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Abstract

Time series forecasting is an important problem across many domains, including
predictions of solar plant energy output, electricity consumption, and traffic jam
situation. In this paper, we propose to tackle such forecasting problem with
Transformer [1]. Although impressed by its performance in our preliminary study,
we found its two major weaknesses: (1) locality-agnostics: the point-wise dot-
product self-attention in canonical Transformer architecture is insensitive to local
context, which can make the model prone to anomalies in time series; (2) memory
bottleneck: space complexity of canonical Transformer grows quadratically with
sequence length L, making directly modeling long time series infeasible. In
order to solve these two issues, we first propose convolutional self-attention by
producing queries and keys with causal convolution so that local context can
be better incorporated into attention mechanism. Then, we propose LogSparse
Transformer with only O(L(logL)2) memory cost, improving forecasting accuracy
for time series with fine granularity and strong long-term dependencies under
constrained memory budget. Our experiments on both synthetic data and real-
world datasets show that it compares favorably to the state-of-the-art.

1 Introduction

Time series forecasting plays an important role in daily life to help people manage resources and make
decisions. For example, in retail industry, probabilistic forecasting of product demand and supply
based on historical data can help people do inventory planning to maximize the profit. Although
still widely used, traditional time series forecasting models, such as State Space Models (SSMs) [2]
and Autoregressive (AR) models, are designed to fit each time series independently. Besides, they
also require practitioners’ expertise in manually selecting trend, seasonality and other components.
To sum up, these two major weaknesses have greatly hindered their applications in the modern
large-scale time series forecasting tasks.

To tackle the aforementioned challenges, deep neural networks [3, 4, 5, 6] have been proposed as
an alternative solution, where Recurrent Neural Network (RNN) [7, 8, 9] has been employed to
model time series in an autoregressive fashion. However, RNNs are notoriously difficult to train [10]
because of gradient vanishing and exploding problem. Despite the emergence of various variants,
including LSTM [11] and GRU [12], the issues still remain unresolved. As an example, [13] shows
that language models using LSTM have an effective context size of about 200 tokens on average
but are only able to sharply distinguish 50 tokens nearby, indicating that even LSTM struggles to
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capture long-term dependencies. On the other hand, real-world forecasting applications often have
both long- and short-term repeating patterns [7]. For example, the hourly occupancy rate of a freeway
in traffic data has both daily and hourly patterns. In such cases, how to model long-term dependencies
becomes the critical step in achieving promising performances.

Recently, Transformer [1, 14] has been proposed as a brand new architecture which leverages attention
mechanism to process a sequence of data. Unlike the RNN-based methods, Transformer allows the
model to access any part of the history regardless of distance, making it potentially more suitable
for grasping the recurring patterns with long-term dependencies. However, canonical dot-product
self-attention matches queries against keys insensitive to local context, which may make the model
prone to anomalies and bring underlying optimization issues. More importantly, space complexity of
canonical Transformer grows quadratically with the input length L, which causes memory bottleneck
on directly modeling long time series with fine granularity. We specifically delve into these two
issues and investigate the applications of Transformer to time series forecasting. Our contributions
are three fold:

• We successfully apply Transformer architecture to time series forecasting and perform extensive
experiments on both synthetic and real datasets to validate Transformer’s potential value in better
handling long-term dependencies than RNN-based models.

• We propose convolutional self-attention by employing causal convolutions to produce queries and
keys in the self-attention layer. Query-key matching aware of local context, e.g. shapes, can help
the model achieve lower training loss and further improve its forecasting accuracy.

• We propose LogSparse Transformer, with only O(L(logL)2) space complexity to break the
memory bottleneck, not only making fine-grained long time series modeling feasible but also
producing comparable or even better results with much less memory usage, compared to canonical
Transformer.

2 Related Work

Due to the wide applications of forecasting, various methods have been proposed to solve the problem.
One of the most prominent models is ARIMA [15]. Its statistical properties as well as the well-
known Box-Jenkins methodology [16] in the model selection procedure make it the first attempt for
practitioners. However, its linear assumption and limited scalability make it unsuitable for large-scale
forecasting tasks. Further, information across similar time series cannot be shared since each time
series is fitted individually. In contrast, [17] models related time series data as a matrix and deal with
forecasting as a matrix factorization problem. [18] proposes hierarchical Bayesian methods to learn
across multiple related count time series from the perspective of graph model.

Deep neural networks have been proposed to capture shared information across related time series
for accurate forecasting. [3] fuses traditional AR models with RNNs by modeling a probabilistic
distribution in an encoder-decoder fashion. Instead, [19] uses an RNN as an encoder and Multi-layer
Perceptrons (MLPs) as a decoder to solve the so-called error accumulation issue and conduct multi-
ahead forecasting in parallel. [6] uses a global RNN to directly output the parameters of a linear
SSM at each step for each time series, aiming to approximate nonlinear dynamics with locally linear
segments. In contrast, [9] deals with noise using a local Gaussian process for each time series while
using a global RNN to model the shared patterns. [20] tries to combine the advantages of AR models
and SSMs, and maintain a complex latent process to conduct multi-step forecasting in parallel.

The well-known self-attention based Transformer [1] has recently been proposed for sequence
modeling and has achieved great success. Several recent works apply it to translation, speech, music
and image generation [1, 21, 22, 23]. However, scaling attention to extremely long sequences is
computationally prohibitive since the space complexity of self-attention grows quadratically with
sequence length [21]. This becomes a serious issue in forecasting time series with fine granularity
and strong long-term dependencies.
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3 Background

Problem definition Suppose we have a collection of N related univariate time series {zi,1:t0}
N
i=1,

where zi,1:t0 , [zi,1, zi,2, · · · , zi,t0 ] and zi,t 2 R denotes the value of time series i at time t1. We

are going to predict the next τ time steps for all time series, i.e. {zi,t0+1:t0+τ}
N
i=1. Besides, let

{xi,1:t0+τ}
N
i=1 be a set of associated time-based covariate vectors with dimension d that are assumed

to be known over the entire time period, e.g. day-of-the-week and hour-of-the-day. We aim to model
the following conditional distribution

p(zi,t0+1:t0+τ |zi,1:t0 ,xi,1:t0+τ ;Φ) =

t0+τ
Y

t=t0+1

p(zi,t|zi,1:t�1,xi,1:t;Φ).

We reduce the problem to learning a one-step-ahead prediction model p(zt|z1:t�1,x1:t;Φ) 2, where
Φ denotes the learnable parameters shared by all time series in the collection. To fully utilize both
the observations and covariates, we concatenate them to obtain an augmented matrix as follows:

yt , [zt�1 � xt] 2 R
d+1, Yt = [y1, · · · ,yt]

T 2 R
t⇥(d+1),

where [· � ·] represents concatenation. An appropriate model zt ⇠ f(Yt) is then explored to predict
the distribution of zt given Yt.

Transformer We instantiate f with Transformer 3 by taking advantage of the multi-head self-
attention mechanism, since self-attention enables Transformer to capture both long- and short-term
dependencies, and different attention heads learn to focus on different aspects of temporal patterns.
These advantages make Transformer a good candidate for time series forecasting. We briefly introduce
its architecture here and refer readers to [1] for more details.

In the self-attention layer, a multi-head self-attention sublayer simultaneously transforms Y 4 into H

distinct query matrices Qh = YW
Q
h , key matrices Kh = YWK

h , and value matrices Vh = YWV
h

respectively, with h = 1, · · · , H . Here W
Q
h ,W

K
h 2 R

(d+1)⇥dk and WV
h 2 R

(d+1)⇥dv are learnable
parameters. After these linear projections, the scaled dot-product attention computes a sequence of
vector outputs:

Oh = Attention(Qh,Kh,Vh) = softmax

✓

QhK
T
hp

dk
·M

◆

Vh.

Note that a mask matrix M is applied to filter out rightward attention by setting all upper triangular
elements to �1, in order to avoid future information leakage. Afterwards, O1,O2, · · · ,OH are
concatenated and linearly projected again. Upon the attention output, a position-wise feedforward
sublayer with two layers of fully-connected network and a ReLU activation in the middle is stacked.

4 Methodology

4.1 Enhancing the locality of Transformer

Patterns in time series may evolve with time significantly due to various events, e.g. holidays and
extreme weather, so whether an observed point is an anomaly, change point or part of the patterns
is highly dependent on its surrounding context. However, in the self-attention layers of canonical
Transformer, the similarities between queries and keys are computed based on their point-wise values
without fully leveraging local context like shape, as shown in Figure 1(a) and (b). Query-key matching
agnostic of local context may confuse the self-attention module in terms of whether the observed
value is an anomaly, change point or part of patterns, and bring underlying optimization issues.

We propose convolutional self-attention to ease the issue. The architectural view of proposed
convolutional self-attention is illustrated in Figure 1(c) and (d). Rather than using convolution of

1Here time index t is relative, i.e. the same t in different time series may represent different actual time point.
2Since the model is applicable to all time series, we omit the subscript i for simplicity and clarity.
3By referring to Transformer, we only consider the autoregressive Transformer-decoder in the following.
4At each time step the same model is applied, so we simplify the formulation with some abuse of notation.
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    Masked Multi-Head Attention     Masked Multi-Head Attention

Q V K

Conv, 1 Conv, 1 Conv, 1 Conv, k Conv, 1 Conv, k

Q V K

(a) (b) (c) (d)

Figure 1: The comparison between canonical and our convolutional self-attention layers. “Conv,
1” and “Conv, k” mean convolution of kernel size {1, k} with stride 1, respectively. Canonical
self-attention as used in Transformer is shown in (b), may wrongly match point-wise inputs as shown
in (a). Convolutional self-attention is shown in (d), which uses convolutional layers of kernel size k
with stride 1 to transform inputs (with proper paddings) into queries/keys. Such locality awareness
can correctly match the most relevant features based on shape matching in (c).

Figure 2: Learned attention patterns from a 10-layer canonical Transformer trained on traffic-f
dataset with full attention. The green dashed line indicates the start time of forecasting and the
gray dashed line on its left side is the conditional history. Blue, cyan and red lines correspond to
attention patterns in layer 2, 6 and 10, respectively, for a head when predicting the value at the time
corresponding to the green dashed line. a) Layer 2 tends to learn shared patterns in every day. b)
Layer 6 focuses more on weekend patterns. c) Layer 10 further squeezes most of its attention on only
several cells in weekends, causing most of the others to receive little attention.

kernel size 1 with stride 1 (matrix multiplication), we employ causal convolution of kernel size k
with stride 1 to transform inputs (with proper paddings) into queries and keys. Note that causal
convolutions ensure that the current position never has access to future information. By employing
causal convolution, generated queries and keys can be more aware of local context and hence, compute
their similarities by their local context information, e.g. local shapes, instead of point-wise values,
which can be helpful for accurate forecasting. Note that when k = 1, the convolutional self-attention
will degrade to canonical self-attention, thus it can be seen as a generalization.

4.2 Breaking the memory bottleneck of Transformer

To motivate our approach, we first perform a qualitative assessment of the learned attention patterns
with a canonical Transformer on traffic-f dataset. The traffic-f dataset contains occupancy
rates of 963 car lanes of San Francisco bay area recorded every 20 minutes [6]. We trained a 10-layer
canonical Transformer on traffic-f dataset with full attention and visualized the learned attention
patterns. One example is shown in Figure 2. Layer 2 clearly exhibited global patterns, however, layer
6 and 10, only exhibited pattern-dependent sparsity, suggesting that some form of sparsity could be
introduced without significantly affecting performance. More importantly, for a sequence with length
L, computing attention scores between every pair of cells will cause O(L2) memory usage, making
modeling long time series with fine granularity and strong long-term dependencies prohibitive.

We propose LogSparse Transformer, which only needs to calculate O(logL) dot products for each
cell in each layer. Further, we only need to stack up to O(logL) layers and the model will be able to
access every cell’s information. Hence, the total cost of memory usage is only O(L(logL)2). We

define Ikl as the set of indices of the cells that cell l can attend to during the computation from kth
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(a). Full Self Attention (b). LogSparse Self Attention

(d). Restart Attention + LogSparse Self Attention(c). Local Attention + LogSparse Self Attention
LogSparse Attention Range LogSparse Attention Range LogSparse Attention RangeLocal Attention Range

Self LogSparse Attention Range Self

SelfSelf

Figure 3: Illustration of different attention mechanism between adjacent layers in Transformer.

layer to (k + 1)th layer. In the standard self-attention of Transformer, Ikl = {j : j  l}, allowing
every cell to attend to all its past cells and itself as shown in Figure 3(a). However, such an algorithm
suffers from the quadratic space complexity growth along with the input length. To alleviate such an
issue, we propose to select a subset of the indices Ikl ⇢ {j : j  l} so that |Ikl | does not grow too

fast along with l. An effective way of choosing indices is |Ikl | / logL.

Notice that cell l is a weighted combination of cells indexed by Ikl in kth self-attention layer and can

pass the information of cells indexed by Ikl to its followings in the next layer. Let Sk
l be the set which

contains indices of all the cells whose information has passed to cell l up to kth layer. To ensure that
every cell receives the information from all its previous cells and itself, the number of stacked layers

k̃l should satisfy that Sk̃l

l = {j : j  l} for l = 1, · · · , L. That is, 8l and j  l, there is a directed

path Pjl = (j, p1, p2, · · · , l) with k̃l edges, where j 2 I1p1
, p1 2 I2p2

, · · · , pk̃l�1 2 I k̃l

l .

We propose LogSparse self-attention by allowing each cell only to attend to its previous cells

with an exponential step size and itself. That is, 8k and l, Ikl = {l � 2blog2
lc, l � 2blog2

lc�1, l �
2blog2

lc�2, ..., l � 20, l}, where b·c denotes the floor operation, as shown in Figure 3(b).5

Theorem 1. 8l and j  l, there is at least one path from cell j to cell l if we stack blog2 lc+1 layers.
Moreover, for j < l, the number of feasible unique paths from cell j to cell l increases at a rate of
O(blog2(l � j)c!).

The proof, deferred to Appendix A.1, uses a constructive argument.

Theorem 1 implies that despite an exponential decrease in the memory usage (from O(L2) to
O(L log2 L)) in each layer, the information could still flow from any cell to any other cell provided
that we go slightly “deeper” — take the number of layers to be blog2 Lc+ 1. Note that this implies
an overall memory usage of O(L(log2 L)

2) and addresses the notorious scalability bottleneck of
Transformer under GPU memory constraint [1]. Moreover, as two cells become further apart, the
number of paths increases at a rate of super-exponential in log2(l � j), which indicates a rich
information flow for modeling delicate long-term dependencies.

Local Attention We can allow each cell to densely attend to cells in its left window of size
O(log2 L) so that more local information, e.g. trend, can be leveraged for current step forecasting.
Beyond the neighbor cells, we can resume our LogSparse attention strategy as shown in Figure 3(c).

Restart Attention Further, one can divide the whole input with length L into subsequences and set
each subsequence length Lsub / L. For each of them, we apply the LogSparse attention strategy.
One example is shown in Figure 3(d).

Employing local attention and restart attention won’t change the complexity of our sparse attention
strategy but will create more paths and decrease the required number of edges in the path. Note that
one can combine local attention and restart attention together.

5Applying other bases is trivial so we don’t discuss other bases here for simplicity and clarity.
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5 Experiments

5.1 Synthetic datasets

To demonstrate Transformer’s capability to capture long-term dependencies, we conduct experiments
on synthetic data. Specifically, we generate a piece-wise sinusoidal signals

f(x) =

8

>

<

>

:

A1 sin(πx/6) + 72 +Nx x 2 [0, 12),
A2 sin(πx/6) + 72 +Nx x 2 [12, 24),
A3 sin(πx/6) + 72 +Nx x 2 [24, t0),
A4 sin(πx/12) + 72 +Nx x 2 [t0, t0 + 24),

where x is an integer, A1, A2, A3 are randomly generated by uniform distribution on [0, 60], A4 =
max(A1, A2) and Nx ⇠ N (0, 1). Following the forecasting setting in Section 3, we aim to predict
the last 24 steps given the previous t0 data points. Intuitively, larger t0 makes forecasting more
difficult since the model is required to understand and remember the relation between A1 and A2

to make correct predictions after t0 � 24 steps of irrelevant signals. Hence, we create 8 different
datasets by varying the value of t0 within {24, 48, 72, 96, 120, 144, 168, 192}. For each dataset, we
generate 4.5K, 0.5K and 1K time series instances for training, validation and test set, respectively.
An example time series with t0 = 96 is shown in Figure 4(a).

In this experiment, we use a 3-layer canonical Transformer with standard self-attention. For com-
parison, we employ DeepAR [3], an autoregressive model based on a 3-layer LSTM, as our baseline.
Besides, to examine if larger capacity could improve performance of DeepAR, we also gradually
increase its hidden size h as {20, 40, 80, 140, 200}. Following [3, 6], we evaluate both methods using
ρ-quantile loss Rρ with ρ 2 (0, 1),

Rρ(x, x̂) =
2
P

i,t Dρ(x
(i)
t , x̂

(i)
t )

P

i,t |x
(i)
t |

, Dρ(x, x̂) = (ρ� I{xx̂})(x� x̂),

where x̂ is the empirical ρ-quantile of the predictive distribution and I{xx̂} is an indicator function.

Figure 4: (a) An example time series with t0 = 96.
Black line is the conditional history while red
dashed line is the target. (b) Performance compar-
ison between DeepAR and canonical Transformer
along with the growth of t0. The larger t0 is, the
longer dependencies the models need to capture
for accurate forecasting.

Figure 4(b) presents the performance of DeepAR
and Transformer on the synthetic datasets.
When t0 = 24, both of them perform very well.
But, as t0 increases, especially when t0 � 96,
the performance of DeepAR drops significantly
while Transformer keeps its accuracy, suggest-
ing that Transformer can capture fairly long-
term dependencies when LSTM fails to do so.

5.2 Real-world datasets

We further evaluate our model on several real-
world datasets. The electricity-f (fine)
dataset consists of electricity consumption of
370 customers recorded every 15 minutes and
the electricity-c (coarse) dataset is the
aggregated electricity-f by every 4 points,
producing hourly electricity consumption. Sim-
ilarly, the traffic-f (fine) dataset contains
occupancy rates of 963 freeway in San Francisco
recorded every 20 minutes and the traffic-c
(coarse) contains hourly occupancy rates by
averaging every 3 points in traffic-f. The
solar dataset6 contains the solar power pro-
duction records from January to August in 2006,
which is sampled every hour from 137 PV plants
in Alabama. The wind7 dataset contains daily

6https://www.nrel.gov/grid/solar-power-data.html
7https://www.kaggle.com/sohier/30-years-of-european-wind-generation
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Table 1: Results summary (R0.5/R0.9-loss) of all methods. e-c and t-c represent electricity-c
and traffic-c, respectively. In the 1st and 3rd row, we perform rolling-day prediction of 7 days
while in the 2nd and 4th row, we directly forecast 7 days ahead. TRMF outputs points predictions, so
we only report R0.5. ⇧ denotes results from [6].

ARIMA ETS TRMF DeepAR DeepState Ours

e-c1d 0.154/0.102 0.101/0.077 0.084/- 0.075⇧/0.040⇧ 0.083⇧/0.056⇧ 0.059/0.034
e-c7d 0.283⇧/0.109⇧ 0.121⇧/0.101⇧ 0.087/- 0.082/0.053 0.085⇧/0.052⇧ 0.070/0.044
t-c1d 0.223/0.137 0.236/0.148 0.186/- 0.161⇧/0.099⇧ 0.167⇧/0.113⇧ 0.122/0.081
t-c7d 0.492⇧/0.280⇧ 0.509⇧/0.529⇧ 0.202/- 0.179/0.105 0.168⇧/0.114⇧ 0.139/0.094

Figure 5: Training curve comparison (with proper smoothing) among kernel size k 2 {1, 3, 9} in
traffic-c (left) and electricity-c (right) dataset. Being aware of larger local context size, the
model can achieve lower training error and converge faster.

estimates of 28 countries’ energy potential from 1986 to 2015 as a percentage of a power plant’s
maximum output. The M4-Hourly contains 414 hourly time series from M4 competition [24].

Long-term and short-term forecasting We first show the effectiveness of canonical Trans-
former equipped with convolutional self-attention in long-term and short-term forecasting in
electricity-c and traffic-c dataset. These two datasets exhibit both hourly and daily sea-
sonal patterns. However, traffic-c demonstrates much greater difference between the patterns of
weekdays and weekends compared to electricity-c. Hence, accurate forecasting in traffic-c
dataset requires the model to capture both long- and short-term dependencies very well. As baselines,
we use classical forecasting methods auto.arima, ets implemented in R’s forecast package and
the recent matrix factorization method TRMF [17], a RNN-based autoregressive model DeepAR and a
RNN-based state space model DeepState [6]. For short-term forecasting, we evaluate rolling-day
forecasts for seven days ( i.e., prediction horizon is one day and forecasts start time is shifted by one
day after evaluating the prediction for the current day [6]). For long-term forecasting, we directly
forecast 7 days ahead. As shown in Table 1, our models with convolutional self-attention get betters
results in both long-term and short-term forecasting, especially in traffic-c dataset compared to
strong baselines, partly due to the long-term dependency modeling ability of Transformer as shown
in our synthetic data.

Convolutional self-attention In this experiment, we conduct ablation study of our proposed convo-
lutional self-attention. We explore different kernel size k 2 {1, 2, 3, 6, 9} on the full attention model
and fix all other settings. We still use rolling-day prediction for seven days on electricity-c and
traffic-c datasets. The results of different kernel sizes on both datasets are shown in Table 2. On
electricity-c dataset, models with kernel size k 2 {2, 3, 6, 9} obtain slightly better results in
term of R0.5 than canonical Transformer but overall these results are comparable and all of them
perform very well. We argue it is because electricity-c dataset is less challenging and covariate
vectors have already provided models with rich information for accurate forecasting. Hence, being
aware of larger local context may not help a lot in such cases. However, on much more challenging
traffic-c dataset, the model with larger kernel size k can make more accurate forecasting than
models with smaller ones with as large as 9% relative improvement. These consistent gains can be
the results of more accurate query-key matching by being aware of more local context. Further, to
verify if incorporating more local context into query-key matching can ease the training, we plot the
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Table 2: Average R0.5/R0.9-loss of different kernel sizes for rolling-day prediction of 7 days.

k = 1 k = 2 k = 3 k = 6 k = 9

electricity-c1d 0.060/0.030 0.058/0.030 0.057/0.031 0.057/0.031 0.059/0.034
traffic-c1d 0.134/0.089 0.124/0.085 0.123/0.083 0.123/0.083 0.122/0.081

training loss of kernel size k 2 {1, 3, 9} in electricity-c and traffic-c datasets. We found that
Transformer with convolutional self-attention also converged faster and to lower training errors, as
shown in Figure 5, proving that being aware of local context can ease the training process.

Sparse attention Further, we compare our proposed LogSparse Transformer to the full attention
counterpart on fine-grained datasets, electricity-f and traffic-f. Note that time series in
these two datasets have much longer periods and are noisier comparing to electricity-c and
traffic-c. We first compare them under the same memory budget. For electricity-f dataset,
we choose Le1 = 768 with subsequence length Le1/8 and local attention length log2(Le1/8) in each
subsequence for our sparse attention model and Le2 = 293 in the full attention counterpart. For
traffic-f dataset, we select Lt1 = 576 with subsequence length Lt1/8 and local attention length
log2(Lt1/8) in each subsequence for our sparse attention model, and Lt2 = 254 in the full attention
counterpart. The calculation of memory usage and other details can be found in Appendix A.4. We
conduct experiments on aforementioned sparse and full attention models with/without convolutional
self-attention on both datasets. By following such settings, we summarize our results in Table 3
(Upper part). No matter equipped with convolutional self-attention or not, our sparse attention models
achieve comparable results on electricity-f but much better results on traffic-f compared
to its full attention counterparts. Such performance gain on traffic-f could be the result of the
dateset’s stronger long-term dependencies and our sparse model’s better capability of capturing these
dependencies, which, under the same memory budget, the full attention model cannot match. In
addition, both sparse and full attention models benefit from convolutional self-attention on challenging
traffic-f, proving its effectiveness.

To explore how well our sparse attention model performs compared to full attention model with
the same input length, we set Le2 = Le1 = 768 and Lt2 = Lt1 = 576 on electricity-f and
traffic-f, respectively. The results of their comparisons are summarized in Table 3 (Lower part).
As one expects, full attention Transformers can outperform our sparse attention counterparts no matter
they are equipped with convolutional self-attention or not in most cases. However, on traffic-f
dataset with strong long-term dependencies, our sparse Transformer with convolutional self-attention
can get better results than the canonical one and, more interestingly, even slightly outperform its full
attention counterpart in term of R0.5, meaning that our sparse model with convolutional self-attention
can capture long-term dependencies fairly well. In addition, full attention models under length
constraint consistently obtain gains from convolutional self-attention on both electricity-f and
traffic-f datasets, showing its effectiveness again.

Table 3: Average R0.5/R0.9-loss comparisons between sparse attention and full attention models
with/without convolutional self-attention by rolling-day prediction of 7 days. “Full” means models
are trained with full attention while “Sparse” means they are trained with our sparse attention strategy.
“+ Conv” means models are equipped with convolutional self-attention with kernel size k = 6.

Constraint Dataset Full Sparse Full + Conv Sparse + Conv

Memory
electricity-f1d 0.083/0.051 0.084/0.047 0.078/0.048 0.079/0.049
traffic-f1d 0.161/0.109 0.150/0.098 0.149/0.102 0.138/0.092

Length
electricity-f1d 0.082/0.047 0.084/0.047 0.074/0.042 0.079/0.049
traffic-f1d 0.147/0.096 0.150/0.098 0.139/0.090 0.138/0.092

Further Exploration In our last experiment, we evaluate how our methods perform on datasets
with various granularities compared to our baselines. All datasets except M4-Hourly are evaluated
by rolling window 7 times since the test set of M4-Hourly has been provided. The results are shown
in Table 4. These results further show that our method achieves the best performance overall.
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Table 4: R0.5/R0.9-loss of datasets with various granularities. The subscript of each dataset presents
the forecasting horizon (days). TRMF is not applicable for M4-Hourly2d and we leave it blank. For
other datasets, TRMF outputs points predictions, so we only report R0.5. ⇧ denotes results from [10].

electricity-f1d traffic-f1d solar1d M4-Hourly2d wind30d

TRMF 0.094/- 0.213/- 0.241/- -/- 0.311/-
DeepAR 0.082/0.063 0.230/0.150 0.222/0.093 0.090⇧/0.030⇧ 0.286/0.116
Ours 0.074/0.042 0.139/0.090 0.210 /0.082 0.067 /0.025 0.284/0.108

6 Conclusion

In this paper, we propose to apply Transformer in time series forecasting. Our experiments on
both synthetic data and real datasets suggest that Transformer can capture long-term dependencies
while LSTM may suffer. We also showed, on real-world datasets, that the proposed convolutional
self-attention further improves Transformer’ performance and achieves state-of-the-art in different
settings in comparison with recent RNN-based methods, a matrix factorization method, as well as
classic statistical approaches. In addition, with the same memory budget, our sparse attention models
can achieve better results on data with long-term dependencies. Exploring better sparsity strategy in
self-attention and extending our method to better fit small datasets are our future research directions.
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