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Abstract—Radio tomographic imaging (RTI) is an emerging
device-free localization (DFL) technology enabling the localiza-
tion of people and other objects without requiring them to carry
any electronic device. Instead, the RF attenuation field of the
deployment area of a wireless network is estimated using the
changes in received signal strength (RSS) measured on links of
the network. This paper presents the use of channel diversity to
improve the localization accuracy of RTI. Two channel selection
methods, based on channel packet reception rates (PRRs) and
fade levels, are proposed. Experimental evaluations are per-
formed in two different types of environments, and the results
show that channel diversity improves localization accuracy by an
order of magnitude. People can be located with average error as
low as 0.10 m, the lowest DFL location error reported to date. We
find that channel fade level is a more important statistic than PRR
for RTI channel selection. Using channel diversity, this paper, for
the first time, demonstrates that attenuation-based through-wall
RTI is possible.
Index Terms—device-free localization, radio tomographic

imaging, wireless sensor network

I. INTRODUCTION

Radio tomographic imaging (RTI) is an emerging tech-
nology that enables the device-free localization (DFL) and
tracking of people located within the deployment area of a
wireless network. In RTI systems, the only sensor used is
the radio, which measures the received signal strength (RSS)
of signals it receives. Thus we refer to such networks as RF
sensor networks [1]. Most importantly, these systems do not
require people to carry any device, sensor, or tag to participate
in the localization effort. The potential applications of these
device-free localization (DFL) systems are many, including
ambient assisted living, security systems, rescue operations,
and occupational safety systems in industrial areas, among
others.
Shadowing-based RTI, introduced in [2] and futher explored

in [3], [4], [5], [6], [7], assumes that a person or object
attenuates the RSS on a link when they cross through the
line between the transmitter and receiver. By measuring the
many links that may exist in a wireless network with a mesh
topology, an RTI system will measure attenuation on more
than one link when a person is in the deployment area, and
thus will be able to estimate where the person is located.

However, in indoor environments, the presence of people
is not the only factor affecting the propagation of radio
signals. Without the presence of a person, the obstructions
and objects in the environment affect the multipath propa-
gation environment, that is, the way that the radio signal is
shadowed, reflected, diffracted, and scattered [8] on its path
from transmitter to receiver. At the receiver, a phasor sum
of waves impinging on the antenna determine the received
signal strength. This phasor sum may be constructive (waves
have same phase) or destructive (waves have opposite phase),
resulting in a RSS that is a function of the center frequency
and position in space, an effect called multipath fading. When
the phasor sum is destructive, the link is in deep fade, and
when constructive, the link is in an anti-fade. Person-induced
changes in a link’s RSS is strongly dependent on fade level
[9]. When a person blocks the line between transmitter and
receiver, it is the link in an anti-fade that is most strongly
and reliably attenuated. Links with other fade levels may see
RSS increase or not change, on average, when obstructed. An
example multi-channel RSS measurement is shown in Fig. 1,
in which a human moves and then stands on the link. On the
channel with highest average RSS (#26), the person’s effect is
to reduce the RSS; while on the other two channels, the effect
is very small (on #15) or to increase the RSS (on #11).
In this paper, we show that the localization accuracy of RF

networks can be dramatically improved by exploiting multi-
channel communication among the nodes. By measuring RSS
on multiple channels on each link, it is more likely that one
of the channels is in an anti-fade, and thus will measure
attenuation when a person crosses the link line. Using the
RSS measurements from the multiple channels on each link,
we propose two channel selection methods, based on the
packet reception rate (PRR) and on the channel fade level, to
determine which channels’ RSS measurements to use in RTI.
We analyze how each method affects localization accuracy
compared to the use of a single frequency channel. We perform
tests in two different indoor environments, one in which
links are unobstructed, and another in which the nodes are
positioned outside the walls of a cluttered student lounge. The
RTI system in the second environment is a see-through walls
system like [10]; however, our shadowing-based RTI method
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Fig. 1. RSS measurements on three frequency channels on one link when a
person moves in between the transmitter and receiver at time n = 355. The
RSS behavior varies considerably among channels.

can locate stationary people while the variance-based method
of [10] cannot. The results of this paper are the first to show
that shadowing-based RTI can locate people behind walls.
The results also show that the fade level method outperforms

the packet reception rate method in terms of localization
accuracy. Thus we find that a link’s fade level is more
important than a link’s communication performance in channel
selection. To the best of our knowledge, this is the first
work demonstrating that RTI’s localization accuracy can be
consistently improved by channel diversity, even in through-
the-wall scenarios.

A. Related Work
Several works [3], [4], [7], [10] have already shown that

human motion in an area in which wireless nodes are deployed
changes the way the radio signal propagates, enabling the
localization and tracking of moving individuals from the
change of the RF propagation field. Unfortunately, when in
a heavily obstructed indoor environment, multipath becomes
a serious issue, making the behavior of most of the wireless
links unpredictable. In this paper, we use measurements on
multiple channels to improve the probability that each link
will measure attenuation when a person is located between its
transmitter and receiver.
Nodes used in these related works are equipped with low-

power, IEEE 802.15.4-compliant radios operating in the 2.4
GHz band. The IEEE 802.15.4 standard [11] specifies 16
channels within the 2.4 GHz band. They are numbered from 11
through 26 and are 5 MHz apart, having a 2 MHz bandwidth.
The carrier frequency (in MHz) of channel k is:

fc = 2405 + 5 · (k − 11), k ∈ [11, 26]. (1)

In indoor environments, low-power 802.15.4 networks are
often coexisting with more powerful 802.11b/g (WLAN) net-
works, which also operate in the 2.4 GHz band (although

802.15.4 channels 15, 20, 25 and 26 do not overlap). The
communication performance of RF sensor networks can be
degraded from both WLAN interference [12] and co-channel
or adjacent channel 802.15.4 network interference [13], [14].
To address these interference problems, several multi-

channel MAC [15], data collection and dissemination proto-
cols [16] specifically designed for sensor networks have been
proposed. Channel diversity has also been exploited to improve
the efficiency of over-the-air programming [17] and secret key
establishment algorithms [18]. All these works assume that, by
having pairs or groups of nodes communicating on different
frequency channels, the overall performance of the network
can achieve improved communication performance and energy
efficiency. In contrast, in this work, our purpose for channel
diversity is to enhance the localization accuracy.
The rest of the paper is organized as follows. In section

II, an extension for the linear model in [3] is derived and
a regularized least-squares solution for image reconstruction
is described, together with the methods for channel selection
and the performance metrics used in the evaluation. Section
III discusses the concept of channel fade level and illustrates
the effect of fade level on the RSS measurements. Section
IV describes the two conducted experiments, presents the
results, and discusses the effect of channel diversity on RTI’s
localization accuracy. Conclusions and future work directions
are given in Section V.

II. METHODS

A. Measurement model
The objective of an RTI system is to estimate a discretized

attenuation field, using the decrease in RSS on links in
the network, and locate the people causing the estimated
attenuation field. The RSS measured by the receiving node
of link i at time t on channel k can be described as:

ri,k(t) = Pk − Li,k − Si,k(t)

+Fi,k(t)− vi,k(t), k ∈ F (2)

where Pk is the transmit power, Li,k the large scale path loss,
Si,k(t) the shadowing loss, Fi,k(t) the fade level (i.e., fading
gain), vi,k(t) the measurement noise, and F = {1, . . . ,K} is
the set of radio channels used for communication, where K
is the number of channels measured. The transmit power Pk

is a function of the frequency channel k due to differences
in antenna impedance matching across a wide frequency band
[19]. One of the channel selection methods requires a transmit-
power normalized version of the RSS, which we denote r̃i,k
and define as:

r̃i,k(t) = ri,k(t)− Pk. (3)

We refer to the time interval [t0, ta] as the calibration
period, during which measurements are used to calculate the
average RSS for each link on each channel. We define the
change in RSS from time ta to tb as follows:

∆ri,k = ri,k(tb)− ri,k(ta), (4)



which has a simplified representation as:

∆ri,k = Si,k(tb)− Si,k(ta) + ni,k(tb)− ni,k(ta)

= ∆Si,k +∆ni,k, (5)

where ∆ni,k = Fi,k(tb) − Fi,k(ta) + vi,k(tb) − vi,k(ta) is
the sum of the change in fading on channel k and change in
measurement noise.
The change in link shadowing is assumed to be a spatial

integral of the attenuation field of the monitored area. Some
voxels in the discretized attenuation field will affect a particu-
lar link’s RSS, and some will not. In our discretized model, this
corresponds to the fact that each link’s change in shadowing
is assumed to be a linear combination of the change in voxel
attenuations:

∆Si,k =
N
∑

j=1

wijxj,k +∆ni,k, (6)

where xj,k is the change in attenuation in voxel j, wij the
weight of pixel j for link i, and N the number of voxels. The
weighting wij is presented in more detail in Section II-C.
Channel selection is the reduction of a link’s multi-channel

RSS measurements to a scalar value for each link and each
time:

yi = f(∆ri,1, . . . ,∆ri,K) (7)

where f(·) is an arbitrary function which we refer to as the
channel selection function. Choices for the selection function
are discussed in Section II-B.
When every link of the RF network is considered, the

changes in the attenuation field of the monitored area can be
now modeled as:

y = Wx+∆n, (8)

where y and ∆n areM×1 vectors representing the measured
RSS difference and noise of the M links, x is the N × 1
radio tomographic image to be estimated, andW is the weight
matrix of size M ×N where each column represents a single
voxel of the image and each row the weight of each voxel
for that particular link. The linear model for shadowing loss
is based on the correlated shadowing models in [2], [20], and
on the work presented in [3].

B. Choosing the channels
We consider three different methods for selecting the chan-

nels used in RTI, from among those channels measured. In all
the previous works, the RSS measurements are collected on
a single frequency channel. In this case, the channel selection
method is as follows:

• Single channel: All sensors of the network communicate
on a single channel defined by the end user as follows:
choose a single channel k from the set F . Now, y =
[y1,k, . . . , yM,k]T . This method yields the same results
as in [3].

The system presented in this work collects RSS measurements
on multiple frequency channels. Thus, we introduce two new

methods to select the channels to be used for RTI from among
the measured ones. These methods are:

• PRR method: For every link i ∈ {1, . . . ,M}, sort the
measured packet reception rate (PRR) of channels k ∈
F . Make a set Ai of size m containing the indices of
the m highest channels of link i by PRR and form the
measurement yi as given in (9).

• Fade level method: For every link i ∈ {1, . . . ,M}, and
every channel k ∈ F , compute the average transmit-
power normalized RSS measurements during the calibra-
tion period, specifically, gi,k = 1

ta

∑ta
t=1

r̃i,k(t), where
r̃i,k(t) is given in (3). We use gi,k as a measure of the
fade level – if gi,k1

< gi,k2
, the link is in a deeper fade

in channel k1 than in k2. For each link i, sort gi,k for
all channels k. Make a set Ai of size m containing the
indices of them highest channels by fade level gi,k. Then,
form the measurement vector as in (9).

The measurement vector for the PRR and fade level methods
is formed as follows:

yi =
1

m

m
∑

k∈Ai

∆ri,k,

y = [y1,A1
, . . . , yM,AM

]T . (9)

The PRR method selects the channels so that the communi-
cation reliability of the links is maximized, whereas the fade
level method selects the channels so that the fade level of
the links is maximized. Generally for links i $= j we have
that Ai $= Aj . However, when m equals the total number of
channels K, then Ai = Aj = F and the PRR and fade level
methods must yield the same result.

C. Weight model
The weighting matrixW represents a spatial model for how

each voxel’s attenuation impacts each link. We assume that
we cannot measure the spatial impact model a priori. Thus, a
geometrical model is needed for this relationship. An ellipse
model, in which the transmitter and receiver are located at
the foci, has been effectively used in [3] and [10]. Voxels j
that fall inside link i’s ellipsoid have their weight wij set to a
constant, which is inversely proportional to the square root of
the link length. Otherwise, wij is set to zero. The weighting
can be mathematically formulated as follows:

wij =
1√
d

{

1 if dtij + drij < d+ λ

0 otherwise
, (10)

where d is the link length, dtij and drij are the distances from
the center of voxel j to the transmitter and receiver of link i,
and λ is the ellipse excess path length (which tunes the width
of the ellipse).

D. Image formation
Estimating the image vector x from the link measurements

y is an ill-posed inverse problem, where the same set of
link measurements can lead to multiple different images,
i.e., solutions. Therefore, regularization is required. Tikhonov



regularization [3], [10] and regularized least squares estimators
[2], [21] have been used to achieve submeter localization
accuracy. Here, we use a regularized least-squares approach:

x̂ = Πy, (11)

Π = (WTW + σ2

NC−1

x )
−1

WT , (12)

where σ2
N is the noise variance. The a priori covariance matrix

Cx is calculated by using an exponential spatial decay:

[Cx]jl = σ2

xe
−djl/δc , (13)

where djl is the distance from center of voxel j to the center
of voxel l, σ2

x is the variance of voxel attenuation, and δc is a
correlation parameter that can be used to determine the desired
amount of smoothness in the image. The linear transformation
Π can be calculated beforehand enabling real-time image
reconstruction.

E. Performance metrics
To evaluate the improvement in accuracy provided by

channel diversity, two performance metrics are used. The first
measure assesses the localization accuracy, while the second
measures the reconstructed image error. The location of one
person can be estimated by finding the voxel of the RTI image
that has the maximum value:

j = argmax
N

x̂. (14)

The location estimate is therefore ẑ = zj . The localization
error is calculated as:

eloc = ‖ẑ − zH‖, (15)

where zH is the true human location. Note that estimate in (14)
is only capable of locating one person. Multi-target tracking
is a difficult problem in RTI and is not a focus of this paper,
and thus we do not propose coordinate estimators for the
multi-target case. For multi-target RTI, we show qualitatively
that performance is improved in Section V, but quantitative
performance comparisons are left for future work.
The second performance measure quantifies the localization

accuracy and noise of the reconstructed images. For this, the
true attenuation field must first be modeled. Some simplifica-
tions are necessary because the exact attenuation field is not
known. The human body is modeled as a uniformly attenuating
cylinder with radius rH , as assumed in [3]. When a human is
at location zH , the true attenuation image xT can be written
as:

xTj =

{

1 if ‖zj − zH‖ < rH

0 otherwise
xT = [xT1, . . . , xTN ]T , (16)

where zj is the coordinate of the center of voxel j. By
normalizing the estimated image x̂ to one, the error of the
reconstructed image can be defined as:

εatt = max{p, eloc} ·
‖xT − x̂norm‖2

N
, (17)

where x̂norm is the normalized image vector, N is the number
of voxels in the image and p is the pixel size and it is used
to prevent multiplication by zero.

III. CHANNEL FADE LEVEL
People moving in the close proximity of a wireless link

effect the RSS by shadowing, reflecting, diffracting, or scatter-
ing a subset of its multipath components [1], [10]. In an open
environment in which the line-of-sight (LoS) path is dominant,
a person blocking the LoS of a link will generally attenuate the
radio signal. This phenomenon has been succesfully applied
to locate humans in [3], [6], [7], [22]. However, when an en-
vironment is heavily obstructed and multipath is common, the
change in RSS due to human presence becomes unpredictable.
The presence of people may cause changes in the RSS even
far away from the LoS. On the other hand, the RSS can remain
unchanged or even increase [10] when the LoS is obstructed.
The relation between steady-state, narrow-band fading and

the temporal fading statistics of the RSS due to human
movement is described in [9]. The authors define fade level, a
continuum between two extremes, namely a deep fade and an
anti-fade, for the fading observed on a wireless link. A link in
a deep fade is affected by destructive multipath interference
and will most probably experience high variance as the person
moves in a wide area near the transmitter and receiver and the
line in between them. In addition, a deep fade link’s RSS on
average increases when the LoS is obstructed. On the contrary,
a link in an anti-fade is affected by constructive multipath
interference. The RSS of these links varies significantly less
due to movement in the area. As their LoS is obstructed,
anti-fade links’ RSS tends to decrease. Anti-fade links are the
most informative for DFL because the area in which a person
changes the RSS is small and predictable, largely limited to
the straight line between the transmitter and receiver.
Positive values of Fi,k(t) in (2) indicate that the wireless

link is affected by constructive multipath interference (and thus
is in an anti-fade), whereas negative values denote that the link
is experiencing destructive multipath interference (and thus is
in a deep fade).
Fade level can be quantified, although indirectly, using (2).

In (2), fade level is denoted Fi,k and can be written as:

Fi,k(t) = ri,k(t)− Pk + Li,k + Si,k(t) + vi,k(t). (18)

Here, ri,k(t) − Pk is what we call the transmit power-
normalized RSS r̃i,k(t), given in (3). Large scale path loss
Li,k and shadowing loss Si,k(t) change very slowly with
the center frequency – in this case, our channels are at
most 80 MHz apart at 2.4 GHz, or at most 3.3% different.
We assume both are effectively not a function of k. Thus
Fi,k(t) = r̃i,k(t) + Ci + vi,k(t). In other words, fade level
is a noisy, offset version of transmit power-normalized RSS.
Since we can’t directly measure Fi,k(t), we use r̃i,k(t) as a
substitute for fade level whenever we are considering the K
channels on link i.
To illustrate the effect of fade level, Fig. 2 plots the RSS

measurements on two different channels of a single link
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Fig. 2. Temporal fading of the RSS on two different channels due to human movement, when the line between the TX and RX (a) is not obsructed, and (b)
is obstructed. In (c), the person moves in between the nodes, walks along the link line, and then moves away from the nodes.
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Fig. 3. The student lounge used in experiment 2 is shown in (a) and (b). In (c), the layout and sensor positions are shown. Experiment 1 uses identical
sensor positions, but in an open environment.

(experiment 2), i.e., the LoS link between nodes at (0.0,1.5)
and (9.0,1.5), as shown in Fig. 3(c). Note that this link crosses
through labeled points B and C in Fig. 3(c). The dashed lines
in Fig. 2(a)-(c) show the mean RSS during the calibration
period. It can be observed that the fade level difference
between the two channels is almost 20 dB. The link can be
considered to be in anti-fade on channel 11 and in deep fade
on channel 26.
The solid lines graphed in Fig. 2(a) show the RSS when

the person is standing at point D, 4.5 meters away from
the LoS. On channel 11, the RSS is the same as the one
measured during calibration. In contrast, the deep fade channel
measures an attenuation in the RSS even though the LoS is
not obstructed. In Fig. 2(b), the solid lines show the RSS when
the person is standing at point B, i.e. on the LoS. It can be
observed that the anti-fade channel experiences attenuation,
whereas the deep fade channel experiences an increase in
signal strength. In Fig. 3(c), the person moves from point A
to point B, reaching the LoS of the link at sample 948, then
walks along the LoS from point B to point C, and finally
moves off the LoS towards point D at sample 958. In this
case, the anti-fade channel measures a small RSS variation
until the LoS is obstructed, and a constant attenuation while
the person is moving along the LoS. Once the person leaves
the LoS, the RSS goes back to the mean value. On the contrary,

the deep fade channel starts varying already before the LoS
is obstucted, and measures RSS values both higher and lower
than the mean while the person is moving along the LoS. Once
the person moves away from the LoS, the deep fade channel’s
RSS continues to vary.
From this example and evidence from the literature [9], [10],

we see that links in a deep fade are not reliable indicators of
the presence of a person on the line between the transmitter
and receiver. However, in obstructed indoor environments,
multipath fading is severe and anti-fade links are few. An
RTI system that relies on any one channel will have few
links accurately measuring person location. On the other hand,
when channel diversity is used as we propose, the number of
anti-fade links can be considerably increased, consequently
improving RTI’s localization accuracy.

IV. EXPERIMENTAL RESULTS
A. Experimental setup
To evaluate the effect of using channel diversity to RTI, we

conduct experiments in two different areas: an open indoor
environment (experiment 1) in which all the sensors have
LoS communication among each other, and a lounge room
(experiment 2) containing furniture and several other objects.
Furthermore, in experiment 2 the sensors are placed outside the
room, so that the localization is performed through the walls.
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Fig. 4. Attenuation images of experiment 1. The person is standing at coordinates (2.13, 1.52). The error of the reconstructed image εatt is 0.0045 for the
PRR method (b) and 0.0008 for the fade level method (c). The number of used channels m = 1.

TABLE I
PDR OF THE EXPERIMENTS [%]

Channel 11 15 18 21 26
ex. 1 1.1 1.4 2.5 5.7 12.3
ex. 2 5.3 5.2 10.8 2.5 7.8

TABLE II
IMAGE RECONSTRUCTION PARAMETERS USED IN THE EXPERIMENTS

Parameter Value Description
p 0.1524 Pixel width [m]
λ 0.02 Excess path length of weighting ellipse [m]
σx 0.2236 voxels standard deviation [dB]
σN 1 noise standard deviation [dB]
δc 4 correlation coefficient
rH 0.4 radius of the human cylinder model [m]
m 1 - 5 number of considered channels

In both experiments, 30 sensors are positioned on the perimeter
of the monitored area in identical positions, as shown in
Fig. 3(c), surrounding a total area of 70 m2. The sensors are
placed on podiums at a height of one meter. Figure 3 shows
the lounge room used in experiment 2.
In both the experiments, a 60 s calibration is perfomed in

order to measure the RSS of the links in static conditions, i.e.,
when no people are present in the area. Markers are placed
at ten locations, as shown in Fig. 3(c), inside the monitored
area. These locations represent the true position of the person
during the tests and are used as reference in the subsequent
error analysis. The localization error is determined only while
the person is standing at one of these ten locations. At each
location, the person stands still for 20 s. In this paper, we
consider only the localization of stationary people so as to
provide an accurate comparison between methods. Although
not discussed, the same methods can be applied to track a
moving person.
The sensors composing the network are Texas Instruments

CC2531 USB dongles set to have 4.5 dBm transmit power
[23]. The sensors run a multi-channel token passing protocol,
multi-Spin, an extension of Spin [24]. In multi-Spin, the
sensors transmit in TDMA fashion with a sequence defined by
their ID. When not transmitting, the sensors are in receiving

mode. Each packet contains the ID of the transmitting node
and the most recent RSS measurements of the packets received
from other sensors. If a packet is dropped, the next sensor
in the schedule transmits after a back-off time, making the
network tolerant to packet drops. At the end of each com-
munication cycle, the sensors switch synchronously to the
next frequency channel found in a list pre-defined by the
user. On average, the time interval between two consecutive
transmissions is 2.9 ms, resulting in a total cycle length
of 87 ms. The image reconstruction parameters used in the
experiments are listen in Table II.
During the experiments, another network previously de-

ployed in the surrounding rooms and communicating on
channel 26 interfered with the communication of our network,
which uses channels 11, 15, 18, 21, and 26. The packet drop
rates (PDRs) of the channels during the two experiments are
shown in Table I. As expected, the PDR is on average higher
on channel 26 then on the other channels. In addition, the PDR
is on average 2 % higher in the cluttered environment.

B. Experiment 1, open environment

In this section, we quantitatively compare multi-channel and
single-channel RTI in an open environment. In Fig. 4, the true
attenuation image (a) and the images obtained by applying
the PRR (b) and fade level (c) channel ranking methods are
shown. The localization errors, calculated as in (15), are 0.15
m with the PRR method and approximately 0.0 m with the
fade level method. The error of the reconstructed images is
εatt = 0.0045 with the PRR method and εatt = 0.0008 with
the fade level method. These results indicate that the fade
level method locates more accurately the person and includes
less background noise than the PRR method. Noise in the
reconstructed images originates from the RSS measurements
of those links that experience changes in the RSS even when
a person is not on the LoS. As discussed in Section III, deep
fade links are prone to such an unpredictable behavior due to
multipath. Thus, the results imply that the fade level method is
capable of selecting those channels better suited to achieving
high accuracy localization.
The mean position estimates of the PRR and fade level
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Fig. 5. Localization accuracy of experiment 1. The localization error is
ēloc = 0.60 m for the PRR method and ēloc = 0.21 m for the fade level
method. The number of used channels is m = 1.

methods at the ten benchmark positions of the experiment are
shown in Fig. 5. The average localization error is ēloc = 0.60
m for the PRR and ēloc = 0.21 m for the fade level method
when the number of used channels is one, i.e., m = 1. This
again indicates that, to obtain accurate position estimates, the
link fade level is more important then the link communication
performance. The mean localization error for some values of
m, as reported in Table III, is below the voxel size p. In
order to reduce further the localization error, the size of the
voxel would need to be reduced. However, by reducing it, thus
increasing the number of voxels composing the images, the
computational complexity of the image reconstruction process
increases linearly.
The performance of a system communicating on a single

channel is summarized in Table III. The localization accuracy
varies considerably between different channels, achieving its
best on channel 18, when the localization error is ēloc = 1.08
m and the mean error of the reconstructed images is ε̄att =
0.0530. However, a multi-channel system outperforms the sin-
gle channel one regardless of the number of selected channels
m. Moreover, the localization accuracy can be improved by
an order of magnitude by applying the fade level method,
which achieves its best accuracy when four channels are used
(ēloc = 0.10 m and ε̄att = 0.0018). The PRR method achieves
its best accuracy when all five channels are used (ēloc = 0.13
m and ε̄att = 0.0032). When m = K, the two methods yield
the same results.
Fig. 6 shows the distribution of the channels selected by

the two methods. The PRR method selects the channels based
on their communication performance. For this reason, the
distribution follows the PDRs listed in Table I. On the other
hand, the distribution of the channels selected by the fade
level method is evenly distributed. When a single channel
is used, i.e. m = 1, the PDR for the fade level method is
5.0%, while it is 1.0% for the PRR method. Since during
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Fig. 6. The distribution of the channels selected by the PRR and fade level
methods in experiment 1. The number of used channels m = 1.

TABLE III
COMPARISON OF THE DIFFERENT METHODS IN EXPERIMENT 1

single PRR fade level
Channel ēloc ε̄att ēloc ε̄att ēloc ε̄att
k / m [m] [10−3] [m] [10−3] [m] [10−3]
11 / 1 1.16 50.5 0.60 23.5 0.21 5.1
15 / 2 1.40 71.3 0.55 18.2 0.22 3.9
18 / 3 1.08 53.0 0.22 4.7 0.14 2.4
21 / 4 2.13 97.0 0.14 3.3 0.10 1.8
26 / 5 1.14 48.5 0.13 3.2 0.13 3.2

the experiment the person is standing still, we can fill the
void of the missing RSS measurement of a dropped packet by
using the RSS of the last received packet for that link. In this
way, we can simulate a system with perfect communication
among the nodes. For such a system, the localization accuracy
would improve by 16% for the fade level method and by
5% for the PRR method. However, when m is increased,
the improvement in localization performance provided by a
perfect communication flattens out. This indicates that channel
diversity allows mitigating the loss of accuracy due to packets
drop.

C. Experiment 2, cluttered environment
The rich multipath environment of experiment 2 brings forth

many difficulties for an attenuation-based RTI system. As
can be seen in Fig. 7, the estimated images are significantly
corrupted by more noise, and the location estimates are less
accurate compared to the open environment of experiment 1.
For example, the localization error in the reconstructed image
of Fig. 7 is eloc = 3.69 m for the PRR method and eloc = 0.61
m for the fade level method. The single channel method
achieves its best accuracy (ēloc = 1.81 m) on channel 11.
The PRR method achieves its best result when four channels
are used (ēloc = 1.69 m). With the single channel and the
PRR methods, the localization accuracy is higher than the one
of other proposed systems [10], [21]. However, when these
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Fig. 7. Attenuation images of experiment 2. The PRR method (b) does not locate the person correctly. The fade level method (c) locates the person at
coordinates (4.57, 5.49). The true location (a) of the person is at coordinates (4.57, 6.10). The localization error is 0.61 m for the fade level method and
3.69 m for the PRR method. The number of used channels is m = 2.
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Fig. 8. Localization accuracy of experiment 2 when the fade level method
is applied. The number of used channels is m = 3, resulting in an average
localization error of ēloc = 0.96 m

two methods are applied, the results agree with what was
observed in [10] about the unfeasibility of attenuation-based
RTI in highly obstructed areas.
When channel diversity is exploited and the fade level

method is applied, the system is capable of achieving submeter
localization accuracy also in highly cluttered environments,
as shown in Fig. 8. For every link, the method discards
the channels that are in deep fade, i.e., prone to experience
an increase in signal strength when the LoS is obstructed,
and select the ones that are in anti-fade, i.e., experiencing
attenuation of the RSS when the LoS is obstructed. The best
localization accuracy (ēloc = 0.96 m and ε̄att = 0.063) is
achieved when m = 3. The results of the experiments are
summarized in Table IV.
In this paper, we exploit channel diversity to enhance

the performance of attenuation-based RTI. However, channel
diversity can also be used to improve the localization accuracy
of other RTI methods, such as variance-based RTI (VRTI)

TABLE IV
COMPARISON OF THE PERFORMANCE OF THE DIFFERENT METHODS IN

EXPERIMENT 2

single PRR fade level
Channel ēloc ε̄att ēloc ε̄att ēloc ε̄att
k / m [m] [10−2] [m] [10−2] [m] [10−2]
11 / 1 1.81 10.2 1.90 11.3 1.55 10.8
15 / 2 2.40 13.7 2.19 14.3 1.01 6.8
18 / 3 2.07 11.9 1.89 11.6 0.96 6.3
21 / 4 2.68 15.9 1.69 10.8 1.21 7.7
26 / 5 2.37 13.6 1.82 10.5 1.82 10.5

[10]. Since single channel VRTI is capable of localizing people
through walls whereas RTI is not, it has to be expected that in
such environments multi-channel VRTI will outperform the
system presented in this paper. However, this work proves
the huge benefits provided by the use of channel diversity.
The system described in this paper has been used also in
[25], where multi-channel, attenuation-based RTI is applied
in a real domestic environment achieving high localization
accuracy over extended periods of time.

V. CONCLUSIONS
In this paper, the localization accuracy of RTI is improved

by means of channel diversity. We introduce a simple, yet
effective method to sort the channels used for communica-
tion based on their fade level. The accuracy improvement is
validated through experimental data collected in two different
indoor environments.
The results show that the channels’ communication perfor-

mance is not as important as the temporal fading statistics of
the RSS to guarantee a high localization accuracy and image
quality. When multiple channels are used, the localization
accuracy increases by an order of magnitude compared to a
system using a single channel. We demonstrate that channel
diversity makes attenuation-based through-wall imaging pos-
sible, in contrast to what was reported in the earlier literature.
Considering the improvement in localization accuracy and

the reduction in noise, channel diversity represents a powerful
technique that should be adopted by the research community
active in the area of DFL. The benefits are substantial and will
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Fig. 9. The true attenuation field (a) and the reconstructed image using a single channel (b) and the fade level method (c) when three people are monitored
in an open environment. The benefit of using channel diversity to locate multiple targets is substantial.

be even more remarkable when more accurate through-wall
imaging methods will be developed, especially when multiple
target tracking is considered, as shown in Fig. 9.
Future research will investigate more advanced methods for

combining the data collected on multiple channels. In addition,
since the shadowing and fading caused by objects in highly
obstructed areas do not fit well with the LoS weight model,
adaptive weight models will be derived.
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