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ABSTRACT Over the last years, the ever-growing wireless traffic has pushed the mobile community to

investigate solutions that can assist in more efficient management of the wireless spectrum. Towards this

direction, the long-term evolution (LTE) operation in the unlicensed spectrum has been proposed. Targeting

a global solution that respects the regional requirements, 3GPP announced the standard of LTE licensed

assisted access (LAA). However, LTE LAA may result in unfair coexistence with Wi-Fi, especially when

Wi-Fi does not use frame aggregation. Targeting a technique that enables fair channel access, the mLTE-U

scheme has been proposed. According to mLTE-U, LTE uses a variable transmission opportunity, followed

by a variable muting period that can be exploited by other networks to transmit. For the selection of

the appropriate mLTE-U configuration, information about the dynamically changing wireless environment

is required. To this end, this paper proposes a convolutional neural network (CNN) that is trained to

perform identification of LTE and Wi-Fi transmissions. In addition, it can identify the hidden terminal

effect caused by multiple LTE transmissions, multiple Wi-Fi transmissions, or concurrent LTE and Wi-Fi

transmissions. The designed CNN has been trained and validated using commercial off-the-shelf LTE and

Wi-Fi hardware equipment and for two wireless signal representations, namely, in-phase and quadrature

samples and frequency domain representation through fast Fourier transform. The classification accuracy of

the two resulting CNNs is tested for different signal to noise ratio values. The experimentation results show

that the data representation affects the accuracy of CNN. The obtained information from CNN can be

exploited by the mLTE-U scheme in order to provide fair coexistence between the two wireless technologies.

INDEX TERMS Convolutional neural network, LTE, Wi-Fi, coexistence, spectral efficiency, unlicensed

spectrum.

I. INTRODUCTION

Over the last years, the wireless transmitted traffic has

been increased tremendously, as a result of the unparal-

leled technological growth. Mobile communications have

transformed the way people communicate, exchange infor-

mation and experience entertainment. According to the Inter-

national Telecommunication Union Radiocommunication

Sector (ITU-R), in May 2015, over the world’s population

of 7.3 billion, there were about 7.5 billion mobile subscrip-

tions worldwide and about 3.7 billion people connected [1].

It is estimated that the mobile traffic will grow at an annual

The associate editor coordinating the review of this manuscript and
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rate of around 54% between 2020 and 2030. Additionally,

Huawei predicts that by 2025 consumers worldwide will

collectively be using 40 billion connected devices [2]. This

massive amount of devices communicate using different

types of wireless technologies such as Long Term Evolu-

tion (LTE), IEEE 802.11 (Wi-Fi), IEEE 802.15.4 and Blue-

tooth. Recently, high frequency bands (mmWave) are used

for multi-gigabit speeds (IEEE 802.11ad), while sub-GHz

bands are exploited by technologies that target low power

andwide range communications such as LORAand SIGFOX.

It becomes clear that soon the wireless network capacity will

become a bottleneck for serving the wireless traffic.

The LTE operation in the unlicensed spectrum has emerged

as a promising and effective solution that can assist in
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exploiting the wireless spectrum in a more efficient way [3].

Hence, it has attracted significant attention from the wireless

community that has introduced several techniques aiming

to enable harmonious coexistence between LTE and other

well-established technologies in the unlicensed spectrum,

such as Wi-Fi [4]. There are three dominant approaches

for LTE operation in unlicensed spectrum according to the

regional regulations and the desired deployment scenario.

In regions where a Listen Before Talk (LBT) procedure

before a transmission is not mandatory by the regional reg-

ulations, such as in U.S.A. or in China, it has been proposed

that LTE can transmit in unlicensed frequencies using a

duty-cycle technique. Carrier Sense Adaptive Transmission

(CSAT) [5] is the most prominent technique of this nature and

it has been proposed by Qualcomm. This technique builds

on elements of LTE Release 12 [6] and exploits duty-cycle

periods in order to give transmission opportunities (TXOP)

to other co-located networks.

On the other hand, 3GPP published the LTE Licensed

Assisted Access (LTE LAA) standards as part of the Release

13 [7]. Through LTE LAA, 3GPP aims for a coexistence

technique that respects the regional regulations worldwide,

including regions where an LBT procedure before a trans-

mission in the unlicensed spectrum is mandatory, such as in

Europe and in Japan. The standard defines that an LBT proce-

dure, also known as Clear Channel Assessment (CCA) must

precede any transmission in the unlicensed spectrum. Initially

and according to Release 13, LTE LAA is designed to be

used only for downlink (DL) traffic in the 5-GHz unlicensed

band. Within Release 14, LTE LAAmay be used for both DL

and uplink (UL) traffic [8]. According to LTE LAA standard,

the evolved NodeB (eNB) is able to opportunistically acti-

vate and deactivate a secondary cell in unlicensed spectrum

that operates next to the primary cell in the licensed band

owned by the operator. This way and according to Release 13,

an operator can offload the LTE network by transmitting

DL data traffic through the Physical DL Shared Channel

(PDSCH), while the LTE control signals together with the

UL traffic will be transmitted via the licensed anchor, which

can guarantee interference-free and timely transmission.

Both the aforementioned solutions require that an oper-

ator owns a licensed frequency band and opportunistically

offloads LTE traffic in the unlicensed spectrum. In order

to decouple LTE from the operators and enable the LTE

operation solely in the unlicensed spectrum, leading wireless

stakeholders formed the MulteFire Alliance [9]. MulteFire

LTE builds on elements of LTE LAA and combines the high

performance of LTE with the simple deployment of Wi-Fi.

Thus, MulteFire LTE can be deployed by cable companies,

Internet Service Providers (ISPs), operators, building owners

and enterprises.

In [10], we observed that the LTE LAA standard defines

that a CCA procedure must be performed before any trans-

mission in the unlicensed spectrum; this is being done accord-

ing to four channel access priority classes. Each of these

classes defines among others the transmission duration in the

unlicensed channel after it has been accessed as idle. This

duration varies from 2 ms up to 10 ms. This behavior can

cause unfair coexistence with a typical Wi-Fi transmission

that lasts for a few hundreds of µs when frame aggregation is

not enabled or supported by the 802.11 standard [11]. Based

on this observation and in order to enable harmonious and

fair coexistence between LTE andWi-Fi, we proposed a novel

coexistence mechanism named mLTE-U. mLTE-U builds on

elements of LTE Release 13 and requires an LBT procedure

before a transmission in unlicensed spectrum. mLTE-U is an

adaptive LTE transmission scheme according to which LTE

can transmit in the unlicensed spectrum for a variable TXOP

period, after themedium has been assessed as idle. The TXOP

is followed by a variable muting period. This muting period

can give channel access opportunities to other co-located

networks such as Wi-Fi. The selection of the appropriate

combinations of TXOPs and muting periods must be done

in a way that the co-located networks share the medium in a

fair manner. In [12], we further extended our previous work

by introducing a Q-learning procedure that is able to pro-

vide automatic and autonomous selection of the appropriate

TXOP and muting period combinations that can enable fair

coexistence between the co-located networks.

However, the wireless environment by its nature is

non-deterministic as it changes dynamically and continu-

ously. The users of the networks change frequently, new

networks may be deployed and operating networks may

always be abolished. Additionally, the amount of data each

wireless node has to transmit and the load on the network

varies. It becomes clear that a technique that aims to pro-

vide fair coexistence to different wireless technologies in

unlicensed spectrum must take into consideration potential

changes to the wireless environment. Towards this direc-

tion, this article introduces a Convolutional Neural Network

(CNN) [13] that can be used to enable the transmission iden-

tification of co-located LTE and Wi-Fi networks. The trained

CNN can be used to identify in real-time LTE and Wi-Fi

transmissions. Additionally, it can identify hidden terminal

effect that is caused by multiple LTE transmissions, mul-

tiple Wi-Fi transmissions and concurrent LTE and Wi-Fi

transmissions. The designed CNN has been trained and val-

idated for the following two wireless signal representations:

In-phase andQuadrature (I/Q) samples and frequency domain

representation through Fast Fourier Transform (FFT). The

classification accuracy is tested for variable Signal to Noise

Ratio (SNR) values. For the purposes of this study, Com-

mercial Off-The-Shelf (COTS) LTE and Wi-Fi hardware

equipment has been used. The transmission identification can

be exploited in order to compute the channel access occu-

pancy of each technology and select the appropriate mLTE-U

configurations that offer fair coexistence in the unlicensed

spectrum.

The main contribution of this work is summarized as fol-

lows:

• A CNN has been designed and trained to be able to

identify LTE and Wi-Fi transmissions.
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• Interfering LTE and Wi-Fi transmissions, as the result

of a hidden terminal, can be identified. These interfer-

ing transmissions include concurrent LTE transmissions,

concurrent Wi-Fi transmissions and simultaneous LTE

and Wi-Fi transmissions.

• For the training and validation of the CNN, COTS hard-

ware and open-source software have been used. The

designed CNN has been trained and validated using

two wireless signal representations: I/Q samples and

frequency domain representation through FFT.

• The classification accuracy of the trained CNNs is tested

for various SNR values.

• The real-time classification capability of the trained

CNN is analyzed.

• The extracted information by the CNN is exploited by

mLTE-U scheme to enhance the coexistence between

LTE and Wi-Fi in unlicensed spectrum.

The remainder of the article is organized as follows.

Section II gives an overview of the current literature on

the coexistence of LTE and Wi-Fi. Additionally, it presents

several use-cases of deep learning on wireless networks.

In Section III, we give a brief introduction to CNN, their

constituent elements and the relevant terminology. Then,

Section IV describes the hardware and software equipment

that has been used to train and validate the designed CNN,

as well as the CNN implementation details. Section V

presents the structure of the CNN network and the perfor-

mance metrics that have been used in the context of this

article. Furthermore, the section evaluates the performance

of the designed CNN for each signal representation and dis-

cusses the obtained experimentation results. In Section VI,

we discuss the capability of the trained CNN to perform iden-

tification of the co-located networks in real-time. Section VII

presents how the CNN can be exploited by mLTE-U scheme

in order to enhance the coexistence between co-located LTE

and Wi-Fi networks. Finally, Section VIII concludes the arti-

cle and discusses plans for future work.

II. RELATED WORK

A. LTE and Wi-Fi COEXISTENCE

When the idea of LTE operating in unlicensed spectrum

was initially introduced, there were serious concerns about

unfair coexistence between LTE and other well-established

technologies in unlicensed spectrum, such as Wi-Fi. These

concerns lie in the fact that LTE has been designed to be a

scheduled technology operating in a licensed band, meaning

that it does not estimate the availability of the wireless chan-

nel before a transmission. As a result, arbitrary transmissions

could force the networks in its proximity to continuously

backoff. In [14], we investigated the impact of a traditional

LTE network operating in unlicensed spectrum on Wi-Fi.

For the purposes of this study COTS hardware has been

used at the LTE testbed of IMEC [15]. The study examines

three different levels of LTE signal power, each one repre-

senting different possible levels of LTE impact on Wi-Fi.

The results show that the performance of Wi-Fi can be sig-

nificantly affected by LTE. This has been verified by several

other studies [16]–[18] that evaluate the impact of LTE on

Wi-Fi through experiments, mathematical analysis and simu-

lations. The results make clear that coexistence mechanisms

are required in order to enable fair and harmonious spectral

sharing between LTE and other co-located technologies such

as Wi-Fi.

Over the last years, several coexistence mechanisms have

been proposed, aiming to enable the desired coexistence

between LTE andWi-Fi. A detailed survey of the coexistence

between LTE and Wi-Fi on 5 GHz together with the corre-

sponding deployment scenarios is given in [19]. The survey

describes in detail the coexistence-related features of LTE and

Wi-Fi, the coexistence challenges, the differences in perfor-

mance between the two wireless technologies and co-channel

interference. The authors present in detail the coexistence

techniques that have been proposed in the literature and

they analyze the concept of scenario oriented coexistence.

According to this concept, coexistence related problems can

be solved based on different deployment scenarios.

In [20], the LTE operation in unlicensed spectrum has been

extensively studied. The article provides a detailed analysis

of the current state-of-the-art of LTE and Wi-Fi coexistence.

Additionally, it introduces a classification of techniques that

can be applied between co-located LTE and Wi-Fi networks.

The study of the literature together with the classification

revealed the lack of cooperation schemes between LTE and

Wi-Fi that can lead to more optimal use of the wireless

resources. In order to fill this gap, we proposed several con-

cepts of cooperation techniques that can enhance the spectral

efficiency of co-located LTE and Wi-Fi networks. The pro-

posed methods are compared between each other in terms of

complexity and performance.

Similar to the CSAT mechanism as described in Section I,

Almeida et al. [21] describe a coexistence mechanism that

exploits periodically blank subframes during an LTE frame.

These frames can be used by Wi-Fi to gain access to the

medium. Simulation results show that the number and the

order of the black subframes have an impact on the perfor-

mance of the provided coexistence.

A coexistence scheme in order to be applicable globally

must incorporate, among others, a channel estimation mecha-

nism that will be used to ensure the availability of the wireless

medium before a transmission. Following this approach and

as it has been described in Section I, 3GPP announced the

LTE LAA as part of Release 13 [7]. According to the LTE

LAA standard, a CCA procedure must be performed before

every transmission in the unlicensed spectrum.

The concept of a channel estimation procedure by LTE

as a coexistence enabler mechanism has been proposed in

several works. Kim et al. [22] propose an LBT scheme for

LTE that comprises of two parts, named on-off adaptation

for channel occupancy time and short-long adaptation for idle

time. According to the first part, the LTE occupancy time is

adapted based on the load of the network. Concerning the
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second part, the idle period is adapted based on the Con-

tention Window (CW) duration of Wi-Fi. Hao et al. [23]

propose an LBT Category 4 (Cat 4) channel access scheme

for LTE. The proposed LBT scheme uses an adaptive CW

size for LTE LAA. The simulation results show that it can

achieve higher performance compared to the fixed CW size

approach.

B. DEEP LEARNING FOR WIRELESS NETWORKS

Over the last years, deep learning has been widely used in the

domains of computer vision (image recognition and image

classification) [24] and language processing (speech recogni-

tion and translation) [25], [26]. Importantly, the performance

of the deep learning algorithms in these applications has

become remarkable, reaching or even surpassing human lev-

els of accuracy [27]. Inspired by that, wireless communica-

tion engineers have started adopting neural networks in order

to enhance applications in wireless networks such as channel

prediction, decoding, quantization, modulation recognition,

technology recognition and more [28].

The work presented in [29] was one of the first approaches

in this domain. The authors propose a CNN trained based on

I/Q data for radio modulation classification. The proposed

solution is comparedwith traditionalmethods based on expert

features such as cyclic-moment based features and conven-

tional classifiers, such as Decision Tree, K=1-Nearest Neigh-

bor, Gaussian Naive Bayes, Support Vector Machines (SVM)

as well as a deep neural network consisting only of fully

connected (FC) layers. They show how the proposed solution

outperforms the traditional methods especially at low SNR.

Zhang et al. [30] propose a CNN system that is able to

identify eight different kinds of signals. They describe the

appropriate architecture that renders the CNN classifier effec-

tive for the proposed system. Choi-Williams time-frequency

distribution (CWD) transformation is used in order to obtain

the image features into the CNN. Simulations are used

to measure the identification performance of the proposed

framework. The simulations results show that the overall ratio

of successful recognition (RSR) is 93.7% when the SNR is

higher or equal to −2 dB.

Kulin et al. [31] present a framework for end-to-end learn-

ing from spectrum data, which is a deep learning based

unified approach that enables various wireless signal iden-

tification tasks. The article gives a brief overview of machine

learning, deep learning and CNNs and proposes a reference

model for their application for spectrum monitoring. The

authors discuss the importance of the choice of wireless data

representation that can have a big impact on the classification

performance. The presented methodology was validated on

two wireless signal identification research problems named

modulation recognition and wireless interference identifica-

tion. For each of the two research problems, three wireless

signal representations were examined. Hence, six different

CNNs were trained using massive and complex datasets. The

results show the importance of choosing both the correct data

representation and the machine learning approach.

The article in [32] discusses several applications of deep

learning for the physical layer. Most importantly, the authors

interpret a communication system as an autoencoder and

introduce an end-to-end reconstruction optimization task that

targets to jointly optimize the transmitter and the receiver side

in a single process. Next, they extend the idea to multiple

transmitters and receivers and describe the concept of radio

transformer networks (RTNs) on raw I/Q samples for modu-

lation classifications. The article concludes by discussing the

open research challenges in the domain of deep learning and

machine learning for wireless communications.

Jeon et al. [33] inspired by supervised learning present

two novel blind data symbol detection techniques for

Multiple-Input Multiple-Output (MIMO) systems with

low-resolution Analog-to-Digital converters (ADCs). In con-

trast to traditional MIMO detection techniques that require

explicit channel state information at a receiver (CSIR),

the proposed techniques learn a nonlinear function that char-

acterizes the input-output relation of the system together with

the effects of the channel matrix and the quantization at the

ADCs. The authors also provide an analytical expression for

the symbol-vector-error probability of the MIMO systems

with one-bit ADCswhen employing the proposed framework.

Simulation results show that the proposed approach improves

the symbol-error-rates (SERs) and is effective to use with

ADCs with arbitrary number of precision levels.

Schmidt et al. [34] propose a method for interference iden-

tification between different wireless technologies in 2.4 GHz

industrial, scientific and medical (ISM) bands using CNN

trained on frequency domain. The proposed CNN can identify

transmissions of IEEE 802.11 b/g, IEEE 802.15.4 and IEEE

802.15.1 with overlapping frequency channels. The trained

CNN can distinguish between 15 classes that represent the

allocated frequency channel and the wireless technology. The

experimentation results show that the proposed CNN outper-

forms proposed classifiers and can achieve a high classifica-

tion accuracy that is greater than 95% for SNR values of at

least −5 dB.

C. ENHANCING THE COEXISTENCE OF LTE AND Wi-Fi BY

USING CNN

As it has been mentioned in Section I, in our previous work

we have proposed an adaptive LTE scheme named mLTE-U

that can enable fair coexistence between LTE and Wi-Fi in

a flexible way [10]. mLTE-U can offer balanced spectrum

access even whenWi-Fi does not support or use frame aggre-

gation. mLTE-U builds on elements of LTE LAA. Hence,

the eNB uses an anchor channel in licensed band together

with a secondary channel in unlicensed spectrum wherein it

can transmit DL traffic. After the eNB estimates the channel

in unlicensed spectrum as idle, it transmits for a variable

TXOP followed by an adaptable muting period. This muting

period can be exploited by other co-located networks, such

as Wi-Fi to gain access to the medium. It becomes clear

that the performance of the provided coexistence depends on

the selection of TXOP and muting period duration. In [12],
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FIGURE 1. Structure of a CNN network. The input is processed by a series of convolutional layers, activated functions and pooling layers, ending up to a
FC layer and a softmax classifier that gives the probability of the input belonging to each class.

we further extended this work by introducing a Q-learning

technique that enables autonomous selection of the optimal

TXOP and muting period. In order to do so, the Q-learning

scheme learns the TXOP and muting period combinations

that allow LTE to achieve a targeted fair throughput.

In [10] and [12], we assumed that the information of the

wireless environment is known. This article goes a step

further and with the assistance of deep learning and more

specifically using CCN, it attempts to identify the type of the

co-located networks. The CNN is trained and validated using

COTS hardware for both the LTE and Wi-Fi networks. The

learned information can be exploited by mLTE-U in order to

select the appropriate TXOP and muting period.

III. CNN IN A NUTSHELL

During the last years, CNNs have been widely used by

applications to perform image recognition and image clas-

sification. A CNN takes as input an image, it processes and

classifies it into certain categories (e.g. dog, cat, horse, etc.).

In computer language, an image is translated as an array of

pixel values. The dimensions of the array depend on the reso-

lution of the image. For instance an array of 1920×1080×3

corresponds to an imagewithWidth of 1920 pixels andHeight

of 1080 pixels, while the Depth of 3 refers to the RGB values

(the color of the pixel).

CNNs are inspired by biology and more specifically by

neuroscience. When an eye looks at an object, individual

neuronal cells are fired in the presence of curves and edges of

specific orientation. Similarly to this, a computer identifies

an object by investigating low level features (curves and

edges) and by building up to more abstract concepts through

consecutive convolution layers.

Figure 1 presents the typical structure of a CNN. As can

be seen, the CNN takes an image as an input, it passes it

through a series of hidden layers and gets an output that is

the probability of the input belonging into a certain class. The

hidden layers consist of a series of convolution, pooling and

FC layers that aim to extract several abstract features.

Convolution layer is the first layer that is used to extract

features from the input. This is being done by using a set of

filters (also known as kernels) that perform a convolution over

the input and are activated when a special feature is detected.

These filters are small in terms ofWidth andHeight compared

to the original image but they extend through the full Depth

of the input. During the convolution procedure, each filter

is convolved across the Width and Height of its input and

computes dot products between the values of the filter and the

values of the input at every position. This procedure produces

an activation or feature map that holds the responses of that

filter at every position. The number of pixels that a filter shifts

over the input matrix is given by the stride. For instance, when

the stride equals to one, then the filter slides one pixel at a

time, when the stride is two, then the filter slides two pixels at

a time and so on and so forth. According to the filter size and

the stride, it is possible that the filter does not fit totally in the

input image. In that case the input is padding with zeros until

the filter fits, or the part of the image where the filter does

not fit is dropped. In the end, the output of every convolution

layer is a set of feature maps, one for every filter that is

convolved across the input of the layer. The filters of the

first convolution layer detect low level features such as edges

and curves of specific orientation. As we go deeper in the

network, the output of a layer becomes the input of the next

one. Hence, the consecutive convolution layers detect more

complex and high level features. The convolution between a

two-dimensional input x and a two-dimensional filter f can

be computed as a discrete convolution and is expressed as:

(x ∗ f )i,j = x[i, j] ∗ f [i, j]

=

∑

m

∑

n

x[m, n]f [i− m][j− n] (1)

wherem and n correspond to theHeight andWidth of the filter

respectively. After the convolution, a bias term (b) is added.
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The convolution layer is followed by a rectifier activation

function that introduces non-linearity to the CNN. Typically,

Rectified Linear Unit (ReLU) function is used that is defined

as:

h(x) = max(0, x) (2)

There are other common non-linear activation functions

such as the hyperbolic tangent function (tanh) and the sig-

moid activation function that are defined respectively as:

htanh(x) =
2

1 + e−2x
− 1 (3)

and

hsigmoid (x) =
1

1 + e−x
(4)

For the k-th neuron the output Yk will be:

Yk = h((x ∗ f )i,j + bk ) (5)

where x ∗ f is the convolution between the input and the

filter, bk is the shared value for the bias and h is the activation

function.

A stack of few convolution and ReLU layers is followed

by a pooling layer. The pooling layers are responsible to

downsample the spatial dimensions of their input. The spatial

pooling reduces the dimensions of each map but retains the

important information. The most common type is a pooling

layer that uses filters of size 2 × 2 that are applied with a

stride of 2, discarding this way the 75% of the activations,

while the depth dimension remains unchanged. There are

several types of spatial pooling such asMax Pooling, Average

Pooling and Sum Pooling. Max Pooling selects the element

with the highest value, the Average Pooling uses the average

value of the elements and the Sum Pooling uses the summary

value of the elements.

After a series of convolution, ReLU and pooling layers and

towards the end of the CNN, we have the FC layer similar to

a traditional neural network. The last feature map matrix is

flattened into a vector and is fed into the neurons of the FC

layer. These neurons have connections to all activations in the

previous layer.

The last layer of the CNN is a softmax classifier that

computes the probability of the input belonging to each

class.

A common problem of the neural networks is overfitting,

where after training, the weights of the network are very

tuned to the training examples. As a result, the neural network

does not perform well during the verification phase when

new, untagged examples are used. In order to deal with this

problem, dropout is used [35]. With this technique, a specific

percentage of a random set of activations in a layer is set

to zero. This way the network becomes more redundant and

is able to give the right classification even if some of the

activations are dropped out. This layer is used only during

the training process and not during the verification process.

IV. EQUIPMENT AND EXPERIMENTATION SETUP

A. NETWORKING EQUIPMENT

For the purpose of this study, COTS LTE andWi-Fi hardware

equipment has been used in a fully controlled environment.

The LTE network has been deployed and configured to oper-

ate in the unlicensed spectrum, next to a Wi-Fi network that

is configured to operate in the same frequency channel. The

experiments were performed at the LTE andWi-Fi infrastruc-

ture of the W-iLab.t testbed of IMEC [15].

The radio part of the LTE network consists of

software-defined radio (SDR) platforms and more specif-

ically the Universal Software Radio Peripheral (USRPs)

B210 boards [36]. This is a two-channel device that supports

continuous radio frequency (RF) coverage that ranges from

70 MHz up to 6 GHz. This allows us to configure the

operational frequency in the unlicensed spectrum (2.4GHz or

5 GHz). The USRP boards are connected to Gigabyte BRIX

Compact PCs [37] that are used as host nodes, on which the

LTE software runs. The LTE software that has been used

is the srsLTE [38] open-source software suite. srsLTE is a

highly modular LTE software framework developed by SRS

and includes complete SDR LTE applications for the eNB,

the UE and the Evolved Packet Core (EPC) side. The srsLTE

framework is LTE Release 8 compliant with selected features

of Release 9. Frequency Division Duplex (FDD) mode has

been selected, similar to what is being used in LTE LAA.

In order to operate LTE in unlicensed spectrum, the srsLTE

software was configured to use the same center frequency as

Wi-Fi channel 6 at 2.437GHz for the DL. The bandwidth has

been set to 10 MHz that is one of the most usable bandwidth

configurations of LTE network deployments.

The Wi-Fi network consists of Zotac nodes [15] config-

ured in infrastructure mode. One node operates as Access

Point (AP) and it can have multiple associated stations. All

the Wi-Fi nodes use a Qualcomm Atheros AR928X wireless

network adapter together with the ath9k driver [39]. The

Wi-Fi network has been set to operate in channel 6 of the

2.4 GHz band, overlapping this way with LTE. Additionally,

it has been configured to use the 802.11g mode. This mode

has been selected as it does not support frame aggregation

and MIMO and it provides relatively low data rate compared

to the newest Wi-Fi standards (e.g. 802.11n/ac). Being able

to identify 802.11g transmissions would permit our model to

identify also standards that support higher data rates, MIMO

and carrier aggregation. This way, the proposed model can be

used for identification of a wide range of Wi-Fi standards.

Targeting a clean and controlled environment without any

interference from other co-located networks, both the LTE

and the Wi-Fi equipment were interconnected with each

other using COAX cables through combiner and splitter

units. Furthermore, remotely programmable attenuators have

been used in order to control the power of each signal and

create different coexistence scenarios (e.g. hidden terminal

scenario). In order to train and verify the CNN network

I/Q samples are collected from a USRP device that is inter-

posed between the transmitting devices. The USRP has been
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FIGURE 2. Indicative coexistence scenario between LTE and Wi-Fi. Each
network consists of one end-devices connected to one base station.

configured to use the same center frequency as LTE andWi-Fi

(2.437 GHz) and bandwidth of 20 MHz.

Figure 2 illustrates an indicative coexistence scenario of

an LTE network consisting of one eNB and one UE operating

next to aWi-Fi network consisting of one AP and one station.

B. CNN IMPLEMENTATION DETAILS

The CNN network that have been used in this work has been

trained and validated using the Keras software library [40].

Keras is a high-level API for neural networks written in

Python. This API is able to run on top of several deep learn-

ing frameworks such as TensorFlow [41], Theano [42] and

CNTK [43]. It is designed to run seamlessly on top of both

Central Processing Unit (CPU) and Graphics Processing Unit

(GPU). In our setup, we have used a NVIDIA GTX 1080 Ti

GPU that incorporates 3584 NVIDIA Cuda cores.

In order to train and validate our CNN, 125, 000 exam-

ples, each one consisting of 4000 I/Q samples, have been

collected over the air and have been labeled properly with the

corresponding wireless technologies. The collected samples

have been post-processed by including noise of different SNR

values. This can be considered as a way of applying data

augmentation techniques to I/Q samples. The SNR values

range from 0 dB to +45 dB with a step of 5 dB. As a result,

the original data set size has been increased by a factor of 10.

From the new data set, 70% randomly selected examples are

used for training in batch sizes of 64. The rest 30% are used

for validation of the model.

Additionally, the Adaptive moment estimation (Adam)

optimizer [44] has been selected to estimate the parameters

of the CNN. The learning rate of the algorithm has been

chosen to be the default value α = 0.001 in order to ensure

convergence. The CNN has been trained for 200 epochs.

However, an early stop of the training can be triggered when

the accuracy of the network is not improved for 20 consecu-

tive epochs.

In total, two CNNs have been trained. The one has been

trained by using I/Q samples and the other by using their FFT

representation in the frequency domain.

According to the selected data representation, the respec-

tive CNN network takes as input either I/Q samples or their

FFT representation in frequency domain and gives as output

the identified class where the input belongs to. Such identi-

fication can be single LTE transmission, single Wi-Fi trans-

mission, concurrent LTE andWi-Fi transmissions, concurrent

LTE transmissions and concurrent Wi-Fi transmissions.

V. EXPERIMENTAL EVALUATION

A. CNN STRUCTURE

The CNN structure that has been used in this study is illus-

trated in Figure 3. The input of the network, also known

as the visible layer, has a size of 2 × 2000 and it corre-

sponds to either I/Q samples or the FFT of them. The I/Q

samples are collected from a USRP device that is interposed

between all the transmitted devices, as indicatively is shown

in Figure 2.

The feature extraction part of the network consists of two

hidden convolutional layers. These layers are used to extract

high-level features from the input representation of the wire-

less signal. The first convolutional layer (convolutional layer-

1) consists of 64 stacked filters, each one having dimensions

2 × 3 that convolve with the input. As a result, 64 feature

maps are created with dimensions 5×2002. The second con-

volutional layer (convolutional layer-2) consists of 32 stacked

filters of size 1 × 3. These filters perform a convolution

with the input of the layer, creating 32 feature maps with

dimensions 6 × 1003. For both convolutional layers, a zero

padding of size 2 is applied to their input and a stride of 1 is

used while convolving the filters.

Each convolutional layer is followed by a ReLu acti-

vation function. The distribution of the inputs for each

layer can change during training, as the parameters of the

previous layers change. To overcome this issue, a batch

normalization [45] is applied after every ReLu function.

Hence, the activations are properly adjusted and scaled, while

the training rate increases. To reduce overfitting, each layer

uses regularization with Dropout of 0.35 together with the

L2 kernel regularizer. The L2 regularizer aims to penalize

weights with large magnitudes A pooling layer follows each

convolutional layer, performing Max Pooling.

After the feature extraction part, the classification part

follows and consists of two FC layers. First the input to

the classification part is flattened and a FC layer is added

(FC layer-1). This layer consists of 100 neurons. It uses a

ReLu activation function, batch normalization, dropout of

0.5. and L2 kernel regularizer. The output of this layer is fed
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FIGURE 3. Structure of the proposed CNN network.

to a softmax classifier (FC layer-2) in order to estimate the

probability of the input belonging to each class.

B. CLASSIFICATION ACCURACY

In order to evaluate the performance of the designedCNN that

identifies the co-located LTE and Wi-Fi wireless technolo-

gies, it is necessary to compute the classification accuracy

of the CNN. The classification accuracy corresponds to the

fraction of predictions that the CNN identified correctly and

it is defined as:

Class_acc =
Ncorrect

Totpredictions
(6)

where Ncorrect is the number of samples that have been

classified correctly, while Totpredictions is the total number of

predictions.

For the computation of the Ncorrect and Totpredictions, inter-

mediate statistics of positive and negative predictions are

required. These statistics correspond to:

• True Positive (TP) meaning that a wireless signal has

been identified as belonging to a specific class and

according to its label, it correctly belongs to that class.

• True Negative (TN) meaning that a wireless signal has

not been identified as part of a specific class and accord-

ing to its label, it does not belong to that class.

• False Positive (FP) meaning that a wireless signal has

been identified as being part of a specific class, but

according to its label, it does not belong to that class.

• False Negative (FN) meaning that a wireless signal has

not been identified as belonging to a specific class, but

according to its label, it does belong to that class.

Hence, function (6) can also be represented as:

Class_acc =
TP+ TN

TP+ TN + FP+ FN
(7)

C. EXPERIMENTATION RESULTS

The CNN network that is described in Section V-A has

been trained for two different data representations. The first

representation corresponds to the collected over-the-air I/Q

samples, while the second corresponds to their transformation

in frequency-domain through FFT. In the rest of the section,

we refer to the trained CNN using I/Q samples as CNNI/Q
and to the trained CNN using FFT as CNNFFT .

The training accuracy indicates the percentage according

to which the CNN can correctly identify a signal during the

training phase. The validation accuracy shows the percentage

of correct signal identifications during the validation phase

(after the training has been completed). On the other hand,

the identification error during the training phase is referred

as training loss, while the error during the validation phase

is referred as validation loss. The validation and training

accuracy in relation to the number of epochs for both the

I/Q and the FFT cases is presented in Figure 4. Additionally,

Figure 5 presents the validation and training loss in relation

to the number of epochs for both CNNs. The training and the

validation of the networks have been done using the entire

data set, including the different SNR values. As can be seen,

both CNNs converge after approximately 40 epochs.

It can be observed that the validation accuracy of the

CNNFFT is slightly higher than its training accuracy. This

means that the CNNFFT has been trained on worse data than
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FIGURE 4. Validation and training accuracy in relation to the number of
epochs for both I/Q and FFT data representations.

FIGURE 5. Validation and training loss in relation to the number of
epochs for both I/Q and FFT data representations.

the ones that it identifies during the validation process. This

may happen as the training data are randomly selected (70%)

from the complete dataset. Additionally, the FFT represen-

tation has more information gaining features, as LTE and

Wi-Fi have more distinguishable differences in the frequency

domain. As a result, the dropout has bigger impact on the

FFT than on the I/Q representation. The validation accu-

racy of CNNFFT is higher than the validation accuracy of

the CNNI/Q. The same results were noticed in [31] and [34]

where the authors have used both I/Q and FFT data represen-

tations for interference identification through CNN. Respec-

tively, the validation loss of the CNNFFT is slightly lower

than the validation loss of the CNNI/Q. It can be concluded

that the CNN that has been trained based on FFT data repre-

sentation performs better than the CNN that has been trained

using I/Q samples. Consequently, the LTE and Wi-Fi signals

can be identified easier in frequency domain. This can be

explained by the significant differences that the two wireless

technologies have in this domain. According to the Orthog-

onal Frequency-Division Multiple Access (OFDMA) digital

modulation scheme that is used by LTE, the LTE scheduler

is able to schedule simultaneously multiple users in the fre-

quency domain. On the other hand, Wi-Fi is a packet-based

technology using Orthogonal Frequency Division Multiplex-

ing (OFDM) digital modulation scheme. Hence, it allocates

all the subcarriers to a single user.

FIGURE 6. Classification accuracy for FFT and I/Q data representation in
relation to SNR.

Figure 6 presents the classification accuracy of both CNN

in relation to the SNR. As can be seen, the CNNFFT out-

performs the CNNI/Q especially in low SNR values. More

precisely, for 0 dB of SNR, CNNFFT offers an accuracy of

approximately 80% compared to the accuracy of CNNI/Q
that is 65%. For SNR values higher than 15 dB the classi-

fication accuracy of both networks is similar. Especially for

SNR values higher than 40 dB, the classification accuracy of

CNNI/Q andCNNFFT approaches 98% and 99% respectively.

Hence, for average to high SNR values, I/Q samples offer

high accuracy with lower complexity compared to the FFT

case, as the identification can be done based on I/Q samples,

without required the extra step of the FFT.

Figure 7 shows the confusion matrices for both CNNs

with regard to different SNR scenarios. More specifically,

Figure 7a and Figure 7d show the respective confusion matri-

ces of CNNI/Q and CNNFFT for all the SNR values. It can be

observed that the CNNFFT can identify the different trans-

mitting networks slightly more accurate than the CNNI/Q.

Both CNNs identify less accurately single IEEE 802.11 and

multiple LTE transmissions, while both of them achieve the

highest classification accuracy by identifying single LTE

transmissions.

Figure 7b and Figure 7e present the confusion matrices

of CNNI/Q and CNNFFT respectively for the lowest SNR

value that corresponds to 0 dB. Here, it can be observed the

superiority of FFT representation compared to I/Q. CNNI/Q
classifies best single LTE transmissions, while it struggles to

identify the other classes. More precisely, 35% of concurrent

LTE and IEEE 802.11g transmissions, 31% of multiple LTE

transmissions and 29% of IEEE 802.11g transmissions are

identified as multiple IEEE 802.11g transmissions. On the

contrary, CNNFFT is much more accurate identifying best

simultaneous LTE and IEEE 802.11g transmissions. Addi-

tionally, it lacks to identify 46% of single IEEE 802.11g

transmissions that for 34%, they are identified as multiple

IEEE 802.11g transmissions.

Finally, Figure 7c and Figure 7f illustrate the correspond-

ing confusion matrices for the highest SNR value of 45 dB.

In this case, both networks are able to identify with excel-

lent accuracy the different wireless transmissions. Again,

the CNNFFT is slightly better than the CNNI/Q.
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FIGURE 7. Confusion matrices for both I/Q and FFT data representations and for different SNR values: a) CNNI/Q for all SNR values, b) CNNI/Q for SNR of
0 dB, c) CNNI/Q for SNR of 45 dB, d) CNNFFT for all SNR values, e) CNNFFT for SNR of 0 dB, f) CNNFFT for SNR of 45 dB.

The experimentation results have shown that the perfor-

mance of the CNN depends on the data representation that is

used to train the network. Hence, it is important to investigate

different data representations in order to have enhanced accu-

racy for a specific task. Furthermore, the classification accu-

racy can be improved by tuning the hyper-parameters of the

CNN. The hyper-parameters are the variables that define the

structure of the network (e.g. number of convolutional layers)

and variables that determine the training of the network (e.g.

the learning rate). Finally, an advanced training that uses a

rich dataset can further increase the performance of the CNN.

VI. REAL-TIME PERFORMANCE

When the designed CNN has been trained, it is able to

perform identification of co-located technologies in real-

time. In order to achieve this, the processing time which

includes a) the capturing and transformation of I/Q samples

and b) decision-making time by the trained model, must

be smaller than the smallest transmission duration of the

technologies that the system can identify. The transmission

duration depends on the transmission time resolution of the

technologies under consideration. For instance, LTE trans-

missions are slot-based, whileWi-Fi transmissions are frame-

based. This way, it is guaranteed that the CNN will not miss

potential transmissions due to restrictions in time (e.g. low

sampling rate).

As it has been discussed in Section V-A, the CNN network

is trained to identify LTE and IEEE 802.11g transmissions.

The identification of a technology is being done based on

2000 I/Q samples that are collected by using a sampling

frequency of 20 MHz. This means that 100µs sampling time

is required before the classification for the collection of the

2000 I/Q samples. LTE is a scheduled technology that trans-

mits in resource block base. One resource block occupies

12 subcarriers (180 kHz) in the frequency domain and 1 slot

(0.5 ms) in the time domain. Hence, the LTE transmission

time resolution is 0.5 ms. However, Wi-Fi may transmit in

much lower time resolution, based on the used data rate. The

IEEE 802.11g data-rate ranges from 1 Mbps up to 54 Mbps

(the specified minimum data rate for 802.11g is 6 Mbps,

in practice a 802.11g radiomay use aminimum rate of 1Mbps

for the sake of backward compatibility with older clients).

The data rate depends on the modulation type (e.g. QPSK,

64-QAM, etc.) and the coding rate (e.g. 1/2, 3/4, etc.) that

is also known as Modulation and Coding Scheme (MCS).

As a result, the higher the data rate the shorter the data trans-

mission time. For the highest possible data rate of 54 Mbps,

the required time for data transmission is 282µs and the

VOLUME 7, 2019 28473



V. Maglogiannis et al.: Enhancing the Coexistence of LTE and Wi-Fi in Unlicensed Spectrum

required time for the transmission of the acknowledgement

is 44µs. Thus, in total an IEEE 802.11g frame transmission

time together with the acknowledgement require a minimum

time of 326µs. It is clear that the sampling time resolu-

tion is smaller than the Wi-Fi transmission duration. The

transformation of I/Q samples step is required to make them

compatible with the CNN model. Both the transformation

time and decision-making time of the collected samples can

be considered to have negligible impact on the required clas-

sification time. The trained CNN can be seen as a function

that maps the input (collected samples) to the output (corre-

sponding class). Therefore, the proposed CNN is able to per-

form identification of co-located LTE and Wi-Fi networks in

real-time.

It is important to note that the sampling time resolution

of 100µs allows us to feed multiple sampling bunches to

the CNN in order to enhance even more the classification

accuracy. Hence, if for instance the number of collected sam-

ples is doubled (4000 I/Q samples) then, the sampling time

will be doubled, without however surpassing the required

transmission time of Wi-Fi.

VII. ENHANCEMENT OF mLTE-U SCHEME WITH CNN

As we mentioned in Section II-C, the designed CNN that

has been trained to identify transmissions from co-located

LTE and Wi-Fi networks, can be exploited by the proposed

mLTE-U scheme in order to enhance the coexistence between

the two wireless technologies. According to the mLTE-U

scheme, LTE can transmit in the unlicensed spectrum for an

adaptive TXOP that is followed by an adaptivemuting period.

During this muting period, other co-located networks (e.g.

mLTE-U or Wi-Fi) can gain access to the wireless resources

in order to transmit. Hence, every eNB that operates in unli-

censed spectrum and deploys the mLTE-U scheme can use

the trained CNN in order to identify the channel occupancy of

each technology and adjust the mLTE-U parameters, aiming

to enable fair coexistence.

Initially, when Wi-Fi transmissions are identified by the

CCN, an eNB selects the TXOP and muting period configu-

rations. Altruistically, the TXOPmay be the shortest possible

(e.g. 2ms), while the muting period may be the longest possi-

ble (e.g. 20 ms). Subsequently, it should periodically monitor

the potential LTE and Wi-Fi transmissions as reported by

the CNN in order to adjust the mLTE-U parameters and to

maintain a balanced access to the wireless resources for the

two technologies.

Figure 8 demonstrates the exploitation of the CNN’s output

by mLTE-U in order to enhance the coexistence between LTE

and Wi-Fi. The coexistence scenario is similar to the one

illustrated in Figure 2, where one LTE network consisting

of one eNB and one UE coexists with one Wi-Fi network

consisting of one AP and one station. Both networks transmit

only DL traffic in unlicensed spectrum and both networks

aim to transmit as much as possible. For the purposes of this

study, iperf tool [46] has been used to generate UDP traffic

andmeasure the achieved throughput for both LTE andWi-Fi.

FIGURE 8. Enhancement of mLTE-U scheme with CNN. a) Spectrogram
showing the unfair coexistence between LTE and Wi-Fi before the
activation of the CNN. b) Spectrogram showing how LTE initializes the
mLTE-U parameters after the trained CNN is activated. c) Spectrogram
showing the fair coexistence between mLTE-U and Wi-Fi after the
configuration of the mLTE-U scheme based on the CNN reports.

The respective standalone DL throughput of LTE and Wi-Fi

are ThrmLTE−U
standalone = 30.9Mbps and ThrWi−Fistandalone = 28.1Mbps.

Wi-Fi is a packet-based technology that estimates the

availability of the channel prior to every packet transmis-

sion. On the other hand, LTE is a scheduled technology that

manages the assigned spectrum very efficiently. Hence, after

it assesses the availability of the medium, it can transmit

optimally during a TXOP. In [10], we saw that during the

standalone operation, Wi-Fi occupies the channel for 70.10%

of the time, meaning that Wi-Fi spends a high percentage of

time sensing the medium. The corresponding LTE channel

occupancy during a TXOP is optimal approaching 99.47%.

In order to ensure fair access to the wireless resources when

both networks are present, the CNN should ensure that the

LTE channel occupancy is maintained close to 50%. If the
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CNN wants to increase the LTE channel occupancy, then

it may increase the TXOP or decrease the muting period.

Accordingly, if the CNN wants to give more opportunities

to Wi-Fi, it may decrease the TXOP or increase the muting

period. This decision can be made based on the traffic that

the eNB needs to transmit. For instance, if the eNB transmits

delay-sensitive traffic and the LTE occupancy time may be

increased, then the eNB can use a shorter muting period in

order to decrease the transmission delay. Additionally, LTE

can give periodically longer channel opportunity to Wi-Fi.

The CNN can compute the new channel occupancy of Wi-Fi

in order to estimate ifWi-Fi exploits it or not. Further analysis

of the way that the TXOP and muting period can be adjusted

is not in the scope of this article.

As shown in Figure 8a, before the activation of the CNN,

mLTE-U is configured to use a long TXOP of 20 ms that is

followed by a short muting period of 2ms. As result, LTE can

achieve a high throughput corresponding to ThrmLTE−U
DL =

26.9 Mbps. In contrast, Wi-Fi can transmit only during the

short muting period achieving a low throughput that corre-

sponds to ThrWi−FiDL = 1.88 Mbps.

After CNN is activated, it can identify the LTE and Wi-Fi

transmissions in the unlicensed spectrum. Then, the eNB

adjusts the mLTE-U parameters so that the shortest TXOP is

used, followed by the longest muting period, as it is shown

in Figure 8b. According to the CNN report, the eNB can

estimate the channel use of each technology. Hence, it can

compute that LTE transmits for approximately 9.1% of the

time, while Wi-Fi transmissions occur during the rest 90.9%

of the time. This channel access division among the two

networks corresponds to ThrmLTE−U
DL = 2.18 Mbps and

ThrWi−FiDL = 23.9 Mbps.

Afterwards, the eNB will attempt to adjust the mLTE-U

parameters based on the reports of the CNN targeting to

achieve fair coexistence of the two technologies. Eventu-

ally, this can be achieved by selecting a TXOP of 10 ms,

followed by a muting period of 10 ms, as it is demon-

strated in Figure 8c. In this case, LTE occupies the channel

of approximately 50% of the time. In this case, the DL

throughput of the mLTE-U network is ThrmLTE−U
DL =

15.4 Mbps and the DL throughput of the Wi-Fi network

is ThrWi−FiDL = 14 Mbps.

It becomes clear that CNN can be exploited by themLTE-U

system in order to enhance the coexistence of LTE and Wi-Fi

in unlicensed spectrum. However, as we discussed in [10],

several other parameters can be obtained by the wireless

environment and can be used to provide fair spectrum sharing.

Such parameters can be the number of the active nodes in the

unlicensed spectrum and the load of each node. As active,

we consider the nodes that have traffic to transmit. By know-

ing this information, the mLTE-U scheme can be configured

so that every active node in the unlicensed spectrum gets spec-

trum access opportunities proportional to the load of traffic

that it needs to transmit, taking into account the provisioning

of fairness within the limited spectrum. Obtaining informa-

tion about the number of co-located active nodes, as well

as the load of each network is a very interesting and com-

plicated research topic that will be considered in our future

work.

VIII. CONCLUSIONS AND FUTURE WORK

Recently, the operation of LTE in unlicensed spectrum has

been proposed as a method that can assist in dealing with the

increasing wireless traffic. Towards a solution that can enable

fair coexistence between LTE and other well-established

wireless technologies in unlicensed spectrum, such as Wi-

Fi, 3GPP announced the standard of LTE LAA. However,

this mechanism may cause unbalanced coexistence between

LTE and Wi-Fi when the latter does not support or use frame

aggregation. In order to deal with this issue and enable fair

coexistence, mLTE-U scheme has been proposed. In order to

configure properly the mLTE-U scheme, information about

the dynamically changing wireless environment is required.

Among others, an essential and important information is the

type of the co-located wireless technologies and their respec-

tive channel occupancy.

This article has exploited the use of CNN in order to

identify transmissions from co-located LTE and Wi-Fi tech-

nologies in unlicensed spectrum. The CNN has been trained

to identify in real-time LTE and Wi-Fi transmissions. Fur-

thermore, the CNN can identify multiple LTE transmis-

sions, multiple Wi-Fi transmissions and concurrent LTE and

Wi-Fi transmissions that can be the result of hidden terminal

effect. The designed CNN has been trained and validated

using COTS LTE and Wi-Fi hardware equipment and for

the following two wireless signals representations: I/Q sam-

ples and frequency domain representation through FFT. The

classification accuracy of the trained CNNs has been tested

for different SNR values. The experimentation results have

shown that the performance of the CNN is impacted by the

data representation that is used to train the network. More

specifically, we saw that the FFT representation offers higher

classification accuracy compared to I/Q samples, especially

for low SNR values. On the other hand, for average to high

SNR values, I/Q samples offer similar performance to FFT

with lower complexity, as the identification can be done based

on I/Q samples without requiring the additional step of the

FFT. The obtained information can be used to compute the

channel occupancy time of each wireless technology. Based

on the channel occupancy time, the mLTE-U scheme can

be configured properly in order to enhance the coexistence

between co-located mLTE-U and Wi-Fi networks. For the

purpose of this study and in order to train and verify the

CNNs, COTS equipment has been used for both LTE and

Wi-Fi network.

In the near future, several other parameters of the wireless

environment, such as the active nodes and the load of traffic

that each node needs to transmit will be investigated in order

to enhance the fair coexistence in the unlicensed spectrum.

Furthermore, this work can be extended by investigating

the use of unsupervised learning for obtaining the neces-

sary information. Unlike in supervised learning, labeled data
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input is not required. This makes unsupervised learning less

complex to be implemented. As a result, the algorithm can act

without human guidance making the proposed system fully

autonomous.
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