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Consumption of tomato fruits, like those of many other plant species that are part of the human diet, is considered to be associated
with several positive e�ects on health. Indeed, tomato fruits are an important source of bioactive compounds with known bene	cial
e�ects including vitamins, antioxidants, and anticancer substances. In particular, antioxidant metabolites are a group of vitamins,
carotenoids, phenolic compounds, and phenolic acid that can provide e�ective protection by neutralizing free radicals, which
are unstable molecules linked to the development of a number of degenerative diseases and conditions. In this review, we will
summarize the recent progress on tomatoes nutritional importance and mechanisms of action of di�erent phytochemicals against
in
ammation processes and prevention of chronic noncommunicable diseases (e.g., obesity, diabetes, coronary heart disease, and
hypertension). In addition, we will summarize the signi	cant progress recently made to improve the nutritional quality of tomato
fruits through metabolic engineering and/or breeding.

1. Introduction

�e tomato belongs to the Solanaceae family that includes
more than 3,000 species. In particular, the section of
the Lycopersicon genus Solanum consists of 13 species or
subspecies: the cultivated tomato, Solanum lycopersicum,
which is the only domesticated species, and 12 wild species
(such as S. chmielewskii, S. habrochaites, S. pennellii, and
S. pimpinellifolium). Tomato fruits are an important source
of nourishment for the whole world’s population. Its world
production is estimated to be around 159 million tons,
while the average annual fresh tomato consumption is 18 kg
per European and 8 kg per capita in the US [1]. In the
last few years, tomato consumption has further increased
since tomato fruits supply both fresh market and processing
products such as soups, juices, purees, and sauces. �e
Economic Research Service of the USDA estimates that 35%
of raw tomatoes are processed into sauces, 18% into tomato
paste, 17% into canned tomatoes, 15% into juices, and 15%
into catsup [2]. �e tomato fruits, like those of many other
plant species that are part of our diet, are an important
source of substances with known bene	cial e�ects on health,

including vitamins, minerals, and antioxidants [3]. Indeed,
tomato fruit consumption has been associated with a reduced
risk of in
ammatory processes, cancer, and chronic non-
communicable diseases (CNCD) including cardiovascular
diseases (CVD) such as coronary heart disease, hypertension,
diabetes, and obesity [2]. Antioxidant metabolites are a
group of vitamins, carotenoids, phenolic compounds, and
phenolic acid, with health-enhancing e�ects on our body
[2, 3]. �e total antioxidant activity of tomato fruits is
commonly classi	ed into hydrophilic and lipophilic ones.�e
	rst is conferred mainly by soluble phenolic compounds and
vitamin C and shows a signi	cant impact on total antioxidant
activity (83%), while the latter is conferred by carotenoids,
vitamin E, and lipophilic phenols (17%) [4]. Many factors
such as genetics (cultivar or variety), environment (light,
temperature, mineral nutrition, and air composition), and
cultural practices (ripening stage at harvest and irrigation
system) a�ect the chemical composition of tomatoes [5, 6]. In
this paper, a global point on tomatoes nutritional importance
andmechanisms of action of di�erent phytochemicals against
in
ammation processes according to the last discoveries is
discussed.
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Recently, signi	cant progresses have been made in order
to improve the levels of human health promoting compounds
in tomato fruits through metabolic engineering and/or
breeding [7, 8]. However, breeding work is complicated by
the complex nature of many of these characters, which o�en
requires quantitative genetic approaches for the identi	cation
of genes and QTLs (quantitative trait loci) involved in
their regulation [9]. In fact, the synthesis of many of the
compounds responsible for the tomato nutritional quality is
the result of coordinated activities that involve many of the
primary and secondary metabolism pathways regulated by
developmental, physiological, and environmental signals.

�erefore, in this paper, we will summarize the recent
progress made to improve the nutritional quality of tomato
fruits according to current state of the art.

2. Bioactive Tomato Compounds

Regular consumption of tomato fruit and its products is asso-
ciated with lower risk of CNCD and several types of cancer
and in
ammation because of interaction of phytochemicals
with metabolic pathways that are related to in
ammatory
response and oxidative stress.

Some evidences support a role for tomato products in
the prevention of lipid peroxidation that is a risk factor of
atherosclerosis and cardiovascular disease [10].

High dietary intake of tomato products can reduce LDL
cholesterol levels and increase LDL resistance to oxidation
[11]. In addition, Burton-Freeman et al. [12] reported that
tomato consumption during a meal attenuated postprandial
lipemia-induced oxidative stress and associated in
amma-
tory response. An important role of tomatoes has been also
attributed to the conservation of DNA stability. Daily intake
of a tomato drink called Lyc-O-Mato signi	cantly reduced
(by about 42%) DNA damage in lymphocytes subjected
to oxidative stress [13]. �ese e�ects are related to the
presence of several phytochemicals in raw tomatoes and
their products. Table 1 shows the general e�ects of tomato
bioactive compounds on health, while Table 2 summarizes
the main evidences about anti-in
ammatory and antioxidant
activities.

2.1. Carotenoids. Carotenoids are tetraterpenes belonging
to fat-soluble pigments. �ey include provitamin A
carotenoids, such as �-carotene and �-cryptoxanthin, and
non-provitamin A carotenoids, such as lutein and lycopene.
�ey contribute to the photosynthetic machinery in plants
and protect them against photo damage [67]. More than
600 carotenoids were identi	ed in nature, among which
around 40 are present in food normally included in human
diet. [68]. Geographical location has a great impact on
carotenoid content and bioaccessibility. For example,
carotenoid content of various tomato varieties grown in
Ireland di�ered from those grown in Spain [69].

Several studies have reported the health bene	ts of
carotenoids related to their antioxidant power, such as
immune system stimulation and antitumor activity [18, 45,
70]. Dietary supplements of carotenoids may act as moderate

hypocholesterolemic agents, as a consequence of their
inhibitory e�ect onmacrophage 3-hydroxy-3-methyl glutaryl
coenzymeA (HMGCoA) reductase, the rate-limiting enzyme
in cholesterol synthesis [71]. Carotenoids cause changes in the
expression ofmany proteins participating in cell proliferation
and signaling pathways. For example, lycopene is associated
with reduction of cyclin D1 protein, a known oncogene over-
expressed in many primary tumors. In addition, lycopene
can increase expression of several di�erentiation-related
proteins, such as cell surface antigen (CD14), oxygen burst
oxidase, and chemotactic peptide receptors [72]. According
to scienti	c evidences, the carotenoid intake from tomatoes
is the most important nutritional contribution of this fruit,
and therefore, the highest weight in the index of antioxi-
dant nutritional quality is attributed to carotenoids content
[3].

2.1.1. Lycopene. Tomatoes contain 8–40 �g per gram fresh
weight of lycopene, about 80% of total dietary intake of this
carotenoid [73, 74]. Field-grown tomatoes appear to contain
higher levels of lycopene, ranging from 5.2 to 23.6mg/100 g
fresh weight (FW) than greenhouse-grown tomatoes (0.1 and
10.8mg/100 g FW) [75]. Accumulation during fruit ripening
results from the downregulation of the lycopene cyclase gene
(CrtL), a gene conserved through evolution from the time
of cyanogenic bacteria [76]. Lycopene is a polyunsatured
molecule containing 13 double bonds that can exist in trans-
and cis-con	gurations [77]. In fresh tomatoes, lycopene is
mainly found in trans-conformation, while thermal treat-
ments, light, acids, oxygen, and digestion can cause transfor-
mation into the more bioactive cis-form [78]. Lycopene is the
main phytochemical in tomato fruits for its strong antiox-
idative role associated with its ability to act as free radical
scavengers from reactive oxygen species (ROS), generated by
partial reduction of oxygen [79]. Furthermore reactive nitro-
gen species (RNS) can be produced. ROS and RNS include
free radicals and other nonradical reactive derivatives also
called oxidants [80]. �ey are produced either from normal
cell metabolisms in situ or from external sources (pollution,
radiation, and cigarette smoke). Radical accumulation in the
body generates a phenomenon called oxidative stress that
results from an imbalance between formation and neutral-
ization of ROS/RNS in cells [81]. One of the most unde-
sirable e�ects of ROS is lipid peroxidation with consequent
formation of radicals. �e products formed during these
mechanisms are toxic. In particular malondialdehyde can
cause mutagenic lesions [82]. �ese processes play a major
role in the aging and development of chronic and degen-
erative illness such as cancer, atherosclerosis, autoimmune
disorders, cataract, rheumatoid arthritis, and neurodegener-
ative and cardiovascular diseases. Lycopene can transform
the high reactive free electron on DNA to a more stable
free radical by delocalization along its conjugate 13 double
bonds.

ROS can activate the transcription nuclear factor kappa B
(NFkB) that gives rise to the expression of genes of pro- and
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Table 1: E�ects of bioactive compounds occurring in tomato.

Class Compound Main e�ects References

Carotenoids

Lycopene
Control of oxidative stress and in
ammation (production of IL-10 and inhibition of
IL-6 and IL-8)

[14–17]

Cancer inhibition (prostate, breast, colorectal, endometrial, lung, oral, and
pancreatic)

[18, 19]

�-Carotene Prevention of photooxidative damage [20]

Inhibition of atherosclerosis and prevention of myocardial infarction [21]

Lutein
Preservation of eye health and improvement of symptoms in ARMD [22, 23]

Protection against cardiovascular diseases (inhibition of NF-�B signaling) [24, 25]

Increasing of DNA resistance to endogenous damage and repair [26]

Vitamins

Vitamin E
Inhibition of lipid peroxidation and cardiovascular diseases [27, 28]

Decreasing risks of type 2 diabetes and advanced prostate cancer [29, 30]

Vitamin C
Inhibition of LDL oxidation and monocyte adhesion [31, 32]

Decreasing of total cholesterol and CRP [33]

Folates

Prevention of megaloblastic anemia in pregnant women and regulation of fetal
growth

[34]

Control of homocysteine metabolism [35]

Reduction in the rate of neural tube defects [36]

Phenolic compounds

Flavonoids
Intestinal anti-in
ammatory activity [37]

Inhibition of TNF�-induced in
ammation [38]

Prevention of gastric cancer risk [39, 40]

Phenolic acids
Protection against DNA oxidation and antitumor activity against colon
carcinogenesis

[41, 42]

Tannins
Inhibition of adipogenesis [43]

Antibacterial, antiviral, anticarcinogenic, and cardiovascular action [44]

anti-in
ammatory cytokines and their subsequent produc-
tion [83]. It is demonstrated that lycopene inhibits this acti-
vation [14, 15]. Anti-in
ammatory cytokines such as IL-10 are
produced to control in
ammation, while proin
ammatory
cytokines including tumor necrosis factor-alpha (TNF-�), IL-
6, and IL-8 increased the in
ammatory response. Lycopene
stimulates the 	rst one and inhibits the latter in macrophages
and adipocytes [84]. Doses of 10mg lycopene/day adminis-
tered for 3 months decreased PSA (Prostate Speci	c Antigen)
level, tumor grade, bone pain, and urinary tract symptoms in
patients with metastatic prostate cancer [19], interfering with
growth factor receptor signaling and cell cycle progression
[85]. In addition, lycopene can inhibit other cancer types
(breast, colorectal, endometrial, lung, oral, and pancreatic)
[18]. Nevertheless, according to some studies, lycopene is
not potent enough to be clinically useful as a drug for
prostate cancer because high concentrations (above 1�mol/L)
are needed to achieve signi	cant response in humans [86–
88]. In presence of diseases such as cancer and cardiovas-
cular diseases, higher levels of lycopene ranging from 35 to
75mg per day may be required [89]. Lycopene can mod-
ulate cyclooxygenase pathways and xenobiotic metabolism
because �-carotene and lycopene supplementation interact
with the metabolism of linoleic acid, resulting in either
an increase (�-carotene) or decrease (lycopene) in plasma
concentration [71]. An 83% reduction in prostate cancer risk
was observed in a group of men enrolled in the Physician’s

Health Study,with the highest plasma lycopene concentration
(0.40 �m/L) in comparison with the lowest lycopene group
(0.18 �m/L) [90].

Many chronic diseases and increasing of mortality are
directly related to the global obesity epidemic (body mass

index ≥ 30 kg/m2), which started in the 1980s. Adolescent
populations are currently the group mainly exposed to risk
of obesity [91]. Serum concentrations of C-reactive protein
(CRP), tumor necrosis factor (TNF-�), and interleukin (IL)-
6 are signi	cantly correlated with weight, body mass index
(BMI), and waist circumference [92]. �ese aspects assume
a major importance considering that a link between skeletal
muscle and adipose tissue has been reported and related with
the control of body weight, muscle mass, and fat mass. In
particular interleukin (IL)-15 and TNF-� play an important
role in crosstalk between adipose tissue and skeletal muscle
[93].

IL-6 and TNF-� contribute to liver production of CRP
and atherosclerosis by inducing insulin resistance and upreg-
ulating the expression of other in
ammatory mediators.
Di Renzo et al. [94] reported that, in Italian Caucasian
females, the fat mass percentage (FM%) is a main factor
of an increase in IL-6 production and insulin resistance. In
particular, −174G/C polymorphism in IL-6 promoter has
been recognized as a marker which could contribute to
identify vulnerable individuals at risk of age and obesity-
related diseases.
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Table 2: Main anti-in
ammatory and antioxidant e�ects of bioac-
tive tomato compounds.

Compound References

Anti-
in
ammatory
e�ect

Lycopene [14, 16, 17]

�-Carotene [45]

Lutein [46, 47]

Vitamin E [17]

Vitamin C [33]

Rutin [48–51]

Quercetin [48, 49, 52]

Glycosides of quercetin [53]

Catechin [50]

Resveratrol [37, 54, 55]

C3G (cyanidin 3-glucoside) [56, 57]

Phenolic acids [58]

Tannins [44]

Antioxidant
e�ect

Lycopene [15, 59]

�-Carotene [20, 59]

Lutein [46]

Vitamin E [27, 28, 60]

Vitamin C [31, 32]

Polyphenols [58]

Quercetin [61]

C3G (cyanidin 3-glucoside) [40]

Phenolic acids [41, 62–64]

Cinnamic acids (1,5-dica�eoylquinic) [65]

Tannins [66]

�ere is now strong evidence for the bene	ts of toma-
toes in terms of protection against diseases associated with
metabolic syndrome and obesity.

In particular, lycopene reduces transcript levels of proin-

ammatory cytokines with downregulation of IL-6 expres-
sion [16, 17]. Markovits et al. [16] reported the e�ect of
tomato-derived lycopene consumption onmarkers of in
am-
mation and oxidative stress in a group of patients with
extreme obesity. Obese patients showed abnormally higher
markers of in
ammation and oxidation products and lower
plasma carotenoids compared to control subjects (0.54 versus
0.87 �g/mL). Following lycopene treatment, a signi	cant ele-
vation of plasma carotenoids, speci	cally lycopene, occurred
in the treatment versus the placebo group. Kuopio Ischemic
Heart Disease Risk Factor Study examined the relation
between serumantioxidant and intima-mediated thickness of
the common carotid artery, amarker related to the risk of hav-
ing an acute coronary event. Lower levels of plasma lycopene
were showed in men who had a coronary event compared
with men who did not [17]. Several studies demonstrated
that anti-in
ammatory e�ects derived by tomato products
consumption were superior to that of lycopene delivered as
a single compound [27, 95].

2.1.2. �-Carotene. �-Carotene is considered a provitamin
because it can be converted into retinol, a compound essential
for vision. It is known as a strong antioxidant and the
best quencher of singlet oxygen. At low partial pressures of
oxygen, such as those found in most tissues under physio-
logical conditions, �-carotene was found to inhibit oxidation.
In tomatoes grown in a 	eld located in the S. Marzano
area, reported values were between 0.28 and 1mg/100 g FW
[3]. �ese levels were in accordance with other studies
[96, 97]. In commercial cherry tomato varieties, �-carotene
amount reached 1.2mg/100 gr FW [98]. Bioaccessibility of �-
carotene from raw tomatoes was reported to be about 0.1%
[99].

A study found that both �-carotene and lycopene
(2.5mmol/L, 2 h) totally abolished TNF-�-induced ROS
levels (1 ng/mL, 16 h) in TNF-�-treated human umbilical vein
endothelial cells.�iswas due to the redox balance protection
and to the maintenance of nitric oxide (NO) bioavailability
[59]. Several studies demonstrated that �-carotene prevents
photooxidative damage and sunburn showing photopro-
tection in humans. Erythema formation was signi	cantly
diminished when �-carotene was applied on human skin
or with a dietary intervention alone or in combination
with �-tocopherol for 12 weeks [20]. Metabolites derived
from all-trans-�-carotene inhibit atherosclerosis in hyperc-
holesterolemic rabbits. �is could be due to stereospeci	c
interactions with retinoic acid receptors in the artery wall
[100].

Recently, Karppi et al. [21] found that low concentrations
of serum �-carotenemay be associated with an increased risk
of CHF (congestive heart failure) and cardiac death in men.

However, some studies do not support the absolute favor-
able role of �-carotene assumption. �e initial antioxidant
activity of �-carotene is followed by a prooxidant action
at high oxygen tension. �is mechanism may be related to
adverse e�ects observed under the supplementation of high
doses of �-carotene. A study reported that supplements in
doses of 20mg daily for 5–8 years had no protective e�ect
on macrovascular outcomes or total mortality of diabetic
male smokers [101]. Margalit et al. [24] reported that there
was no signi	cant di�erence between risks of lethal prostate
cancer with the use of �-carotene during radiation therapy
compared with that of placebo. Other trials about �-carotene
supplementation will be required in order to clarify the
protection role associated with �-carotene.

2.1.3. Lutein. Lutein is a yellow carotenoid synthetized in
chloroplasts and chromoplasts and found in high quantities
in leaves whose main function is to contribute to photo-
synthesis [102, 103]. It is one of the most widely found
carotenoid xanthophyll pigments in fruits and vegetables
normally consumed. Average lutein concentration in raw
tomato was reported up to 32 �g/100 g FW [104], while Guil-
Guerrero and Rebolloso-Fuentes [105] reported a content
up to 800�g/100 g FW in cherry variety. Increasing interest
around this compound was due to its important role in
preserving eye health in association with zeaxanthin [106].
�e improvement of visual function and symptoms was
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also reported in atrophic age-related macular degenera-
tion (ARMD), a condition including genetic, cardiovascular,
nutritional, and environmental factors [22, 23]. Nevertheless,
up to date, the relationship between the consumption of
lutein and maintenance of normal vision has not been clearly
demonstrated [107].

Epidemiological studies in vitro and in mouse model
demonstrated that increased dietary intake of lutein is pro-
tective against the development of early atherosclerosis in
human and animals through the reduction of in
ammation
and oxidative stress in the artery wall [46]. Kabagambe
et al. [108] and Riccioni et al. [25] reported that there
was an inverse correlation between the risk of developing
a myocardial infarction, adipose tissue lutein content, and
dietary lutein intake. Furthermore, carotid artery intima-
media thickness appears to be inversely correlatedwith serum
lutein concentration [109]. Armoza et al. [47] studied the
mechanisms involved in the action of tomato products in
endothelial cells and demonstrated that inhibition of NF-
�B signaling may be one of the main mechanisms employed
by lutein and lycopene to reduce in
ammatory leukocyte
adhesion to endothelium.

Herrero-Barbudo et al. [26] reported that the regular
consumption of lutein is associated with an increase of the
capacity of DNA repair in lymphocytes and a major resis-
tance of DNA to endogenous damage. Nevertheless, a real
correlation between the consumption of lutein and protection
of DNA, proteins, and lipids from oxidative damage has not
been demonstrated yet [107].

2.2. Vitamins. Tomato protective action is commonly
attributed to the tomato antioxidant lycopene. However,
tomato products are also sources of other compounds such as
vitamins A, B, and E. Also these compounds have important
e�ects on human health that will be described below.

2.2.1. Vitamin E. Vitamin E family includes eight molecules:
�-, �-, �-, and �-tocopherol; and �-, �-, �-, and �-tocotrienol.
�is classi	cation is based on the nature of the isoprenoid
chain; tocopherols contain a phytyl chain while tocotrienols
contain a geranylgeranyl chain. �ese molecules are potent
liposoluble antioxidant. Tocopherols are the most abundant
vitamins in tomato plant and contribute to maintain optimal
plant photosynthesis rate under high levels of stress [60].
Frusciante et al. [3] reported a vitamin E level in tomatoes
between 0.17 and 0.62mg/100 gr FW. Zan	ni et al. [110]
studied the antioxidant activity of lipophilic extracts obtained
from di�erent tomato varieties. �ey demonstrated a high
synergistic e�ect of �-tocopherol-lycopene mixtures, and
also for lycopene-�-carotene, lycopene-lutein, and lutein-
�-carotene mixtures. �is e�ect could be due to the fact
that electrons can transfer from the carotenoid to the �-
tocopherolxyl radical to regenerate �-tocopherol. An anal-
ogous mechanism has been suggested for the interactions
between vitamin C, carotenoids, and �-tocopherol [111].
A synergistic interaction between ascorbic acid and �-
tocopherol during the process of lipid peroxidation is well

known [112]. �is synergy was also observed during inhibi-
tion of the in
ammation process [17].

Decreasing risk of advanced prostate cancer was associ-
ated with increasing dose of supplemental vitamin E uptake
among men in the screening arm of the Prostate, Lung,
Colorectal, and Ovarian Cancer Screening Trial [29].

In a study carried out on Finnish men and women, those
who ingested higher intake of dietary vitamin E showed a
decreased incidence of type 2 diabetes [30]. On the contrary,
in a trial with a 10-year followup, with alternate-day doses of
600 IU (international units) vitamin E, there was not a sig-
ni	cant bene	t for type 2 diabetes in initially healthy women
[113]. Similar results were reported for the cardiovascular
events and mortality in healthy women that ingested 600 IU
of natural-source vitamin E [114]. However, a study that
evaluated the e�ect of adding tomato extract to the treatment
regime of moderate hypertensives with uncontrolled blood
pressure levels indicated a signi	cant correlation between
systolic blood pressure values and level of antioxidant activity
[115].

2.2.2. Vitamin C. L-ascorbic acid and dehydroascorbic acid
are the main dietary forms of vitamin C, a labile molecule
with reducing property. It is a water-soluble compound
easily absorbed but it is not stored in the body. Abushita
et al. [28] reported that salad tomatoes grown in 	eld
conditions contained between 15 and 21mg/100 g FW, while
a range of industrial grades of tomatoes had a mean value
of 19mg/100 g FW. Frusciante et al. [3] reported a vitamin C
content between 8.0 and 16.3mg/100 g FW.

Ascorbic acid (AsA) content in fresh tomatoes depends
on genotype, climatic conditions, fruit development, mat-
uration, senescence, and time of storage. AsA content in
tomato fruit increases reaching a maximum and then began
to decline with ripening [116]. Yahia et al. [117] reported a
maximum level of 94.9mg/100 g a�er 74 days from fruit set
and slow reducing of its content with the color change. �is
decrease is concomitant with the increase in the activity of
ascorbate oxidase, a Cu-containing enzyme that catalyses the
oxidation reaction of ascorbate to DHA with the reduction
of molecular oxygen to water. Adults have a mean body
pool of 1.2–2.0 g of ascorbic acid that may be maintained
with 75mg/day of ascorbic acid [118]. Insu�cient intakes of
ascorbic acid lead to scurvy, a disease characterized by dry
skin, open sores on the skin, weariness, impaired wound
healing, and depression [119, 120].

Most of the known functions of ascorbic acid are corre-
lated with its ability as electron donor and potent antioxidant
in humans. In fact, vitamin C protects against oxidation of
LDL by di�erent types of oxidative stresses and inhibits LDL
oxidation by vascular endothelial cells [120]. Yogeeta et al.
[121] demonstrated that the combination of ferulic acid and
ascorbic acid o�ered a protection to the myocardium. �is
was due to the attenuation of the alterations in the levels
of lipids, lipid peroxidation, lipoprotein pro	le, and lipid
metabolizing enzymes. Ascorbic acid with vitamin E pre-
vents oxLDL-induced overexpression of vascular endothelial
growth factor (VEGF) and its receptor is responsible for
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atherosclerotic plaque formation. In addition, vitamin C
decreases plasma vascular cell adhesion molecule-1 respon-
sible for monocyte adhesion and in
ammation [31, 32].

Vitamin C in tomato is highly bioavailable, so a regular
intake of small amounts of tomato products can increase cell
protection from DNA damage induced by oxidant species.
�is e�ect may originate from the synergism of vitamin C
with lycopene [122]. Some studies reported that ascorbic acid
can prevent cancer by neutralizing free radicals before they
can damage DNA and initiate tumor growth or may act as
a prooxidant helping body to destroy tumors in their early
stages [123]. Other researchers a�rmed that there was no
su�cient evidence that vitamin C and vitamin E can help
prevent cancer [124].

Jacob et al. [33] discovered that the consumption of
tomato juice (500mL) for 2 weeks reduced total cholesterol
and CRP (C-reactive protein) levels which is a marker of
in
ammation. �e e�ect was stronger when vitamin C was
added in a high dose. �is study con	rmed that a synergic
e�ect between vitamin C and lycopene is required for the
bene	cial e�ects of tomato juice on oxidative stress and
in
ammation.

2.2.3. Folates. Folates represent all forms of vitamin B found
in biological systems, while folic acid is the synthetic form
found in dietary supplements and forti	ed foods [125]. Iniesta
et al. [126] investigated the level of 5-methyltetrahydrofolate
in commercial raw tomato cultivar harvested in Murcia
(Spain). �ey found the maximum level in Ronaldo cultivar,
equal to 31.5 �g/100 g FW.

Folate metabolism is involved in several physiological
mechanisms in the 	eld of andrology and gynecology [127].
In particular, folates have a role in various one-carbon
transfer reactions, including purine and pyrimidine biosyn-
thesis, amino acid metabolism, methylation of nucleic acids,
proteins, and lipids [128]. For these reasons, folates are
essential for fetal growth [129]. Folic acid supplementation
(200–400�g/day) is recommended for pregnant women to
reduce pregnancy-induced folate de	ciency, which can lead
to megaloblastic anemia [34].

Homocysteine metabolism is regulated by the nutritional
status of folate, vitamin B-12, and vitamin B-6 [130]. Some
researchers consider hyperhomocysteinemia a marker for
cardiovascular disease or a risk factor [35, 131, 132].

2.3. Phenolics. Phenolic compounds are widespread phyto-
chemicals composed of an aromatic ring and one or more
hydroxyl substituents. �ey can be constituted by simple
phenolic molecules or polymerised compounds [133, 134].
In tomato fruit, phenolics include 
avonoids, phenolic acids
(hydroxybenzoic and hydroxycinnamic acids), and tannins.
Polyphenols are e�ective free radical scavengers mediated
by para-hydroxyl group. Phenolics may modulate cellular
signaling processes during in
ammation or may serve as
signaling agents themselves [135, 136]. �e level and the
composition of phenolic compounds in tomato fruits depend
greatly on genotype, environmental, and storage conditions
[137]. In particular. Luthria et al. [138] demonstrated that

the spectral quality of solar UV radiation signi	cantly a�ects
phenolic content.

Polyphenolic compounds are associated with therapeu-
tic tools in in
ammatory diseases including cardiovascular
diseases, obesity and type II diabetes, neurodegenerative
diseases, cancer, and aging.

�ese e�ects are due to the phenolic ability to interact
with a wide spectrum of molecular targets central to the cell-
signaling machinery. Main molecular mechanisms include
(a) the inhibition of proin
ammatory enzymes, such as
cyclooxygenase (COX-2), lipoxygenase (LOX), and inducible
nitric oxide synthase (iNOS); (b) the inhibition of phospho-
inositide 3-kinase (PI 3-kinase), tyrosine kinases, and nuclear
factor-kappa B (NF-�B); (c) the activation of peroxisome
proliferators-activated receptor gamma (PPAR �); and (d)
the activation of mitogen-activated protein kinase (MAPK),
protein kinase C (PKC), and the modulation of several cell
survival/cell-cycle genes [48, 49].

Studies reported that resveratrol increases the survival of
mice fed with a high caloric diet producing changes including
improvement in insulin sensitivity and decreased fat accu-
mulation and body weight.�ese changes are associated with
induction ofmitochondrial-related transcription factors such
as estrogen-related receptor � (ERR-�), nuclear respiratory
factor 1 (NRF-1), and transcription mitochondrial factor A
(TFAM). Potential bene	cial e�ects of polyphenols have also
been obtained for quercetin, able to reduce FFA levels, total
cholesterol, and body weight in rats [139].

Finally, in 2007 Shen et al. [140] conducted a human
clinical trial to examine plasma antioxidation and the levels
of blood lipids, a�er ingestion of tomato products. �e
authors demonstrated that triglyceride levels and low-density
lipoprotein cholesterol were decreased, while high-density
lipoprotein cholesterol was increased.

2.3.1. Flavonoids. Flavonoids constitute the largest group of
naturally occurring phenolics in tomatoes and contribute to
the determination of aroma, fragrance, and colour [141, 142].
Main classes in tomatoes include 
avonols (such as quercetin
and kaempferol), 
avanols (such as catechins), 
avanones
(such as naringerin), anthocyanidins, and stilbenes (such
as resveratrol). �ey are usually located in the skin and
only in small quantities in the other parts of the fruit.
Tomatoes of the Spanish cherry variety Paloma reached
levels of 203�g quercetin/g FW [143]. Detected levels of total

avonoids in tomatoes fromcommercial greenhouses in close
proximity to Særheim Research Center were between 2.6 and
25.6mg/100 FW [144].

Some 
avonoids such as rutin (a 
avonol glycoside),
quercetin, resveratrol, and catechin are active in rheuma-
toid arthritis. �e mechanisms of action include inhibition
of osteoclast/macrophage di�erentiation and function and
estrogen modulation [50, 53].

Rutin, quercetin, glycosides of quercetin, and resvera-
trol have been shown to exert intestinal anti-in
ammatory
activity [37, 38]. In particular, rutin and quercetin have been
proposed to act as quercetin prodrugs, preventing premature
absorption of the aglycone in the small intestine and releasing
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it in the colon [51, 52]. Quercetin exerts signi	cant anti-
in
ammatory e�ects on IL-1� activated human astrocytes,
reducing cytokines and chemokines and oxidative stress [61].

Resveratrol acts on blood lipid levels and also at the
atherosclerotic plaque and reduces cellular in	ltration, 	bro-
sis, and expression of in
ammatory cytokines in a model of
autoimmune myocarditis [54, 55].

Rossi et al. [145] conducted an epidemiological study in
Italy that demonstrated a favorable role of dietary proan-
thocyanidins on gastric cancer risk, while Nishiumi et al.
[39] reported that 
avonoids modulate signal transduction
pathways at each stage of carcinogenesis. A�er absorption,

avonoids are transported to target organs where they exert
their anticarcinogenic activity.

Anthocyanins are one of the 
avonoid phytopigments;
they may act on adipocytes and modulate the expression
levels of adipocytokines. In particular, C3G (cyanidin 3-
glucoside) was reported to upregulate the expression of
adiponectin that can increase insulin sensitivity at the
level of human adipocytes controlling obesity [56, 57].
In human endothelium, anthocyanins can inhibit TNF�-
induced in
ammation through monocyte chemoattractant
protein-1 [40]. In animal models, intake of anthocyanin fruit
extracts improves cognitive and motor performance [146,
147].

2.3.2. Phenolic Acids. Phenolic acids are responsible for the
astringent taste of vegetables [148].�ey include hydroxyben-
zoic acids and hydroxycinnamic acids. Hydroxybenzoic acids
are gallic, p-hydroxybenzoic, protocatechuic, syringic, and
vanillic acids, while ferulic, ca�eic, p-coumaric, and sinapic
acids belong to hydroxycinnamic acids [134]. Chlorogenic
acid is the most abundant in tomatoes. Mart́ınez-Valverde
et al. [149] analyzed tomatoes purchased in a local supermar-
ket (Murcia, Spain). �ey reported amounts of chlorogenic
acid between 14.31 (in Daniella variety) and 32.84mg/kg FW
(in Senor variety), ca�eic acid between 1.39 (in Senor variety)
and 13.00 (in Ramillete variety), p-coumaric acid between
values under limit of detection (in Liso and Remate varieties)
and 5.77mg/kg (inDaniella variety), and ferulic acid between
1.60 (in Riso variety) and 5.38 (in Durina variety) mg/kg FW.

Luthria et al. [138] identi	ed amounts of p-coumaric acid
between 3.5 and 5.5mg/100 g FW, while the content of ferulic
acid was between 0.9 and 1.5mg/100 g FW.

Olthof et al. [150, 151] reported that half of the ingested
chlorogenic acid was metabolized to hippuric acid. �ere-
fore the colonic micro
ora transforms dietary phenols into
metabolites that reach the circulation.

However, phenolic acids are studied mainly for their role
as antioxidants [62, 63]. Some studies reported a protec-
tive e�ect of ca�eic acid and its related catechols against
hydroxyl radical formation in vitro [64]. Lodovici et al.
[41] investigated the e�ect of phenolic acids on oxidative
DNA damage in vitro. �ey found that these compounds
protected at low concentration in vitro againstDNAoxidation
induced by iron. Ca�eic acid can block the biosynthesis
of leukotrienes that are involved in immunoregulation. In

addition, it was shown that ca�eic acid possesses antitumor
activity in humans [42]. Other studies reported a correlation
between a series of phenolic acids with the inhibition of
AP-1 transcriptional activity, implicated in the processes that
control in
ammation, cell di�erentiation, and proliferation
[58].

Cinnamic acids exhibit strong antioxidant properties.
1,5-Dica�eoylquinic is a hepatoprotector when challenged
by carbon tetrachloride. �is mechanism involves, among
others, radical scavenging [65].

2.3.3. Tannins. Tannins include compounds of hydrolysable
tannins that are polymers of ellagic acid, or gallic and ellagic
acids, with glucose and condensed tannins (proanthocyani-
dins), which derive from the condensation of monomers
of 
avanol units [152, 153]. �ey play an essential role in
sensory properties of fruits and fruit products such as taste
and color. �eir antioxidant ability is exerted by scavenging
free radicals, chelating trace metals, and binding proteins
[66]. Some studies showed that tannins can enhance glucose
uptake and inhibit adipogenesis, acting like potential drugs
for the treatment of noninsulin dependent diabetes mellitus
[43]. Koleckar et al. [44] reported that tannins, in addition
to anti-in
ammatory e�ects, have a role in the mechanisms
of action of antibacterial, antiviral, anticarcinogenic, and
cardiovascular system preventing.

3. Effects of Processing on Tomato
Chemical Composition

Tomatoes are consumed fresh or are used to manufacture
a wide range of processed products that can show a very
di�erent composition compared to fresh fruit. For example,
signi	cant losses of ascorbic acid can occur during posthar-
vest storage period and during preparation and cooking of
foods. �is is due to oxidation and leaching into the water
used for cooking [75, 154].

For the production of tomato paste from fresh tomatoes,
both homogenization and heat treatment are used. Heat
treatment and/or homogenization can disrupt the cellular
matrix of tomatoes determining the bioavailability of dif-
ferent nutrients [155]. For example, retention of vitamin
C improves with mild treatments and low temperatures
[156]. Lycopene bioavailability was found increased a�er
heat-processed tomatoes compared to fresh tomatoes [157,
158]. Other studies demonstrated that thermal processing of
tomato pulp at 130∘C improved the in vitro bioaccessibility
of lycopene [159, 160]. However, as bound antioxidants are
released by processing, labile antioxidant compounds are
destroyed simultaneously [28].

Veronica et al. [158] observed loss of vitamin C in heat-
processed tomatoes at 88∘C with an estimated D 88∘� value
(the time taken for 90% reduction of the initial vitamin
C content at 88∘C) of 276min. In addition, they found an
antioxidant activity of raw tomatoes equal to 4.13±0.36 �mol
of vitamin C equiv/g of tomato. A�er heat treatment at
88∘C for 2, 15, and 30min, the total antioxidant activity
signi	cantly increased to 5.29 ± 0.26, 5.53 ± 0.24, and 6.70 ±
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0.25 �mol of vitamin C equiv/g of tomato, respectively (	 <
0.01). �is e�ect could be explained by the increased amount
of lycopene, the major phytochemical in tomatoes.

Gahler et al. [161] investigated how heat treatments a�ect
the contents of vitamin C and polyphenols as well as the
hydrophilic antioxidant capacity. Tomato juice was produced
under industrial-like conditions; baked tomatoes as well as
tomato sauce and tomato soup were prepared under house-
hold conditions. Vitamin C contents decreased during the
thermal processing, while the total phenolics concentration
and the water-soluble antioxidant capacity increased.

Seybold et al. [162] investigated the content of carotenoids
and vitaminE in samples of tomato sauce, tomato soup, baked
tomato slices, and tomato juice taken at di�erent times of
heating. �-Carotene amount decreased or was stable while
�-tocopherol content signi	cantly rose during short-term
heating.

Chang et al. [163] studied the e�ects of hot-air-drying
(AD) treatment on tomato.�ey found that this process could
enhance the nutritional value of tomatoes by increasing parts
of the total 
avonoids, total phenolics, and lycopene contents.

Patras et al. [164] reviewed the e�ect of thermal pro-
cessing on content of anthocyanins. A combination of unit
operations involving heat such as blanching, pasteurization,
and duration a�ected the anthocyanin content of fruits
and vegetables. Cyanidin-3-glucoside and pelargonidin-3-
glucoside in fruit puree were signi	cantly a�ected by thermal
process treatments of 70∘C during holding times of 2min.

As a whole, these evidences could have a signi	cant
impact on consumer’s food selection, increasing their aware-
ness of the health bene	ts of processed tomatoes in the
prevention of chronic diseases and in
ammation.

4. Biofortification

�e ability of various tomato phytonutrients to be positively
correlated to prevent or ameliorate chronic disease is appeal-
ing. �e studies carried out on the e�ects of phytochemicals
on human health prompted researchers to 	nd novel ways
to get bioforti	ed tomato genotypes with enhanced levels of
phytonutrients such as anthocyanins, lycopene, ascorbic acid,
and folate. In the last few years, crop bioforti	cation gave
an enormous contribution to understand the relationship
between diet and health, reduce the risk of chronic disease,
and better understand the regulatory systems in plant species.
As described below, attempts to create novel tomato plant
lines that carry genes for the accumulation of essential
nutrients in tomato fruit can be achieved both through
metabolic engineering and conventional breeding [165, 166]
(Table 3).

4.1. Metabolic Engineering. Plant metabolic engineering
adopted di�erent biochemical approaches to improve the
amount of various phytonutrients in tomato fruits. One
strategy is based on modi	cation of key-rate limiting steps in
metabolic pathways. For example, the expression in tomato

of two isoforms of the GDP-mannose-3,5
�
-epimerase, a key

enzyme of the ascorbic acid biosynthesis pathway, resulted in
amodest increase of ascorbate (1.6-fold) in the fruits of trans-
formed plant [167]. In another study, the cytosolic-targeted
tomatoMdhar (monodehydroascorbate reductase) andDhar
(dehydroascorbate reductase) genes were overexpressed in
tomato var. Micro-Tom. In the DHAR overexpressing lines,
there was a 1.6-fold increase of AsA in fruits of plants
grown in low light condition, while MDHAR transformants
showed a reduced level of AsA by 0.7-fold in mature green
fruits [168]. Another approach in metabolic engineering is
the expression of genes of a speci	c biosynthetic pathway
belonging to other organisms. For example, attempts to
increase AsA accumulation in tomato fruits were carried
out by expression of the genes phytoene desaturase (crtI)
of Erwinia uredovora and the yeast-derived GDP mannose
pyrophosphorylase (GMPase) and arabinono-1,4-lactone oxi-
dase (ALO) [169, 170].�is strategy was also used to improve
folate accumulation in fruit. �e synthesis of tetrahydrofo-
late in mitochondria requires hydroxymethyl dihydropteri-
dine (HMDHP), synthetized in the cytosol by GTP, and
p-aminobenzoate (PABA), synthetized in chloroplasts from
chorismate [171]. �e 	rst studies aimed to increase folate
in tomato involved the overexpression of the bacterial GTP
cyclohydrolase I (GCHI) to increase the supply of pteridines
from cytosol. �e transformed plants showed a low increase
of folates (2- to 4-fold) in fruit probably because the supply
of PABA became limiting [165, 172, 173]. �e enhanced
expression of a gene encoding for the aminodeoxychorismate
synthase from Arabidopsis (AtADCS), aimed at increasing
the supply of PABA, did not result in any change of folate
levels in tomato fruit. On the contrary, the expression of
GCHI and AtADCS resulted in 20-fold higher levels of folate
compared to the control [171]. Using an alternative strategy,
Apel and Bock [174] introduced the lycopene �-cyclase gene
from the Eubacterium Erwinia herbicola and the higher plant
Narcissus pseudonarcissus into the tomato plastid genome and
obtained a 50% increase in total carotenoid accumulation in
genotypes expressing the plant enzyme. Other studies involve
the accumulation of novel metabolites in tomato, such as
resveratrol, using the expression of a gene encoding for a
grape stilbene synthase [175]. Another approach to improve
the levels of phytonutrient in plant organs consists in modu-
lating regulatory genes whose products control 
ux through
several biosynthetic pathways. For example, Davuluri et al.
[176] enhanced the amount of anthocyans by suppressing
an endogenous photomorphogenesis regulatory gene, DET1
(De-etiolated 1), using fruit-speci	c promoters combined
with the RNA interference (RNAi) technology. �e trans-
formed plants showed an increase of 
avonoid levels up to
3.5-fold.�e last approach to increase levels of phytonutrients
involves an enhancing expression of transcription factors that
regulate speci	c biosynthetic pathways. �is system does not
work well in a complex branched pathway like those of folate
biosynthesis [165] but seems to be very e�cient to enhance
the levels of secondary metabolites such as anthocyanins
[177] and 
avonols [184]. �e anthocyanin pathway was
modi	ed in tomato using the transcription factors Delia
(Del) andRosea1 (Ros1) from snapdragonAntirrhinummajus.
�e fruit of transformed plants accumulated high level of
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Table 3: Results of bioforti	cation through metabolic engineering and breeding in tomato.

Approach Technique Gene Pathway References

Metabolic
engineering

Modi	cation of a
key-rate limiting
step

GDP-mannose-3,5�-epimerase
monodehydroascorbate reductase (Mdhar)-
dehydroascorbate reductase (Dhar)

Ascorbate [167, 168]

Heterologous gene
expression

Erwinia uredovora-phytoene desaturase (crtI) �-Carotene [169]

Arabidopsis-arabinono-1,4-lactone oxidase
(ALO)
Yeast-derived-GDP mannose pyrophosphorylase
(GMPase)

Ascorbic acid [170]

Bacterial GTP-cyclohydrolase I (GCHI) Ascorbic acid [170]

Arabidopsis-Aminodeoxychorismate synthase
(ADCS)

Folate [165, 171–173]

Erwinia herbicola lycopene b-cyclase Carotenoid [174]

Grape stylbene synthase Resveratrol [175]

Silencing pathway
bottle neck

De-etiolated1 (DET-)1 Anthocyans [176]

Increase levels of
transcription
factors

Delia (Del) and Rosea1 (Ros1)
AtMYB12

Anthocyans
Polyphenols

[177]
[177]

Conventional
breeding

Association
mapping QTL

29 SSR and 15 morpho-physiological traits Anthocyans [178]

QTL linkage
mapping

Lyc 7.1 and lyc 12.1 Lycopene [179]

Variation during the plant development

Various components [180]

Ascorbic acid, phenols, and
soluble solid

[181, 182]

Total phenols and ∘Bx
content

[183]

anthocyanins with concentrations similar to those found
in blackberries and blueberries [177]. Another transcription
factor (AtMYB12), which regulates the ca�eoylquinic acid
and 
avonol synthesis, proved to be a good candidate for the
production of tomato fruits with high levels of polyphenolic
antioxidants compounds [184]. Drawbacks of this strategy
are that not all the transcription factors regulating pathway
have been identi	ed and that transcriptional regulators could
have pleiotropic e�ects when their expression is enhanced
[165, 177, 185].

4.2. Plant Breeding. One way to produce bioforti	ed plants is
to take advantage of the natural variation of plant genomes.
For example, recently a new genetic combination was
obtained through conventional breeding, which produced
a phenotype with deep purple fruit pigmentation, due
to an accumulation of anthocyanins on the peels. Such
a genotype was named Sun Black [178]. Tomato fruit
quality usually exhibits quantitative variation controlled
by several genes and in
uenced by environment. For
these reasons one main focus of genetic studies has been
the identi	cation of genes and quantitative trait loci
(QTL) that control the accumulation in tomato fruit of
phytonutrients, such as lycopene [165, 178, 179]. As for
other crops, the improvement of tomato depends on the
availability of genetic variability. However, the germplasm
of cultivated tomato shows a reduced genetic variability,

both for its natural reproduction systems (autogamy) and
as a consequence of domestication and breeding, the latter
o�en based on intercrossing advanced lines. In contrast,
wild species (such as S. pimpinellifolium, S. neorickii, S.
habrochaites, S. chmielewskii, and S. pennellii) and heirlooms
tomatoes have a rich genetic variability; therefore, one
goal of plant breeding has become to screen wild genetic
resources for valuable traits that could be introduced into
modern varieties to improve speci	c traits [180, 186, 187].
In this regard, it is noteworthy that the work of Schauer et
al. [187], in order to identify components of fruit metabolic
composition, has phenotyped tomato introgression lines
(IL) in which marker-de	ned genomic regions of the wild
species Solanum pennellii were replaced with homologous
intervals of the cultivated variety M82. In our laboratory,
two introgression lines of Solanum pennellii were identi	ed
harboring QTLs that increase the content of ascorbic acid,
phenols, and soluble solids [181, 182]. In a subsequent work,
the selected QTLs were pyramided into cultivated varieties
to increase antioxidant content in tomato fruits [183].
Although the conventional breeding is a good strategy to
improve the quality of tomato fruit, this technique has some
limitations due to sexual incompatibility and requires long
breeding programs, whereas genetic engineering has no such
limitations and novel genes can be introduced directly into
local cultivars. Today, several genomic resources are available
for tomato, such as high-density genetic maps, genomic and
cDNA libraries, chip Illumina, germplasm collections, and
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Table 4: Advantages and disadvantages of metabolic engineering
and plant breeding.

Metabolic engineering Plant breeding

Advantages

(i) Fast
(ii) Easy to apply to the elite
cultivar
(iii) Genes from other organism
can be inserted
(iv) Genes are inserted directly
into the plant genome and are
transmitted to o�spring
(v) Possible selection of the
expression organs

(i) It uses the natural genome
variation of crop
(ii) Few legal regulations to
follow

Disadvantages

(i) Many legal regulations
regarding the landscape
(ii) Political and socioeconomic
disputes about the “transgenics”

(i) Restricted to the crop gene
pool
(ii) Restricted to the only
sexually compatible plants
(iii) It needs work for a long
time and with a high number
of generations to have plants
with the genes of interest

populations of introgression lines [188]. In addition, the
sequence of the tomato genome has recently been completed
(http://solgenomics.net/organism/solanum lycopersicum/ge
nome) by an international consortium [189]. Using the
existing genetic resources and genomic tools, it is now
possible to integrate and apply the information of the
genome sequence to discover new genes and allelic variants
for genetic traits important for consumers, such as fruit
quality. One of the most likely outcomes of the availability
of the tomato genome sequence will be the development of
high-throughput molecular markers to be used for genetic
analysis and breeding programs and the discovery of novel
genes. Moreover, by combining the sequence of tomato
genome with the possibility of massive resequencing, it
is now possible to investigate the genetic variability in
large populations of individuals with the aim of identifying
polymorphisms (SNPs/indels) in a panel of candidate
genes. Finally, the use of approaches, such as RNA-seq,
also called “Whole Transcriptome Shotgun Sequencing”
(“WTSS”), provides a new gateway to identify the level
of gene expression, new transcripts, splice variants, and
expressed SNPs [190]. In Table 4, the main advantages and
disadvantages of metabolic engineering and plant breeding
are summarized.

5. Conclusion

�ere are many evidences supporting the anti-in
ammatory
and anticancer action of tomato fruit bioactive compounds.
Molecular mechanisms controlling these e�ects have been
extensively studied and described.

�e present review reports a brief description, even
though not exhaustive, of bioactive compounds available in

tomato fruit and of their bene	cial properties on human
health.

�e content of these compounds might be increased to
obtain bioforti	ed food taking into account, among other
things, the great in
uence of processing transformation that
is required for some derived tomato foods. Various strategies
might be used to increase these compounds in tomato fruit.
�erefore, the 	nal destination of bioforti	ed tomatoes needs
to be considered when selecting new genotypes for fresh
market or processing.

It is necessary to dissect tomatoes complex genetic control
to identify key genes of biochemical pathways underlying
their biosynthesis.

�e best strategy to transfer them into improved geno-
types might be chosen between metabolic engineering via
genetic transformation and precision breeding by the aid of
molecular markers.

In both cases, the richness of genetic and genomic
resources today available for tomato might highly enhance
the success of tomato breeding aimed to obtain new bioforti-
	ed genotypes.

Conflict of Interests

�e authors declare that there is no con
ict of interests
regarding the publication of this paper.

Acknowledgment

�e authors would like to thank GenoPOM-pro Project
(PON02 00395 3082360) for the 	nancial support to their
activities and for its contribution to increase their knowledge.

References

[1] U. S. Department of Agriculture, “Economic Research Service,”
Tomatoes, 2008, http://www.ers.usda.gov/.

[2] K. Canene-Adams, J. K. Campbell, S. Zaripheh, E.H. Je�ery, and
J. W. Erdman Jr., “�e tomato as a functional food,” Journal of
Nutrition, vol. 135, no. 5, pp. 1226–1230, 2005.

[3] L. Frusciante, P. Carli, M. R. Ercolano et al., “Antioxidant
nutritional quality of tomato,” Molecular Nutrition and Food
Research, vol. 51, no. 5, pp. 609–617, 2007.
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M. J. Periago, “Antioxidant bioactive compounds in selected
industrial processing and fresh consumption tomato cultivars,”
Food and Bioprocess Technology, vol. 6, no. 2, pp. 391–402, 2013.

[7] M. M. Rigano, G. de Guzman, A. M. Walmsley, L. Frusciante,
and A. Barone, “Production of pharmaceutical proteins in



Mediators of In
ammation 11

Solanaceae food crops,” International Journal of Molecular
Sciences, vol. 14, pp. 2753–2773, 2013.

[8] C. Rosati, R. Aquilani, S. Dharmapuri et al., “Metabolic engi-
neering of beta-carotene and lycopene content in tomato fruit,”
Plant Journal, vol. 24, no. 3, pp. 413–419, 2000.

[9] J. A. Labate, S. Grandillo, T. Fulton et al., “Tomato,” in Genome
Mapping and Molecular Breeding in Plants: Vol. 5 Vegetables, C.
Kole, Ed., pp. 1–125, Springer, New York, NY, USA, 2007.

[10] F. Visioli, P. Riso, S. Grande, C. Galli, andM. Porrini, “Protective
activity of tomato products on in vivo markers of lipid oxida-
tion,” European Journal of Nutrition, vol. 42, no. 4, pp. 201–206,
2003.

[11] M.-L. Silaste, G. Al�han, A. Aro, Y. A. Kesäniemi, and S.
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avonoids and other polyphenols on in
ammation,” Critical
Reviews in Food Science and Nutrition, vol. 51, no. 4, pp. 331–
362, 2011.

[39] S. Nishiumi, S. Miyamoto, K. Kawabata et al., “Dietary

avonoids as cancer-preventive and therapeutic biofactors,”
Frontiers in bioscience (Scholar edition), vol. 3, pp. 1332–1362,
2011.

[40] M. Garcia-Alonso, A.-M. Minihane, G. Rimbach, J. C. Rivas-
Gonzalo, and S. de Pascual-Teresa, “Red wine anthocyanins are
rapidly absorbed in humans and a�ect monocyte chemoattrac-
tant protein 1 levels and antioxidant capacity of plasma,” Journal
of Nutritional Biochemistry, vol. 20, no. 7, pp. 521–529, 2009.

[41] M. Lodovici, F. Guglielmi, M. Meoni, and P. Dolara, “E�ect of
natural phenolic acids on DNA oxidation in vitro,” Food and
Chemical Toxicology, vol. 39, no. 12, pp. 1205–1210, 2001.

[42] N. Rajendra Prasad, A. Karthikeyan, S. Karthikeyan, and B.
Venkata Reddy, “Inhibitory e�ect of ca�eic acid on cancer
cell proliferation by oxidative mechanism in human HT-1080
	brosarcoma cell line,”Molecular andCellular Biochemistry, vol.
349, no. 1-2, pp. 11–19, 2011.

[43] R. M. Seabra, P. B. Andrade, P. Valentão, E. Fernandes, F.
Carvalho, andM. L. Bastos, “Molecules 2009,14,” inBiomaterials
From Aquatic and Terrestrial Organisms, M. Fingerman and R.
Nagabhushanam, Eds., pp. 15–174, Science Publishers, En	eld,
NH, USA, 2006.

[44] V. Koleckar, K. Kubikova, Z. Rehakova et al., “Condensed and
hydrolysable tannins as antioxidants in
uencing the health,”
Mini-Reviews in Medicinal Chemistry, vol. 8, no. 5, pp. 436–447,
2008.

[45] M.M. Ciccone, F. Cortese,M. Gesualdo et al., “Dietary intake of
carotenoids and their antioxidant and anti-in
ammatory e�ects
in cardiovascular care,” Mediators of In�ammation, vol. 2013,
Article ID 782137, 11 pages, 2013.

[46] J. H. Dwyer, M. Navab, K. M. Dwyer et al., “Oxygenated
carotenoid lutein and progression of early atherosclerosis: the
Los Angeles atherosclerosis study,” Circulation, vol. 103, no. 24,
pp. 2922–2927, 2001.

[47] A. Armoza, Y. Haim, A. Bashiri, T. Wolak, and E. Paran,
“Tomato extract and the carotenoids lycopene and lutein
improve endothelial function and attenuate in
ammatory NF-
�B signaling in endothelial cells,” Journal of Hypertension, vol.
31, no. 3, pp. 521–529, 2013.

[48] W.-X. Tian, “Inhibition of fatty acid synthase by polyphenols,”
Current Medicinal Chemistry, vol. 13, no. 8, pp. 967–977, 2006.

[49] C. Santangelo, R. Var̀ı, B. Scazzocchio, R. di Benedetto, C.
Filesi, and R.Masella, “Polyphenols, intracellular signalling and
in
ammation,” Annali dell’Istituto Superiore di Sanita, vol. 43,
no. 4, pp. 394–405, 2007.

[50] T. Kauss, D. Moynet, J. Rambert et al., “Rutoside decreases
human macrophage-derived in
ammatory mediators and
improves clinical signs in adjuvant-induced arthritis,” Arthritis
Research and
erapy, vol. 10, no. 1, article R19, 2008.

[51] K.H.Kwon,A.Murakami, T. Tanaka, andH.Ohigashi, “Dietary
rutin, but not its aglycone quercetin, ameliorates dextran sulfate
sodium-induced experimental colitis in mice: attenuation of
pro-in
ammatory gene expression,”Biochemical Pharmacology,
vol. 69, no. 3, pp. 395–406, 2005.

[52] M. Comalada, D. Camuesco, S. Sierra et al., “In vivo quercitrin
anti-in
ammatory e�ect involves release of quercetin, which
inhibits in
ammation through down-regulation of the NF-�B
pathway,” European Journal of Immunology, vol. 35, no. 2, pp.
584–592, 2005.

[53] Q. Wang, M. Xia, C. Liu et al., “Cyanidin-3-O-�-glucoside
inhibits iNOS and COX-2 expression by inducing liver X
receptor alpha activation in THP-1 macrophages,” Life Sciences,
vol. 83, no. 5-6, pp. 176–184, 2008.

[54] S. Zhou, Y. Hu, B. Zhang et al., “Dose-dependent absorption,
metabolism, and excretion of genistein in rats,” Journal of
Agricultural and Food Chemistry, vol. 56, no. 18, pp. 8354–8359,
2008.

[55] Y. Kawai, T. Nishikawa, Y. Shiba et al., “Macrophage as a target
of quercetin glucuronides in human atherosclerotic arteries:
implication in the anti-atherosclerotic mechanism of dietary

avonoids,” Journal of Biological Chemistry, vol. 283, no. 14, pp.
9424–9434, 2008.

[56] T. Tsuda, F. Horio, K. Uchida, H. Aoki, and T. Osawa, “Dietary
cyanidin 3-O-�-D-glucoside-rich purple corn color prevents
obesity and ameliorates hyperglycemia in mice,” Journal of
Nutrition, vol. 133, no. 7, pp. 2125–2130, 2003.

[57] T. Tsuda, “Dietary anthocyanin-rich plants: biochemical basis
and recent progress in health bene	ts studies,” Molecular
Nutrition and Food Research, vol. 56, no. 1, pp. 159–170, 2012.

[58] P. J. King, G. Ma, W. Miao et al., “Structure-activity relation-
ships: analogues of the dica�eoylquinic and dica�eoyltartaric
acids as potent inhibitors of human immunode	ciency virus
type 1 integrase and replication,” Journal ofMedicinal Chemistry,
vol. 42, no. 3, pp. 497–509, 1999.

[59] P. di Tomo, R. Canali, D. Ciavardelli et al., “�-Carotene and
lycopene a�ect endothelial response to TNF-� reducing nitro-
oxidative stress and interaction with monocytes,” Molecular
Nutrition and Food Research, vol. 56, no. 2, pp. 217–227, 2012.

[60] S. Por	rova, E. Bergmüller, S. Tropf, R. Lemke, and P.Dörmann,
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