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ABSTRACT: Over the past few years, metal halide perovskite nanocrystals have been at the
forefront of colloidal semiconductor nanomaterial research because of their fascinating properties
and potential applications. However, their intrinsic phase instability and chemical degradation
under external exposures (high temperature, water, oxygen, and light) are currently limiting the
real-world applications of perovskite optoelectronics. To overcome these stability issues,
researchers have reported various strategies such as doping and encapsulation. The doping
improves the optical and photoactive phase stability, whereas the encapsulation protects the
perovskite NCs from external exposures. This perspective discusses the rationale of various
strategies to enhance the stability of perovskite NCs and suggests possible future directions for
the fabrication of optoelectronic devices with long-term stability while maintaining high
efficiency.
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■ INTRODUCTION

Over the past decade, scientists from different disciplines, such
as chemists, physicists, and engineers, have been amazed by the
many exciting properties and potential applications of
fascinating metal halide perovskites (MHPs).1−3 In addition
to their intriguing properties (defect tolerance, long charge
carrier diffusion lengths (>micrometers), high mobility
compared to organic semiconductors, and high photo-
luminescence quantum yield), low cost, easy fabrication, and
solution processability make them ideal candidates for optical
and optoelectronic applications.1 Metal halide perovskites
(MHPs) posses a formula of ABX3, where A is an organic or
inorganic cation (methylammonium (MA+) and formamidi-
nium (FA+) or Cs+) that sits in between octahedra made of
divalent cations (Pb2+, Sn2+, or Bi2+) surrounded by six halide
ions (X= Cl−, Br−, or I−). Although MHPs have been known
since the late 1800s,4 they came into the spotlight in 2009 by
the work of Kojima et al.5 who demonstrated the use of
methylammonium lead halide as a photosensitizer in photo-
electrochemical cells. The solid-state solar cell reported in
2012 with a power conversion efficiency (PCE) of more than
10% triggered the field of perovskite photovoltaics.2 These
early reports drew the attention of researchers who were
working on dye-sensitized solar cells, quantum dot solar cells,
and organic solar cells. Since then, intense research has been
carried out across the globe toward increasing the PCE,
stability, and reproducibility of perovskite solar cells.6 This has
led to a monotonic rise in the PCE of a single-junction solar
cell from 10% to more than 25% in a short development time

and is continuing to approach the theoretical efficiency limit
(∼30%).7 The PCE of perovskite solar cells (centimeter scale)
has already reached close to that of single-junction solar cells.7

On the other hand, colloidal metal halide perovskite
nanocrystals (MHP NCs) have also been receiving increasing
interest from the scientific community in parallel to thin-film
perovskites.1,8,9 The high photoluminescence quantum yields
(∼100%) and easy tunability of emission color by halide
exchange make them excellent light sources for light-emitting
applications.1,3,10 Unlike classical colloidal quantum dots
(QDs), halide perovskite NCs does not require a high bandgap
shell to passivate surface defects.1,3 The defect-tolerant nature
of Br- and I-based perovskite NCs enabled obtaining them
with near-unity PLQY at relatively low temperatures and using
technical grade precursors.1,3 The colloidal synthesis of highly
luminescent cesium lead halide perovskite (LHP) NCs
reported by Protesescu et al.11 in 2015 and a few other early
reports drew the attention of colloidal chemists, material
scientists, spectroscopists, and device engineers working on
classical-quantum dots (QDs).1,12,13 Since then, these classes
of compounds have been virtually exploded regarding their
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synthesis, properties, and potential applications.1 Over the last
7 years, we have seen tremendous success and great progress in
the field of halide perovskite NCs.1 The colloidal chemistry of
perovskite NCs has been greatly advanced with improved
understanding, and a wide range of facile synthesis methods
have been developed for their shape and composition control.1

The optical properties of MHP NCs are controllable not only
by their size but also through the composition of A, B, and X of
ABX3.

1,14,15 Especially, LHP NCs has become a leading
candidate for next-generation light-emitting diodes and display
technologies because of their high brightness, high color purity,
tunable emission, high defect tolerance (green and red colors),
and processability.1 The external quantum efficiency of LHP
NC-based perovskite LEDs has surpassed more than 23 and
20% for green and red colors, respectively.10,16 In addition, it
has been shown that they are promising for lasers, photo-
detectors, X-ray scintillators (they convert ionizing radiation
into visible photons), phototransistors, and photocatalysis.1

Despite great progress in thin-film and NC-based LHP
optoelectronics regarding the efficiencies, what stops their
commercialization is the poor durability (besides efficiency of
larger area devices and toxicity).17−19 But there are still many
open questions that need to be answered regarding the lifetime
of the optoelectronic devices made of this new class of
materials. For example, silicon solar panels are expected to

work for 25 years. However, the usage of perovskite
optoelectronic devices for such a long runtime under harsh
environmental conditions such as wind, rain, intense sunshine,
and cold temperatures is being highly debated.20 Because of
their low formation energy, perovskites are easy to make as
well as easy to break (or degrade). In addition, the low crystal
lattice energy leads to low formation energies of Pb and halide
vacancies that destabilize perovskites via ion migration during
device operation.21 This issue has been extensively summarized
for thin-film perovskites in many review articles.21,22 In fact,
both the thin-film and colloidal LHP NCs exhibit similar
instability issues.19,23 Nevertheless, colloidal NCs have addi-
tional instability issues arising from the weak binding of ionic
ligands with the NC surface.3 Therefore, the discussion in this
perspective is mainly limited to colloidal halide perovskite
NCs. One of the major challenges associated with halide
perovskites to bring them from laboratory curiosity to real-
world working devices is the enhancement of their intrinsic
and extrinsic stabilities.
The intrinsic (or inherent) instability of LHP NCs is mainly

of two types (Figure 1a, b): The first one is the transformation
of the photoactive phase into the nonactive phase because of
strain in the perovskite crystal lattice.18,19 This transformation
is faster in the presence of external factors such as humidity.
For instance, the black phase of α (or γ)-CsPbI3, which is

Figure 1. Intrinsic instability: (a) Schematic illustration of the transformation of black phase α (or γ)-CsPbI3 into yellow phase δ-CsPbI3 under
ambient conditions. (b) Schematic illustration of the decrease in photoluminescence efficiency caused by the formation of defects through the
detachment of ligands. This process can lead to the aggregation or degradation NCs. Extrinsic instability: (c) Schematic illustration of the
degradation of MHP NCs under external stress such as oxygen, water (polar solvents), heat, and light. The soft ionic nature of perovskites causes
their degradation when they encounter polar solvents. In addition, light illumination leads to ion migration in perovskites that causes irreversible
degradation. Furthermore, the external factors often trigger the intrinsic instability of perovskites and thus accelerates the degradation process.
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photoactive, often transforms into a nonfluorescent yellow
phase δ-CsPbI3 under ambient conditions.18,19 This trans-
formation process is much faster in NC films (within a day)
compared to the NCs in solution (generally, a few days to a
month depending on the type of ligands). The second type of
intrinsic instability of LHP NCs caused by the detachment of
weakly bound surface ligands.1,3 The ligands often detach from
NC’s surface with aging or by washing with polar
antisolvents.1,24 This process can lead to aggregation or
degradation of NCs. On the other hand, extrinsic instability
refers to the instability of LHP NCs caused by external stress
such as heat, oxygen, water (or polar solvents), or light (Figure
1c).17,25 It is worth mentioning that these external factors
significantly affect the intrinsic stability of perovskites. For
example, the phase transition of iodide perovskites is often
accelerated by moisture and temperature. These factors can
still influence the encapsulated devices because of the residual
oxygen and moisture. Probably, encapsulation of devices under
an inert atmosphere could help in this regard. The external
effects can vary depending on the halide type and A-cation
type. For example, it is well-known that Br-based LHP NCs
exhibit better stability over iodide ones. Similarly, inorganic
LHP NCs exhibit higher thermal stability compared to hybrid
NCs.26 In fact, the external instability is also caused by the
inherent soft and ionic nature of LHP NCs. Intense works have
been carried out to understand the mechanism of environ-
mental instability of LHP thin films;17,25 however, less
investigated on colloidal NCs. It is most likely that the
mechanism of degradation is similar in both cases.
The capping molecules (surface ligands) play a critical role

in the stabilization and destabilization of NCs.1,3 It has been
found that the ligands detach from the NC surface upon light
illumination and thus the NCs aggregate into larger NCs.26

The light illumination initially leads to an enhancement in the
PL intensity of perovskites, but it significantly quenches upon
prolonged illumination due to defect formation, degradation,
and morphological changes.27 The wavelength (or energy) of
the light also has an influence on the degradation process. For
example, UV light illumination effectively removes the surface
ligands compared to visible light. It has been found that
thinner LHP NCs such as quantum-confined nanoplatelets
transform into nanowires or bulk NCs.26 In addition, light-
induced negative effects can be worsened in the presence of
oxygen, leading to photoinduced oxidation and then
degradation of hybrid perovskites. A few studies have
demonstrated the enhancement of the PL of LHP NCs upon
short-time exposure to oxygen atmospheres.28 It was attributed
to the deactivation traps created by photoexcitation. However,
the photo-oxidation mechanism of inorganic LHP NCs over a
long exposure time is still not clear.29 It is most likely that the
reduction of PL of inorganic LHP NCs under a long exposure
time to oxygen is mainly by the detachment of surface ligands
and shape transformation.29 Considering the potentiality of
LHP NCs in down conversion LEDs, in which blue light LEDs
are used for generating other colors, it is very important to
enhance the stability of NC films toward UV-light-induced
morphological changes. On the other hand, the role of water
(or humidity) in the degradation of LHPs is somewhat clear.
The ionic nature of LHPs leads to their degradation upon
contact with water. Although NCs are capped by ligands, their
density and hydrophobicity are not enough to provide
waterproofing to the surface of LHP NCs. In addition to the
environmental factors, the thermal stability of LHPs is also one

of the concerns. Interestingly, LHPs exhibit good thermal
stability and it depends on the type of A-cation.19 Generally,
inorganic LHP NCs exhibit higher thermal stability over
hybrid ones. However, the decomposition induced by external
factors such as oxygen and water can be accelerated and
amplified at high temperatures. Therefore, the combination of
heat and water can lead to the rapid degradation of LHP NCs.
Therefore, all these instability issues need to be addressed for
the fabrication of durable optoelectronic devices using LHP
NCs.

■ STRATEGIES FOR IMPROVING THE STABILITY OF
LHP NCS

To overcome the intrinsic and extrinsic instability of LHP
NCs, researchers have developed various strategies over the
years, and are illustrated in Figure 2. These strategies can be

divided into three main categories: (1) Passivation with ligands
that bind strongly to the NC surface, (2) doping (A or B-site),
and (3) encapsulation (single particle or multiple particles).
The surface passivation and doping mainly improve the
structural phase stability,18 whereas the encapsulation shields
the NCs from external stress such as heat, light, oxygen, and
water (polar solvents).1,30 It should be noted that the
protecting shells must be optically transparent to be used as
light emitters in LEDs. The encapsulation strategies have been
inspired by the methods previously used for the stabilization of
colloidal metal NCs and classical QDs.31 Generally, colloidal
NCs are often stabilized by making a robust shell structure on
the NC surface in the form of core−shell NCs with
controllable shell thickness. This has also been extended to
LHP NCs by growing a shell of higher or lower bandgap with
type I, II, or III band alignments.30,32 However, it is still

Figure 2. Schematic depiction of different strategies implemented for
the intrinsic and extrinsic stability of halide perovskite NCs. Proper
ligand passivation and doping improve the intrinsic stability, whereas
the encapsulation with various shells such as metal oxide, polymer,
metal−organic frameworks (MOF), Cs4PbX6 in the form of core−
shell type architectures enhances the extrinsic stability. The
encapsulation can lead to well-separated core−shell type NCs or
multiple particles embedded shell matrix. It should be noted that the
extrinsic enhancement often improves the intrinsic stability of
perovskites.
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challenging to achieve a uniform shell around an LHP NC
surface without the agglomeration of cores or shells. This is
because the shell structures often require the use of a polar
solvent that is not compatible with LHP NCs. Despite a few
challenges, core−shell type NCs have been successfully
synthesized with greater stability in polar solvents in which
pure LHP NCs disintegrate into precursors and other
products. Another well-known strategy used for the stabiliza-
tion and control of the dimensions of the LHP NCs is the in
situ encapsulation in a mesoporous matrix, meaning that NCs
are directly crystallized in a porous matrix with controllable
pore size.33,34

■ STABILITY ENHANCEMENT OF LHP NCS BY
LIGAND ENGINEERING

The major factor that controls the colloidal stability of NCs is
the surface chemistry of NCs and the strength of the
interactions between NCs and ligands.1,3 The surface
chemistry of LHP NCs is of special interest because of its
relevance to the properties, making them vulnerable to
instability and degradation, introducing new properties
through surface functionalization. Most of the synthesis
strategies for obtaining LHP NCs involve long-chain alkyl-
amines and alkyl acids as ligands, with oleylamine and oleic
acid (OAm/OA) as the most commonly used pair.11 The
acid−base pair results in the formation of oleylammonium
cations and oleate anions through proton transfer reaction. It
has been widely accepted that the oleylammonium cations
protect the NC surface by occupying some of the Cs atom
positions, whereas the oleate neutralizes the surface charge but
does not directly bind to the NC’s surface.35 Another
hypothesis is that the oleate ions occupying the halide
vacancies of the NC surface are more ionic in nature as
compared to classical QDs. Therefore, ligand binding in LHP

NCs is highly dynamic and maintains equilibrium with the
excess ligands in the colloidal solution. Therefore, the ligands
often desorb from the surface upon aging, dilution, or
purification, thus leading to surface traps that result in a
reduction of PLQY or even degradation.3,35 However, the
PLQY and stability enhance upon adding an additional amount
of OAm and OA to counter the ligand detachment.1,36

Another approach to overcome the instability caused by the
transfer of the proton from the OA to the OAm is to carry out
amine-free synthesis using OA and quaternary alkylammonium
halides as capping ligands.1,37 The NCs prepared by this
approach showed greater stability. For instance, Manna and co-
workers demonstrated the simultaneous exchange of both
cationic and anionic ligands on the surface of CsPbBr3 NCs
using quaternary ammonium bromides (R4NBr) and the
resultant NCs exhibit improved stability (colloidal and
thermal) and high PLQY compared to CsPbBr3 NCs (Figure
3a).38 Similarly, Pan et al. proposed the formation of a
protective enriched sulfide layer by employing didodecyldime-
thylammonium sulfide (DDA+S2−) as the surfactant, and the
resultant NC films showed remarkable air stability.39 Never-
theless, recently several other types of ligands such as
phosphonic acids,40 sodium dodecyl sulfate (SDS),41 dode-
cylbenzenesulfonic acid (DBSA),42 and dodecanethiol43 have
been suggested for improving the colloidal stability of NCs.
The strong interaction of alkyl phosphonic acids, thiolates, and
thioethers toward Pb2+ ions leads to high affinity to the surface
and to the passivation of trap states. For example, Wu et al.44

reported the synthesis of phase-stable CsPbI3 NCs trioctyl-
phosphine−PbI2 (TOP−PbI2) as the reactive precursor and
the resultant TOP-capped CsPbI3 NCs exhibit better stability
compared to typical OLA/OA-capped CsPbI3 NCs. Similarly,
the LHP NCs synthesized trioctylphosphine oxide also showed

Figure 3. (a) Schematic illustration of the simultaneous cationic and anionic ligand exchange on CsPbBr3 NCs using quaternary ammonium
ligands. Reproduced with permission from ref 38. Copyright 2019 American Chemical Society. (b) Schematic illustration of the zwitterionic
molecule-capped LHP NCs and different kinds of zwitterionic molecules. Both the cationic and anionic parts of the ligands bind to the NC surface,
providing a chelate effect for improved stability of the NCs. Reproduced with permission from ref 45. Copyright 2018 American Chemical Society.
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improved stability in polar solvents, as demonstrated by Zhang
and co-workers.44

Some ligands of special interest are bidentate ligands such as
succinic acid,46 2,2′-iminodibenzoic acid,47 N-methyl-2-pyrro-
lidon (NMP),48 and zwitterionic ligands45,49 which are
stabilized by the chelate effect and show high efficiency in
surface passivation and tight binding. For instance, Kovalenko
and co-workers proposed the use of zwitterionic capping
ligands for improved stability and durability of LHP NCs
(Figure 3b).45 These ligands bind strongly to the LHP NC
surface through the chelating effect, meaning that both the
cationic and anionic parts of the ligand bind to the NC surface
and thus provide greater colloidal stability (Figure 3b).
Furthermore, bidentate ligands that form intermolecular
interactions with one another can even protect the perovskites
from water. For example, Nag and co-workers have shown that
aromatic diamine ligands such as 4,4′-trimethylenedipyridine
protects perovskites from water through the formation of long-
range cation-π stacking.50 On the other hand, silane ligands
such as 3-aminopropyl triethoxysilane (APTES)51 significantly
improve the environmental stability, long-term storage, UV
exposure, and resistance to polar solvents because of the
formation of a cross-linking matrix by hydrolysis of the silyl
ether groups, protecting the perovskite from the humidity. In
conclusion, a huge variety of studies were reported, employing
different capping ligands for the synthesis of perovskite NCs or
as postsynthetic surface passivation agents, improving the
stability and efficient light-emitting properties by passivation of
surface defects.1,3 Despite significant progress in the synthesis
of LHP nanocubes with improved stability, quantum-confined
nanoplatelets (NPLs) still suffer from their poor stability and
often tend to transform into thicker (bulklike) nanostructures
within days after synthesis. In addition, most of the reported
systems have been focused on Pb-based NCs, more works
need to be devoted to the development of stable Pb-free
perovskite NCs. It is important to note that although the
ligands improve the intrinsic stability of perovskite NCs, their
density and hydrophobicity are not enough to protect them
from polar solvents, UV light, oxygen, and heating.

■ STABILITY ENHANCEMENT BY A AND B-SITE
DOPING/ALLOYING

Doping (or alloying) in LHP NCs has been heavily
investigated not only to induce new optical features but also
to improve colloidal stability and PL efficiency (Figure 4).1,3 In
principle, in the case of doping, the amount of dopant should
be very low (at least less than 1%), otherwise, it should be
called an alloy. However, in many perovskite NC papers, it is
often called doping regardless of the amount of dopant.1

Although the doping/alloying strategy has been implemented
to enhance the stability of perovskite NCs of all three halides
(X = Cl, Br, and I), here we focus mainly on the iodide system
because of its relevance to photovoltaics and red-emitting
LEDs.1,19 Importantly, iodide-based perovskite systems are the
ones that exhibit the least phase stability and it is one of the
most challenging problems to be solved.19 Despite their great
potential in optoelectronic applications, FAPbI3, and CsPbI3
perovskites tend crystallize into the photoinactive yellow (δ-)
phase at room temperature because it has the lowest free
energy of formation energy.52,53 Therefore, the photoactive
black phase of iodide perovskite NCs often transforms into an
optically inactive yellow phase upon aging the colloidal
solution for a few days or exposure to moisture. For instance,

the as-synthesized CsPbI3 NCs generally exhibit high PLQY;
however, they become nonfluorescent after a few days of
preparation.54

One of the main reasons for this phase transform is its
relatively low tolerance factor (<0.8), which can be
compensated by the lattice contraction through doping with
small size B cations.9 In theory, substituting Pb2+ ions with a
smaller B-cation or replacing Cs with a bigger cation can
stabilize the black phase α-CsPbI3 by reducing the [BX6]4−

octahedral tilt. For more details on the relation between the
Goldschmidt’s tolerance factor, B-site doping, and phase
stability, we refer the readers to the previous review
articles.19,55 Over the years, many studies have been focused
on improving the phase and thermal stability of CsPbI3 NCs by
A- and B-site doping/alloying with various monovalent (MA+,
FA+, Rb+, Na+, K+) and divalent metal cations (Mn2+, Ni2+,
Sn2+, Zn2+, and Sr2+), respectively (Figure 4a, c).1,54,56,57

In addition, trivalent cation (Al3+, Bi3+, and lanthanide)
doping has been applied to improve the phase stability of
iodide perovskites.58,59 However, it is still not clear whether the
trivalent cations really incorporate into the perovskite lattice.
Generally, doping/alloying in perovskite NCs can be achieved
by direct synthesis as well as a postsynthetic treatment with
corresponding metal precursors. To the best of our knowledge,
postsynthetic doping/alloying offers better control over the
dopant concentration in the lattice. For instance, Zou et al.60

demonstrated the stabilization of CsPbX3 crystal lattice by
doping/alloying with Mn2+ cations through postsynthetic

Figure 4. (a) Schematic illustration of mixed B-cation typical cubic
crystal structure. (b) Photograph of colloidal solutions of undoped
and Ni(II) doped CsPbI3 NCs after 5 and 60 days, respectively.
Reproduced with permission from ref 54. Copyright 2019 American
Chemical Society. (c) Schematic illustration of mixed A-cation cubic
crystal structure. (d) Goldschmidt tolerance factor (GTF) vs
concentration of FA+ ion shows that all compositions of Cs1−xFAxPbI3
(x = 0−1) are expected to be phase-stable. The top axis shows the
effective A-site radius. Reproduced with permission from ref 14.
Copyright 2018 American Chemical Society.
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treatment with MnX2 precursor. The prepared NCs with an
optimum dopant concentration showed enhanced thermal and
phase stability under ambient conditions. Generally, OLA/OA-
capped CsPbI3 NCs exhibit poor stability and often turn into a
non-fluorescent yellow phase within a few days after synthesis
(the stability may vary from batch to batch); however, they can
be stable for more than 2 months after doping its lattice with
smaller cations like Ni2+ (Figure 4b).54 The enhanced stability
was attributed to the lattice contraction caused by the
shortening of the metal-I bond.54,61,62 Interestingly, in most
cases, the bandgap of CsPbI3 remains unaltered regardless of
the dopant.54,61,62 However, alloying with Sn2+ can alter its
bandgap, and the bandgap of CsPbxSn1−xI3 alloy NCs gradually
decreases with increasing the amount of Sn2+ content.57

Furthermore, the doping/alloying strategy has been extended
to Br- and Cl-based perovskites to improve their optical
properties.3,63,64 In general, Cl-based perovskites exhibit very
low PLQY because of their defect-intolerant nature. Nonethe-
less, few reports demonstrated the significant improvement in
the PLQY of CsPbCl3 NCs by doping with other metal cations
or halide passivation.3,63 However, it is still unclear whether the
enhancement of PLQY is due to filling of halide vacancies or
metal ion doping. On the other hand, A-site alloying has been
relatively less explored for phase stability enhancement of
perovskite NCs.14,56,65 The increase in the tolerance factor of
CsPbI3 NCs has been inspired from the studies of mixed A-
cation perovskite thin films that exhibit enhanced phase
stability compared to that of monocation perovskite films
(Figure 4c).14 In contrast to B-site doping/alloying, mixed A-

cation perovskite NCs have been mostly obtained through
postsynthetic A-cation cross-exchange. In fact, the A-site cation
exchange is energetically more favorable compared to B-site
cation exchange. By mixing colloidal NC solutions of CsPbX3
and FAPbX3 in different ratios, one can finetune the A-site
cation composition and thus the tolerance factor to obtain a
stable perovskite phase (Figure 4d).14 The increase in the A-
cation size reduces the PbI64− octahedra tilting, maintaining
the photoactive cubic phase. Recently, these mixed A-cation
perovskite NCs have received significant interest as photo-
sensitizers for the fabrication of solar cells with long-term
stability.14,56,65 However, it is challenging to characterize the
composition of mixed-cation perovskite NCs. In most previous
reports, the stability of iodide-based LHP NCs has been
studied by alloying either A-cation or and B-cation. Future
studies could be focused on simultaneously alloying of both A
and B-cations. In addition, X-site doping/alloying can
significantly improve the stability of LHPs. For example,
doping of iodide perovskites with a small amount of Br or Cl
can significantly improve their stability. In fact, Br and I mixed
perovskites along with mixed A-cations have been extensively
implemented in the fabrication of relatively stable perovskite
solar cells.66 Recently, this concept has been extended to
perovskite NC-based solar cells to obtain relatively stable solar
cells.56

■ ENCAPSULATION OF PEROVSKITE NCS
Although the intrinsic stability of LHP NCs can be greatly
improved by ligand engineering and doping/alloying, they are

Figure 5. (a) (Left) Schematic illustration of the synthesis of CsPbBr3 @SiO2 core−shell NCs, where the precursors dissolved in DMF are injected
into a nonpolar organic solvent in the presence of tetramethoxysilane (TMOS). (Right) Photographs of the colloidal solutions of pristine CsPbBr3
NCs and CsPbBr3@SiO2 core−shell NCs under UV light illumination. Reproduced with permission from ref 67. Copyright 2018 American
Chemical Society. (b) Encapsulation of surface-functionalized CsPbBr3 NCs in a polymer matrix through UV-light-induced polymerization. The
NCs and the corresponding films are compatible with water. Reproduced with permission from ref 68. Copyright 2018 American Chemical Society.
(c) Schematic illustration of the synthesis of block copolymer encapsulated LHP NCs for enhanced stability against water and oxygen. Reproduced
with permission from ref 69 Copyright 2019 American Chemical Society. (d) Schematic illustration of CsPbBr3/ZnS core/shell NC that are stable
against water and light. Reproduced with permission from ref 70. Copyright 2020 American Chemical Society.
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still prone to degradation in exposure to water, intense light
illumination, oxygen, and heating. To overcome this problem,
the surface of the NCs needs to be protected with materials
that chemically and physically prevent the water and oxygen
from reaching the NC surface. A wide range of materials
including metal oxides, polymers, MOFs, metal chalcogenides,
and perovskite derivatives have been used as shells to protect
the surface of perovskite NCs (see Figure 2).1,30 The
encapsulated perovskite NCs are of two types: (1) single
core−shell colloidal NCs, (2) multiple NCs incorporated into
a shell matrix. Among various encapsulants, SiO2 has received
significant interest because of its chemical and thermal stability
along with low toxicity. The SiO2 shell has been extensively
applied to metal NPs and classical semiconductor QDs to
stabilize the polar solvents. However, coating SiO2 shells on
LHP NCs is challenging because the hydrolysis reaction
requires some amount of water that can damage the NCs.
Several attempts have been made to coat the SiO2 on LHP
NCs using a minimum amount of water or no water, yielding
multiple NC-embedded SiO2 matrices.71 Another approach
that is often used is the postsynthetic encapsulation of multiple
NCs in a preprepared mesoporous silica matrix by incubating
them together for a few hours. The studies showed that
mesoporous encapsulation enhances the stability of LHP NCs
and prevents the halide ion exchange when NCs of two
different halides are mixed, enabling the fabrication of white
LEDs.72 Besides, the NCs can be directly grown in the pores of
mesoporous fibers by introducing corresponding precursors
into the porous followed by heating or the addition of an
antisolvent.33,34 However, it is still not clear whether the
mesoporous structure provides full waterproofing because the
water molecules can go into the pores to destroy the NCs. A
few reports demonstrated the fabrication of LHP@SiO2 core−
shell NCs by reprecipitation of LHP NCs in the presence of
tetramethoxysilane (TMOS), which is a precursor for silica
coating (Figure 5a).67 The NCs completely covered with SiO2
shells clearly exhibit water stability.73 The SiO2 shell at the
single-particle level has also been achieved by interfacial
synthesis, in which the coating takes place at the water-hexane
interface by mixing TMOS and Cs4PbX6 NCs. This reaction
leads to the stripping of CsX and SiO2 coating simultaneously

and results in the formation of CsPbX3@SiO2 Janus or core−
shell NCs.74 The strategies reported for encapsulation of LHP
NCs in the SiO2 matrix have been extended to other oxides
such as TiO2, Al2O3, and ZnO as well as metal−organic
frameworks (MOFs).74−77 In addition, polymer materials have
been used for the efficient encapsulation of LHP NCs. The
LHP NC−polymer composites can be prepared either by
mixing NCs with polymers or through polymerization on the
NC surface. For instance, Pan et al. prepared CsPbBr3−
polymer inks by initiating the polymerization on the NC
surface through their surface functionalization, and the
composite NCs exhibit water stability (Figure 5b).68 On the
other hand, LHP−polymer core−shell NCs have been
obtained either through in situ synthesis in hydrophobic
pores of block copolymers (Figure 5c)69 or by phase transfer
using polyzwitterionic ligands.49 In addition, perovskite NC@
polymer core−shell structures can be obtained through the
polymerization of photoactive monomeric ligands on the NC
surface.78 In all these cases, the core−shell NCs exhibit
stability against water (moisture), oxygen, and heat. The shells
not only stabilize the perovskite NCs against external factors
but also prevent the halide cross-exchange between NCs. For
example, Ravi et al. demonstrated the suppression of halide
exchange in LHP NCs though PbSO4−oleate capping. Despite
improved stability, the shells block the charge transport
between NCs and thus limit their applications.79 Recently,
there has been growing interest in coating LHP NCs with
metal chalcogenides to enhance the stability as well as to
induce new functions (Figure 5d).70 Despite few successful
demonstrations, it is still challenging to obtain such core−shell
NCs because of lattice mismatch between LHP and metal
chalcogenides.

■ DURABLE OPTOELECTRONIC DEVICES THROUGH
ENCAPSULATION

The ultimate goal of the intrinsic and extrinsic stability
enhancement of LHP NCs is to use them as active
semiconductor materials in the fabrication of durable
optoelectronic devices with long-term stability. The encapsu-
lation of LHP NCs in inert shells such as SiO2 limits their use

Figure 6. (a) Schematic illustration of an optoelectronic device in which encapsulated NCs are integrated as active material. The dielectric shell
around the NCs blocks the charge transport between neighboring NCs and thus limits their use in solar cells and electroluminescent devices. (b)
Schematic illustration of color conversion device based on encapsulated LHP NCs, where blue LEDs is used as backlight to excite the NCs of
different colors. (c) Schematic illustration of an encapsulated optoelectronic device made using ligand capped LHP NCs as the active medium.
Panel C is reproduced with permission from ref 93. Copyright 2019 Springer Nature.
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in optoelectronic devices. For instance, they cannot be use as
photosensitizers in solar cells or charge recombination medium
in electroluminescent devices because the inert shells around
the NC surface block the change transport between adjacent
NCs (Figure 6a). However, they are potential light sources for
down conversion LEDs, LED backlit NC color conversion, NC
color enhancement films, and NC color converters for high-
definition display applications, in which the semiconductor
NCs are illuminated with UV light (Figure 6b).72 In addition,
the ligand stabilized colloidal NCs with improved intrinsic
stability could be used in solar cells and electroluminescent
devices;1 however, the devices need to be encapsulated with
proper materials to protect them from oxygen, water, intense
light, and heat-induced degradation (Figure 6c).,80 A proper
encapsulation of the sensitive photoactive layers of solar cells is
reflected in a considerable increase in the device lifetime.81

The encapsulants need to have good insulation properties,
possess high light transmittance, and prevent the ingress of
moisture and oxygen into the device.82 In addition, the
encapsulation technique must be easy to perform and cost-
effective.83 In this regards, glass offers excellent protection and
a high optical transmittance to the entire UV spectrum.84

However, encapsulation with rigid glass is not suitable for
flexible devices and roll-to-roll encapsulation processes. On the
other hand, flexible polymer encapsulation of devices consists
of barrier material on the top and the bottom bonded with an
adhesive.85 The adhesives used in flexible polymer encapsula-
tions can be sensitive to temperature86 and UV light
incidence.87 Several investigations were carried out to
determine the stability by sealing with adhesives.88,89

Furthermore, thin-film encapsulation is a promising technique
to enhance the long-term stability of devices and it has the
advantage of direct deposition on flexible devices without the
use of barrier adhesive materials.90 The thin-film encapsulation
can be single or multilayer, and a wide range of organic and
inorganic materials can be used. It has been shown that in
many cases a single layer is insufficient for effective
encapsulation because it is difficult to avoid the formation of
cracking and pinholes on the surface of the layer. High efficacy
has been reported by encapsulating in alternating inorganic
and organic multilayer films because of the combined effects of
both materials.85 The inorganic layers improve the stability of
the device by increasing the blockage of moisture and oxygen,
whereas the organic layers can be used to improve the long-
term stability of blocking layers.91 Nevertheless, the insertion
of buffer layers between the transfer and active layers enhances
the stability and reduces residual stress and interfacial
defects.92 Several techniques including sputtering, atomic
layer deposited (ALD), and chemical vapor deposition
(CVD) have been developed for the deposition of thin films
that provide protection against harsh environmental fac-
tors.94,95

Considering the sensitivity of the devices to temperature,
and the high temperatures used in the deposition of thin films
at low temperatures, it has been essential to develop new
strategies for thin-film deposition at low temperatures.96

Additionally, ALD methods are characterized by the need to
be carried out in high-vacuum conditions. Consequently, few
open-air studies were reported, employing silica layers, plasma-
deposited multilayer thin-film barrier,97 or perhydropolysila-
zane (PHPS) ink.98 Another potential encapsulant is graphene,
which is a good barrier material because of its permeation
properties.99 All these techniques and encapsulants have been

heavily investigated to improve the durability of perovskite
solar cells; however, in principle, these are also applicable to
NC-based optoelectronic devices.

■ SUMMARY AND OUTLOOK
Metal halide perovskite NCs have been emerged as leading
candidates for optoelectronic applications because of their
interesting optical and optoelectronic properties. Especially,
the high PLQY, high absorption coefficient, facile tunability of
emission color by halide composition, and narrow line width
make them potential light sources for LEDs and display
applications. In addition, recently, there has been a growing
interest in using them as photosensitizers in solar cells because
of their higher stability compared to thin-film counterparts.
Over the years, we witnessed a rapid growth in the field
regarding the shape-controlled synthesis and the understanding
of their photophysical properties and their application in
optoelectronic devices. The efficiency of LHP NC-based LEDs
and solar cells has been on the rise and rapidly approaching the
theoretical efficiency. However, the intrinsic and extrinsic
instability of LHP NCs limits the fabrication of durable
optoelectronic devices. Here, intrinsic instability refers to the
instability caused by crystal structure tolerance and the ligand−
NC surface interactions. On the other hand, the extrinsic
instability refers to the degradation of perovskite NCs on
exposure to external factors such as water, heat, oxygen, and
intense light illumination. Because of the strong ionic
character, perovskites can degrade as easily as they form. It
is important to note that the external factors greatly influence
the intrinsic stability of perovskites, often accelerating the
phase transition and degradation process.
Over the years, various strategies have been developed to

improve both the intrinsic and extrinsic stability of LHP NCs.
These strategies are ligand engineering, doping and encapsu-
lation in a matrix. It has been found that the doping and strong
NC-ligand binding improves the optical and phase stability of
LHP NCs, while the encapsulation protects them from water,
oxygen, light, and high temperature. Despite great progress in
achieving perovskite NCs with improved stability, there are
several outstanding challenges that remains unanswered: 1)
Extension of the encapsulation strategies to Pb-free MHP NCs.
Considering the poor stability of Sn-based perovskite NCs,
more efforts need to be devoted toward the encapsulation of
tin halide perovskite NCs for improving their intrinsic and
extrinsic stability. 2) Encapsulation of quantum-confined
nanocrystals such as nanoplatelets that are rather unstable
compared to bulk-like nanocubes. 3) Currently, most of the
synthesis methods yield significant percentage of composites
made of multiple particles encapsulated shell matrix. There-
fore, the surface coating strategies need to be improved to
achieve core−shell particles with improved yield. Importantly,
a systematic study is required to understand the improvement
of stability against external stress for each encapsulating
material.
Recently, there has been growing interest in the situ

synthesis of encapsulated LHP NCs directly on desired
substrates.100 Despite improving the stability, the dielectric
shells on the surface of NCs limit their use in photo-
electrochemical cells and electroluminescent devices because
the dielectric shells block the charge transport between NCs.
Future studies could be focused on the preparation of
conjugated polymer-coated LHP NCs improving the transport
properties in corresponding films. Nevertheless, the encapsu-

ACS Applied Materials & Interfaces www.acsami.org Perspective

https://doi.org/10.1021/acsami.2c01822
ACS Appl. Mater. Interfaces 2022, 14, 34291−34302

34298

www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.2c01822?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


lated LHP NCs looking promise down-conversion LEDs and
ultrahigh definition display applications. On the other hand,
ligand-capped NCs without encapsulation can be integrated
into solar cells and electroluminescent cells; however, the
devices need to be encapsulated with proper materials to
enhance their durability. So far, most studies have been
focused on improving the efficiency of small-area (centimeter-
scale) devices using ligand-capped LHP NCs as active
medium. Therefore, future studies could be focused on
fabrication of large-area devices with long-term stability.
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