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ABSTRACT Fine-grained air pollution monitoring has attracted increasing attention worldwide. Even with

an increasing amount of both static and mobile sensing systems, an inference algorithm is still essential

to achieve a comprehensive understanding of the urban atmospheric environment. Conventional physical

model-basedmethods are unable to involve all the influencing factors with limited prior knowledge, and data-

driven methods lacking physical interpretation may result in bad generalization ability. This paper presents

a multi-task learning scheme, which combines the physical model and the data-driven model with both

merits. It enhances the data learning of a neural network with the aid of prior knowledge on atmospheric

dispersion, and also controls the impact of the knowledge with a tunable weighting coefficient. Evaluations

over a real-world deployment in Foshan, China show that, with the resolution of 500m×500m×15min,

the proposed method outperforms the state-of-the-art ones with 7.9% error reduction and 6.2% correlation

increase. Benefited from the physical knowledge, the neural network obtains stable performance with lower

variance, as well as higher robustness against negative background conditions.

INDEX TERMS Air pollution inference, data-driven method, multitask learning, physical model.

I. INTRODUCTION

Air pollution has been among the top global risks. Accord-

ing to the World Health Organization (WHO), air pollution

causes cardiovascular and respiratory diseases, leading to

about 7 million deaths a year [1]. In order to prevent peo-

ple from its damage, air quality monitoring stations have

been deployed for routine environmental monitoring in many

countries. However, human influences on the environment

continue to grow and the resulting risks are continuously

generating diseases and injuries [1]. Existing static official

stations are only capable of obtaining the background pol-

lution level, but fail in capturing the dynamic street-level

pollution patterns resulted from human’s urban activities,

which brings difficulties in effective environment governing

and policy making [2].

In recent years, sensor networks that consist of cali-

brated low-cost gas sensors are proposed to achieve fine-
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grained air pollution monitoring by a series of previous work

[3]–[7]. These sensors can be deployed more densely in the

objective area due to their lower unit price and compact size.

Some researchers equip air quality sensors on vehicles that

can freely move in the city, therefore these systems obtain

greater granularity and higher possibility to capture detailed

pollution variations. However, even with more sensing nodes,

the observations from these systems are not able to cover

the entire spatial-temporal space. An inference algorithm that

recovers the entire pollution map from partial observations is

still essential to achieve a comprehensive understanding of

the urban atmospheric environment.

Previous algorithms for air pollution inference are mainly

based on the physical model or data-driven: a) Physical

model-based methods are conventional in civil and envi-

ronmental engineering, of which the most typical one is

called pollutant dispersion model [8]–[11]. Several inference

algorithms are proposed base on it to fit specific scenar-

ios with different assumptions [12]–[14]. However, on one

hand, physical model-based methods require abundant prior
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knowledge like initial states and pollution sources, which is

unavailable in real circumstances. On the other hand, phys-

ical models are unable to involve all the influencing factors

and apply to all scenarios because empirical parameters of

specific scenarios can hardly be generalized. b) Data-driven

methods are proposed as the amount of data samples grows.

Pollution field can be modeled as Gaussian-Markov ran-

dom field [15], [16], Gaussian process [5] and random walk

motion [6]. Various type of neural networks, especially those

with deep learning structures, are also applied in static sens-

ing [17]–[19]. Nevertheless, these data-driven methods are

always seen as black boxes and the selection of these models

is barely backed upwith physical interpretation, which results

in high generalization error. Besides, sampling bias in time

and space, as well as in background scenarios, also lead to

bad generalization ability.

Above all, there are two major challenges in fine-grained

air pollution inference. (i) Physical knowledge is beneficial

but cannot be fully applied in fine-grained scenarios: we

cannot extensively obtain the required prior knowledge with

fine resolution, and it has a high computational cost with a

large amount of data. (ii) Sampling bias from mobile sensing

may lead to bad performance: biased training samples may

lead to bad performance in data-driven methods, and may

also result in insufficient data for physical model estimation.

Hybrid algorithms have the potential to utilize the advantages

from both physical models and data-driven models. However,

existing combination approaches including parallel, serial,

and mixture [20], are still unable to address the above chal-

lenges.

In this paper, we present a multi-task learning scheme

that combines the physical dispersion model and data-driven

model quantitively, evolved from our previous work [21].

Under the scheme, these two models are seen as two parallel

tasks and the whole model is trained by minimizing the

weighted sum of the losses from these two tasks. In fine-

grained air pollution inference, the relative impact from the

selected physical model and the observed data can be adjusted

according to our confidence in this physical model, therefore

it relaxes the requirement on prior parameters and addresses

the challenge (i). Besides, we feed these two tasks with dif-

ferent data during multi-task learning, therefore the physical

model works over the entire spatiotemporal field and the data-

driven model works over the observed areas. It reduces the

negative impact from sampling bias to a minimum extent,

which addresses the challenge (ii). Evaluations over a real-

world deployment in Nanhai district of Foshan, China show

that, the proposed method obtains 7.9% error reduction with

lower variance and higher robustness against negative back-

ground conditions.

Our contributions can be summarized as below:

• A physically-based pollution dispersion model is refor-

mulated, and a quantitative method is proposed to eval-

uate how well an inferred pollution map fits with this

physical model.

• A multi-task learning method is proposed for fine-

grained air pollution inference, which utilizes both

knowledge from physical model and data-driven model.

• The algorithm is evaluated over a real-world air pollu-

tion sensing system. The effect of model integration is

assessed and the performance of this hybrid method is

compared with existing ones.

The rest of this paper is organized as follows. Section II

lists related work. Section III elaborates on the reformu-

lation of the physically-based pollution dispersion model.

In Section IV, we present the multi-task learning scheme and

introduce the details about how we use this hybrid algorithm

for air pollution inference. Section V evaluates our method

and compares it with existing works. Finally, this paper is

concluded in Section VI.

II. RELATED WORK

This section introduces previous methods for air pollution

inference, which recovers the entire pollution map from

partial observation. These methods contain physical model-

based algorithms and data-driven algorithms. Besides, hybrid

algorithms that attempt to combine these two are also listed

in this section.

A. PHYSICAL MODEL-BASED ALGORITHMS

Physical model-based approaches are widely used in the

civil and environmental field. Sophisticated models like

Community Multiscale Air Quality (CMAQ) and Weather

Research and Forecasting model coupled with Chemistry

(WRF-Chem) are widely used in country-level or city-level

air pollution inference, with data from official air quality and

meteorological stations [22], [23]. These approaches strictly

follow the empirically validated physical and chemical laws,

however, they suffer from a great deal of computational

resources and are in great demand for information on the

weather as well as the pollution source.

Models that only consider the physical dispersion pro-

cess are also studied for long [8]–[11]. Several inference

algorithms are proposed to fit specific scenarios with dif-

ferent assumptions [12]–[14]. While applying the pollutant

dispersion model, similar challenges like great demand for

fine-grained knowledge on weather and pollution source also

exist. Assumptions like spatial homogeneity and temporal

constancy in neighborhoods can alleviate these challenges,

but sacrifice the model precision. Besides, empirical parame-

ters from coarse-grained studies can also bring errors when

they are applied into detail pollution patterns. Therefore,

in fine-grained air pollution recovery, we cannot fully trust the

physical dispersion model with limited background knowl-

edge.

B. DATA-DRIVEN ALGORITHMS

With the development of electrochemical and optical sensors

as well as wireless communication techniques, air quality

sensor networks including AirSense [24], [25], BlueAer [6],
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AirCloud [5], Gotcha [3], [4] and so on, are allowed to moni-

tor the pollution field at fine spatiotemporal scales with both

static and mobile deployment. As the number of data samples

and the resolution of pollution map increase, the computa-

tional complexity of air pollution inference becomes higher

and data-driven methods are proposed.

Among the data-driven algorithms, a typical kind of

method utilizes auxiliary information like weather condi-

tions, population density, traffic intensity, and point of inter-

est, to infer the missing samples of pollution monitoring. For

example, land-use regression (LUR) models a mapping rela-

tion from these influencing factors to corresponding pollution

concentration at individual locations [26]. It is commonly

used with static deployment andmobile sensing under routine

trajectories in OpenSense [27], [28]. This kind of method

obtains satisfied performance but not convincing enough

for increasing the pollution map resolution under cross-

validation with only static or regular samples. Besides, it also

requires huge manpower and material costs to obtain fine-

grained auxiliary information, especially those time-variant

ones.

Another kind of method is interpolation. Previous work

includes inverse distance weighting (IDW), nearest-neighbor

interpolation, and Kriging interpolation [29]. These interpo-

lation methods infer unobserved samples using its nearby

observed ones, which are relatively easy to implement, but

their accuracy at a specific location is greatly influenced

by its nearby sampling conditions. Therefore, they suffer

from irregular sampling and accidental errors, which happen

frequently under mobile sensing, resulting in bad inference

performance.

Customized data-driven algorithms for mobile sensing are

proposed along with mobile systems. BlueAer team models

the particle motion as random walk therefore proposed a

probabilistic concentration estimation method (PCEM) [30].

AirCloud team uses Gaussian Process Regression (GPR),

which models the pollution map as a multivariate Gaussian

distribution and considers related features including GPS

coordinates, location-related humidity, temperature as well

as point of interest (POI) [5]. Besides, neural networks are

also applied in air pollution inference with different forms.

For example, U-Air team establishes a deep network with a

spatiotemporal correlated structure, which models the depen-

dency in the neighborhoods of the pollution map [18], [19].

Networks with recurrent and convolutional structures are also

used in a series of recent works [31], [32].

However, these data-driven methods including neural net-

works may suffer from low robustness and uncertain perfor-

mance. On one hand, the data amount from air quality sensing

systems are not sufficient to be large-scale. It is hard to deter-

mine the proper capacity of a data-driven model, which is

able to both describe the fine-grained pollution variations and

avoid the over-fitting problem under limited data amounts.

On the other hand, sampling bias happens frequently in

mobile sensing from both time and space dimension, which

also lead to bad generation ability.

C. HYBRID ALGORITHMS

To address the above challenges from physical models and

data-driven models, efforts have been done to combine these

two models and make a balance between them in recent

years.

A deep autoencoder method is proposed by providing its

inner convolutional long short-term memory structure with

physical interpretations [33]. PCEM and GPR can also be

seen as algorithms with basic physical assumptions. Never-

theless, these three methods apply physical knowledge qual-

itatively but not quantitatively in data-driven models, and it

is still unknown how the physical knowledge and data-driven

models couple with each other.

A physics guided and adaptive approach (PGA) is pro-

posed to adaptively estimate the pollution level with the

physical dispersion model or an artificial neural network

under a particle filter structure [34], but it needs to calculate

both the physical model and the neural network at the same

resolution thus it still suffers from high computational com-

plexity. AGaussian plumemodel is applied on the basis of the

neural network [35], however, this physical model only works

when obtaining exact knowledge on the pollution sources.

A physics-informed CoKriging is also proposed, which uses

Monte Carlo simulations on the stochastic physical model

therefore enables the Kriging interpolation without Gaussian

assumptions [36]. However, in our scenario, it is hard to apply

the Monte Carlo simulation with such a number of uncertain

physical parameters.

In order to address the above challenges in hybrid methods,

we propose a multi-task learning scheme to combine the

data-drivenmodel and physical model. This scheme enhances

the learning process of neural network with a convective-

diffusion model, and allows us to deal with varying levels

of knowledge on auxiliary information as well as different

confidence in the prior physical model. The basic form of

this multi-task scheme is initially presented in our previous

work [21], which considers the physical task with constant

parameters. In this paper, we further specify the application

of auxiliary information and launch a more exhaustive eval-

uation of this evolved algorithm. Details are discussed in the

following sections.

III. MEASURING HOW WELL THE RECOVERED

POLLUTION MAP FITS WITH PRIOR PHYSICAL MODEL

This section introduces how we measure the fitting degree of

our inferred pollution map to our prior physical knowledge

about air pollution dispersion. Firstly, we introduce a clas-

sic pollution dispersion model. Then we make discreteness

approximations over this model, and then break the problem

over the whole pollution map into subproblems within small

neighborhoods. These reformulations allow us to evaluate

howwell a recovered pollution map accords with the physical

model in these small neighborhoods, which also offers a way

to construct the physical model-based task in our proposed

multi-task learning scheme.
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A. ORIGINAL PHYSICAL DISPERSION MODEL

Without loss of generality, we choose a classic formulation in

atmospheric theory, which describes the atmospheric disper-

sion process using a convective-diffusion equation [8], [37],

∂C

∂t
= ∇ · (K∇C) − ∇ · (vC) + S. (1)

In this equation, C [kg/m3] is pollutant concentration matrix,

t[s] is the time, v [ms] is wind velocity vector, S [kg/m3 s] is

the source term indicating locations and the emission rates

of sources, and K [m2/s] is a diagonal matrix representing

the diffusion coefficient, with its entries as turbulent eddy

diffusivities. The pollution concentration change over time

is the combined result from three components: diffusion,

convection, and the source emission or destruction.

However, there are a number of limitations when we apply

this physical model in different real-world scenarios. 1) It

requires a preset initial pollution distribution with the same

resolution we expect, which is unavailable to be extensively

observed. 2) The real-world pollution field is nearly infinite,

but we could only consider a finite-size area at one time,

which requires ideal settings on the boundary conditions. 3)

The number of uncertain parameters is always too large to be

learned with enough data, thus assumptions like even distri-

bution are made in K, v, S. However, these assumptions also

limit the expression ability of the model, especially in fine-

grained air pollution modeling which reveals more detailed

variation.

B. DISCRETENESS APPROXIMATION

The original physical model (1) can be reformulated with

sequential spatial and temporal discretizations (details are

expanded in Appendix).

Here we define the pollution concentration at a grid point

of the discrete pollution field:

C[i,j,k] = C(i1x, j1y, k1t),

where 1x, 1y, 1t are the discretization intervals on x, y, t

and i, j, k are their corresponding values. Here, x, y denote the

two dimensions of the space (omitting the vertical variation)

and t denotes time. For succinctness, we further denote the

3-dimensional coordinate of a grid point as a 3-dimensional

vector θ = [i, j, k], and Cθ represents the concentration

C[i,j,k]. Before expatiating the discretized physical model,

we define the physically-related neighborhood of θ :

T (θ ) =
{
[i, j, k − 1], [i− 1, j, k − 1], [i+ 1, j, k − 1],

[i, j+ 1, k − 1], [i, j− 1, k − 1]
}
.

Then the reformulated physical dispersion model, can be

presented as below, which describes the relationship between

the concentration at θ and the concentrations in its physically-

related neighborhood T (θ ):

C̃θ = Aθ ·

[
Cτ , τ ∈ T (θ )

]T
+ Sθ , (2)

where C̃θ denotes the physically inferred concentration at

θ , and τ is the coordinate of the samples in physically-

related neighborhood, then [Cτ , τ ∈ T (θ )] represents a

5-dimensional vector composed of the pollution concentra-

tions at each sample inside T (θ ), while Aθ represents the

coefficient vector with each element corresponding to the

concentration of each neighbor.

C. DEFINING THE FITTING DEGREE IN SMALL

NEIGHBORHOODS

According to the above expressions, we are able to measure

how well a pollution map fits with the dispersion model at θ .

For an objective pollution map C , the fitting degree at θ can

be defined as

Sθ = −L

(
Cθ , C̃θ

)
, (3)

where Cθ is the concentration of objective map at θ , L(·, ·)

could be any form of loss functions that measures the distance

between these two variables. Based on this metric, the fitting

degree of the whole pollution map can be calculated by

going through each coordinate over it. Consequently, we can

approach the physical model bymaximizing the fitting degree

and further construct an additional learning task to enhance

conventional neural networks.

IV. A MULTI-TASK LEARNING SCHEME FOR ENHANCING

NEURAL NETWORKS WITH PHYSICAL KNOWLEDGE

This section introduces our multi-task learning scheme for air

pollution inference. An overview is given at first. Then we

separately elaborate on our two tasks corresponding to the

artificial neural network and the physical dispersion model.

Finally, we explain how we implement our inference algo-

rithm under these two tasks in detail.

A. OVERVIEW

The objective of air pollution inference is to obtain the whole

pollution map based on partial observations, which is also,

to predict the pollution concentration at unobserved time and

positions. As we discuss previously, we aim to quantitively

combine the physicalmodel and the data-drivenmodel, which

could utilize the dispersion model with an acceptable compu-

tational complexity and also reduce the impact of sampling

bias.

In order to accomplish the objective with the above require-

ments, we establish a multi-task learning scheme as shown in

FIGURE 1. Under this scheme, Task I is data-driven, which

learns from the observed dataset, while Task II is physi-

cal model-based, which learns from the pollution dispersion

model. During the learning process, Task I and Task II are

trained simultaneously with a preset weight. The weight can

be adjusted according to our confidence level in our selected

physical model. Besides, these two tasks can be performed

over different sets of data samples. Task I learns from the

observed dataset, while Task II works on an artificial dataset

which is evenly distributed over the pollution map with a
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FIGURE 1. Sketch of the multi-task inference algorithm.

coarser resolution. Therefore, it addresses the problems of

both the computational complexity and the sampling bias.

Inside these two tasks, a Neural Network Module is used

as a basic module in multiple places, which aims to learn

a mapping f (·) from the spatiotemporal coordinate to its

corresponding concentration. Accordingly, the pollution con-

centration at θ (θ is a three-dimensional vector with two axes

of space and one axes of time) is estimated as f (θ ). This

network is used multiple times with the same parameters in

our learning scheme. In the training phase, the parameters

are optimized under both tasks of fitting the observed dataset

and fitting the physical model. Later in the inference phase,

the concentration of the whole pollution field can be obtained

with any resolution by inputting the coordinate of every grid

point into this network. The details of the dual tasks are

elaborated below.

B. TASK I: LEARNING FROM OBSERVED DATASET

Task I aims to fit the observed dataset. When inputting the

coordinates of observed samples into the Neural Network

Module, it learns to output their corresponding pollution

concentration values. Here, we define coordinates that have

been observed as θd, and the observed value at θd as Cθd
.

Then the loss of Task I, also the fitting error from the observed

dataset, can be defined as:

D1 =
1

|2d|

∑

θd∈2d

L

(
f (θd),Cθd

)
, (4)

where2d is the observed dataset, |2d| is the observed sample

amount. L(·, ·) is the loss function selected according to

actual requirement.

This task is achieved by training on the observed dataset.

Measurements from fixed air quality monitoring stations and

mobile air quality sensors usually include GPS locations,

sampling time, and observed concentrations. For each data

sample, its GPS location and its sampling time determine its

coordinate vector θd, meanwhile its corresponding observed

value determines Cθd
. Then, the coordinate vector θd and its

corresponding concentration value Cθd
constitute an input-

output pair of the training set. The spatial-temporal coordi-

nates of all the observed samples constitute the set 2d.

On the other hand, the Neural Network Module with only

Task I also works by directly minimizing D1, which can be

seen as a purely data-driven method. The performance of this

method is presented as a baseline in Section V.

C. TASK II: LEARNING FROM PHYSICAL MODEL

Task II aims to fit the physical model. The deformation of

the pollution dispersion model in Section III provides an

approach to measure how well an inferred pollution map

fits with the physical model. Specifically, as the right side

of FIGURE 1 shows, the Neural Network Module in Task I

is replicated six times and laid out in parallel. Suppose the

coordinates for Task II are denoted as θg. These modules are

first fed with coordinates of a sample θg and its physically-

related neighbors T (θg), and output the inferred concentra-

tion values at these coordinates. Then it is able to evaluate its

fitting degree of this physically-related neighborhood from

our prior physical knowledge using Equation (2) and (3).

In consideration of our imprecise knowledge about the

parameters, we adopt an extra neural network as the Coef-

ficient Inference Module, which supports the physical esti-

mation of Equation (2). According to our prior physical
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knowledge, the elements of coefficient Aθ in Equation (2)

can be inferred from the value of wind speed as well as the

diffusion coefficient, and Sθ is the pollution source. Even

though we are unable of achieving these parameters with fine,

measurements on meteorology and geography can augment

our inference in a data-driven way. Therefore, the Coefficient

Inference Module fA, fS are fed with meteorological and geo-

graphical information wθg , including weather measurements,

POIs, etc, to infer the coefficients A and S at θg.

Then the physical estimation based on these coefficients

can be deployed over the neighborhood of the input sample,

with all its concentration values inferred by our Neural Net-

work Module:

Ĉθg = F(θg,wθg , T (θg))

= fA(θg,wθg ) ·

[
f (τ ), τ ∈ T (θg)

]T
+ fS(θg,wθg ), (5)

where F represents the whole function of Task II, and

Ĉθg denotes the estimated concentration at θg using above

physically-based method. [f (τ ), τ ∈ T (θg)] represents a 5-

dimensional vector composed of the outputs of f (·) with each

coordinate inside T (θg) as input.

Further, by comparing this physically estimated value with

the direct output of Neural Network Module with θg, we can

define the loss of Task II as:

D2 =
1

|2g|

∑

θg∈2g

L

(
f (θg), Ĉθg

)
, (6)

where2g denotes a grid of samples over the total spacewhere

the physical constraint is deployed, and |2g| is the sample

amount of 2g. The loss function L(·, ·) is selected according

to actual requirement.

This task is achieved by training over an artificial dataset,

constitutedwith a grid of samples over the targeted space. The

grid size, which is also the discretization step, can be adjusted

according to the resolution of our knowledge on meteorology

and geography, as well as the computational complexity we

can afford. The input of a sample at the discrete coordinate θg

is formed by θg along with the coordinates of its physically-

related neighbors T (θg) as well as the auxiliary information

wθg . Then the training dataset is constituted with tuples at

every discrete grid in the spatial-temporal space.

D. INFERENCE UNDER DUAL TASKS

Under our multi-task learning scheme, the above two tasks

can be achieved at the same time by combining their losses:

D = λD1 + D2, (7)

where the regularization coefficient λ determines the relative

impact of these two tasks. Therefore, the impact of our prior

physical knowledge can be controlled. It can be adapted

to different monitoring conditions in different application

scenarios. For example, if the dataset is reliable with small

sampling bias and noise, λ can be set to a large value. If we

are confident in our physical model, λ can be set to a smaller

value.

During themodel training phase, parameters in all the Neu-

ral Network Modules are optimized simultaneously under

two tasks, while parameters in the Coefficient Inference

Module for physical estimation exclusively work in Task II.

By minimizing the total lossD, parameters in both the Neural

Network Module and the Coefficient Inference Modules are

trained.

Above all, the proposed multi-task learning method pro-

vides a way to improve the data learning process with prior

physical knowledge. In air pollution inference, the effect of

the pollutant dispersion model is tunable by adjusting the

spatial-temporal discretization intervals, the loss regulariza-

tion coefficient λ, as well as the input of meteorological

and geographical factors. It is also worth noticing that the

data-driven task and the physical model-based task are fed

with different data samples, which resolves the sampling bias

problem to some extent. The data-driven task is trained over

the observed dataset 2d, and the physical model-based task

is trained over an artificial dataset 2g. Data sample θg in the

artificial dataset need not to be observed, which is, θg need

not belong to the sampled dataset 2d. In practical operation,

a sample from 2d is randomly paired up with a sample from

2g, and passed into our hybrid algorithm as a whole.

V. EVALUATIONS

The basic form of the multi-task algorithm has been evaluated

over simulations as well as a 9-day real-world deployment in

Tianjin in our previous work [21]. In order to further evaluate

our evolved algorithm proposed in this paper, experiments are

deployed over another real-world sensing system in the city

of Foshan in China. Our algorithm is thoroughly evaluated

over a two-week frequent data collection, and the results are

compared with existing methods.

A. SYSTEM DEPLOYMENT

Our system adopts a centralized network, which consists

of distributed sensing units and a cloud server. With either

mobile or static configuration, these sensing units keep col-

lecting air quality data and transmit it to the cloud server

for further process. Each sensing unit contains four modules:

sensingmodule, controllingmodule, communicationmodule,

and power module, as shown in FIGURE 2. The sensing

module includes 7 types of gas sensors (SO2, O3, NO2, CO,

PM1.0, PM2.5, PM10), a humidity sensor and a temperature

sensor. The other three modules work together to support

the sensing module. The observed air pollution data are then

labeled with their recording time and GPS location and sent

to the cloud server through the communication module.

Our system is deployed over an urban area in the Nan-

hai district in the city of Foshan, China, which is inside

the Guangzhou Province. The area covers 104.77km2, from

113.100◦E to 113.200◦E and from 23.000◦N to 23.092◦N.

According to its local conditions, we install sensing units

on 10 statical sites including security booths and building

roofs, and on 8 environmental cruisers. The sensing units

are deployed inside the cruisers, but can get access to the
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FIGURE 2. Real-world system deployment.

FIGURE 3. Spatial sampling distribution.

outside air through a tube. Experiments are run from Oct

8th to Oct 15th, and from Nov 19th to Nov 25th. During

the experimental periods, these environmental cruisers move

around the blocks in our experiment area. FIGURE 3 presents

their trajectories during these two weeks, which is also the

spatial distribution of our sampling data.

B. EXPERIMENT SETUP

We introduce the experiment setups of our evaluation, includ-

ing the datasets, the performance metrics, the model training

details, and the baseline methods.

1) DATASET DESCRIPTION

Our dataset contains three parts: the air pollution records from

our distributed sensing system, the meteorological parame-

ters from official weather stations, as well as the POI infor-

mation.

The air pollution data are recorded by the distributed

sensing units and gathered at the cloud server. The air pol-

lution is sampled every 3 seconds and it is labeled with

sampling time and GPS location. The data in cloud server is

formatted as:{device id, timestamp, latitude, longitude, CO

concentration [mg/m3], NO2 concentration [µg/m3], SO2

concentration [µg/m3], O3 concentration [µg/m3], PM1.0

concentration [µg/m3], PM2.5 concentration [µg/m
3], PM10

concentration [µg/m3]}. Among these pollutants, we only

focus on PM2.5 in our algorithm evaluation, which is seen as

the health indicator according to WHO. Therefore, the lon-

gitude, the latitude, and the sampling time constitute the 3-

dimensional coordinates θ of the samples, while the PM2.5

constitutes the corresponding concentrations. Moreover, all

the sensors are calibrated in the lab before deployment, there-

fore we assume the accuracy of these sensors during these two

weeks.

The meteorological parameters are obtained from an open-

source API, called Dark Sky.1 Among all the information

items, we select the top five related meteorological parame-

ters, including the icon (the summary of weather conditions,

including clear, rainy, snowy, windy, foggy, and cloudy), tem-

perature, relative humidity, wind speed, and wind direction.

The POI information is collected through the web API

of Amap.2 We divide all the POIs into 6 categories that

may impact the surrounding pollution level: catering service,

car service, natural scenery, factory, traffic hinge, and others

(including the office buildings and the residential buildings).

2) PERFORMANCE METRICS

To evaluate the performance of our proposed algorithm,

we use cross-validation among the sensing units. In each

round, samples from one mobile sensor are seen as the testing

set, while samples from other 7 mobile sensors and all the

static sensors are seen as the training set. After 8 rounds of

evaluation, the validation results are averaged over the rounds

to represent the algorithm performance.

Specifically, we use following three metrics to measure the

validation results:

• Root Mean Squared Error

RMSE =

√√√√ 1

|2t|

∑

θ t∈2t

(
f (θ t) − Cθ t

)2
,

• Mean Absolute Error

MAE =
1

|2t|

∑

θ t∈2t

∣∣∣f (θ t) − Cθ t

∣∣∣,

1Dark Sky: https://darksky.net/
2Amap: https://lbs.amap.com
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• Pearson Correlation

CORR

=

∑
θ t∈2t

(f (θ t) − f (θ t))(Cθ t − Cθ t )√∑
θ t∈2t

(f (θ t) − f (θ t))2
√∑

θ t∈2t
(Cθ t − Cθ t )

2
,

where2t represents the testing set, |2t| represents the sample

amount of the testing set. The f (θ t) denotes the mean value

of f (θ t), and Cθ t denotes the mean value of Cθ t .

3) MODEL TRAINING

• Preprocessing: For consistency, we consider the pollu-

tionmap as a discrete field with 3 dimensions, so that our

method can be compared with existing ones. We divided

our experimental area into 500m×500m spatial grids

and set the temporal interval as 15min, thus the pollution

map for a day is of size 20 × 20 × 96.

• Model Settings: The physical model in Task II is con-

sidered with a resolution coarser than the pollution map,

which is 10×10×24. Therefore, the amount of physical

model computation becomes 1/16 of what it should be.

In the pure neural network f (·) of Task I, we adopt a 4-

layer fully connected structure (3-8-16-32-16-1). Then

inside the physical estimation in Task II, we use 2-

layer fully connected networks for both the coefficient

inference module fA(·) (5-8-5) and fS(·) (6-4-1). For both

Task I and Task II, we apply the mean-squared-error loss

in the proposed task loss L(·, ·), and each whole model

works exclusively for each day.

• Hyper-Parameter Selection: The hyper-parameters in

our proposed multi-task learning scheme is selected

by cross-validation. FIGURE 4 shows the performance

of our algorithm under different values of the hyper-

parameters. The regularization coefficient λ, which is

also the loss weights ratio between Task I and Task

II, determines the relative impact of these two tasks.

As shown in the left subfigure, the error of the hybrid

algorithm decreases as λ increases from 10−2 to 1, and

gradually increases as λ continues to grow. It indicates

that, under the proposed scheme, Task I plays a dominant

role in pollution inference, while Task II can further

enhance the performance of data learning. Here, we set

the regularization coefficient as 1, under which value the

hybrid algorithm achieves the lowest error. This might

because both the loss of Task I and the loss of Task II are

based on the inferred pollution concentration, thus share

the same order of magnitude. Besides, the learning rate

during our model training is set as 10−3, which achieves

good performance with the highest efficiency.

4) BASELINE METHODS

We compare the performance of our algorithm with the

following state-of-art methods that can be used in mobile

sensing:

FIGURE 4. Effect of hyper-parameters on RMSE.

• Inverse distance weighting interpolation (IDW) [38]

infers unobserved pollution concentration with its near-

est observed spatial neighbors, which is a typical method

in spatial interpolation.

• Land use regression (LUR) [26] combines the monitor-

ing of air pollution and the development of stochastic

models using predictor variables. Here, we consider the

predictor variables including meteorological parameters

and POIs that we mentioned above.

• Gaussian process regression (GPR) [5] is adopted by the

AirCloud team, which models the air pollution field as a

Gaussian Process. The probability distribution is learned

from observed samples and then used to predict unob-

served ones. Kriging interpolation, which is popular in

the conventional environmental domain, is also based on

a simplified form of Gaussian Process Regression.

• Artificial neural network (ANN) uses fully connected

layers to map the relation between geo features and

corresponding pollutant concentrations. This is a basic

kind of neural networks, which can also be seen as the

inference only under Task I.

• Convolutional long short-term memory (ConvLSTM)

[31], [32] is another kind of neural network with a

recurrent structure that considers the temporal depen-

dencies in physical neighborhoods, and with convolu-

tional structure that considers the spatial dependencies.

It is usually used in static sensing with a large amount of

sensing nodes.

In addition, we also evaluate the impact of different parts in

our algorithm by comparing the performance of the following

models:

• Task I: It represents the Neural Network Module under

only the loss of Task I, here we adopt the same network

structure in the baseline method ANN.

• Task I+ Task II: It represents the Neural Network Mod-

ule under both the loss of Task I and the loss of Task

II, without the input of auxiliary information. Therefore,

the Coefficient Inference Module degrades into coeffi-

cient variables A and S, which are constant over time

and space, and their values are estimated during model

training.

• Task I + Task II + Info: It is the whole model that

we proposed in this paper, with auxiliary information

including weather and POI.
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FIGURE 5. Daily performance on RMSE of different algorithms.

TABLE 1. Overall performance of different algorithms.

It is worth noticing that we do not evaluate the individual

performance of Task II, which is the Neural Network Module

under only the loss of Task II. Because it can output any kind

of pollution map as long as it satisfies the physical rules. The

optimization under no observations is meaningless and does

not converge.

C. ALGORITHM PERFORMANCE

The algorithm performances are first presented from an over-

all perspective and then discussed under different background

conditions.

1) OVERALL PERFORMANCE

The average performance over two weeks are shown in

TABLE 1. Overall, our method outperforms all the other

baselines in various indicators. Among the baselines, GPR

and IDW obtain a similar performance. Although ConvL-

STM aims to capture the spatiotemporal dependencies in the

pollution field, it fails to deal with sparse and irregular data

from mobile sensing in its original form, therefore performs

worst. The LUR is more cost-effective because it performs

a few better than IDW, GPR, and ConvLSTM with lower

computation cost. When comparing Task I, Task I + Task

II and Task I + Task II + Info, the impact of the physical

structure in Task II and the impact of auxiliary information

are verified by the progressive error reduction and correlation

increase, which also proves the effectiveness of our proposed

method.

The daily performance on RMSE of these methods are

shown as boxplots in FIGURE 5. The RMSEs on each day

almost follows the same trend as the average. However,

the performance of ConvLSTM shows great variations over

different days, meanwhile the performances of regression

methods IDW, GPR, LUR, and pure ANN are relatively

stable. It indicates that the training of ConvLSTM may be

significantly affected by the sampling condition, and the dis-

tributions of samples from mobile sensing are fairly irregular

and sparse. Modeling the mapping relation from geo features

to concentrations, instead of the mapping relation among

concentrations at different locations, can be supported with

more training samples.

During the days that all these methods get high RMSE like

Oct 10, Oct 13, Oct 14, Nov 20, etc., our whole model (Task

I + Task II + Info) not only achieves lower mean error than

the pure ANN (Task I), but also reduces the variation of the

errors from different folds. This proves that the utilization

of the physical models, as well as the construction of virtual

samples, help address the challenge of biased sampling and

meanwhile capture the spatiotemporal dependencies in pol-

lution maps effectively.

2) PERFORMANCE UNDER DIFFERENT BACKGROUND

CONDITIONS

Since the performances of these algorithms show significant

differences over various days, we further classify these days

by their weather types and background pollution level, thus

evaluate the algorithm robustness under different background

conditions. As shown in FIGURE 6, the performances of
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these methods are affected by two considered influencing

factors. The errors of these methods under different weather

types are shown in the top subfigure. As shown, all these

algorithms have remarkably different RMSE under different

weather types, they always perform best in clear days and

worst in rainy days. When it is clear or cloudy, the differences

of RMSE between our method and other baselines are not

obvious. However, when it is rainy, our method has both

significantly lower median and fewer variations on RMSE,

which illustrates its robustness against negative impact from

background conditions, benefited from the prior physical

knowledge.

The errors of these methods under different background

pollution levels are shown in the bottom subfigure. Here,

the background pollution level is determined by the mean

pollution concentration of the entire day, where ‘‘excel-

lent’’ is from 0 to 35µg/m3, ‘‘good’’ is from 35µg/m3

to 75µg/m3, and ‘‘light pollution’’ is from 75µg/m3 to

115µg/m3. Among these methods, the proposed one obtains

the least median errors under nearly all the background pol-

lution levels. Besides, all these algorithms perform worst

when the background level is ‘‘light pollution’’, however,

most of them have better performance under ‘‘good’’ than

the performance under ‘‘excellent’’. While looking into the

weather type of these days, we find that there are a higher

proportion of rainy days with an ‘‘excellent’’ pollution level

than that with a ‘‘good’’ pollution level. It may indicate that

the performances of these algorithms are easier to be affected

by the weather type than the background pollution level, but

more data are needed to confirm this point.

VI. CONCLUSION

This paper presents a novel method for fine-grained air pol-

lution inference, which enhances the data learning process

with physical knowledge using a multi-task learning scheme.

Specifically, the data-driven model and the physical disper-

sion model are seen as two parallel tasks, and further these

two tasks are trained by minimizing a weighted sum of their

losses. By involving this reformulated physical model with

a weighting coefficient, we can control its impact on our air

pollution inference. On the other hand, the data-driven model

works on the observed dataset and meanwhile the physical

model works on a virtual dataset that covers the entire space,

therefore it releases the negative impact of sampling bias from

mobile sensing.

Our method is evaluated over a real-world deployment

with both static and mobile air quality sensors in Foshan,

China. With the resolution of 500m×500m×15min, the pro-

posed method obtains the least error and highest correlation

among existing algorithms, which is 7.9% less root-mean-

squared error than the second place. Detailed evaluations

also show that, benefited from the physical knowledge, our

algorithm obtains stable performance with low variance and

high robustness against negative conditions including bad

weather and high-polluted environment.

FIGURE 6. Performance under different conditions.

APPENDIX

MATHEMATICAL DETAILS IN DISCRETENESS

APPROXIMATION

In this appendix, we expand the details of the discreteness

approximation for the physical dispersion model.

First, assume that we only consider the near-ground air

pollution, and the vertical variations of pollution field can

be omitted. Here, we use x, y to denote the 2 dimensions

of the space. Then v is with form (vx , vy), K is with form

diag(Kx ,Ky). After spatial and temporal discretization suc-

cessively, the convective-diffusion equation can be rewritten

as:

∂C

∂t
+ vx

∂C

∂x
+ vy

∂C

∂y
+

(
∂vx

∂x
+

∂vy

∂x

)
C

= Kx
∂2C

∂x2
+

∂Kx

∂x
·
∂C

∂x
+ Ky

∂2C

∂y2
+

∂Ky

∂y
·
∂C

∂y
+ S. (8)

Later, we express the discrete pollution map in terms of a

three-dimensional matrix C with size M × N × T , and also

assume the discretization intervals of x and y are1x = 1y =

l, the discretization interval of t is 1t . The pollutant con-

centration at the discrete spatial-temporal coordinate [i, j, k]

(corresponding to x-axis, y-axis of space, and t-axis of time)

can be estimated by a group of surrounding samples. The

mathematical expression of this relationship is:

C[i, j, k] = A1[i, j, k] · C[i, j, k − 1]

+A2[i, j, k] · C[i− 1, j, k − 1]

+A3[i, j, k] · C[i+ 1, y, k − 1]

VOLUME 8, 2020 88381



R. Ma et al.: Enhancing the Data Learning With Physical Knowledge

+A4[i, j, k] · C[i, j− 1, k − 1]

+A5[i, j, k] · C[i, j+ 1, k − 1]

+ S[i, j, k], (9)

where S[i, j, k] [kg/m3] is the source emission concen-

tration, and A1[i, j, k], · · · ,A5[i, j, k] are the coefficients

matrixes corresponding to the concentrations of physically-

related neighbors, which can be calculated from the value of

vx , vy,Kx ,Ky in this physically-related neighborhood:

A1[i, j, k] = 1 −

{ 2

l2

(
Kx[i, j] + Ky[i, j]

)

−
1

2l

(
vx[i+ 1, j, k − 1] − vx[i− 1, j, k − 1]

+ vy[i, j+ 1, k − 1] − vy[i, j− 1, k − 1]
)}

1t,

A2[i, j, k] =

{ 1

4l2

(
4Kx[i, j] + Kx[i+ 1, j]

−Kx[i− 1, j]
)
−

1

2l
vx[i, j, k − 1]

}
1t,

A3[i, j, k] =

{ 1

4l2

(
4Kx[i, j] − Kx[i+ 1, j]

+Kx[i− 1, j]
)
−

1

2l
vx[i, j, k − 1]

}
1t,

A4[i, j, k] =

{ 1

4l2

(
4Ky[i, j] + Ky[i, j+ 1]

−Ky[i, j− 1]
)
−

1

2l
vy[i, j, k − 1]

}
1t,

A5[i, j, k] =

{ 1

4l2

(
4Ky[i, j] − Ky[i, j+ 1]

+Ky[i, j− 1]
)
−

1

2l
vy[i, j, k − 1]

}
1t.

Besides, it is worth noting that the physical model can be

applied with different spatial-temporal discretization inter-

vals1x, 1y, 1t as needed. It can also be applied under differ-

ent parametric assumptions. If vx , vy,Kx ,Ky, S are assumed

to be spatially-temporally homogeneous, the relationship

between C[i, j, k] and C[i, j, k − 1],C[i− 1, j, k − 1],C[i+

1, y, k−1],C[i, j−1, k−1],C[i, j+1, k−1] is independent

of time and space. Otherwise, the relationship at particular

coordinates is determined by v, K and S at [i, j, k].
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