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Abstract—A novel framework is proposed for enhancing the
driving safety and fuel economy of autonomous vehicles (AVs)
with the aid of vehicle-to-infrastructure (V2I) communication
networks. The problem of driving trajectory design is formulated
for minimizing the total fuel consumption, while enhancing driv-
ing safety (by obeying the traffic rules and avoiding obstacles).
In an effort to solve this pertinent problem, a deep reinforcement
learning (DRL) approach is proposed for making collision-free
decisions. Firstly, a deep Q-network (DQN) aided algorithm is
proposed for determining the trajectory and velocity of the AV
by receiving real-time traffic information from the base stations
(BSs). More particularly, the AV acts as an agent to carry
out optimal action such as lane change and velocity change
by interacting with the environment. Secondly, to overcome the
large overestimation of action values by the Q-learning model,
a double deep Q-network (DDQN) algorithm is proposed by
decomposing the max-Q-value operation into action selection and
action evaluation. Additionally, three practical driving policies
are also proposed as benchmarks. Numerical results are provided
for demonstrating that the proposed trajectory design algorithms
are capable of enhancing the driving safety and fuel economy of
AVs. We demonstrate that the proposed DDQN based algorithm
outperforms the DQN based algorithm. Additionally, it is also
demonstrated that the proposed fuel-economy (FE) based driving
policy derived from the DRL algorithm is capable of achieving
in excess of 24% of fuel savings over the benchmarks.

Index Terms—Autonomous driving, deep reinforcement learn-
ing, fuel consumption, safe driving, trajectory design, V2I com-
munications
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Future research ideas: 1) designing the multi-agent deep reinforcement
learning based algorithm for enhancing the driving safety and fuel econ-
omy of multiple AVs; 2) designing the aerial-ground cooperative vehicular
networks, where vehicle-to-infrastructure (V2I) communications, vehicle-to-
vehicle (V2V) communications and UAV-to-vehicle (U2V) communications
are considered for enhancing the driving safety of the AVs.

I. INTRODUCTION

Autonomous driving, which promises both increased traffic
safety and traffic efficiency [1] has been the focal point of
the automotive research field for a while [2, 3], since it is
capable of improving the fuel economy, whilst minimizing
travel time [4]. At the time of writing, the driving safety
of autonomous vehicles (AVs) is mainly based on onboard
sensors and radars [5, 6]. Even though the feasibility of this
approach has already been demonstrated in field tests by Al-
phabet Inc, some impediments still persist. For instance, costly
onboard units (OBUs) limit commercialization for the mass-
market, while the AVs are unable to cooperate in complex
traffic environments [1]. On the other hand, invoking shared
roadside units (RSUs) to supplement OBUs is excepted to
promote the large-scale spreading of autonomous driving.

Vehicle-to-infrastructure (V2I) communications support the
interaction of road users, RSUs, pedestrians and other lo-
cal paraphernalia for enhancing road safety and traffic effi-
ciency [7]. In V2I-assisted autonomous driving, the V2I com-
ponents either complement or replace the OBUs, thus allowing
AVs to receive reliable real-time traffic information from the
roadside base stations (RBSs), which facilitates the interaction
among AVs and road users, hence enhancing their safety and
traffic efficiency. The RBSs report to the AVs the presence
of obstacles that AVs cannot directly sense in non-line-of-
sight scenarios. Whilst fog and sun glare limit the performance
of certain onboard sensors, V2I-assisted autonomous driving
remains reliable in arbitrary weather or lighting conditions.

V2I-aided autonomous driving has hence received tremen-
dous research interests both in academia and industry [8, 9].
In 2011, Japanese engineers have implemented V2I through
the deployment of the intelligent transportation system (ITS)
of [10]. Similarly, scientists in the Netherlands, Germany, and
Austria are working on developing a European smart corridor
that will provide drivers with information on road-works and
oncoming traffic [11]. Furthermore, the vehicle manufacturers
General Motors, Toyota, Tesla, and Nissan, among others, are
also actively promoting the development of communication-
based solutions to support safe driving.

A. State-of-the-art

Again, autonomous driving has attracted remarkable atten-
tion in recent years in diverse traffic scenarios, including lane
changing [12, 13], reverse parking [14], parallel parking [15],
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longitudinal control [16], computing resource allocation [17]
and motion/trajectory design [18–22]. Among all these chal-
lenges, the planning of the AVs’ trajectory is fundamental.

1) Trajectory Design of Autonomous vehicles: To de-
sign trajectories for AVs while ensuring safety, the authors
of [19] proposed a Reachability-based Trajectory Design
(RTD) method, and demonstrated that RTD was eminently ap-
plicable to passenger vehicles, where the powertrain, chassis,
and tires jointly obey nonlinear dynamics. The authors of [20]
proposed a beneficial technique of optimizing the vehicular
trajectories, while considering the vehicle’s kinematic limits
and ensuring collision avoidance. Both continuous-time and
discrete-time vehicle trajectory planning were considered.

In terms of fuel-efficiency and eco-driving oriented designs
for autonomous vehicles, the authors of [23, 24] proposed
cooperative look-ahead control strategy based on the classic
distributed model predictive control (DMPC) approach. The
fuel-efficiency of a vehicular platoon was maximized by op-
timizing the speed and motion trajectories of the autonomous
vehicles with the aid of a particle swarm optimization algo-
rithm. In [25], a switched control strategy of a heterogeneous
vehicular platoon was proposed for improving the safety,
passenger comfort, formation control and fuel economy of
intelligent vehicles.

2) V2X-Aided Autonomous Driving: In order to reap the
full benefits of communication-aided autonomous driving, the
authors of [26] considered the control of the instantaneous
velocity of the AV under realistic communications constraints.
The authors of [27] and [28] invoked an 802.11n/g wireless
network for transferring sensed data amongst two to three
vehicles. As a benefit, the AV became capable of receiving
real-time traffic information from other vehicles. The authors
of [29] considered the problem of cooperative driving for con-
nected AVs to reduce traffic congestion. The connected AVs
became capable of exchanging information as well as driving
intentions with the surrounding vehicles through vehicle-to-
vehicle (V2V) communications. To analyze the performance
of a heterogeneous V2X communication network operating in
the downlink direction, the authors of [30] proposed a network
slicing method for supporting the connectivity of the next-
generation devices. their simulation results demonstrated huge
improvements in terms of reliability and throughput, which is
due to the utilization of high-quality V2V and V2I links.

3) Reinforcement Learning in Autonomous Driving: Ma-
chine learning has gained remarkable attention in wireless
communication networks [31, 32]. Reinforcement learning al-
gorithms have been shown to be capable of tackling prob-
lems in autonomous driving systems [33–35]. The authors
of [36] invoked a beneficial combination of deep reinforcement
learning (DRL) and numerical solutions for controlling the
instantaneous velocity of the AV. As a result, the maximal
possible speed was obtained, while collisions were avoided.
The authors of [37] learned the optimal driving policy for
an AV in a pair of practical intersection scenarios with the
aid of reinforcement learning. The authors of [38] invoked
reinforcement learning for training an AV for safe driving.
In order to design a suitable cost function and to solve the
associated optimal control problem in real-time, the authors

of [39] designed a control architecture based deep RL frame-
work for safe decision making in autonomous driving. By
appropriately modifying the learning algorithm, the resultant
continuous adaptation framework became capable of reducing
the number of unnecessary safety triggers.

B. Motivations

As mentioned above, the costly OBUs of the autonomous
driving system limit the attainable cost reduction of AVs.
As an impediment, the vehicles are unable to cooperate in
complex propagation and traffic scenarios [1]. As a remedy,
we consider a V2I-assisted autonomous driving scenario, in
which shared RSUs are invoked for complementing the OBUs
for collecting real-time traffic information. This, in turn, is
expected to promote the large-scale private ownership of AVs.

The aforementioned research contributions conceived solu-
tions for enhancing both the safety and fuel-economy of AVs
by both conventional and machine learning schemes. However,
predominantly the driving safety of the AV was considered.
By contrast, only a few papers analyzed the energy efficiency
of the AV by considering their energy management [37, 39].
However, since the fuel consumption is a function of both the
velocity and acceleration, their control has to be considered,
when aiming for fuel economy. Unfortunately, there is still a
paucity of research contributions on studying the fuel economy
of AVs relying on V2I communications. Thus, we formulate
the trajectory design problem of the AV for minimizing fuel
consumption while enhancing driving safety.

In terms of the methodology, the V2I-assisted autonomous
driving scenario is naturally a highly dynamic one, which
constitutes quite a challenge for conventional optimization
algorithms. But fortunately, machine learning (ML) comes
to rescue. For example, reinforcement learning can be used
for empowering agents by interacting with the environment
and by learning from their mistakes. Since it is non-trivial to
pose autonomous driving as a supervised learning problem
due to strong interactions with the environment including
other vehicles, RBSs pedestrians, and RSUs. The RL model
is capable of monitoring the reward resulting from its actions,
thus it is chosen for solving the trajectory design problem of
V2I-assisted autonomous driving systems.

C. Contributions

Against this background, the primary contributions of this
paper are as follows:
• We propose a novel framework for optimizing the fuel

economy and driving safety of the AV with the aid of
V2I communications, where the AV receives real-time
traffic information from the RBSs. Based on the proposed
framework, we formulate a fuel economy optimization
problem by jointly designing the path, motion and in-
stantaneous velocity of the AV.

• We adopt a deep Q-network (DQN) based algorithm for
acquiring the trajectory of the AV under the quality-of-
connectivity constraint of the communication link. In the
DQN model, the AV acts as a learning agent and the
trajectory of the AV corresponds to the actions taken
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by itself. At each timeslot, the AV receives a reward
or penalty according to the specific driving safety and
fuel consumption encountered. Finally, the AV is capable
of attaining a collision-free driving policy for obtaining
fuel economy by interacting with the environment and by
learning from its mistakes.

• We conceive a double deep Q-network (DDQN) based
algorithm for preventing the over-estimation of the action
values by the conventional Q-learning model. The max
operation process in the conventional DQN model is
decomposed into the twinned processes of action selec-
tion and action evaluation in the DDQN model. More
particularly, the first DQN is used for selecting an action
to interact with the environment, while the second for
evaluating the action selected. Additionally, we prove that
the proposed DDQN algorithm is capable of converging
under mild conditions.

• We demonstrate that the proposed DDQN algorithm
outperforms the DQN algorithm both in terms of its
convergence rate and performance. Additionally, the fuel-
economic driving policy derived from the DDQN al-
gorithm saves about 24% fuel compared to three other
practical driving policies, which are also proposed as
benchmarkers.

The rest of the paper is organized as follows. In Section
II, the problem formulation of fuel economy is presented for
AVs. In Section III, the proposed DQN and DDQN based
algorithms conceived for solving the problem formulated are
demonstrated. Our numerical results are presented in Section
V, which is followed by our conclusions in Section VI.

II. SYSTEM MODEL

Again, we consider a V2I-assisted autonomous driving
model, which mainly includes RBSs, AVs, OBUs, and RSUs.
The OBUs which are installed in vehicles, receive real-time
traffic information from RBSs and instantaneously report their
velocity, driving directions and other vehicular information.
The RSUs, relying on the static facilities at the roadside,
are invoked for collecting traffic information concerning the
complex scenarios of vehicles, pedestrians and the road. Mean-
while, the traffic information is sent by the RSUs to RBSs
via the Internet. The RBSs also adopt a high-performance
processor for processing both the information and data. As
illustrated in Fig. 1, the RBSs provide network coverage for a
particular section of the highway. Low-latency communication
for supporting safe driving for the AV is served by the RBSs1.

We aim for designing the trajectory (including the path,
motion and real-time velocity) of the AV by jointly considering
the driving safety and fuel consumption. In terms of safety,
collisions have to be avoided, while the traffic rules also have
to be observed. Finally, fuel economy has to be maintained.

1In this paper, we assume that OBUs only receive traffic information from
the RBSs. In our future research, OBUs are capable of receiving traffic signals,
road construction, safety accidents information from both RSUs and RBSs.
Meanwhile, the OBUs can exchange information with RSUs, RBSs or other
OBUs in a highly dynamic environment.

A. Transmission Model
We assume that u(t) = [x(t), y(t)] represents the coordi-

nates of the AV at timeslot t. The target of the AV is that
of driving from the initial position u0 to the final destination
uf . We assume that the location of each RBS is fixed and
known. The coordinates of the m-th RBS are (xm, ym, hm),
m ∈ M ∆

= {1, 2, · · ·M}, while hm represents the height of
the m-th RBS. Then, the distance between the m-th RBS and
the AV can be expressed as

dm(t) =

√
[x(t)− xm]

2
+ [y(t)− ym]

2
+ h2

m. (1)

In a highway scenario, a dominant Line-of-Sight (LoS)
component is expected, associated with the most appropriate
transmitter antenna height. A basic signal propagation model
capturing channel gain from the m-th RBS to the AV is
formulated as [40]

gm(t) = K0
−1d−αm (t)|hm(t)|2, (2)

where we have K0 =
(

4πfc
c

)2

and α represents the path
loss exponent, while |hm(t)| corresponds to small-scale Rician
fading component [41].

Let sm represent the vehicle-RBS indicator, where sm = 1
indicates that the AV is served by the m-th RBS, while sm = 0
otherwise. Thus, the received signal-to-noise ratio (SNR) of
the AV is expressed as follows

SNR(t) =
sm(t)gm(t)Pm

σ2
, (3)

where Pm represents the power transmitted from the m-th
RBS to the AV, while σ2 = BAVN0 with BAV and N0 denoting
the bandwidth and power spectral density of the additive white
Gaussian noise (AWGN), respectively.

The Doppler frequency fd depends on the relative velocity
between the AV and the connected RBS [42]. Thus, the
Doppler frequency of the AV with a velocity of v(t) can be
expressed as

fd =
v(t)

c
· fc · cosαv, (4)

Roadside radar Roadside base station

Roadside base station
Roadside camera

y

x

Autonomous vehicle

Manned vehicle

Manned vehicle

V2I

Fig. 1: Illustration of V2I assisted autonomous driving over a
section of highway.
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where αv represents the angle between the direction of arrival
of the considered propagation path and the AV’s movement.

Remark 1. Given the location of BSs, increasing the instan-
taneous velocity of the AV leads to reduced SNR. In an effort
to enhance driving safety, the instantaneous velocity of the AV
has to be reduced, when the propagation environment is poor.

B. Safe Driving Model

We consider delay-sensitive communication between the
RBS and the AV under a specific quality-of-connectivity
constraint specified by a minimum received SNR requirement,
which has to be satisfied at all times along the vehicle’s motion
trajectory [1]. Further enhancement for the received SNR by
leveraging non-orthogonal multiple access (NOMA) [43, 44]
will be left for our future research. The minimum SNR target
can be expressed as

Γ(t) = SNR(t) ≥ Γ. (5)

Lemma 1. In order to ensure that every AV is capable of
receiving real-time traffic information from the RBS, the upper
bound for the distance between two RBS has to satisfy

dGB ≤
2vm(t)Pm|hm(t)|2

K0Γσ2
. (6)

Lemma 1 sets out the upper bound of the distance be-
tween two RBSs for guaranteeing that the AV’s instantaneous
transmit rate is sufficiently high for receiving real-time traffic
information, since this is a vital precondition of safe driving
in autonomous driving scenarios.

To maintain safe driving, we assume that the distance
between the AV and the manned vehicles in the same lane
has to obey the Three-Second Rule2. Hence, the safe driving
distance has to satisfy

dk = x(t)− xk(t)

≥ 3 · v(t) + 1/2(l + lk),
(7)

where xk(t) and lk represents the coordinate and length of the
k-th manned vehicle on the road, respectively, and k ∈ K ∆

=
{1, 2, · · ·K}. Furthermore, l denotes the length of the AV.

C. Fuel Consumption Function

We utilize a fuel consumption rate model, which considers
both the energy required for overcoming all the forces of
resistance and for episodic accelerations. The conception of
a general fuel consumption model will be left for our future
research.

The instantaneous energy expenditure e(t) on a flat road is
expressed as a sum of e(t) = e1(t) + e2(t), where e1(t) is the
energy required for overcoming all the forces of resistance, and
e2(t) is the kinetic energy required for episodic acceleration.

Explicitly, e1(t) is given by Equation (8) at the top of
the next page, where ηT is the efficiency of the power-train

2The three-second rule, also known as the two-second rule in some states
of USA, is a rule of thumb by which a driver may maintain a safe trailing
distance at any speed. The rule is that a driver should ideally stay at least
three seconds behind any vehicle that is directly in front.

transmission; mv is the car-mass; fr is the rolling resistance
coefficient; cD is the coefficient of aerodynamic resistance of
the car; and Af is the characteristic area of the car. Further-
more, ηj (P, n) is the engine efficiency, which depends on the
degree of power utilization and on the engine speed model;
ρa is the air density; g is the acceleration coefficient; vi(t)
is the instantaneous vehicular speed at the i-th acceleration
subinterval; vj is the vehicular speed at the j-th constant speed
subinterval; Tj is the j-th constant speed subinterval duration;
Ti is the i-th acceleration subinterval duration. If the rolling
resistance coefficient and the vehicle’s frontal area are not
provided by the manufacturer, their approximate values may
be estimated from the following empirical equations [45]

fr = 0.0136 + 0.40 · 10−7 · v2(t),

Af = 1.6 + 0.00056 · (mv − 756).
(9)

The energy required for increasing the kinetic energy during
accelerations is determined via the following relationship [45]

e2(t) =
mv · γm

2

I2∑
i=1

Tk∑
t=0

ai(t)

ηi(P, n, t)
, (10)

where γm represents the mass factor of the car, which equiva-
lently converts the rotational inertia of the rotating components
into translation mass; and ai(t) denotes the instantaneous
vehicular acceleration at the i-th acceleration subinterval. The
instantaneous engine efficiency η(P, n, t) is also calculated
in [45].

The energy consumption of a vehicle also depends on the
road condition such as the road’s slope. When taking the road
slope into consideration, the fuel consumption of a vehicle can
be obtained as [46]

ê(t) = b0 + b1v(t) + b2v
2(t) + b3v

3(t)

+ â
[
c0 + c1v(t) + c2v

2(t)
]
,

(11)

where b0, b1, b2, b3, c0, c1 and c2 are constant values given
in [46], â = aV + aθ is the sum of the apparent acceleration
of the vehicle and the acceleration required to counteract the
road slope (aθ = g sin(θ)). The apparent acceleration of the
vehicle can be expressed as [46]

aV = −(1/2M)CDρaAfv
2(t)− frg cos(θ)− g sin(θ) + u(t),

(12)

where u(t) denotes the control input, while the other param-
eters are the same as in Equation (8).

It is worth noting that the fuel consumption model is in-
voked for formulating the fuel consumption of the AV. Neither
the design of the communication protocol nor the proposed
algorithms will be affected by the specific choice of the fuel
consumption model. Hence, any fuel consumption model can
be invoked in our proposed approach. In the scenario of this
paper, it is assumed that the road slope is 0, and the fuel
consumption model derived in [45] is invoked.
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e1(t) = 1
ηT

I1∑
j=1

1
ηj(P,n)

[
mv · g · fr · vj3.6 + 0.5 · ρa · CD ·Af ·

( vj
3.6

)3]
Tj+

1
ηT

I2∑
i=1

∫
Ti

1
ηj(P,n,t)

[
mv · g · fr · vi(t)3.6 + 0.5 · ρa · CD ·Af ·

(
vi(t)
3.6

)3
]
dt,

(8)

Therefore, the cumulative fuel consumption Etotal for the
AV during the driving period is expressed as

Etotal =

T∑
t=1

e(t), (13)

where T is the mission completion time.

Remark 2. According to equation (8),(10) and (13), it can be
observed that minimizing the mission completion time directly
affects the total fuel consumption. However, e(t) is not a linear
function of the instantaneous velocity and acceleration. In-
deed, in practice, maximizing the instantaneous velocity tends
to increase the total fuel consumption for all vehicles. This
phenomenon emphasizes the importance of velocity-control,
when aiming for fuel economy.

III. PROBLEM FORMULATION AND PROPOSED
ALGORITHM

In this section, we formulate the optimization problem as
minimizing the total fuel consumption of the AV during the
mission completion time, while enhancing driving safety. A
deep reinforcement learning based trajectory design algorithm
is proposed for solving the problem formulated.

A. Problem Formulation

Let U = {u(t), 0 ≤ t ≤ T}, V = {v(t), 0 ≤ t ≤ T}.
Again, we aim for minimizing the total fuel consumption Etotal
by optimizing the discrete position u(t) and instantaneous
velocity v(t) by receiving real-time traffic information from
a RBS. Thus, the optimization problem is formulated as

min
U ,V

Etotal =

T∑
t=1

e(t) (14a)

s.t. V lmin ≤ v(t) ≤ Vmax,∀t,∀l, (14b)
0 ≤ |av(t)| ≤ amax,∀t, (14c)

Γ(t) ≥ Γ,∀t, (14d)
u (0) = u0, (14e)
u (T ) = uf , (14f)
dk ≥ 3 · v(t) + 1/2(l + lk),∀t, (14g)

where Γ(t) represents the received SNR of the AV, v(t)
denotes the velocity at time slot t, vlmin is the minimal velocity
stipulation in the l-th lane, dk represents the distance between
the AV and other manned vehicles driving in front of it, and
finally av(t) denotes the acceleration of the AV at time slot t.
Equation (14b) formulates the velocity limitation of the AV;
(14c) indicates the acceleration limitation of the AV; (14d)

represents the quality-of-connectivity of the communication
link; (14e) and (14f) denote the initial position and the
final position of the AV, respectively; finally, (14g) represents
the safe driving constraint for the AV. Again, we aim for
designing the trajectory (including the path, motion, and real-
time velocity) of the AV, which ensures that the AV is at the
optimal position and optimal instantaneous velocity during
each time slot. This, in turn, leads to the reduction of fuel
consumption for the AV, while enhancing driving safety.

Problem (14a) is challenging, since the objective function
(OF) is combinatorial and non-convex. Additionally, the con-
ventional Q-learning algorithm cannot be directly applied,
since the state-action space of the proposed scenario is exces-
sive. The reason is that a large number of states will be visited
infrequently, hence the corresponding Q-value will only be
rarely updated. This phenomenon leads to an excessive time
for the model to converge. To solve this problem at a low
complexity, a deep reinforcement learning algorithm will be
invoked in the following section to obtain an efficient solution.

B. Proposed DQN Based Trajectory Design Algorithm

In this section, a deep Q-learning based algorithm is
proposed for determining the trajectory of the AV, while
enhancing driving safety with the aid of V2I communication
networks. It is assumed that the AV starts from a random
lane. When an obstruction (such as a vehicle in front of
the AV with a lower velocity) appears, the AV changes lane
(both fast-traffic-lane and carriage lane) to finish overtaking.
In this scenario, the AV considers its choices according to the
resultant fuel consumption. Since the velocity lower bound of
different lanes varies, the AV has to observe the traffic rules
for enhancing driving safety for all the surrounding manned
vehicles.

In the deep Q-network based model, the AV acts as the
agent. At each time slot t throughout the iterations, the AV
observes a state, st, from the state space, S. The state space
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Fig. 2: Deep Q-network (DQN) based trajectory design for
autonomous driving on a highway.
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consists of the coordinates and instantaneous velocities of both
the AV and of other manned vehicles. Accordingly, the AV
carries out an action, at, from the action space, A, selecting the
optimal choice based on policy, J . The action space consists of
changing lanes and varying the velocity. The decision policy
J is determined by a Q-function, Q(st, at). The principle of
the policy at each time slot is to choose a specific action that
results in the maximum Q-value. Following the chosen action,
the state of the AV traverses to a new state st+1 and the AV
receives a reward, rt, determined by its safe driving condition
and fuel consumption.

Remark 3. Deep reinforcement learning models may be
trained by interacting with the environment (states). They can
be expected to find the optimal behaviors (actions) of the
AV (agent) by iteratively exploring the environment and by
learning from its mistakes. The model is capable of monitoring
the reward resulting from its actions.

As for the state space in the DQN model, it consists of four
parts: the current coordinate of the AV, the current velocity of
the AV, the current coordinates of other manned vehicles, and
the current fuel consumption of the AV. As for the action space
of the DQN model, the main actions of autonomous driving
are represented by assigning both lane changes and velocity
changes to the AV in a way that driving safety is enhanced.
On the one hand, when the AV changes lane, (0; −w) means
that the AV moves to the right lane, (0; w) indicates that
the AV moves to the left lane, (0; 0) represents that the AV
continues driving straight. In a practical driving scenario, the
AV is capable of adopting the steering angle of [−90o, 90o],
which makes the problem non-trivial to solve. However, by
constraining its mobility to as few as 3 directions, a tradeoff
between the accuracy and complexity may be struck. On the
other hand, the AV may also change its instantaneous velocity
in order to satisfy the restrictions imposed. By constraining the
acceleration and deceleration to as few as 5 levels (-10m

/
s2,

-5m
/
s2, 0m

/
s2, 5m

/
s2, 10m

/
s2), the mobility of the AV is

further simplified. It is assumed that only one action will be
carried out at each timeslot, while composite actions are not
allowed.

The beneficial design of the associated reward/penalty func-
tion requires a sophisticated methodology for accelerating the
convergence of the model, which is directly related to the
safety, expected velocity and fuel consumption of the AV. In
this case, the reward/penalty in the DQN model is a function of
the AV’s position, acceleration, velocity and fuel consumption
rate, which is expressed as r(t) = f [y(t), v(t), a(t), e(t)].
When the AV is driving at a low fuel consumption rate while
guaranteeing safe driving, it receives a positive reward. By
taking any other actions, which may lead to an increase
of the fuel consumption, collision or traffic violation, the
AV receives a penalty. In terms of the penalty function of
collision avoidance, since the collision damage of vehicles is
proportional to the square of the relative velocity when an
accident happens, we design the penalty value as a function of
the square of the relative velocity. Using an appropriate penalty
function is also essential for enhancing compliance with the
specific traffic rules mentioned above. To this end, the penalty

Algorithm 1 Deep Q-network based trajectory design algo-
rithm for autonomous driving

Input:
Q-network structure, environment simulator, replay memory
D, minibatch size n.
Initialize the replay memory D, Q-network weights θ,
weights of the target network θ∗ = θ, and Q(s, a).

The AV starts at random points.
repeat

for each step of episode:
The AV chooses at uniformly from A with prob-

ability of ε, while chooses at such that Qθ(st, at) =
maxa∈AQθ(st, at) with probability of (1− ε).

The AV carries out action at, and observes reward rt,
The model updates state st+1;
Store transition (st, at, rt, st+1) and sample random

minibatch of transitions (si, ai, ri, s
′
i)i∈n from D;

For each i ∈ I , we can obtain
yi = ri + γ ·maxa∈AQθ∗(s

′
i, a);

Perform a gradient descent step
θ ← θ − at · 1

I

∑
i∈n

[yi −Qθ(si, ai)] · ∇θQθ(si, ai);

θ ← θ∗.
end

until s is terminal
Return: Action-value function Qθ and policy J .

AccelerationDeacceleration

Keep going

Keep velocity

Change lane

Turn left

Change lane

Turn right

(xt, yt-1/2w)

(xt, yt+1/2w)

vt+v0vt-v0

Fig. 3: Action definition for the AV.

function of traffic rule violations is designed as a function of
the AV’s velocity. By contrast, the penalty function of fuel
economy is designed based on the fuel consumption derived
from Equations (8), (10) and (13). As for the reward function,
when the AV carries out an action for fuel-saving and safe
driving, a constant reward value is achieved. A typical reward
function can be formulated as (15) at the top of the this page.

Remark 4. The penalty function for collision avoidance has
to have a high value, so that the potentially unsafe motions
are suppressed.
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rt =



c1|v(t)− v0(t)|2, collision,
c2 [100− v(t)] , no collision, y(t) = −1/2w, v(t) ≤ 100km/h,

c2 [80− v(t)] , no collision, y(t) = −3/2w, v(t) ≤ 80km/h,

c2 [60− v(t)] , no collision, y(t) = −5/2w, v(t) ≤ 60km/h,

−
∫ t+1

t
e(t)dt, no collision, y(t) = −1/2w, v(t) ≥ 100km/h,E(t+ 1) ≥ E(t),

−
∫ t+1

t
e(t)dt, no collision, y(t) = −3/2w, v(t) ≥ 80km/h,E(t+ 1) ≥ E(t),

−
∫ t+1

t
e(t)dt, no collision, y(t) = −5/2w, v(t) ≥ 60km/h,E(t+ 1) ≥ E(t),

c3, otherwise.

(15)

During the process of learning, the state-action value func-
tion for the agent can be iteratively updated as follows

Qt+1(st, at)← (1− α) ·Qt(st, at)
+ α · [rt + γ ·maxaQt(st+1, a)] ,

(16)

where α represents the learning rate, while γ denotes the
discount factor.

Remark 5. The learning rate α in the DQN model determines
the rate of information updates, while striking a compromise
between averaging over possible randomness in the rewards
and allowing for transitions in order to converge to the optimal
action-value function. Explicitly, it has to be appropriately
adopted according to the specific environment, such as α = 1
for fully deterministic environments, and α < 1 for stochastic
scenarios.

In (16), the reward rt is drawn from a fixed
reward distribution R : S × A → R, where
E {rt |(s, a, s′) = (st, at, st+1)} = Rs

′

sa. The optimal
value function is the solution to the following equation

Q∗(s, a) = Es′ [r + γmaxa′Q
∗(s′, a′) |s, a ], (17)

where Q∗(s, a) is the desired value function such that Q→ Q∗

when i→∞.
The DQN algorithm improves the conventional Q-learning

algorithm by combining it with the Convolutional Neural
Networks (CNN). The Q-table is approximated by a CNN
having weights {θ} as a Q-function. Once {θ} is determined,
the Q-values Q(st, at) constitute the outputs of the CNN.

The DQN model updates its weights, θ, at each iteration for
minimizing the following loss function derived from the same
Q-network with the aid of the previous weights,

Loss(θ) =
∑

[y −Q (st, at, θ)]
2
, (18)

where we have y = rt + γ ·max
a∈A

Qold (st, at, θ).
As illustrated in Fig.2, the CNN includes a pair of convolu-

tional layers and two fully connected layers. The AV’s mov-
ing experience characterized by ex(t) = y(t), v(t), a(t), e(t)
is stored in the memory denoted by D, with D =
{ex(0), · · · ex(T )}. The AV then invokes an experience replay
technique to extract the moving experience ex(t) from the
memory at each time slot. To elaborate a little further, the
AV randomly selects a selection of M experiences from the
memory D during the experience replay, which we refer to as

a minibatch of experience. The weights of the CNN θ(t) are
updated according to the classic stochastic gradient descent
(SGD) algorithm, and the M minibatch elements are chosen
similar to [47].

We strike a balance between the exploration and exploitation
in DQN by using ε-greedy exploration [48]. More specifically,
the policy J that maximizes the Q-value is chosen with a high
probability of (1− ε), while other actions are selected with a
low probability to avoid getting trapped in a local optimum,
which is formulated as

Pr(J = Ĵ) =

{
1− ε, â = argmaxQ (s, a) ,

ε/ (|a| − 1) , otherwise.
(19)

C. The Proposed DDQN Based Trajectory Design Algorithm

One of the limitations of the Q-learning algorithm is that
this model may suffer from the overestimation of action
values, because it invokes the maximum action value as an
approximation of the maximum expected action value. It is
noted in [48] that the use of the same network weight θ for
both the policy decision and for the Q value approximation
leads to a nonzero lower limit of maxaQ(s, a)

maxaQ(s, a) ≥ V ∗(s) +

√
C

m− 1
, (20)

where V ∗ represents a specific state, in which all the true
optimal action values are equal at V ∗(s) = Q∗(s, a); C is
the variance of the state value and m denotes the number of
optional actions in state s. Therefore, the idea of double Q
learning is applied, in which the original weights θt are still
applied, when the DQN is deciding about a particular action,
and the second set of weights θt′ is adopted for approximating
the objective function.

In the double Q-learning model, two Q functions are
independently learned, namely Q1 for determining the
maximizing action and Q2 for estimating the Q-value.
Both Q1 and Q2 are updated randomly by Q1(s, a) →
r + βQ2[s′, argmaxaQ1(s′, a)] and Q2(s, a) → r +
βQ1[s′, argmaxaQ2(s′, a)].

Double DQN is based on the Double Q-learning model. In-
stead of finding the maximum of all Q-values when computing
the target-Q value for the training step, the primary network is
invoked for choosing an action, and the target network is also
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Algorithm 2 Double Deep Q-network based trajectory design
algorithm for autonomous driving

Input:
Q-network structure, environment simulator, replay memory
D, minibatch size n.
Initialize the replay memory D, Q-network weights θ,
weights of the target network θ∗ = θ, and Q(s, a).

The AV starts at random points.
repeat

for each step of episode:
With the same process with DQN model, the AV carries

out action at and observes reward rt. The model updates
state st+1, stores transition (st, at, rt, st+1) in D and
sample random minibatch of transitions (si, ai, ri, s

′
i)i∈n

from D;
For each i ∈ n, compute the target
yi = ri + γ ·Qθ∗ (s′i, arg max (Q(s′i, a

′
i; θi)));

Perform a gradient descent step for updating the Q-
network

θ ← θ − at · 1
n

∑
i∈n

[yi −Qθ(si, ai)] · ∇θQθ(si, ai);

θ ← θ∗.
end

until s is terminal
Return: Action-value function Qθ and policy J .

adopted for generating the target Q-value for that particular
action. Hence, the equation of the Q-target can be written as

yi = ri + γ ·Qθ∗ [s′i, arg max (Q(s′i, a
′
i; θi))]. (21)

Two CNN models of the same architecture are established:
the Q estimation network and the Q target network. A target
network is used for generating the target-Q values that will
be used to compute the loss for every action during training.
Although not fully decoupled, the target network in the DQN
architecture provides a natural candidate for the second value
function, without having to introduce additional networks.

D. Comparison of the Proposed Fuel-Economy-Based Driving
Policy to Other Practical Driving Policies

In order to illustrate the advantages of the proposed driving
policy derived from our DDQN algorithm, three practical
driving policies are proposed as benchmarks, namely, the
fast-lane-based (FL) driving policy, smooth-trajectory-based
(SMT) and straight-driving-based (ST) policy.

1) Fast-Lane-Based Driving Policy: As illustrated in Fig.1,
it is assumed that each direction has three traffic lanes.
According to the traffic rule, the lower bound constraint of
the instantaneous velocity in the different lanes varies. More
particularly, the velocity constraint for the fast-lane is no lower
than 100km/h, while that of the carriage lanes is no lower
than 80km/h and 60km/h, respectively.

In terms of the FL driving policy, it is assumed that the AV
starts from the fast-lane. When an obstacle (such as a manned
vehicle of lower velocity) appears in front, the AV carries out
the action of changing lane for overtaking while maintaining

safe driving. After overtaking, the AV changes lane back to
the fast-lane to travel at a higher velocity.

According to this driving policy, the AV is mainly driving
in the fast-lane, and the mission completion time will be
reduced due to the high velocity. However, according to the
fuel consumption model, fuel consumption is not linearly
proportional to the time and velocity. In this case, the proposed
FL driving policy is not optimal in terms of fuel economy.
However, it is capable of striking a tradeoff between fuel
economy and mission completion time.

2) Smooth-Trajectory-Based Driving Policy: As for the
SMT driving policy, changing lanes on the highway is one
of the highest risk maneuvers that a vehicle has to perform,
because it involves changes in both the longitudinal and lateral
velocity as well as movement in the presence of other moving
vehicles. Based on the proposed DDQN algorithm, we improve
the reward function design to fulfill the aforementioned tasks,
while reducing the number of lane-change maneuvers.

In the DDQN model, the specific reward that the agent ac-
quires is known as an immediate reward/penalty at a particular
state-action pair. At each episode, the AV carries out an action
and in return receives a reward/penalty. In the reward/penalty
function design of the SMT driving policy, when the action
carried out by the AV is lane change (either left and right),
the reward derived from this action is lower than that derived
from changing velocity. In this case, the reward function is
redefined as (22) at the top of the next page.

It can be observed from this redefined reward function
that, the SMT driving policy derived from DDQN algorithm
contains fewer lane changes than the FE driving policy. This is
because the DDQN model aims at maximizing the total reward
of each episode, while the weight of the velocity-control values
is higher than that of lane changes in the reward function.
Overall, the SMT driving policy strikes a tradeoff between
fuel economy and passenger comfort.

3) Straight-Trajectory-Based Driving Policy: In this driving
policy, the vehicle is driven from the initial position to the
destination in a straight line, while varying the velocity. Since
no lane changes will be carried out by the AV in this driving
policy, the cardinality of the action space is reduced from 5
to 3. At each timeslot, the AV has to choose an action from
acceleration, deceleration and no extra action. In this case, the
reward function is designed as

rST
t =



c1|v(t)− v0(t)|2, collision,
c2 [100− v(t)] , no collisionv(t) 6 100km/h,

−
∫ t+1

t
e(t)dt,

no collision,v(t) > 100km/h,
E(t) > E(t+ 1),

c3, otherwise.
(23)

Since lane changes are forbidden in this driving policy,
the AV has to change the instantaneous velocity for avoiding
collision and for keeping a safe distance from other manned
vehicles. It can be observed from the fuel consumption model
that frequent acceleration or deceleration leads to increased
fuel consumption. However, we have demonstrated in our
previous work [49] that the computing complexity of the
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rSMT
t =



c1|v(t)− v0(t)|2, collision,
c2 [100− v(t)] , no collision, y(t) = −1/2w, v(t) ≤ 100km/h,

c2 [80− v(t)] , no collision, y(t) = −3/2w, v(t) ≤ 80km/h,

c2 [60− v(t)] , no collision, y(t) = −5/2w, v(t) ≤ 60km/h,

−2
∫ t+1

t
e(t)dt, at → lane change, no collision, y(t) = −1/2w, v(t) ≥ 100km/h,E(t) ≥ E(t+ 1),

−2
∫ t+1

t
e(t)dt, at → lane change, no collision, y(t) = −3/2w, v(t) ≥ 80km/h,E(t) ≥ E(t+ 1),

−2
∫ t+1

t
e(t)dt, at → lane change, no collision, y(t) = −5/2w, v(t) ≥ 60km/h,E(t) ≥ E(t+ 1),

−
∫ t+1

t
e(t)dt, at 6= lane change, no collision, y(t) = −1/2w, v(t) ≥ 100km/h,E(t) ≥ E(t+ 1),

−
∫ t+1

t
e(t)dt, at 6= lane change, no collision, y(t) = −3/2w, v(t) ≥ 80km/h,E(t) ≥ E(t+ 1),

−
∫ t+1

t
e(t)dt, at 6= lane change, no collision, y(t) = −5/2w, v(t) ≥ 60km/h,E(t) ≥ E(t+ 1),

c3, otherwise.

(22)

algorithm increases polynomially with the number of action
options. Since the action space in this driving policy is re-
duced, the computational complexity is also reduced. Overall,
the ST driving policy is capable of striking a tradeoff between
fuel economy and computational complexity.

E. Analysis of the Proposed Algorithm

1) Complexity Analysis of the Proposed Algorithm: The
complexity of the Algorithm 1 is commensurate with that of
the CNN model. As demonstrated in [50], the total complexity

of the CNN model is on the order of O
(

2∑
i=1

fi−1fin
2
imi

)
,

where f0 is the number of input channels for the CNN
model, and mi is the spatial size of the output feature
map of the Conv layer i. The first Conv layer has a sin-
gle input channel and f1 filters. Each filter has a size
(n2 × n2), and outputs a f1(n1 − n2 + 1)

2 feature map.
Similarly, the second Conv layer has f1 filters each of
size (n3 × n3). Each filter in the second Conv inputs a
(n2×n2) element matrix and outputs a f2(n1 − n2 − n3 + 2)

2

feature map. Thus, the CNN’s computational complexity is
O
[
f1

(
n2

2(n1 − n2 + 1)
2

+ f2n
2
3(n1 − n2 − n3 + 2)

2
)]

.
Table I illustrates the performance of the proposed algo-

rithms. The DDQN algorithm is capable of obtaining optimal
results at the stable complexity as the DQN algorithm, which
is far lower than that of the Q-learning algorithm. In terms of
the Q-learning model’s complexity, we have demonstrated in
our previous work [49] that the size of the model is increased
linearly with the number of states and polynomially with the
number of actions.

2) Convergence Analysis of the Proposed Algorithm: Two
steps are taken for analyzing the convergence of the DDQN
algorithm. The first step is proving that the general Q-learning
approach is indeed capable of converging to the optimal state.
The second step is showing that the neural network approach
succeeds in identifying the nonlinear Q-values generated by
the general Q-learning iteration in equation (16).

Proposition 1. The double Q-learning approach is capable of
converging to the optimal Q value.

As discussed in [49], the conventional Q-learning model
converges to the optimal Q-function as long as 0 ≤ αt ≤
1,
∑
t
αt =∞ and

∑
t
α2
t <∞ . Apart from the conditions

required for the convergence of the conventional Q-learning
model, the extension from the conventional Q-learning model
to the double Q-learning model requires another condition: the
Q-values have to be stored in a lookup table. Assuming that

Ft (st, at) = FQt (st, at) + γ
(
Q2
t (st+1, a

∗)−Q1
t (st+1, a

∗)
)
,

(24)

where FQt (st, at) = rt + γQ1
t (st+1, a

∗) − Q∗t (st, at) under
the condition that the conventional Q-learning model con-
verges to an optimal state. Upon writing ct = γQ2

t (st+1, a
∗)−

γQ1
t (st+1, a

∗) we can readily find that ∆2,1
t = Q2

t − Q1
t

converges to zero according to Lemma 2 in [51].
The update of ∆2,1

t at timeslot t then obeys ei-
ther ∆2,1

t+1 (st, at) = ∆2,1
t (st, at) + αt (st, at)F

2
t (st, at)

or ∆2,1
t+1 (st, at) = ∆2,1

t (st, at) − αt (st, at)F
1
t (st, at),

where F 1
t (st, at) = rt + γQ2

t (st+1, a
∗) − Q1

t (st, at) and
F 2
t (st, at) = rt + γQ1

t (st+1, b
∗) − Q2

t (st, at). We define
ζ2,1
t = 1

2at, thus, we have

E
{

∆2,1
t+1 (st, at) |Pt

}
= ∆2,1

t (st, at)

+E
{
at (st, at)F

2
t (st, at)− at (st, at)F

1
t (st, at) |Pt

}
=
(

1− ζ2,1
t (st, at)

)
∆2,1
t (st, at)

+ζ2,1
t (st, at)E

{
F 2,1
t (st, at) |Pt

}
,

(25)

where E
{
F 2,1
t (st, at) |Pt

}
=

γE
{
Q1
t (st+1, b

∗)−Q2
t (st+1, a

∗) |Pt
}

.
Assuming that E

{
Q1
t (st+1, b

∗) |Pt
}

≥
E
{
Q2
t (st+1, a

∗) |Pt
}

, we have Q1
t (st+1, a

∗)
= maxaQ

1
t (st+1, at) ≥ Q1

t (st+1, b
∗), thus,∣∣∣E {F 2,1

t (st, at) |Pt
}∣∣∣

= γE
{
Q1
t (st+1, b

∗)−Q2
t (st+1, a

∗) |Pt
}

≤ γ
∥∥∥∆2,1

t (st, at)
∥∥∥ . (26)



10

TABLE I: Performance of proposed algorithms

Algorithm Q-learning algorithm Deep Q-network algorithm Double deep Q-network algorithm
Complexity High Moderate Moderate
Optimality Suboptimal Suboptimal Suboptimal
Convergency No convergence Convergence Convergence
Stability Not Stable Not Stable Stable

Assuming that E
{
Q2
t (st+1, a

∗) |Pt
}

≥
E
{
Q1
t (st+1, b

∗) |Pt
}

, in the same way, we can achieve at∣∣∣E {F 2,1
t (st, at) |Pt

}∣∣∣ ≤ γ ∥∥∥∆2,1
t (st, at)

∥∥∥.

It is worth noting that one of the two assumptions must be
satisfied at each timeslot. In this case, we can always obtain
that

∣∣∣E {F 2,1
t (st, at) |Pt

}∣∣∣ ≤ γ ∥∥∥∆2,1
t (st, at)

∥∥∥. According to
Lemma 2 in [51], the double Q-learning model is capable of
converging to an optimal state without the aid of the CNN
model. As our next step, we will analyze the convergence of
the CNN-aided double Q-learning model.

Proposition 2. Since the neural network is large enough and
the initial conditions are appropriately chosen, it is capable
of approximating any non-linear continuous function.

Let us assume that ϕ(t) is a non-constant, bounded and
monotonically increasing continuous function, and Im de-
notes the m-dimensional unit hypercube [0, 1]

m. The space
of continuous functions on Im is denoted by C(Im). Then,
given any function f ∈ C(Im) and ε > 0, there exists
an integer N , real constants νi, bi ∈ R and real vectors
ωi ∈ Rm, where i = 1, · · · , N , so that we may define

F (x) =
N∑
i=1

νiϕ
(
ωTi x+ bi

)
as an approximate realization

of the function f , where f is independent of ϕ; that is
|F (x)− f(x)| < ε or all x ∈ Im. In other words, the functions
of the form F (x) are dense in C(Im). By following the Stone-
Weierstrass Theorem [52], the proof of Proposition 2 has been
given in [53] and formulated as the Universal Approximation
Theorem. It has been demonstrated that if the neural network
itself is large enough and the initial conditions are properly
chosen, it can approximate any non-linear continuous function.

It can be observed from Proposition 1 and Proposition 2
that since the neural network is large enough and the initial
conditions are appropriately chosen, it is capable of approx-
imating any non-linear continuous function. In this case, the
double deep Q-network is capable of converging.

TABLE II: Simulation parameters

Parameter Description Value
fc Carrier frequency 2GHz
N0 Noise power spectral -170dBm/Hz
mv Car mass 1000kg
ηT Efficiency of the transmission 0.95
ηe Common peak efficiencies 0.3
PP Engine rated power 100kW
ξax The final drive gear ratio 3.5
ζn The gearbox gear ratio 1.0
rd Rolling radius of the tire 0.3m
Af The characteristic area of the car 1.8m2

γm The mass factor of the car 1.08
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Fig. 4: Average reward of the DQN model in each episode.

IV. SIMULATION RESULTS

In this section, we verify the efficiency of the proposed
DDQN based trajectory design algorithm. In the simulations,
the highway is assumed to have parallel lanes with the length
of 2600m. Each direction has 3 traffic lanes with a width
of 3.75m, which is the standard width in the highway. Two
categories of vehicles are employed to represent manned
vehicles: cars and trucks. The cars have a length of 4.7m,
a width of 1.8m and a height of 1.4m, while the trucks
have a length of 8.2m, a width of 2.5m and a height of
3.5m. Along this 2600m highway section, 60 manned vehicles
having particular coordinates and velocities are assumed. The
manned vehicles on the fast-lane are with a constant velocity of
100km/h, while that of the manned vehicles on carriage lanes
is 80km/h. It is worth noting that all the manned vehicles are
not allowed to change lane. The conception of a more practical
model will be left for our future research.

In the proposed DDQN model, the state space consists of
the current coordinates of both the AV and of other manned
vehicles, as well as the current fuel consumption of the AV.
Thus, the total number of the states in the state space at each
timeslot is 63. Additionally, as mentioned above, the total
number of actions in the DQN model is 8.

Fig. 4 characterizes the average reward of each episode. It
can be observed that the average reward of the DDQN model
increases with the number of training episodes, hence the AV
becomes capable of carrying out the right actions after training
for about 2000 episodes. The average reward increases from a
negative scale to a positive scale after the DDQN model has
learned the strategy of maximizing the rewards and avoiding
penalties. This phenomenon is also confirmed by the insights
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Fig. 5: Illustration of the AV’s trajectory and emergency
braking.

provided in Remark 3.
Fig. 5 characterizes the trajectory of the AV as well as the

emergency braking actions (An emergency braking action is
declared when the distance between the AV and the car in
front is less than that given by the three-second rule, while
the velocity gap is higher than 20km/h) derived from both the
DQN and DDQN algorithm. Compared to practical driving
policies, the FE driving policy derived from both the DQN and
DDQN algorithms contains more lane changes for overtaking
instead of deceleration. This is because of the acceleration
and deceleration process results in higher fuel consumption
according to our fuel consumption model. It can also be
observed that compared to the trajectory derived from the
DQN algorithm, invoking the DDQN algorithm results in a
different trajectory for the AV.

Fig. 6 characterizes the average fuel consumption rate vs
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Fig. 7: Comparison of fuel consumption and mission comple-
tion time for different cases. (Case 1 is the baseline, Case 2 is
the FE driving policy. Case 3 is the FL driving policy, Case 4
is the SMT driving policy, Case 5 is the ST driving policy. )

the number of training episodes. It can be observed that the
average fuel consumption rate of the AV for each episode
decreases gradually vs the episode indeed. This means that
the proposed DDQN algorithm is capable of converging after
training. This phenomenon is also confirmed by the insights
in Proposition 1 and Proposition 2. Additionally, the value
of the learning rate determines the updating rate, thus affects
the performance of the algorithm, which is also demonstrated
by Remark 5. It can also be observed from Fig. 6 that the
learning rate of 0.0080 for the DQN model outperforms that
of 0.0070, 0.0075 and 0.0090 in both the convergence rate and
fuel consumption.

Fig. 7 characterizes the total fuel consumption and mission
completion time of the FE driving policy and of the other
three benchmarkers. It can be observed that obtaining a lower
mission completion time tends not to be associated with de-
creased total fuel consumption. The reason is that carrying out
the action of acceleration and deceleration consumes far more
fuel than driving at a constant speed. Frequently accelerating
and decelerating results in a lower mission completion time,
while leads to a higher fuel dissipation. It can also be observed
that the proposed FE driving policy (case 2) derived from the
DDQN algorithm consumes 24% less fuel than benchmarks
(case 3-5). However, the mission completion time of this
scheme is higher than that of the FL driving policy (case
3). The FL driving policy (case 3) consumes more fuel, but
the mission completion time is shortened. It strikes a tradeoff
between the fuel consumption and mission completion time.
In the ST driving policy (case 4), the AV consumes the most
fuel, while simultaneously requiring the most time. However,
changing lane is avoided in this driving policy, hence providing
a more comfortable and safe driving experience.

Fig. 8 characterizes the fuel consumption of the AV vs the
different traffic conditions (density of manned vehicles). It
can be observed that the fuel consumption of the AV rises
sharply, as the number of manned vehicles increases. The
reason is that, as the density of manned vehicles increases, the
AV has to carry out more actions (lane-change, acceleration
and deceleration) for avoiding the collision. Additionally, the
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Fig. 8: Total fuel consumption vs the traffic conditions (Traffic
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Fig. 9: Number of emergency braking event vs traffic condi-
tions (Traffic condition refers to the density of vehicles on this
particular 2600m highway section).

proposed DDQN algorithm outperforms the DQN algorithm in
terms of the fuel consumption. As it has been demonstrated in
Table I, the proposed DDQN algorithm is capable of achieving
more stable results compared to the DQN algorithm.

Fig. 9 characterizes the number of emergency braking event
for different traffic conditions. It can be observed that when
the density of traffic increases, the AV is more likely to break.
The trajectory derived from the DDQN algorithm suffers from
less emergency braking event than that derived from the DQN
algorithm. Additionally, for the trajectory derived from both
the DDQN algorithm and the DQN algorithm, the learning
rate of 0.008 results in less emergency braking event than that
of 0.007.

Fig. 10 characterizes the fuel consumption of the AV vs the
number of manned vehicles parameterized by three different
safe driving distance scenarios under the proposed DDQN-
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Fig. 10: Total fuel consumption vs the number of manned
vehicles parameterized by three different driving distances.

based algorithm, when the learning rate is 0.008. It can be
observed that when the value of safe driving distance increases,
the AV consumes more fuel. The reason for this trend is that
when the distance between the AV and other manned vehicles
in the same lane is lower than the safe driving distance, the
AV has to carry out preventive actions (slow down or change
lane). Thus, as the value of safe driving distance increases, the
AV is more likely to accelerate or decelerate, which results in
increased fuel consumption.

V. CONCLUSIONS

The joint design of paths, motion and instantaneous velocity
of the AV on the fuel economy of the AV was considered while
enhancing driving safety. To tackle the problem formulated, a
deep Q-network based algorithm was proposed for determining
the position and motion of the AVs. By receiving real-time
traffic information from ground base stations, the AV (acting
as an agent in the DQN model) was shown to find a policy
guaranteeing both fuel economy and safe driving. It was also
demonstrated that the proposed DDQN algorithm was capable
of converging after appropriate training. It outperformed the
DQN algorithm by overcoming the large overestimation of
action values caused by the Q-learning model. Additionally,
the proposed fuel-economy based driving policy derived from
the DDQN algorithm consumed less fuel than benchmark
driving policies.
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