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Abstract: The aim of this study was to assess the utility of inexpensive techniques in evaluating the
interactions of risperidone (Ris) with different traditional π-acceptors, with subsequent application of
the findings into a Ris pharmaceutical formulation with improved therapeutic properties. Molecular
docking calculations were performed using Ris and its different charge-transfer complexes (CT) with
picric acid (PA), 2,3-dichloro-5,6-dicyanop-benzoquinon (DDQ), tetracyanoquinodimethane (TCNQ),
tetracyano ethylene (TCNE), tetrabromo-pquinon (BL), and tetrachloro-p-quinon (CL), as donors,
and three receptors (serotonin, dopamine, and adrenergic) as acceptors to study the comparative
interactions among them. To refine the docking results and further investigate the molecular processes
of receptor–ligand interactions, a molecular dynamics simulation was run with output obtained
from AutoDock Vina. Among all investigated complexes, the [(Ris) (PA)]-serotonin (CTcS) complex
showed the highest binding energy. Molecular dynamics simulation of the 100 ns run revealed that
both the Ris-serotonin (RisS) and CTcS complexes had a stable conformation; however, the CTcS
complex was more stable.
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1. Introduction

Risperidone (Ris) is a second-generation antipsychotic that has been used to treat
psychotic disorders, including schizophrenia, since the 1990s [1,2]. Compared to first-
generation antipsychotics such as haloperidol, Ris is less likely to cause extrapyramidal
side effects and is thereby frequently prescribed in clinical practice [1]. In addition, Ris has
the added value of reducing undesirable symptoms associated with schizophrenia, such as
social withdrawal and lack of motivation [2].

According to the literature, it being a safe, effective, and tolerable molecule categorized
it into the World Health Organization’s List of Essential Medicines [3]. Moreover, the use of
Ris extends beyond the treatment of schizophrenia to the treatment or management of other
psychiatric conditions, such as mood disorders and behavioral symptoms associated with
autism [3,4]. Furthermore, patients suffering from acute psychosis have a high prevalence
of comorbid depression in up to 75% of the cases [5]. Given such a high prevalence of
depression among patients with schizophrenia, treatment goals includes targeting multiple
receptors responsible for such conditions. While dopaminergic receptors are responsible
for schizophrenia [6], serotonergic receptors are responsible for depressive disorders [7].

Ris is an antagonist for a number of receptors, including dopaminergic (D1, D2),
serotonergic (of 5-HT2A), and adrenergic (α1, α2) receptors. Its high affinity to 5-HT2A in
comparison to D2 is behind its beneficial effects in ameliorating the undesirable symptoms
of schizophrenia [8,9]. Furthermore, its tolerability is due to its low affinity for dopamine
receptors, which is less than that of the first-generation antipsychotic haloperidol [8]. These
findings justify the rationale for targeting Ris-related receptors as a possible option for
the clinical improvement of symptoms associated with schizophrenia [9,10]. This is very
crucial in designing a drug with a multireceptor profile in order to optimize its therapeutic
effects for comorbid conditions such as schizophrenia and depression [11].

In biochemical and bioelectrochemical energy transfer processes, donor–acceptor
interactions are critical and significant [12]. The formation of charge transfer (CT) complexes
with some p-acceptors was extensively explored spectrophotometrically for the efficacy
of medicines [13–15]. In many chemical processes, such as addition, substitution, and
condensation, the interactions of charge-transfer complexes are well-recognized [16].

CT interactions between electron donors and acceptors are also crucial in drug–
receptor binding mechanisms [17], surface chemistry [18], and many biological domains [17].
In addition, the CT reactions of p-acceptors were successfully used in pharmacological
studies [19] and in the determination of electrochemical properties [20,21].

In this study, Autodock Vina was used for molecular docking to study the interactions
between the ligand (Ris and synthesized CT complexes) and receptors (serotonin, dopamine,
and adrenergic receptors). Binding energies, along with hydrophobic and hydrogen bond
surface interactions, were also determined. To provide a more effective mechanism for
demonstrating receptor–ligand interactions, the best molecular docking data were subjected
to a molecular dynamics simulation at 300 K for 100 ns. This kind of modelling is endorsed
in the literature for further understanding and enhancing the therapeutic benefits of such
antipsychotics [8]. In terms of residue flexibility, the dynamic features of the complexes
were compared in terms of structural stability, solvent-accessible surface area, structure
compactness, and hydrogen bond interactions. The addition of picric acid is likely to affect
the binding affinity of Ris to the relevant multiple receptors, which is likely to enhance its
therapeutic action.

2. Results and Discussion
2.1. Preface of Six-Risperidone Solid Charge Transfer Complexes

Because Ris has many electron density sites, it could be a good electron donor. After
the protonation of N(1)-H [22], the presence of a pyrimidine ring in the structure of Ris
(Figure 1) works as a base and n-donor to form a charge transfer complex with π-acceptors.
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Figure 1. Proton transfer of risperidone drug.

According to the generation of positive and negative dative anions under donor–
acceptor chelation (Figure 2), the conductance values show that the charge transfer com-
plexes are slightly electrolytic [19]. We had characterized all these charge-transfer complexes
using infrared, Raman, and 1H NMR spectra, and X-ray powder diffraction (XRD) [23].
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Figure 2. Speculated formula of Ris-PA (A), Ris-BL (B), Ris-p-CL (C), Ris-DDQ (D), Ris-TCNQ (E),
and Ris-TCNE (F) charge transfer complexes.

The way of charge carriers between valence and conduction bands determines the
absorption process of photons in charge transfer. The band structure concept, which
is utilized in semiconductor electronic transitions, was adapted to optical absorption in
organic systems. The highest occupied molecular orbital (HOMO; π-orbital) contributes to
the valence band of a molecular crystal, whereas the lowest unoccupied molecular orbital
(LUMO; π*-orbitals) contributes to the conduction band [23].

The band gap (Eg), which can be calculated from variations in optical absorption at the
basic absorption edge, separates these bands. The following Bardeen formula [24] can be used
to describe the relationship between absorption coefficients as a function of photon energy:

αhν = C(hν − Eg)n (1)

where α is obtained from formula α(ν) = 2.303 A/d, A is absorbance, and d is the thickness
of the polymer film [25].

Constant C is a transition probability-dependent parameter. The direct (n = 1/2) and
indirect (n = 2) permissible transitions are defined by the value of the constant n. (αhv)1/2

was plotted as a function of hν using the indirect transition (n = 2) as shown in Figure 3.
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Extrapolating the linear component of the obtained curves to zero absorption yields optical
band gap Eg. The probability of transition decreases as the number of charge carriers
on localized states increases, necessitating more absorption in these locations, thereby
narrowing the band gap [26].
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charge transfer complexes.

2.2. Molecular Docking

Synthesized CT complexes, viz. [(Ris) (PA)], [(Ris) (DDQ)], [(Ris) (TCNQ)], [(Ris)
(TCNE)], [(Ris) (BL)], and [(Ris) (CL)] were docked against serotonin (PDB ID: 6BQH),
dopamine (PDB ID: 6CM4), and adrenergic (PDB ID: 6KUW) receptors, and the best
docking poses obtained. Ris (donor moiety) was used as a control for comparative purposes.
Molecular docking of the aforementioned six CT complexes revealed that their potential
binding energy was higher than that of Ris at all receptors (Table 1).

Table 1. Docking scores of six synthesized CT complexes with three receptors.

S. No. Receptor
Binding Free Energy (kcal/mol)

Ris [(Ris) (PA)] [(Ris) (BL)] [(Ris) (CL)] [(Ris) (DDQ)] [(Ris) (TCNQ)] [(Ris) (TCNE)]

1 Serotonin −9.6 −11.4 −8.5 −9.0 −10.5 −10.0 −8.6
2 Dopamine −8.4 −10.6 −9.8 −9.9 −10.0 −10.5 −8.8
3 Adrenergic −9.1 −10.2 −10.2 −10.1 −9.8 −9.6 −8.5

Among the six CT complexes screened, [(Ris) (PA)] showed the highest docking energy
compared to Ris. Molecular docking of [(Ris) (PA)] with serotonin, dopamine, and adren-
ergic receptors revealed potential binding energies of −11.4, −10.6, and −10.2 kcal/mol,
respectively. The highest binding energy value of [(Ris) (PA)]-serotonin (CTcS) signifies a
stronger interaction than that between dopamine and adrenergic receptors. The interactions
between [(Ris) (PA)] and the CTcS complex with the receptors are depicted in Figure 4, with
docking and interaction data presented in Tables 2 and 3.
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Table 2. Docking scores of risperidone and its interactions with receptors.

S. No. Receptor Binding Free
Energy (kcal/mol)

Interactions

H-Bond Others

1 Serotonin −9.6 Arg173 Leu325, Ala321, Val324 and
Ala176 (π-Alkyl)

2 Dopamine −8.4 His393
Val115, Phe389, Cys118, and

Ile184 (π-Alkyl); Trp386
(π-Sigma)

3 Adrenergic −9.1 Tyr427 Phe4155, Tyr405, and Leu204
(π-Alkyl)

Table 3. Docking scores of the CTcS complex and its interactions with receptors.

S. No. Receptor Binding Free
Energy (kcal/mol)

Interactions

H-Bond Others

1 Serotonin −11.4 His182, Asn187, Asn384,
Lys320 and Arg173

Leu325, Ala321, Ala108 and
Ala176 (π-Alkyl); Asp172

(Halogen-fluorine)

2 Dopamine −10.6 Thr142, Ala185, His393,
and Tyr408

Val115 and Phe389 (π-Alkyl);
Trp386 (π-Sigma); Cys118

(Halogen-fluorine)

3 Adrenergic −10.2 Val414, Asp206, Asp131,
and Ser218

Phe398, Phe423, and Cys135
(π-Alkyl); Val132 (π-Sigma);
Ser214 (Halogen-fluorine)

Analysis of the best-docked pose of [(Ris) (PA)]-serotonin revealed that the amino acid
residues, including His182, Asn187, Asn384, Lys320, and Arg173, formed hydrogen bond
interactions. In addition, Leu325, Ala321, Ala108, and Ala176 established π-alkyl interac-
tions while Asp172 formed a halogen (fluorine) interaction [27,28]. The best-docked pose
of [(Ris) (PA)]-dopamine revealed that the amino acid residues, including Thr142, Ala185,
His393, and Tyr408, formed hydrogen bond interactions, Val115 and Phe389 established
π-alkyl interactions, Trp386 established π-sigma, and Cys118 formed a halogen (fluorine)
interaction [29,30]. The best-docked pose of the [(Ris) (PA)]-adrenergic receptor interaction
revealed that the amino acid residues Val414, Asp206, Asp131, and Ser218 formed hydrogen
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bond interactions, while Phe398, Phe423, and Cys135 established π-alkyl interactions, and
Val132 and Ser214 established π-sigma and halogen (fluorine) interactions, respectively.
Similarly, molecular docking of Ris with serotonin, dopamine, and adrenergic receptors
revealed potential binding energies of −9.6, −8.4, and −9.1 kcal/mol, respectively. The
higher binding energy value of Ris with serotonin (RisS) signifies a stronger interaction
than that of dopamine and adrenergic receptors. These data show that the CT complex
((Ris) (PA)) binds with all three receptors more efficiently than the reactant donor (Ris)
does; among all complexes, the CTcS complex showed the highest binding energy. 3D
representations of the interactions between Ris and the CTcS complex with the investigated
receptors are shown in Figure 5, while the 2D representations are shown in Figures 6 and 7.
In addition, the surfaces of the hydrophobic and hydrogen bond interactions are shown in
Figures 8 and 9.

2.3. Molecular Dynamics Simulation

The best-docked pose (RisS and CTcS) data with the highest docking score generated
from AutoDock Vina was utilized as the starting structure for the 100 ns molecular dynamics
(MD) simulation run. Only the best-docking output was employed to build up this method
in a high-throughput manner to study the binding mechanism of the ligand at the active
site of the protein under clearly defined water environments. The different structures
represented in Figure 10 give a visual representation of the sequence of events and the
dynamics of the process during the 1, 10, 20, 50, and 100 ns production runs.

To examine structural stability, MD data were processed by calculating the root mean
square deviation (RMSD). RisS and CTcS formed stable conformations after ~75 and ~62 ns,
respectively, with RMSD values of 2.61 and 2.21 Å, respectively, as seen in the RMSD plot
(Figure 11).

The most acceptable RMSD value range is <3.0 Å, as low RMSD values indicate
superior stability of the system [31]. Our findings show that the CTcS complex developed a
more stable combination than the RisS complex did. The low RMSD values of RisS and
CTcS reflects a conformational alteration in the protein secondary structure due to ligand
binding. The findings show that ligand-receptor interactions bring protein chains closer
and reduce the gap between them (Figure 12) [32,33].
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To evaluate and compare protein structures, RR distance maps (two-dimensional
representations of protein 3D structure) representing the average distance and standard
deviation for all amino acid pairings between two conformations are employed [34]. The
RR distance maps (Figure 13) elucidate patterns of spatial interactions [35,36]. The white
diagonal on the map shows the zero distance between two residues, while the red and
blue elements represent residue pairings with the greatest distance variances in the two
conformations. Average radius of gyration (Rg) values of 27.38 and 26.53 Å were observed
for RisS and CTcS, respectively. During the simulation, the Rg values for RisS and CTcS
decreased, indicating that the structures became more compact (Figure 14).
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receptor and serotonin receptor after simulation for RisS, and (b) unbound serotonin receptor and
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A grid-search on 25 × 11 × 14 grids, rcut = 0.35, revealed the number of hydrogen
bond interactions between ligand and receptor combinations (RisS and CTcS), which were
plotted against time (Figure 15). When calculating hydrogen bonds between the ligand
(34 and 52 atoms for RisS and CTcS complexes, respectively) and receptor (3706 atoms),
508 donors for both RisS and CTcS complexes, and 990 and 1000 acceptors for RisS and
CTcS complexes, respectively, were observed. The average numbers of hydrogen bonds
per timeframe were observed to be 0.937 and 1.709 out of 251,460 and 254,000 possible
outcomes for RisS and CTcS, respectively. Overall, we observed that receptor-protein
interaction substantially enhanced the number of hydrogen bonds, which was higher in the
CTcS complex. The solvent-accessible surface area values changed owing to the binding of
the ligand to the receptor (Figure 16). The reduced solvent-accessible surface area of the
receptor upon binding to the ligand indicates the alteration of conformation in the protein
structure and reduction in pocket size with increased hydrophobicity around it.
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Overall, adding PA to Ris resulted in a higher binding affinity to serotonin compared
to dopamine and adrenergic receptors. This finding, in the context of the known benefits of
Ris, could enhance the therapeutic benefits of this compound in terms of improving side
effects associated with lower Dopamine activity as well as higher affinity for serotonin
receptors, which could aid in alleviating comorbid depression. Therefore, such findings
could potentially bridge the literature gap in terms of designing a multiple receptor profile
drug targeting the relevant receptors [11].

Previous animal studies showed that higher Ris affinity to dopamine receptors posi-
tively affects the molecular brain-to-plasma ratio [8]. Having a lower affinity for dopamine
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than that of serotonin receptors fits with study findings, which showed that higher dopamine
affinity was associated with extrapyramidal side effects associated with first-generation
antipsychotics [10]. The literature consensus regarding dopamine receptor affinity is to
attain 70–80% binding, as any further binding could lead to unpleasant extrapyramidal
side effects [10,37].
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3. Materials and Methods
3.1. Synthesis of Six Ris Charge Transfer Complexes

The solid six risperidone solid charge transfer complexes with general formula [(Ris)
(π–acceptor)] were produced as previously reported [26]. A total of 0.25 mmol of risperi-
done medication was dissolved in 20 mL methanol and reacted with 0.25 mmol of each
acceptor; then, each mixture was stirred for 45 min at room temperature. The solid products
were filtered out, washed with minimal quantities of chloroform, and dried under vacuum
over anhydrous CaCl2.

3.2. Characterization

Structures of Ris and CT complexes, viz. [(Ris) (PA)], [(Ris) (DDQ)], [(Ris) (TCNQ)],
[(Ris) (TCNE)], [(Ris) (BL)], and [(Ris) (CL)] were obtained in PDBQT format using Open-
BabelIGUI software (version 2.4.1) [38]. The energy of the structures was then minimized
by applying the MMFF94 force field and conjugate gradient optimization algorithm using
PyRx-Python prescription 0.8 for 500 steps [39]. The 3D crystal structures of serotonin (PDB
ID: 6BQH), dopamine (PDB ID: 6CM4), and adrenergic (PDB ID: 6KUW) receptors were
retrieved from the RCSB Protein Data Bank [40]. Receptors were prepared by removing
the native ligand and other heteroatoms, including water, using the BIOVIA Discovery
Studio Visualizer (v19.1.0.18287). Kollman charges of the receptors were also determined,
and polar hydrogen atoms were added using AutoDock Tool [41]. Partial charges were
assigned using the Geistenger method. Autodock Vina [42] was used to perform the
docking calculations. The resulting docked poses were analyzed using the DS Visualizer
(https://www.3ds.com/products-services/biovia/) that was accessed on 1 December 2021.
The overall docking experiment was run on a processor (Intel(R) Core(TM) i5-4200U CPU
@ 1.60 GHz 2.10 GHz 2.30 GHz, 64-bit).

https://www.3ds.com/products-services/biovia/
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For MD simulations and evaluation of their conformational space and inhibitory
potential, the best receptor–ligand complex poses with the highest docking scores for
Ris and the CT complexes obtained from molecular docking investigations were used.
The Groningen Machine for Chemical Simulations (GROMACS) version 2019.2 package
was used to perform MD simulation analysis with the GROMOS96 43a1 force field. The
parameter files and topology of both ligands were generated using the latest CGenFF via
CHARMM-GUI [43,44]. SPC water models that extended 10 Å from the protein were used
to solve the protein–ligand structures in a triclinic box [45]. To mimic the physiological salt
concentrations, 27 Na+ and 27 Cl− ions (0.15 M salt) were added to neutralize the systems
(Figure 17). In the NPT/NVT equilibration run, both systems were subjected to periodic
boundary conditions at a constant temperature (300 K) and pressure (1.0 bar) for a 100 ns
simulation duration using a Leap-frog MD integrator [46]. Energy minimization using the
steepest descent approach with 5000 steps was used to eliminate bad contact inside the
system [47]. Hydrogen bonding was examined using a gmx hbond tool. The gmx gyrate
and gmx sasa tools were used to calculate the gyration radius and solvent-accessible surface
area, respectively. Using gmx rms tools, the RMSD of the protein was computed. Trajectory
analysis was performed using the GROMACS analysis tools [48]. Plots were prepared
using Grace software version 5.1.21 and PyMol/VMD software version 2.0.2 [49–51] was
used for visualization. Simulations were conducted using processor Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40 GHz, 64-bit.
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Figure 17. Receptor–ligand complexes, (a) RisS and (b) CTcS, in triclinic box solvated with water
molecules and neutralized with 27 Na+ and 27 Cl− ions (0.15 M salt).

4. Conclusions

Molecular docking revealed that the [(Ris) (PA)] CT complex interacted with all three
receptors more efficiently than the reactant donor (Ris) did, and among all complex–receptor
interactions, the CTcS combination had the highest binding energy. A MD simulation of the
100 ns run revealed that the RisS and CTcS complexes both possessed a stable conformation;
however, CTcS formed a more stable complex with the serotonin receptor. Therefore, we
present theoretical support for augmenting Ris with PA to enhance serotonergic receptor
affinity, since lower binding affinity to dopamine receptors was observed compared with
pure Ris. This enhancement of serotonergic binding according to the serotonin deficiency
theory is believed to reduce the highly prevalent depressive episodes associated with
depression. Therefore, these results could pave the way for the further optimization of
risperidone for comorbid depression.
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