of min:, and max., based on results in the pre-
vious subsection. We observe that when there is heavy con-
gestion, the estimated queue size goes around 240 packets.
Thus, we choose max, as 240. To get smooth drop proba-
bility, we set min:, as 100. We then use simulation experi-
ments to decide the optimal values of max,.
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Figure 8: The hidden terminal scenario, where Node
2 is hidden by transmission from node 4 to node 3
and Node 3 is hidden by transmission from node 1 to
node 2.

(100, 0) (100, 350) (100, 700) (100, 1050)

Figure 9: The exposed terminal scenario, where node
2 is exposed to transmissions from node 3 to node 4.

Another purpose of this subsection is to identify how well
the NRED scheme can solve the TCP unfairness problem
under simple, yet fundamental, scenarios. Besides the sce-
nario in Figure 1 in section 4, another two basic scenarios
used are the hidden terminal and exposed terminal topolo-
gies as shown in Figure 8 and 9. These two scenarios are
first reported in the early MACAW research [3] as basic
topologies causing unfairness at the MAC layer. They later
are also identified as the major situations where significant
TCP unfairness is observed [18, 19]. Thus, any solution for
improving TCP fairness should be examined on these basic
scenarios.

All the TCP flows start at the same time and last 120
seconds. The simulation time is 150 seconds. The values
of mazx, tested here is ranging from 0.01 to 0.3. Typi-
cal metrics we selected are 1) The overall throughput of
each TCP flow. 2) The fairness index and 3) The instan-
taneous throughput of each flow. The overall throughput
is calculated by the TCP receiver at the end of simula-
tion. The fairness index we adopted here is the MaxMin
fairness index [2, 10]. Assuming the overall throughput of
the two flows are X; and Xa, the fairness index is defined

as F(X1,X2) = éi;;—f;zj) The MaxMin fairness index is
1 2

bounded between 0 and 1. The higher the fairness index,

the better the fairness. The instantaneous throughput is

defined as X (t) = g—z where D; denotes the data success-

fully received during time period [t — ¢ + A¢]. A, in our

simulations is 1 second.

The fairness index and the overall throughput of the two
flows under different values of max, are given in Figure 10
(hidden terminal scenario) and Figure 11 (exposed terminal
scenario). In each figure, the upper diagram is the fairness
index and the lower one is the aggregated throughput, which
is the sum of the overall throughput of the two flows. Before
NRED is applied, the two scenarios show very significant un-
fairness consistent to results reported in the literature [18,
19]. In the hidden terminal scenario, one of the two flows
usually achieves much higher throughput (e.g. more than
7T00Kbps) than the other one (e.g. below 100Kbps). Which
one wins the channel is not deterministic. Usually the one
which starts slightly earlier wins the channel since its con-
gestion window has chance to grow larger. The unfairness
is even more severe in the exposed terminal scenario, where
flow 2 always captures the channel and drives the through-
put of flow 1 to nearly zero. Detailed analysis of why hidden
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Figure 10: Performance of NRED scheme under the
hidden terminal situation with various max, values
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Figure 11: Performance of NRED scheme under the
exposed terminal situation with various max, values
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Figure 12: Instantaneous throughput of the two
TCP connections under the exposed terminal sit-
uation when NRED is applied

and exposed terminal situations cause significant unfairness
can be found in [3, 18, 19].

After NRED is applied, we observe that the fairness in-
dices under the both scenarios are improved quickly along
with the increase of max,. For the hidden terminal scenario,
the fairness index is close to 1 (the highest value) after max,
is larger than 0.1. For the exposed terminal scenario, fair-
ness index is also above 0.95 when max, is larger than 0.14.
In general, fairness index is increased along with the increase
of max,. This is because larger maz, will punish the flows
overusing channel quickly.

Along with the increase of maz,, the aggregated through-
put of the two flows is decreased. The throughput loss comes
from two reasons. First, before a packet is dropped by
NRED, it may have used the channel. Dropping such pack-
ets certainly wastes some bandwidth. Second, the NRED
scheme tends to keep the wireless channel slightly underuti-
lized. Thus, a small fraction of bandwidth is also sacrificed.
To achieve good fairness without too much throughput loss,
from above simulation experiments, we conclude that the
optimal values of max, are between 0.1 and 0.2. In later
experiments, we set mazx, as 0.14.

To further demonstrate how fairly the two flows share the
channel when NRED scheme is applied, we plot the instan-
taneous throughput of the two flows in the exposed terminal
scenario with max, as 0.14 in Figure 12. Results of the hid-
den terminal scenario are very similar. From Figure 12 we
can see that the two flows interlace very well with no any
flow continuously uses the channel for long period. Note,
only one of the flows can transmit at any time, which ex-
plains the up and down of instantaneous throughput.

We then further investigate how the NRED performs un-
der the scenario in Figure 1 in section 4, where the original
RED scheme does not help much in terms of improving fair-
ness. The overall throughput of the 3 flows with and with-
out NRED scheme is shown in Figure 13. The fairness is
very clear. The starved flow 2 now gains good throughput.
Figure 14 further gives the instantaneous throughput of the
3 flows. We can see that short-term fairness is also good
(Note, flow 1 and flow 3 can transmit at the same time. But
when flow 2 is transmitting, both of them should be quiet.).

Through Figure 13 we also observe that the aggregated
throughput of the 3 flows is decreased by 42% when the
fairness is improved. This is an interesting point of the
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Figure 13: Overall throughput of the 3 flows in the
scenario of Figure 1 with and without NRED.
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Figure 14: Instantaneous throughput of the 3 flows
in the scenario of Figure 1 with and without NRED.

tradeoff between fairness and throughput. Only half the
total throughput is achieved during the period of flow 2’s
transmissions due to the spatial reuse constraint. Thus, to
achieve the best network-wide throughput, we should totally
starve flow 2. However, this is extremely unfair to flow 2.
To achieve fairness among the 3 flows, decreasing the ag-
gregated throughput is unavoidable. More discussion about
trade off between fairness and overall network throughput
can be found in [12].

7. PERFORMANCE EVALUATION OF NRED

In this section, we further evaluate the proposed NRED
scheme under more realistic scenarios such as considering
multiple bottlenecks as well as mobility. The major config-
uration parameters of NRED are set as wg = 0.2, ming, =
100 packets, max:, = 240 packets and maz, = 0.14.

7.1 Multiple Congested Neighborhood

In the previous section, most investigated scenarios only
contain one bottleneck neighborhood. However, in the ad
hoc network, it is highly possible that a TCP flow will tra-
verse several congested neighborhoods, although the degree
of congestion may be different. In this experiment, we evalu-
ate how NRED performs under such situations. The experi-
ment scenario is illustrated in Figure 15. The grid topology
is used and 6 FTP/TCP connections are established as in
the figure. The vertical and horizontal distance between
neighboring nodes is 350m. Each TCP connection traverses
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Figure 15: Scenario of the multiple congested neigh-
borhood topology.
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Figure 16: Overall throughput of each flow with and
without NRED.

4 hops. In this topology, several bottleneck neighborhoods
may be present at the same time. In the figure, 3 possible
bottlenecks of TCP 5 are shown as gray shaded circles. All 6
TCP connections start at 10s and finish at 130s. The overall
throughput of each flow is given in Figure 16.

As we can observe from Figure 16, TCP 2 and TCP 5 are
starved originally but gain visible throughput when NRED
is applied. The improvement of fairness is obvious. However,
TCP 2 and TCP 5 will always achieve less throughput since
they have interfering flows on both sides.

7.2 Performance under Mobility

In this experiment, we consider the adaptation of NRED
to mobility. Two parameters of NRED scheme control its
adaptability to topology changes. The first one is the chan-
nel estimation interval Tiptervar Which controls how quickly
the algorithm can react to sudden channel utilization changes.
The second parameter is the lifetime of a NCN packet.
Once a node moves out from a congested neighborhood, it
will not receive a new NCN packet. But it will continue
to mark or drop packets until the lifetime of the old NCN
packet expires.

The scenario of this experiment is illustrated in Figure
17. 5 nodes are involved and two FTP/TCP connections are
used as shown in the figure. Only node 5 is moving — up
and down between positions (200, 600) and (200, 400). Its
initial position is (200, 600). The mobility speed is 10m/s.
The node stays at each position for around 20s and then
continues to move.
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Figure 17: Scenario for evaluating NRED under mo-
bility.
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Figure 18: Instantaneous throughput dynamics un-
der mobility without NRED.

Figure 18 (without NRED) and 19 (with NRED) show
the dynamics of the two connections by plotting the instan-
taneous throughput of each flow. From Figure 18, we ob-
serve that when node 5 moves down, the two connections
are out of interference with each. Then they both can use
the channel well. However, when node 5 moves up, the two
connections start interfering with each other. The FTP 1
tends to capture the channel because when node 5 moves
up, its distance to node 4 and node 6 is larger. Thus, the
transmissions among them are not as robust as the trans-
missions of FTP 1. Thus it has disadvantages in competing
the channel.

When the NRED scheme is applied, node 5 now can de-
tect the congestion after moving close to node 2. From Fig-
ure 19, we clearly observe that now the two flows can share
the channel fairly when they are close enough to interfere
with each other. In the experiment of Figure 19, the esti-
mation interval Tintervar 1S set to 100ms and the lifetime
of a NCN packet is 2 seconds. The scenario of this ex-
periment is very simple and artificial. However, it clearly
demonstrates that the NRED scheme is indeed can adapt to
mobility. We didn’t evaluate our scheme under random mo-
bility since such situations may distract the main point of
the paper. For example, link breaks (path failures) caused
by mobility will also result in very low throughput of some
TCP flows. However, such low throughput should not be
recognized as unfairness (at least not the unfairness issues
targeted in this paper).
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Figure 19: Instantaneous throughput dynamics un-
der mobility with NRED.
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Figure 20: Overall throughput of each TCP connec-
tions with and without NRED in the more realistic
scenario with random topology, random traffic.

7.3 More Realistic Scenario

In all simulations above, the topology is simple and specif-
ically selected. The well controlled scenarios allow us to
clearly demonstrate the problems and the usefulness of the
NRED scheme. However, it is also interesting to take a look
at the performance of NRED under more realistic scenarios.
In this experiment, both random topology and random traf-
fic are used. More precisely, totally 50 nodes are randomly
deployed in a 1000m by 1000m field and 5 FTP/TCP con-
nections are randomly selected. The TCP connections start
and end at the same time and last 120 seconds. AODV
routing protocol [14] is used here and nodes are not mo-
bile. Different random seeds are used for multiple simulation
runs. The results of a typical simulation run are plotted in
Figure 20. Other simulations give similar results, but not
similar numbers of each specific flow since the traffic pattern
is changed due to change of the random seed.

From Figure 20 we can observe that NRED scheme is still
able to improve fairness in general, especially reflected by
throughput of flow 2 and flow 3. In conclusion, we would
like to point out that good fairness does not mean the same
throughput for all the participating TCP connections. Two
important factors must be considered. First, TCP through-
put is highly affected by the number of hops from senders to
receivers. It is a well known bias that TCP flows with shorter
RTT are usually favored. This bias is strengthened even
more in ad hoc wireless networks. The maximum achiev-



able throughput of a 2-hop flow is only 1/2 of that of a
1-hop flow. Similarly, a 3-hop flow can only achieve at most
1/3. This feature is due to the spatial reuse constraint,
which has been discussed in detail in [7] and [?]. The sec-
ond factor is that interference is location dependent. Even
two flows may contend with each other in a certain location,
they are facing different interfering constraints from other
locations. In other words, we have the multiple bottleneck
effect. It is thus reasonable that flows with fewer interfer-
ing flows (i.e., less constraining bottlenecks) achieve higher
throughput, which should not be recognized as unfairness.
To sum up, the investigation of TCP fairness in arbitrary
topologies and scenarios is extremely complex, especially
when nodes are mobile. The NRED method appears to have
general applicability in above preliminary experiments. The
proper evaluation of NRED in general, multi-bottleneck sce-
narios requires the definition of new performance measures
such as a wireless specific fairness index suitable for multi-
hop ad hoc networks and will be subject of future studies.

8. DISCUSSION AND FUTURE WORK

TCP fairness in multihop wireless networks is closely re-
lated to the underlying MAC protocols. Fairness of the
MAC protocol has been an active research area in the past
several years. Several schemes for improving the fairness of
MAC protocols have been proposed in the literature [1, 13].
Although little work has been done to investigate TCP fair-
ness under such fair MAC protocols, we believe improving
fairness of the MAC protocol will certainly improve TCP
fairness as well.

Naturally, a major problem of MAC layer fairness solu-
tions is implementation difficulty. As the IEEE 802.11 stan-
dard has been widely accepted by the industry and IEEE
802.11 wireless radios are becoming the de facto standards
for ad hoc testbeds, it is clearly desirable to solve TCP un-
fairness problems at the network or transport layers. An-
other important consideration is incremental deployment.
Usually, an ad hoc network requires that all involved wire-
less nodes have a consistent MAC protocol. Thus, any mod-
ification of the MAC protocol requires update at all nodes.
The NRED scheme proposed in this paper is a network layer
solution that can be incrementally deployed. In the worst
case, a NCN packet arriving at a non-NRED node will be
dropped silently. And as long as some nodes capturing the
channel recognize the NCN packet, the unfairness can be
improved to some degree.

If we view TCP connections as general traffic flows, TCP
fairness is essentially a multihop fair scheduling problem as
discussed in [12]. Thus fair scheduling at the network layer
for ad hoc networks is quite close to our work in this paper.
However, fair scheduling schemes tend to require topology
information, in most cases even the global information is
needed, for scheduling decisions, which requires additional
overhead and is not robust to mobility. Besides, multihop
fair scheduling itself is still an active research area without
any satisfactory practical solution. In this paper, we utilize
the features of TCP congestion control to achieve fairness by
reacting to early neighborhood congestion. Compared to fair
scheduling, our scheme doesn’t need any topology informa-
tion. It is totally localized with little overhead. We only fo-
cus on the bottleneck neighborhood and only the congested
nodes need to broadcast a small NCN control packet. In
general, fair scheduling will be used for QoS flows, while our

scheme is suitable for fairness among best-effort flows. For
example, although fair scheduling schemes and QoS schemes
probably can solve all problems that RED can, RED gate-
ways still find their important positions in the wired net-
works due to their simplicity and low overhead.

In current design of NRED scheme, packets of the ag-
gressive TCP flows are randomly dropped at the congested
neighborhood. This is not maximally efficient for overall
network throughput since those packets have consumed some
bandwidth before they reach the congested area. This is also
one reason that the aggregated throughput of TCP flows
decreases in our experiments when the NRED scheme is ap-
plied. An alternative choice would be to explicitly notify
the TCP sender to freeze or reduce its congestion window.
For example, nodes in the congested neighborhood can mark
the Explicit Congestion Notification (ECN) bit of the ongo-
ing TCP packets instead of dropping them. However, such
schemes require support from TCP senders and receivers.
Directly dropping some packets is the simplest way to no-
tify traffic sources.

In this paper, we mostly evaluated NRED scheme under
relatively long-lived TCP flows such as FTP connections
transferring a medium or large size file. This is because
TCP unfairness issues are more serious to such TCP traffic.
If a TCP connection finishes its transfer in seconds, NRED
may not have enough time to detect the network congestion
and perform proper actions. However, for short-lived TCP
flows, even if it captures the channel, it will not hurt other
flows too much since it ends very quickly anyway.

Although NRED scheme is targeting improving the fair-
ness of TCP traffic, similar unfairness issues may also hap-
pen to non-TCP traffic such as multimedia streaming. The
NRED scheme requires the transport protocol to be re-
sponsive to network congestion indicated by packet loss.
Many TCP friendly or congestion controlled transport pro-
tocols have been proposed for ad hoc networks recently. The
NRED scheme will also work well with such transport pro-
tocols.

Our future research directions include: investing new algo-
rithms for estimating queue size, comparing different choices
for congestion notification, investigating fairness among TCP
flows and multimedia streaming as well developing an ana-
lytical model for neighborhood queue.

9. CONCLUSION

TCP performance is critical to the broad acceptance of
multihop wireless networks. In this paper, we proposed a
scheme called Neighborhood RED, which is an extension of
the RED originally developed in the wired network to ad hoc
wireless networks. By detecting early congestion and drop-
ping packets proportionally to a flow’s channel bandwidth
usage, the NRED scheme is able to improve TCP fairness.
The major contributions of this work are the concept of a
distributed neighborhood queue (without which the RED
scheme does not work) and the design of a network layer
solution that does not require MAC modification.
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