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Correct-by-construction techniques, such as control barrier functions (CBFs), can be
used to guarantee closed-loop safety by acting as a supervisor of an existing legacy con-
troller. However, supervisory-control intervention typically compromises the perform-
ance of the closed-loop system. On the other hand, machine learning has been used to
synthesize controllers that inherit good properties from a training dataset, though safety
is typically not guaranteed due to the difficulty of analyzing the associated learning struc-
ture. In this paper, supervised learning is combined with CBF's to synthesize controllers
that enjoy good performance with provable safety. A training set is generated by trajec-
tory optimization that incorporates the CBF constraint for an interesting range of initial
conditions of the truck model. A control policy is obtained via supervised learning that
maps a feature representing the initial conditions to a parameterized desired trajectory.
The learning-based controller is used as the performance controller and a CBF-based
supervisory controller guarantees safety. A case study of lane keeping (LK) for articu-
lated trucks shows that the controller trained by supervised learning inherits the good
performance of the training set and rarely requires intervention by the CBF supervisor.
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1 Introduction

Correct-by-construction control synthesis has been a promising
direction of research that brings formal safety guarantees to con-
troller design. In particular, control barrier functions (CBFs) can
be overlaid on the existing controllers so as to impose closed-loop
safety in a plug-and-play fashion [1,2]. The key idea in the design
of a CBF is to compute a forward invariant set that contains the
safe set and excludes the danger set. The CBF can then be imple-
mented in a supervisory control structure to guarantee safety with-
out redesigning the performance controller, hereafter called the
“student” controller because it is being “supervised” by the CBF.

As shown in Fig. 1, uy denotes the control input from the stu-
dent controller, which can be designed with any existing method,
and u denotes the input signal after the intervention of the supervi-
sory controller. If uy respects the safety constraint, then u = u;
otherwise, a “minimal intervention” is applied. Depending on the
form of the barrier function, the intervention may be solved
through quadratic programming [1,3], mixed integer programming
[4], or in other forms.

While safety is assured independently of the choice of student
controller, if the student controller is not properly designed, or is
designed in a way that is not compatible with the CBF, the CBF
may be triggered frequently, leading to undesirable closed-loop
performance. In Refs. [4] and [5], when the student controller for
adaptive cruise control and obstacle avoidance were not properly
designed, the CBF has to intervene frequently and severely, which
is not desirable for other performance considerations such as
riding comfort.
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These examples, on one hand, demonstrate the power of a CBF
to provide safety guarantees, but they also show there is room for
improvement. The problem that we try to solve in this paper is to
design student controller that has safety built in and rarely or
never triggers the intervention of the CBF, therefore achieves
good performance.

On the other hand, machine learning has been used extensively
in dynamic control. Supervised learning has been used to learn a
control policy with structure [6,7], deep learning recently was
used to generate end-to-end lane keeping (LK) policy, i.e., a map-
ping directly from the camera pixels to the steering input [8], and
reinforcement learning can be used to generate a control policy in
an “explore and evaluate” manner [9-11]. However, one major
deficit of machine learning is its extreme difficulty for analysis.
The number of parameters contained in a neural network can
easily reach several thousands, even millions, which makes it
practically impossible to analyze. Therefore, the safety of a
learning-based controller should rely on other tools, such as reach-
able sets and barrier functions. In this sense, machine learning and
CBFs complement one other.

The existing methods that combine learning with safety guaran-
tee include reachable-set-based learning scheme that can
guarantee safety for online learning of a control policy [12,13], a
barrier-function-based online learning scheme [14], and a Gaus-
sian process learning [15]. Unlike approaches that aim at guaran-
teeing safety with learning, such as Refs. [12-15], the method
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Fig. 1 Block diagram of CBF supervising a “student”
controller

OCTOBER 2019, Vol. 141 / 101005-1

Copyright © 2019 by ASME

610z Jequiaideg 9z uo Jasn ABojouyoa] jo sjnpisu| eiuioyed Aq 4pd 500101 0L L¥L SP/SY669LG/S00L0L/0L/ L LAPd-aonie/swaisAsoiweulp/Bio-swse uonos|jodjepbipawse//:sdpy woly papeojumoq



proposed in this paper separates safety from the performance. The
safety guarantee is provided by a CBF, and the supervised learn-
ing is used to improve the performance considering the influence
of the CBF as a supervisor.

The method we propose is to perform trajectory optimization
offline, generate a library consisting of trajectories with good
properties, namely, stabilizing an equilibrium, attenuating distur-
bances, and satistying a CBF condition. We then use supervised
learning to design a student controller that inherits the properties
of the trajectory library. With supervised learning, the design of a
safe student controller is transformed into the design of safe tra-
jectories, which is much easier, as conceptually shown in Fig. 2.
On top of the learning-based controller, the CBF is implemented
as a supervisor to formally guarantee safety, as shown in Fig. 3.
Since the CBF condition is enforced in the training set, an inter-
vention by the supervisor is rarely triggered. It should be empha-
sized that the safety is still guaranteed by the CBF and the
supervised learning only aims to improve performance under the
presence of the CBF.

The main contributions of this paper are the following three
points. First, a control barrier function is designed that guarantees
safety for any truck lane keeping controller as a supervisory con-
troller. Second, we propose a supervised learning based method to
design a student controller that takes the CBF condition into
account, is applicable to a large region of initial conditions, and
rarely triggers an intervention from the supervisory controller.
Third, we provide the stability and set invariance analysis of the
learning-based controller under the framework of continuous hold
(CH) feedback control. Applying the proposed method, we can
provide a safety guarantee for LK control of an articulated truck,
while achieving good ride comfort.

The remainder of the paper is structured as follows. We first
introduce the truck model and the feedback linearization structure
in Sec. 2. Then, we present the sum of squares (SOS) approach for
the synthesis of a CBF in Sec. 3. Then, we show the trajectory
optimization process with direct collocation that incorporates the
CBF condition in Sec. 4. The obtained trajectory library is then
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Fig. 3 Structure of the proposed supervisory control
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used to train a neural network that acts as a trajectory generator,
as presented in Sec. 4. The trajectory generator is implemented in
a continuous hold control structure with CBF as the supervisor on
top of it, which is presented in Sec. 5. Finally, we present the LK
problem as an example in Sec. 6 and conclude in Sec. 7.

2 Dynamic Model and Virtual Constraint

In this paper, we consider a control affine nonlinear model

X =f(x) +g)u+ ga(¥)d + gar(x)da,

xeR", ueUCR, deD CR" d eD, CR"? )
where x, u, dy, and d, represent the state, input, measured disturb-
ance, and unmeasured disturbances, respectively.

Remark 1. The unmeasured disturbance d, will be countered
with the feedback control. In Sec. 3, the CBF constructed is robust
for all possible d, within the assumed bound. Since unmeasured,
d, does not appear in feedback linearization.

2.1 Model Assumptions. The results in this paper are devel-
oped under three key assumptions:

AssumPTION 1. There exists an output z = h(x) for x within an
open subset S € R", such that for all dy € Dy, z has relative
degree p, where the relative degree is defined as the integer such
thatVx € S

Lgﬁ}’lh(x) =0, i=12,....p—1;
2
£oL77'h(x) #0 N
where
F) =f() +gar(x)dy ®

AssuMPTION 2. It is assumed that when d, =0, for all d, € Dy,
there exists a unique 1,(d,) € U that maintains a unique equilib-
rium point x, € R" with h(x,) = 0, denoted as x, = n,(d;)

flxe) + 8(xe)n,(di) + gai (xe)dy =0,

4
h(x,) =0 X
Then from feedback linearization, there exists a state
transformation
[ T1 (X):|
= = =T(x),
BB
h(x) z 5)
ceR"™" &= = : c R”
L7 h(x) Z(0-1)

where T is a bijective diffeomorphism over S, and the transforma-
tion satisfies (0T)/0x)g(x) = 0. Therefore, the dynamics of the
“hidden” states ¢ is represented as

d=TI(0,&) (6)

In particular, ¢ = I'(g,0) is the zero dynamics of the system with
output z, and there exists a smooth surface Z C S defined by
Z :={x e S| &=0}, which is the zero dynamics manifold.

AssumPTION 3. We assume that the zero dynamics of the system
under output z is exponentially stable within S.

Then by Theorem 11.2.3 in Ref. [16], the following feedback
linearization controller constructed from z and its derivatives sta-
bilizes the equilibrium x,:
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where {k;} is a set of exponentially stabilizing gains in the sense
that the following characteristic equation

W dky 0 4 kg =0 ®)

has all of its roots in the open left half plane. See, e.g., Ref. [17]
for reference on feedback linearization and zero dynamics.

2.2 Virtual Constraint and Tracking Control. To let the
system track a desired trajectory of z, we use the virtual constraint
method, originally developed in the robotics literature [18-20],
and now appearing more widely. Suppose we want the system to
track a desired trajectory z = hges(t), where hges is a p times con-
tinuously differentiable function. The error states can be obtained
by differentiation

€l :Z_hdes

ey =7 — Nes

(C)]

e, =207V — hSe_sl
Pick {k;} to be a set of stabilizing gains as described in Eq. (8),
and let

1
ﬁg'c_?ilh(x)

u= —

[koel ot ke, + ,c;h(x)] (10)

When hges is p times continuously differentiable and its deriva-
tives are bounded, the feedback linearization control can locally
track hg4es imposed as a virtual constraint of z [21].

The benefit of the virtual constraint approach is that it gives a
simple means of parameterizing the desired evolution of the vehi-
cle. Instead of all the states, the desired trajectory is parameterized
only by an output z satisfying Assumptions 1 and 3. Later, we will
use trajectory optimization to determine the existence of a set of
interesting trajectories that can be tracked by considering the full
dynamics and the feedback structure.

2.3 Tractor-Semitrailer Models. In this work, we use two
models: a design model and a validation model. For validation,
we use TRUCKSIM with its impressive 312 states. The literature con-
tains a range of less detailed models that could be considered for
control design, ranging from the nonlinear 37-state, physics-based
model in Ref. [22], to linear models. To demonstrate the funda-
mental robustness of the approach followed in this paper, we base
the control design on a low-complexity model for an articulated
truck adapted from Refs. [22] to [23], namely a four degrees-of-
freedom linear model with eight states

x=y v ¥ or Y, o ¢ pl" (11)

where y is the lateral deviation from the lane center to the tractor
center of gravity, v, is the lateral sideslip velocity of the tractor, 1/
is the heading angle of the tractor, r is the yaw rate of the tractor,
V, is the articulation angle on the fifth wheel (the joint between the
tractor and the semitrailer), r; is the yaw rate of the semitrailer, ¢ is
the roll angle, and p is the roll rate, as shown in Fig. 4.

The linear model is expressed in the form of Eq. (1) for
consistency

X =f(x) + g(x)0r + ga1(X)ra + ga2(X)F,
:AX-FB(Sf +E11’{1+E2Fy (12)

The input to the system is the steering angle J; of the tractor front
axle and the disturbances are road curvature 4 and side wind F,
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Fig. 4 Lateral-yaw-roll model of articulated truck

where 7, is the measured disturbance, namely, d; in Eq. (1) and
F, is the unmeasured disturbance, namely, d, in Eq. (1).

A priori, the above linear model is only valid under the follow-
ing assumptions:

e The longitudinal speed v, of the truck has small variation.

e Due to the stiff connection on the roll dimension, the roll
angle of the tractor and the semitrailer is the same.

e The pitch and the vertical motion are weakly coupled with
the lateral, yaw, and roll motion, and are ignored in the
model.

e The angles are small, and therefore, the dynamics can be
approximated by a linear model.

The simulations performed later in TRUCKSIM support that these
assumptions are satisfied in a highway lane keeping scenario.

Remark 2. The methods developed in this paper, including the
CBF synthesis, the trajectory optimization, and the continuous-
hold controller, all apply to nonlinear models. Hence, for the
remainder of the paper, we denote the model as in Eq. (1).

2.4 The Virtual Constraint for the Truck Model. We select
the lateral displacement with preview as the output for feedback
linearization

z="h(x):=y+ Tony (13)

with T, being the preview time, as shown in Fig. 5.

ASSUMPTION 4. [t is assumed that ry changes slowly comparing
to the system dynamics, therefore treated as constant in the trajec-
tory optimization.

Remark 3. The change of r, typically takes several seconds,
while the time constant of the lateral dynamics is below half a sec-
ond, which justifies Assumption 4.

The output z so-defined has relative degree 2 for any 7, i.e.,

‘Cgh =0, ‘Cg‘cf+&’d|mh # 0 (14)
To be more specific, the output dynamics is

2= h(x),
z = [,fh + Egd]h “Ta, (15)
E=Lih+ Lolph-u+ LiLy,h-ryg

Fig.5 Preview deviation as output
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By Assumption 4, r; changes slowly compared to the dynamics,
therefore, 74 is omitted. Since there are eight states but only z and z
are used in the feedback linearization, six dimensions of the state
space are hidden. It is shown that the zero dynamics of the system
is exponentially stable, see Appendix A for details. Since p = 2,
the feedback structure in Eq. (10) is essentially a proportional-
derivative (PD) controller

1 KP(Z - hdes) + Ky (Z - hdes)
U=——— R (16)
LoLrh(x) | +LIR(x) + Ly Loy h(x)rq

where K, and K are the PD gains.

At this point, specifying the desired performance of the truck is
simplified to designing /s, the desired trajectory of the output z,
which is discussed in Sec. 6.

Remark 4. If smooth steering angles are desired, the control
design model can be augmented with an integrator appended to .
In this case, the system has relative degree three and the control
design is nearly the same.

3 Synthesis of Control Barrier Function

In this section, we review some existing results for CBFs and
present our CBF synthesis process for truck lane keeping based on
bilinear alternation and perturbation of the CBF level set.

3.1 Overview of Control Barrier Function. Control barrier
functions were first proposed in Ref. [1] in a reciprocal form and a
zeroing CBF was subsequently introduced in Ref. [24], which is
more robust than the reciprocal form. A zeroing CBF is a scalar
function b(x) of the state x that is positive in the safe set and nega-
tive in the danger set. The algebraic set {x|b(x) = 0} is called the
boundary of the CBF. For a zeroing CBF, the barrier condition
can be written as

b+ ka(b) >0 17

where x > 0 is a positive constant, and o is an extended class K
function, that is, a function f : R — R satisfying

e fis strictly increasing and
o £(0)=0.

When b(x) > 0, b can be negative, but is lower bounded by
—xo(b); at the boundary, b should be non-negative, which makes
the set {x|b(x) > 0} controlled invariant. When b(x) < 0, the
condition in Eq. (17) enforces convergence to the set {x|b(x) >
0} by setting a lower bound b > —ko(b) > 0.

3.2 Synthesis of Control Barrier Function Using Sum of
Squares Programming. The synthesis of a CBF is nontrivial. We
use the SOS technique to synthesize a CBF for the truck LK
problem.

Sum of squares has been widely used in the computation of
invariant sets and barrier certificates for continuous dynamic sys-
tems, and it can be efficiently solved with semidefinite program-
ming. In addition, with the help of Putinar’s PositivStallensatz,
SOS condition is enforced on semi-algebraic sets via multipliers
[25]. For more information, see Refs. [2] and [25-30].

We focus on a dynamic system with the control affine structure
in Eq. (1), where the dynamics is assumed to be polynomial, U
and D are known as semi-algebraic sets defined by polynomials
h, and hy

U = {ulhi(u) >0}, D ={d|ha(d) = 0} (18)
To make the notation compact, let gu(x) = [ga1(x), ga2(x)],

d = [d,,d>]". In CBF synthesis, we set a(h) = b and seek a poly-
nomial CBF b(x) that satisfies the following:

101005-4 / Vol. 141, OCTOBER 2019

{x|b(x) >0} NX, =& (19)

Vxe {x|b(x) >0}, VdeD, Jucl, st
(20)

%(f(x) + g()u+ ga(x¥)d) + kb > 0

where X, is the danger set, a semi-algebraic set of x determined
by polynomials /4

Xy = {x| h(x) > 0} Q1)

Kk > 0 is a positive constant, and condition (20) is referred to as
the CBF condition.

The difference between a barrier certificate and a CBF shows
up in condition (20), which depends on the control input, u#. The
existential quantifier of u renders Eq. (20) not directly solvable by
current SOS solvers, and thus, we seek a conservative approxima-
tion in which we assume that the control input u# comes from a
polynomial controller of x and d, namely

{xIb(x) >0} NXs = &
Vx € {x\b(x) > O}, u(x,d) e U;
Vx e {x|b(x) >0}, VdeD, (22)

% (f(x) + g(x)u(x,d) + ga(x)d) + Kb(x) > 0

d includes both measured and unmeasured disturbances, but the
input may only depend on measured disturbance.

Even with the simplification, there are two bilinear terms that
must be addressed to make the problem solvable by SOS. The first
bilinear term is between b(x) and u(x, d). We use bilinear alterna-
tion [2,31], which iterates the following two steps [2]:

e Fix the barrier candidate, search for a controller.
e Fix the controller, search for a better barrier candidate.

The following SOS program solves for a controller with a fixed
b(x):

min e subject to
o (u(x,d)) — 51(x,d)b(x) — Zs;(x, d)h,(d) € Z[x,d]

% (f(x) + g(x)u(x,d) + ga(x)d) + Kb(x) + s3(x,d)b(x)

= " si(x, d)hi(d) + eQ(x,d) € Z[x,d]
$1,52,53,54 € Z[x,d| (23)

where s;, s2, s3, and s4 are the SOS multipliers up to a certain
order, 4 in this work. Q is a fixed SOS polynomial of x and d; e is
a relaxation scalar variable that makes the SOS program feasible.
When e < 0, Eq. (23) is a sufficient condition of Eq. (22). s3 is
used to enforce the CBF condition only when b(x) > 0. The first
SOS constraint restricts the input within ¢/; the second SOS con-
straint enforces the CBF condition.

Remark 5. The choice of O depends on the order of the polyno-
mial required to be SOS. In many cases, Q can simply be xTx or
be; )" x; .

The other step of the bilinear alternation searches for a better
CBF candidate with the controller held fixed. In this step, the sec-
ond bilinear term emerges. Because the CBF condition is enforced
only when b(x) > 0, an SOS multiplier is used to enforce this con-
dition, which creates a bilinear term between b and the multiplier.
We use perturbation to solve this bilinear term. The idea is to
enforce the CBF condition inside the zero-level set of the current
CBF candidate by, and search for a small perturbation Ab, as
shown in Eq. (24). A similar idea can be seen in Ref. [32]
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min e subject to
—bo(x) = Ab(x) = > s} (x)hi, (x) € T[]

O (1) + gtoute )+ 8ata)d) + ) + A0()

— Zs;(x, d)hi,(x) + s3(x,d)bo(x) + eQ(x,d) € Z[x,d|

s1 € Z[], 52,83 € Z[x,d], ||Ab|| < €llbol| (24)

The norm is taken on the coefficient of Ab and by for some
selected monomial bases. Note that the CBF condition is enforced
on the zero level set of by rather than b which makes the bilinear
term disappear (since by is fixed and not part of the SOS varia-
bles). Because of this, we need the zero level set of by + Ab to be
similar to that of by, which is enforced by the last constraint, with
1 > € > 0, a constant that keeps Ab small compared to by.

The algorithm iteratively updates by by by + Ab until no further
progress can be made. Upon convergence, that is, Ab — 0, the
original CBF condition is enforced.

In summary, there are two loops in the algorithm. The inner
loop iterates the perturbation process, updating by with by + Ab,
while the outer loop iterates between updating b and updating
u(+). Denote the optimization in Eq. (23) as [u(:), e] = OPTy(b),
with b as input, u(-) and e as output; and denote the optimization
in Eq. (24) as [Ab, ¢] = OPTy (b, u(+)), with b(x) and u(-) as input,
Ab and e as output. The iteration terminates when a valid CBF is
found or no improvement can be made, as shown in Fig. 6. Some
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Fig.6 Synthesis of a CBF via SOS
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Table 1 List of parameters

Vi 20m/s

Bound on y *0.3m

Bound on ¢ +0.1rad

Bound on ry +0.02 rad/s(turning radius of 1000 m)
Bound on F +2000 N

Bound on dy +0.2rad

key parameters for the CBF of lane keeping are listed in Table 1.
The obtained CBF for the articulated truck model is a quadratic
function of the eight states in Eq. (11).

4 Trajectory Optimization

Although a CBF guarantees safety of the system’s trajectories,
the closed-loop performance could be compromised if the student
controller is not properly designed. For example, in Fig. 15, we
show a student controller designed with linear quadratic regulator
(LQR) requiring frequent interventions from the CBF and thus
leading to bad ride comfort. In this section, we present an optimi-
zation procedure that incorporates the CBF condition, which is
then used to train a student controller that is compatible with the
CBF. In addition to the CBF condition, other constraints are
needed to ensure the stability of the continuous hold controller, as
introduced later in Sec. 5.1.

4.1 Direct Collocation. As discussed in Sec. 2, the trajectory
optimization is boiled down to the optimization of /s, the desired
trajectory of the output z. Direct collocation is used to generate
the trajectory of the states and /4.5, While /g5 is imposed as the
virtual constraint.

Direct collocation is widely employed in trajectory optimiza-
tion problems due to its effectiveness and robustness and is capa-
ble of enforcing nonlinear and nonconvex constraints. It is thus
chosen to optimize the trajectory while enforcing the virtual con-
straint. It works by replacing the explicit forward integration of
the dynamical systems with a series of defect constraints via
implicit Runge—Kutta methods, which provides better conver-
gence and stability properties particularly for highly underactu-
ated dynamical systems. The result is a nonlinear programming
problem [33].

In this paper, we utilize a modified Hermite—Simpson scheme
based direct collocation trajectory optimization method [34]. Par-
ticularly, the flow (ak.a. trajectory), x(r), of the continuous
dynamical system in Eq. (12) is approximated by discrete value x’
at uniformly distributed discrete time instant 0 =#) < 1} < 1, <
-« <ty =T with N > 0 being the number of discrete intervals.
Let x' and &' be the approximated states and first-order derivatives
at node i, respectively, they must satisfy the system dynamic
equation given in Eq. (12). Further, if these discrete states satisfy
the following defect constraints at all interior points
iel,3,...,N—1]

Cl — o7 (lerl _xlfl) +Z(x171 +)~Cl+1) =0,
i R Y TR T i .in @3)
5::x—§(x + x )——SN(x —i*) =0

then they are accurate approximations of the given continuous
dynamics. Equation (25) defines the modified Hermite—Simpson
conditions for the direct collocation trajectory optimization [34].
Based on the above formulation, now we can construct a con-
strained nonlinear programming problem to solve the trajectory
optimization with the virtual constraint for the articulated truck
model. To incorporate the virtual constraints based feedback con-
trol with the trajectory optimization, we enforce the output
dynamics equation given in Eq. (15) at each node. Then, the con-
trol input »' will be implicitly determined via this constraint with-
out explicitly enforcing it as in Eq. (16). Further, the output z and
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its derivative Z should equal to the desired trajectory hge(f) at t =
0 to ensure that the system lies on the zero dynamics manifold
Vt € [0, T]. The desired trajectory /qes is parameterized as a Bezier
curve, which is widely used in computer graphics and related
fields. A Bezier curve of order m is an mth-order polynomial
defined on [0, 1]

B(s) = zm: % (’7 )s”(l — )"t (26)

i=0

where o; are the Bezier coefficients.” The Bezier order is chosen
to be 8.

The initial condition of the trajectory optimization includes the
initial state of the truck and the road curvature.

Let J(-) be the cost function to be minimized, the trajectory
optimization problem can be stated as

argmin J(-) subject to

(=0, &=0,

& =GN + (Wi + g (¥)dy

Ei = hyey(11) + Kp (2 — haes (1)) + Ka(Z = haes (1)) = 0,
x(to) = xo7

2" — hges(to) = 0, @7
2% — hges(t0) = 0,

—thmax < U < U,
PN |
A1
V(x(T) = n,(d))) < V(X —n(d))),
(7)) = y(x)(T)]| < e3

B(xi,)'ci) + K

I

where 2/ = z(x'), 2/ = z(x'), and 7' = #(x', &), respectively. The
first three lines of constraints correspond to the collocation con-
straint; K, and K; are a set of stabilizing gains as discussed in Eq.
(8), which are also used to tune the performance of the trajectory
tracking. The fourth line specifies the initial states; the fifth and
sixth lines correspond to the virtual constraint; the seventh line is
the input constraint; the eighth line is the CBF constraint, the last
two constraints are needed to guarantee stability of the continuous
hold controller, which is explained in Appendix B.

Remark 6. The CBF condition is modified based on Eq. (17).
Since (e” — 1/e” + 1) is bounded within [—1, 1], when b(x) is
small, the lower bound for b saturates at 1, instead of growing lin-
early as —yb, which may be too difficult to satisfy. Besides, when
b(x) =0, (¢® — 1/e” + 1) = 0, which resembles the original CBF
condition in Eq. (19). Since (e’ — 1/e? + 1) is still an extended
class C function, by Proposition 1 in Ref. [35], {x|b(x) > 0} is
still invariant under the modified constraint.

The cost function in Eq. (27) is a weighted sum of multiple cost
functions, consisting of the following terms:

e Final value cost V(xT — #,(rq)), where 1,(r4) is the steady-
state under a given ry, and V(-) is a Lyapunov function
around the origin;

[ Z2dt, the square integral of z;

f’z’zdt, the square integral of jerk;

[I¥|l > the maximum deviation from road center;
|I7|| - the maximum yaw rate;

fu2dt, the square integral of the input; and

||, the penalty on the last Bezier coefficient (facilitate con-
vergence of the Bezier curve).

Bezier curve can parameterize trajectories of any finite length by scaling the
input. Suppose the horizon of Ay is T, then the input is defined as s = ¢/T.
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Fig. 7 Example of trajectory optimization result

The terms that consist of function integrals are approximately
computed using Simpson’s quadrature rule [36].

The setting of the constraints and costs is the result of repeated
trial and tuning. It should be emphasized that CBF constraint is
enforced in the trajectory optimization. We hope that by enforcing
CBF condition on the training set, the policy generated by super-
vised learning inherits this property.

Figure 7 shows an example trajectory with initial lateral devia-
tion yo = 0.5m and road yaw rate r; = 0.02rad/s. The plot of y
and the Bezier output z shows that the trajectory is converging to
the lane center. The plot of the CBF value and the control input
shows that the trajectory generated by direct collocation satisfies
the input and CBF constraints.

The trajectory optimization is solved with FROST, which uses
a symbolic calculation to boost the nonlinear optimization [37].
The trajectory optimization for each initial condition can be fin-
ished within 10s.

4.2 Generating the Training Set. It is impossible to perform
trajectory optimization for all the initial conditions offline, so
instead, we use supervised learning to train the mapping from ini-
tial conditions to desired trajectories with a finite trajectory
library, which is generated by the above-described trajectory opti-
mization process.

By varying the initial conditions and generating the correspond-
ing trajectories with direct collocation, we hope to “train” the neu-
ral network to generate good trajectories for various initial
conditions. The inputs to the neural network are called features,
denoted as @; in our case, they are variables that describe the ini-
tial condition. The output of the neural network is a vector of con-
trol parameters, denoted as A, in this case, the Bezier coefficients

n:d— A (28)

The selection of initial conditions is done in a grid fashion. We
define a grid on the feature space and perform trajectory optimiza-
tion on each grid point. Since the zero dynamics is stable, z(f) —
hges(t) for hges € C? implies x(f) — xges(f), Where xg4es is the
desired state trajectory corresponding to /4es. This implies that we
only need two states to determine the asymptotic behavior of the
system, but not necessarily the transient behavior. In practice, the
more states we use to parameterize the initial condition, the finer
the trajectory library will be.

However, under a grid fashion of drawing samples, the number
of samples needed grows exponentially with the state dimension.
Therefore, the dimension of @ is limited by available computation
power. We let ®@ contain six features, including five states and 7,
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O = b71 WJH//(,,Vy,Vd] (29)

Under this setup, the computation needed to generate the trajec-
tory library is manageable (about 20h on a desktop). With more
computation power, a higher dimensional ® can lead to a finer tra-
jectory library.

Even though most driving behavior is mild, it is important that
the controller be able to handle bad initial conditions. We gener-
ate, therefore, two training sets, denoted as S; and S,, where S
consists of trajectories defined for a duration of 1s, and the fea-
tures of the trajectories have a wider span and S, consists of tra-
jectories defined over a three-second window, with the features
more concentrated around the origin. S; is used to train a mapping
for severe initial conditions and transients, and S, is used to train
a mapping for mild situations and normal driving. Some of the ini-
tial conditions might render the trajectory optimization infeasible,
therefore only the feasible cases are included in the training sets.
In the implementation, the CH controller will choose which map-
ping to use based on the severity of the situation.

The parameters for the training are included in Table 2. In total,
there are 62,825 trajectories in S, and 29,300 trajectories in S,.

4.3 Supervised Learning. With the training set ready, there
are several choices for the learning method, such as linear regres-
sion, Gaussian process, and neural networks. In our problem,
since there is no structural information about the trajectory gener-
ator and we need strong expressive power to capture the poten-
tially complicated mapping from the initial condition to the
desired trajectory, we choose a neural network for its strong
expressive power.

We train a neural network that has six hidden layers with 200
neurons in each layer and use the ReLU function as the rectifier.
The training is performed using TENsorRFLOW [38]. Over 85% of
the data are used for training and 15% are used for testing. Table 3
shows the mean-squared-error (MSE) of the training result.

5 Implementation of Learning Based Controller

5.1 Continuous Hold Feedback Control. Once the trajec-
tory generator is trained, we can generate a finite horizon desired
trajectory for a given initial condition. In order to piece together
the finite horizon trajectories and synthesize a controller from the
trajectory generator, we employ a CH controller. The name con-
tinuous hold comes from the analogy with a zero-order hold and
an nth-order hold. While an nth-order hold approximates the seg-
ment between two consecutive sampling times with an nth-order

Table 2 Training set parameter setting

Feature Si S»

y range [-0.5, 0.5][m] [-0.3, 0.3][m]

vy range [—1, 1][m/s] [—1, 1][m/s]

W range [—0.04, 0.04][rad] [—0.04, 0.04][rad]

r range [—0.06, 0.06][rad/s] [—=0.03, 0.03][rad/s]
[-
[_

rq range 0.03, 0.03][rad/s] [—0.025, 0.025][rad/s]
W, range 0.04, 0.04][rad] [—0.04, 0.04][rad]
Table 3 Training result
S S>
MSE of training data 0.13 0.0023
MSE of testing data 0.16 0.0024
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polynomial, continuous hold executes a predefined continuous
trajectory.

The idea of continuous hold is not claimed to be novel; a
motion primitive is a special type of continuous hold [39]. The
trajectory is updated in an event-triggered fashion, which will be
discussed in detail in Sec. 5.2. While event-triggered finite-
horizon control is studied in Ref. [40], in the CH setting, it should
be noted that the control action between triggering events is a con-
tinuous function of time and states instead of being a constant.

For the truck example, the basic continuous hold controller [41]
must be extended to systems with exogenous disturbances. The
stability and the set invariance property of the CH controller are
proved, including the analysis for the case when only a subset of
the state is used for feedback, in Appendix B.

5.2 Event-Triggered Update of the Continuous Hold Con-
troller. The CH controller uses the mapping trained by supervised
learning to generate a desired trajectory /qe for the output z based
on the current state and r4, then track the desired trajectory with
the control law in Eq. (16). The desired trajectory will be updated
under three circumstances:

e The desired trajectory is executed to the end.
e There is a significant change in road curvature.
e The trajectory tracking error becomes large.

In the first case, since the trajectory optimization has a finite
horizon (1s or 3 s), the neural network will use the current value
of the features to generate a new desired trajectory. In the second
case, if the road curvature r,; differs much from that used to gener-
ate the current desired trajectory, the trajectory should be updated
since r4 is assumed to be constant during the entire horizon of the
trajectory. The rest of the features are simply initial conditions, so
their change does not trigger an update of the desired trajectory.

—
05t \
=
g of
£
o5t 8
3 25 2 15 -1 05 0 05 1

b(x)

Fig.8 Lower bound for b

Fig. 9 Animation with a 312 state model in TRucksim
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In the third case, when the trajectory deviates too far from the
desired trajectory, replanning is called for. This is likely to be
caused by an unexpected disturbance, such as wind gust.

When switching from one trajectory to the next, smoothing is
performed to make sure that hge is twice differentiable, which
ensures that the control signal is continuous. The smoothing pro-
cess is explained in Appendix C.

5.3 Control Barrier Function as a Supervisory Controller.
Even though the CBF condition is enforced in the trajectory opti-
mization used in the training set, after supervised learning, there
is no guarantee that the trajectory generated by the neural network
always satisfies the CBF condition. Therefore, CBF is still imple-
mented as a supervisory controller on top of the CH controller, as
shown in Fig. 3. The CBF solves the following optimization:

min wy || Aul|® + wa||Au — Aug|?
Au (30)
5.0.C(x,d,ug + Au) >0, up+Aucl

where Au is the intervention of the CBF, Au,q is the intervention
of the previous time instant, and C(-) is the CBF condition. The
reason for the second penalty term is to prevent chattering if inter-
vention is necessary. The CBF condition is defined as

b+79b >0, if b(x)>0

b_ (3D

. e 1 .
b—|—yeh+1207 if b(x) <0

where the transition at b(x) = 0 is continuous, i.e., the two con-
straints coincide at b(x) = 0.

Remark 7. When b(x) > 0, the existence of Au is guaranteed by
the construction of the CBF; when b(x) < 0, there is no guarantee
of feasibility. When Eq. (30) is infeasible, the input is saturated by
u.

6 Simulation Result

We validate our control design on TRUcksiM, a high-fidelity
physics-based simulation software that is widely acknowledged

1 T T T T T T T T T T
05 f 4
[y
Q
3 o s
—_
e
05 E
T \
0 5 10 15 20 25 3 3s 40 45 50 55
t| s
0.1 T . ; ' . J/
_ﬂ—f\\_/""
— 005 j—t—1 W"
o>
©
3
-
—_
s
< 005 | -
‘D 1 ' L ' L 1 ' 1 ' L i
0 5 10 15 20 25 30 35 40 45 50 55
t[s]

Fig. 12

101005-8 / Vol. 141, OCTOBER 2019

Input and intervention of CBF during simulation
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Fig. 13 Value of CBF and key states with large initial
deviations

by the trucking industry. The model picked for simulation has 312
states and is a tractor-semitrailer with heavy cargo in the trailer,
weighing 35 tons in total; see Fig. 9.

The truck is asked to drive on a road with a minimum turning
radius of 1000 m at 20 m/s. A side-wind is simulated as a lateral
force and roll moment to the truck. Because of the heavy cargo,
the truck has a high center of gravity. Hence, the roll motion in
the simulation is significant and the commanded maneuvers are
aggressive.

As shown in Fig. 10, the road profile consists of segments with
constant curvature (per U.S. road design standards). Though rather
extreme, the side-wind is a square wave with maximum allowed
magnitude.

Figure 11 shows the value of the CBF and two key states. Lat-
eral deviation y and roll angle ¢ noever exceed the desired limits
(plotted in red) and b(x) was always above zero, showing that the
CBF (safety) bound was never breached.

The steering input trajectory is shown in Fig. 12. We zoom in
the input to show a 5s period of input. The input is reasonably
smooth. The bumps are necessary to counter the side-wind when
it changes direction. The lower plot shows Ady, the intervention

o7 (deg)

%
t(s)
Fig. 15 Simulation result with LQR as student controller

from the CBF, and its constant value of zero indicates that no
interventions from CBF occurred.

To demonstrate the controller’s ability to handle bad initial con-
ditions, we perturb the lateral deviation with a square wave, simu-
lating the situation when the initial position is 0.5 m from the lane
center, as shown in Figs. 13 and 14.

Figure 14 shows the input under a large deviation. The CBF
intervened three times, and the interventions are mild compared to
the size of up. When b(x) was below zero, the learned controller
was able to drive the system back to the safe set without the inter-
vention of the CBF.

As a comparison, we tuned an LQR controller with feedforward
control of r,, and it performed very well under normal driving
conditions. However, when the initial condition is bad (under the
same setting as Fig. 13), the LQR controller triggered intervention
from the CBF multiple times (11 times) and the jerk was severe,
as shown in Fig. 15.

Though the LQR controller was fine-tuned, it triggered severe
intervention from the CBF frequently. On the other hand, we
observed none or very mild interventions from the CBF under the

t(s)

2 T T T T
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S
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S
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Fig. 14 Input and intervention of CBF with large initial deviations
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learning-based controller in all trial simulations when the states
are within the span of the training set.

7 Conclusion and Discussion

We propose a supervised learning approach to construct con-
trollers with smooth performance and a provable safety guarantee.
The idea is to use trajectory optimization to generate a training set
consisting of trajectories that satisfy a CBF safety constraint, then
use supervised learning to extract a mapping from system initial
conditions to desired trajectories. The policy generated with
supervised learning inherits the good properties of the training set,
though nothing can be proved. On top of that, a safety guarantee
is formally imposed with a CBF as a supervisory controller. The
simulations showed that the proposed approach is able to reduce
the intervention of the CBF and therefore provide high-quality
closed-loop performance while guaranteeing safety.

We chose to learn a mapping from initial conditions to the
desired output trajectory, instead of a mapping from the initial
condition to the desired input trajectory. Trajectory tracking was
implemented with a CH controller. The CH control structure is
able to transform the synthesis problem into a trajectory optimiza-
tion problem, which may be much simpler for complicated nonlin-
ear systems such as trucks and robots [41].

There are problems to be solved for the proposed method. First,
when the initial condition is not contained inside the feature range
of the training set, i.e., when the neural network is doing extrapo-
lation rather than interpolation, the performance can be poor. The
proposed method can and should switch to other controllers that
can handle more severe initial conditions when the initial condi-
tion is not covered in the training set. Though rather obvious, it is
important to emphasize that to obtain good performance over a
wide range, one needs to have training data with adequate cover-
age. Second, when training data from a large range of features are
stacked together, the regression accuracy may drop and the per-
formance suffers. To solve this, one might need a more compli-
cated neural network structure or use multiple neural networks for
different situations.
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Nomenclature

C" = sets of functions with continuous nth derivatives
R = the set of real number
R" = the n-dimensional Euclidean space
R[x] = the space of all polynomials of x
X[x] = the cone of SOS polynomials, a subset of IR [x]

For a scalar function /# : R" — R of x € R" and a vector field
f:R" — R", the Lie derivative is defined as Lyh(x) = (dh/dx)
f(x), which is a scalar function of x, and E/ffh = EfEJ’Z*lh, with
Llh=h

Appendix A: Zero Dynamics of the Truck Lateral
Dynamics

To show the zero dynamics, we use the following state transfor-
mation that renders a new choice of states:

101005-10 / Vol. 141, OCTOBER 2019

y=T=[z o' (AD)

where T is a full-rank linear transformation matrix

1 0 »TIp, 0 O 0 O O
0 1 ve vl 0 0 0 O
0 0 1 0O 0 0 0 O
0 -B* 0 B2 0 0 0 0
T — (A2)
0 0 0 0o 1 0 0 O
0 -B° 0 0 0 B> 0 0
0 0 0 0 0 0 1 0
0 -B* 0 0 0 0 0 B?

and B' is the ith entry of B in Eq. (12). The transformation is linear
and full rank. The dynamics under y is

i =Ay+Bu+Er (A3)
Moreover
B=TB=[0 CAB 0] (A4)

where C=[1 0 Tyv, 0;ys]. Therefore, the dynamics under
7 can be written as

g 1—‘(0-7252.) 06><| 06><l
i=1z2|= : +1 0 |ut+]| O |rg (A5
Z CA%x CAB CAE,

where I'(g,z,7) has exponentially stable zero dynamics, meaning
¢ =T'(0,0,0) is exponentially stable.

Appendix B: Analysis of the Continuous Hold
Controller

In this section, we present the stability and set invariance analy-
sis of the CH controller.

B.1 Continuous Hold Controller With Full State Parame-
terization. Systems of the following form are considered:

X =f(x,u,d) (B1)

where x, u, and d are the state, the input, and the measured dis-
turbance, respectively.

Remark 8. The result about the CH controller is applicable to
general nonlinear dynamic model; the control-affine nonlinear
model in Eq. (1) (assuming d, = 0) and the linear model of the
truck are special cases.

We make the following assumptions about the system dynamics:

AssumptioN 5. f: R" x R™ x RP — R" is locally Lipschitz
continuous in x, u, and d.

AssumptioN 6. 3D C R” and mappings n, : D — R", n,: D
— P, Lipschitz continuous, such that f (n,.(d),n,(d),d) =0, i.e.,
for every exogenous disturbance d € D, there exist two mappings
n, and n,, that map any d € D to a unique equilibrium point and a
unique input that maintains the equilibrium.

Remark 9. There may be nonunique equilibrium points of the
system due to the cyclic coordinates, i.e., states that do not affect
the dynamics, see Ref. [42] for details. Therefore, a function 7, is
needed to select a single equilibrium point given d. Assumption 2
gives a possible definition of #,.
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AssumpTION 7. Yd € D, there is an open ball B, C R" about the
origin, and a positive-definite, locally Lipschitz-continuous func-
tion Vq:B;— R, and constants 0 <oy <oy such that
Vx € By + ﬂx(d)

X=x— n\(d)v

B2
X% < Vy(X) < apx'x 2

AssumprionN 8. 38§ C R", compact, such that ¥d € D,n,.(d) € S.
There exists CBF b(x), such that ¥x ¢ S,b(x) <0; Vd € D,
b(n,(d)) > 0. Moreover, Ve S8,YdeD, there exist uf:
[0,T,] — R™ and a corresponding state trajectory (pg 0,7, —
R” satlsfymg

Va(04(T) = n.ld))

< Va0t 1)

P10 + b (9%0) > 0
ol(0)
lim l(r)=n,(d), lim ul(r)=n,(d) (B3)

vt € [0,T,],
[0.%;] tond) e, (d)

where T, > 0 is the horizon, k >0, 1 > c¢; > 0 are predefined
constants.

A CH controller maintains a timer 7 that is reset to 0 when the
triggering event occurs and the desired trajectory is updated. In
between events, the timer increases at a constant rate equal to 1.
An update is triggered when either the trajectory is executed to its
end, i.e., 7 = T,, or when an interruption is detected. A possible
interruption includes a change in d or an unexpected disturbance
that makes the tracking error too big. The CH input is

A x,d) = ul(f) + u™(x, 9%(7)) (B4)
where ¢ is the initial state when 7 = O and #® : R" x R" — R"
is a feedback controller that tracks (p

The closed-loop system under CH ‘feedback is then

& =fN x,d) = fnud(D) + u®(x, 02(7),d)  (BS)

AssumpTION 9. For any trajectory ¢4 ¢ in Assumption 8 that a CH
controller tries to follow, theie exists a feedback controller u”
R" x R" — R™ that makes @¢ uniformly locally exponentially
stable, i.e., the closed-loop system in Eq. (B5) satisfies

B C R",
[x(12) = @l(02)|| < €

stN0O<t <tp <T,, (x(t1)—
2070 |lx(t) — @ (1)

¢¢(n)) € B,

(B6)

for some ¢, > 0.

Next, we present the result on the stability property of the CH
controller. First, consider the case when d is fixed.

THEOREM 1. Under Assumptions 5-9, for an initial condition
& e{x|b(x) >0}, the closed-loop system in Eq. (BS) will stay
inside {x|b(x) >0}, and if d stops changing after T >0, the
state will converge to n,(d) exponentially.

Proof. From Assumption 8, since ¢ € {x|b(x) >0}, €S,
which means the feedback control in Eq. (B4) is well defined.
From Eq. (B3), the CBF b(x) remains non-negative as discussed
in Sec. 3, which proves that the state will stay inside
{x|b(x) > 0}, and thus x(r) € S, V¢ > 0.

When d stops changing, from the Lyapunov condition in
Assumption 8 Vy(x(nT,) — n(d)) < i Wu(x(0) — n,(d)), n=
1, 2,3,..., which implies lim, . Vy(x(nT,)) =0. From
Assumption 7, the sequence x(nT,) converges to 1,(d).
Therefore, from the last assumption in Eq. (B3), the state stays at
n,(d). u
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B.2 State Decomposition and Dimension Reduction. As
discussed in Sec. 4.2, under a grid fashion sampling of the initial
condition, the computation power limits the dimension of the fea-
ture that describes the initial condition. To parameterize the initial
condition with a subset of states, we decompose the states into
two parts: x = [x1;x;], where in practice x; € R"" are states with
slow dynamics and x, € R™ are states with fast and stable
dynamics. We consider the case where the trajectory and the
tracking feedback u™ are parameterized by only x;.

DEerINITION 1. A locally Lipschitz continuous function y : R™
R™ such that y(0) = 0 and satisfies

YdeD y, (d)=[n"(d)n*(d)],
. (d)=y(ni(d))

is called an insertion map.

The condition in Eq. (B7) states that for any d € D, the
insertion map maps the steady-state of x; to the steady-state of x;.
To extend the previous conclusion to cases where trajectories
are parameterized with only x;, we make the following
assumptions:

Assumprion  10. 38 C R", compact, such that ¥d € D,
n.(d) € S. There exists CBF b(x), such that. ¥x ¢ S,b(x) <0
Vd € D, b(n,(d) >0; VdeD=[iGles &=y,
with 1 > ¢ > 0, there exists u :10,7,] — R™ and a correspond-
: [0, T ] — R" satisfying

(B7)

ing state trajectory, ¢4 3

Va(04, (1) = n@)) < Va2, (0) = n,(@)),

db ) (B3)
| 980 +xet (1) >0
X | d
oz, (1)
im od(t) = n.(d),
dim Pt (1) = n,(d)
tim o) = 0, )
im  ul(r) =y,
G E)l—na) '
5, (Tp) = 7(0i, (7)) (B10)
P2, Up) = M Pig, Up
AssumpTION 11. There exists a feedback u’;b :R™ x R™ — R™

that u"lb (x1, (p‘{i] (7)) makes (,z)‘g’l uniformly locally exponentially sta-
ble, i.e., Eq. (B6) is satisfied with u(t) = ul(7) + i, " (x, @i ().

Remark 10. The subscript ¢f ¢, means the des1red trajectory of
x; with initial condition x{(0) = ¢&;, and ¢¢ ¢, means the desired
trajectory of xa, ¢ = [p{; ;¢3: ]. Assumption 11 is possible if
the dynamic subsystem of x; is locally exponentially stable.

THeEOREM 2. Under Assumptions 5-7, 10, and 11, Vd € D,
VE = [&1;9(&))] € {x|b(x) > 0}, the closed-loop system under
CH feedback will stay inside {x|b(x) > 0}, and if d stops chang-
ing after some 7 >0, the state will converge to 1,(d)
exponentially.

Proof. By Assumption 11, the closed-loop system exponentially
converges to the CH desired trajectory. From Assumption 10, by
CBF condition, {x|b(x) > 0} is invariant under the CH controller.
When d stops changing, the closed-loop system exponentially
converges to ¢¢ and V,(x(nT),) — n,(d)) < "' Vy(&—n,(d)),
for n=1,2,3, ..., and satisfies x,(nT,) = y(x;(nT,)). So every
time the desired trajectory is executed to the end, there exists
q)Yl uT,) that follows the previous trajectory. By definition of the
msertlon map, Eq. (B7) makes sure that when x; — nl(d),
7(x1) — n*(d). By Eq. (B9), x(t) converges to 1,(d) exponen-
tially. |

Remark 11. When the dynamics of x, is stable and fast, y :=
Xz — (¢, converges to zero quickly, the influence of initial condi-
tion of x; is small enough to be neglected. Therefore, the CH can
be parameterized only by x;.
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Now consider a CH controller with trajectories generated with
the procedure described in Eq. (27). Assumptions 5 and 6 are triv-
ially satisfied by the linear dynamics, where 1, is defined such
that it maps r, to the equilibrium point that renders z = h(x) = 0,
which is unique. It can be shown that #, is Lipschitz continuous.
We use the cost-to-go function V' of a LQR as the Lyapunov
function by solving the Riccati equation. Since V' is quadratic
and the truck dynamic is linear, V satisfies Assumption 7 for
all r,. The CBF condition and Lyapunov condition in
Assumption 10 are enforced in the trajectory optimization by
the last two constraints in Eq. (27). Pick x; =[z Zz ¢ —
B4vy+Bzrl//a}, since z and Z are part of xj, the closed-loop
dynamics is indeed stable under the PD control that only depends
on xy, which is the direct result of a stable zero dynamics, there-
fore satisfies the exponential stability condition in Assumption
11. Note that the initial conditions in the training set are parame-
terized by @, which is a full rank linear transformation of x; and
rq4. By Theorem 2, the closed-loop system with CH feedback
stays within {x|b(x) > 0}, and converges to 1,(d) exponentially
once r, stops changing.

Appendix C: Smoothing of the Desired Trajectory

The smoothing of a Bezier curve is very simple. For an mth-
order Bezier curve, the values for zeroth to second derivative at
s =0 are

(0) = moyy — moy, (CH

Solving for o, oy, and o,

% = hgew
-0
oy =25 4 g, 2
m (€2
/:l.deso
= —5 4 Do —
[0%) m(m — 1) + 20 o)

where £hS,,, hy. and /i, 0 are the value and derivatives of the

desired trajectory before the update. The smoothing process
requires that the Bezier order should be high enough so that the
influence of the smoothing is limited to only the beginning of the
curve. We choose the Bezier order to be 8.
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