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Abstract

Key message The integration of new technologies into public plant breeding programs can make a powerful step 

change in agricultural productivity when aligned with principles of quantitative and Mendelian genetics.

Abstract The breeder’s equation is the foundational application of quantitative genetics to crop improvement. Guided by 
the variables that describe response to selection, emerging breeding technologies can make a powerful step change in the 
effectiveness of public breeding programs. The most promising innovations for increasing the rate of genetic gain without 
greatly increasing program size appear to be related to reducing breeding cycle time, which is likely to require the imple-
mentation of parent selection on non-inbred progeny, rapid generation advance, and genomic selection. These are complex 
processes and will require breeding organizations to adopt a culture of continuous optimization and improvement. To enable 
this, research managers will need to consider and proactively manage the, accountability, strategy, and resource allocations 
of breeding teams. This must be combined with thoughtful management of elite genetic variation and a clear separation 
between the parental selection process and product development and advancement process. With an abundance of new 
technologies available, breeding teams need to evaluate carefully the impact of any new technology on selection intensity, 
selection accuracy, and breeding cycle length relative to its cost of deployment. Finally breeding data management systems 
need to be well designed to support selection decisions and novel approaches to accelerate breeding cycles need to be rou-
tinely evaluated and deployed.

Introduction

In the face of climate change, annual reductions in arable 
land, and localized malnutrition (Ritchie et al. 2018), plant 
breeding will play an essential role in feeding 9 billion peo-
ple sustainably by 2050 (Godfray et al. 2010). However, 
many public-sector plant breeding programs in both devel-
oped and developing countries have struggled to keep pace 
with technological change since the Green Revolution (Jain 
2010; Pingali 2012; Baranski 2015). Relatively few reliable 
estimates of the rate of genetic gain delivered by public plant 
breeding programs that serve most farmers in the develop-
ing world have been published, but these report rates of well 
under 1% annually under conditions faced by most small-
holder farmers (Lopes et al. 2012; Masuka et al. 2017), and 
do not appear to have increased in the last 30 years.

Advances in statistics (Drovandi et al. 2017), quantitative 
and population genetics (Hill 2010; Walsh 2014), molecu-
lar biology (Moose and Mumm 2008), genomics (Dek-
kers 2012; Bevan and Uauy 2013; Barabaschi et al. 2016), 

Communicated by Lee Hickey.

Joshua N. Cobb and Roselyne U. Juma are co-first authors.

 * Joshua N. Cobb 
 j.cobb@irri.org

1 International Rice Research Institute, Los Banos, Laguna, 
Philippines

2 Kenya Agricultural and Livestock Research Organization, 
Nairobi, Kenya

3 Bangladesh Rice Research Institute, Gazipur, Bangladesh
4 Bill and Melinda Gates Foundation, Seattle, WA, USA
5 CGIAR Excellence in Breeding Platform (EiB), El Batan, 

Mexico
6 International Maize and Wheat Improvement Center 

(CIMMYT), El Batan, Mexico

http://orcid.org/0000-0002-1732-2378
http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-019-03317-0&domain=pdf


628 Theoretical and Applied Genetics (2019) 132:627–645

1 3

phenomics (Finkel 2009; Cobb et al. 2013; Lobos et al. 
2017), other -omics (Carnielli et al. 2015; VanEmon 2016), 
and most recently machine learning and artificial intelli-
gence (Singh et al. 2016; Chlingaryan et al. 2018) offer the 
potential of transforming plant breeding programs toward a 
data-rich, evidence-based, and team-oriented process and 
away from the romantic tradition of an individual breeder as 
an artist. However, applying these new technologies to the 
problem of increasing the rate of genetic gain delivered in 
farmers’ fields will require careful attention to their impact 
on the parameters of the breeder’s equation.

The reduced cost and increased throughput of data acqui-
sition means that the primary challenge facing plant breed-
ing teams in the 2020s will not be access to modern tech-
nology [though in some developing countries that may still 
be the case (Badiane 2017)], but rather developing a frame-
work for assembling relevant technological options into an 
optimized product development pipeline. This manuscript 
is intended to provide a framework to help breeding teams 
make wise investments by using the genetic gain equation 
(Lush 1937) as a guide. Commonly known as “the breeder’s 
equation,” the expression is a useful starting point because 
it articulates the parameters breeding teams manipulate as 
part of the crop improvement process. The equation itself 
is fully described by multiplying the additive genetic vari-
ation within the population (σa), selection intensity (i), and 
selection accuracy (r). Eberhart (1970) later introduced the 
number of years per cycle (L) into the denominator as a way 
to evaluate efficiency by expressing the response to selection 
as change over time.

The equation serves as a useful mental framework for con-
sidering investment priorities because it elegantly distills 
theory down to parameters that a breeding program aims to 
manipulate. With the increased complexity of plant breeding 
programs, in terms of the genetic and phenotypic informa-
tion acquired to make selection decisions, there are impor-
tant implications for the organization, management, and 
incentivization of breeding teams that also need to be con-
sidered. Some aspects of breeding team management will 
also therefore be discussed.

Product pro�les as a variety replacement strategy

Before a breeding pipeline can be designed or optimized, it 
must have very clear objectives with respect to the type of 
product it will produce. Many breeding programs refer to 
this as the product profile. The product profile describes the 
trait package needed to replace a specific reference or target 
variety. A product profile, defined by Ragot et al. (2018), 
is “a set of targeted attributes that a new plant variety is 
expected to meet in order to be successfully released onto 

ΔG = (�
a
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a market segment.” Rather than an imaginative venture to 
design the perfect variety, a product profile attempts to focus 
breeding efforts on the key traits that drive incremental value 
creation. While a product profile could take several forms, 
one simplified approach is to create a document that (1) 
identifies an existing reference variety already grown by a 
majority of farmers in a region/market, (2) evaluates what 
farmers, consumers, and other value chain actors like about 
that variety, and (3) articulates the complaints key stakehold-
ers have about the reference variety. Opinions and prefer-
ences of stakeholders can be queried via surveys and focus 
group discussions, and may be distilled into the product 
profile, a convenient list of “must-have” traits and “value-
added” traits that allow a breeder to meet market demands, 
add value, and deliver an incrementally improved variety 
quickly, rather than delaying time to market by many years 
in an attempt to create the ideal variety. For example, a new 
rain-fed rice variety for South Asia might aim to replace the 
dominant variety Swarna. The product profile might specify 
that the new product should be 20 days shorter in duration 
than Swarna, have resistance to predominant rice blast races, 
out-yield Swarna by 10% under favorable conditions and 
20% under drought conditions, and have the same grain size, 
shape, amylose content, and texture. This description pro-
vides breeding teams with most of the guidance they need 
to design the breeding pipeline and acquire needed traits. It 
should be noted that for many traits (e.g., yield) the prod-
uct profile does not specify an absolute target but rather an 
advantage, in a particular target population of environments 
(TPE), over the variety to be replaced. This means that that 
variety must be used as a check in agronomic testing, and 
provides some guidance on the extent of testing required to 
detect the targeted advantage at a particular level of accept-
ance probability.

Based on the product profile, breeding teams can make 
transparent advancement decisions when a potential new 
variety meets all the “must-have” criteria and possesses 
at least one “value-added” trait that differentiates it in the 
marketplace. The product profile provides breeding teams 
a starting point for setting investment priorities that are 
aligned with the perspectives and opinions of multiple value 
chain actors. Updating of product profiles should be done 
regularly and involve as many diverse stakeholders as pos-
sible, but should always focus on identifying the reference 
variety, its attributes that must be retained in a new variety, 
and the opportunities for value addition. For a more thor-
ough review of using product profiles to enable breeding 
decisions, see Ragot et al. (2018).

In most private-sector breeding programs, the prod-
uct profile is designed by a marketing team, with critical 
feedback from business units, sales agronomists, and mar-
keting departments to help translate feedback on product 
performance into tangible trait targets that drive adoption 
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and align new varieties with emerging needs expressed by 
the farmer, processor, or consumer. Public-sector breed-
ing institutes have not traditionally had business develop-
ment units or marketing departments and therefore have 
relied informal relationships with customers to achieve a 
good understanding of the constraints faced by farmers in 
the target region. Without consistent and accurate feed-
back indicating whether breeding objectives are drifting 
off track, a public-sector breeder typically takes at best 
an academic approach or at worst a speculative approach 
to determining trait targets and breeding strategy (Laske 
et al. 2012). In an ideally, funded organization articulat-
ing well-informed breeding objectives involves market 
research, close and regular interaction with key stakehold-
ers, and an understanding of the challenges associated 
with breeding for various characteristics. In some cases, 
social science teams at institutions such as CGIAR cent-
ers have developed protocols for assigning relative values 
to traits in interactions with particular subsets of farmers, 
but this has rarely carried through to the design of formal 
product profiles. The participatory plant breeding (PPB) 
and participatory varietal selection (PVS) movements, 
which brought farmers into breeding trials and nurseries 
to make selections, were an effort to provide some farmer 
preference and requirement information into the selection 
process, but relying heavily on farmer selection is neither 
efficient nor particularly effective, since farmer feedback 
was obtained only for those traits visible at the time and 
place of the exercise, and do not incorporate the require-
ments of millers, urban consumers, and other stakehold-
ers (Atlin et al. 2001). Well-constructed and frequently 
updated product profiles, designed in consultation with 
men and women farmers, marketers, processors, and end 
users, distill the requirements of all stakeholders into a 
blueprint for varietal development.

Resource allocation and breeding pipeline 
optimization

Once breeding targets have been set and the product profile 
developed with the input of key stakeholders, the design 
and optimization of a pipeline to deliver the profile are 
the responsibility of the plant breeder. Because most 
important agronomic and quality traits are polygenically 
inherited, only modest and incremental improvements in 
these traits can be made in each breeding step. Breed-
ing for quantitative traits is best conceived as an iterative 
process, in which each generation incrementally increases 
the frequency of favorable alleles in the gene pool under 
selection, thereby increasing the probability of extracting a 
superior cultivar. Below, we consider the steps in optimiz-
ing a breeding pipeline.

Additive genetic variation

Managing and maintaining genetic variance

The first step in establishing a breeding pipeline is the selec-
tion of elite parents as founders of the program. Elite germ-
plasm can be defined as a reproductively compatible set of 
genotypes disproportionately enriched for favorable alleles 
that improve breeding value (i.e., the mean performance of 
the progeny of a given parent) in a particular environment 
or market. Breeding values are used regularly in the con-
text of animal breeding since the breeding product is not 
a sire itself, but rather its progeny. A breeding value uses 
pedigree or genome-wide marker data to borrow informa-
tion from related lines in a phenotypic data set to estimate 
the additive value of an individual. While a BLUP value for 
phenotypic performance accounts for both the additive and 
nonadditive genetic values of a line, a breeding value uses 
the relationship matrix to determine the additive value of a 
line, which is the primary source of genetic variance passed 
on to its offspring (Henderson 1976). This is critical infor-
mation for parental selection decisions and determining the 
relative “eliteness” of a line, and is under-utilized in public 
plant breeding programs. For many plant breeders, the term 
elite is used indiscriminately without specific terms of refer-
ence to the purpose of characterizing and managing genetic 
diversity in a plant breeding program. “Elite” is a status best 
inherited from elite parents or earned through rigorous test-
ing of the individual per se and related lines.

Selection theory suggests that the process of generat-
ing genetic gain in source populations should be treated 
separately from the process of product extraction. Doing so 
allows a breeder to manage genetic diversity, set the desired 
rate of genetic gain, rapidly increase the frequency of favora-
ble alleles in source populations, and extract products from 
those populations as often as needed to serve the needs of 
farmers or stay competitive in the marketplace. In reviewing 
how genomic selection unifies plant and animal breeding, 
Hickey et al. (2017) point out that plant and animal breeding 
have taken very different theoretical approaches to manag-
ing elite genetic variation. They highlight that while many 
plant breeders focus on the intentional introgression of valu-
able alleles in a single line, animal breeders have practiced 
a quantitative population improvement approach, wherein 
parents of each generation are selected on the basis of high 
additive breeding value, determined either by pedigree or 
genomic methods. As a result, plant breeders often have 
a tendency to conflate the genetic improvement of source 
populations with the process of extracting commercial prod-
ucts from those populations in a single step that focuses on 
obtaining a specific complex haplotype through the manipu-
lation of Mendelian genetics. Achieving this complex haplo-
type (say, a combination of several disease resistance alleles 
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and QTLs for abiotic stress tolerance) in high frequency in 
a segregating population in a single step can require very 
large population sizes. Also, many plant breeders use com-
plex crossing schemes with exotic or diverse materials in 
an attempt to bring together disparate traits of interest. This 
comes at a genetic cost as the constant introduction of novel 
alleles, the crossing with older or exotic material with low 
breeding value, and the extended breeding cycles from com-
plex backcrossing reduce the response to selection per year 
relative to what could be achieved through selective mating 
of parents with high breeding value in a closed population. 
As such, genetic variance for an economically important trait 
within clearly elite breeding material is much more valu-
able to a breeder than is genetic variation per se. Recurrent 
selection schemes focused on recycling the best genetics in 
a closed breeding system have been demonstrated to produce 
high rates of genetic gain (Breseghello et al. 2009; Shelton 
et al. 2015), and some of the most successful plant breed-
ing programs in the private-sector currently manage their 
genetic diversity in this way (Smith et al. 2015). These pro-
grams either impose strict rules about parent choice or use 
a closed recurrent selection approach without overlapping 
generations to ensure that the parents of each new breeding 
cycle have higher additive breeding value than the last. This 
is critical to ensuring that genetic gain will be achieved in 
each breeding cycle.

One common concern among plant breeders when con-
fronted with this approach is that the genetic base may be 
too narrow, thus permitting short-term gain from selection, 
but at the expense of long-term progress, arguing that while 
the gene pool becomes increasingly elite, it also becomes 
increasingly inbred. Fortunately, for quantitative traits gov-
erned by complex additive genetic architectures (Boyle et al. 
2017), it has been shown that even starting from a relatively 
small effective population size, many decades of breeding 
progress can still be achieved (Guzman 1998; Bernardo 
et al. 2006). Inbreeding is, of course, inevitable as favorable 
alleles become fixed in the gene pool. However, new muta-
tions replenish genetic variance lost to allele fixation and are 
an important source of genetic variance for selection over 
long timescales (Lind et al. 2018).

High rates of genetic gain have been reported in many 
experiments in a range of species using closed recurrent 
selection schemes. In maize, Coors (1999) reviewed over 
90 recurrent selection experiments and found that gains 
per year from reciprocal recurrent selection exceeded those 
produced by commercial hybrid breeders. Recurrent selec-
tion has also been very effectively used in rice, notably by 
the EMBRAPA upland and lowland rice breeding programs 
in Brazil. Breseghello et al. (2009) reported gains of 3.6% 
per year over three cycles of recurrent selection in upland 
rice. In irrigated lowland rice, Júnior et al. (2017) reported, 
over three cycles, an average rate of yield gain per year of 

1.98%. A recurrent selection strategy for managing elite 
genetic diversity not only enables evolutionary processes 
that increase the frequency of favorable alleles over time 
(Falk 2010), but also permits several clear applications of 
modern technologies to the breeding process. Notably, the 
application of whole genome sequence information allows 
for very clear inferences to be made about the elite breeding 
germplasm and permits the systematic tracking and evalua-
tion of genetic variation over successive cycles of breeding 
(Beissinger et al. 2014). A key step toward modernization is 
to gather all available data and rigorously define a core set of 
high-performing elite lines. Once this is achieved, a system-
atic characterization of the resulting material, including the 
generation of high-density genotype information, will create 
a framework for understanding, tracking, and managing elite 
genetic diversity.

Application of high‑density marker data in a recurrent 

selection program

While the topic is worthy of its own review, the full appli-
cation of high-density genotype data to a plant breeding 
program would include characterization of genetic vari-
ation (Wright 1931, 1933; Wang et al. 2016; Prieur et al. 
2017), development of a framework for tracking identity by 
descent (Vela-Avitúa et al. 2015), validating the accuracy 
of trait markers for MAS (Li et al. 2013; Javid et al. 2015), 
imputation of marker information from low-density data sets 
(Pryce et al. 2014; Moghaddar et al. 2017), haplotype phase 
inference (Hess et al. 2017), and the application of optimum 
contribution selection to crossing decisions (Meuwissen 
1997; Wang et al. 2017). For brevity, only monitoring and 
managing genetic variance and validating trait markers will 
be touched upon here, but breeding programs that manage 
genetic diversity carefully and rapidly recycle parents with 
high breeding values are well positioned to leverage insight 
from these data sets to appropriately manage genetic diver-
sity such that genetic gain is maximized while the long-term 
erosion of genetic variance is minimized.

Effective population size (Ne), a concept introduced by 
Wright (1931) and further refined by Crow and Kimura 
(1970), is one of the most commonly used indicators in 
population genetics and evolutionary biology for describ-
ing the rate of inbreeding in a population and assessing 
genetic diversity. Plant breeders should know the effec-
tive population size of their program and actively moni-
tor it through successive cycles of breeding to ensure the 
long-term viability of the breeding effort. The smaller the 
effective population size, the faster the population will 
become inbred and thus no longer respond to selection. 
While Ne can be estimated using both pedigree and marker 
data (Fernández et al. 2005), the latter is preferred (Wang 
2016). Knowledge of Ne helps design efficient selection 
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schemes in both animal and plant breeding (Caballero 
et al. 1991) and based on the effective population size 
breeders can redesign (if necessary) the parental combina-
tions to maintain sufficient genetic variance among future 
selection candidates. One strategy for using marker data 
to preserve the capacity for long-term genetic gain used 
extensively in animal breeding but with still limited use 
by plant breeders is optimum contribution selection (OCS) 
(Meuwissen 1997; Grundy et al. 1998; Sonesson and Meu-
wissen 2000; Hallander and Waldmann 2009). As opposed 
to a static parental selection and crossing strategy which 
does not consider the value of differential parental contri-
bution to the next generation, OCS seeks to balance gain 
from selection with preventing erosion of genetic variance 
by employing a dynamic parental selection strategy that 
seeks to optimize the contribution of each selection candi-
date in the next breeding cycle consistent with its predicted 
contribution to the rate of inbreeding in the next cycle. 
Sonesson and Meuwissen (2000) suggested that non-ran-
dom mating among the selected parents might improve 
the family genetic variances in the progenies of next gen-
erations and thus affect the results of subsequent selec-
tion. OCS schemes in non-random mating populations can 
reduce rates of inbreeding (Caballero et al. 1996), control 
the levels of kinship among the progeny (Caballero et al. 
1996; Fernández and Toro 1999; Toro and Pérez-Enciso 
1990), increase the rate of genetic response (Caballero 
et al. 1996, Wang et al. 2017) and ultimately help main-
tain genetic diversity in the selection candidates (Wang 

et al. 2017) through restricting the average co-ancestry of 
the population. As plant breeding programs shift toward 
more quantitative approaches, the proactive exchange of 
elite material and monitoring and enhancement of genetic 
variation will become increasingly important.

In addition to monitoring and managing the effective 
population size of the program, another key advantage to 
applying high-density marker information in a recurrent 
selection breeding scheme is that it provides clear infor-
mation about the haplotypic diversity available within an 
elite gene pool, and the association of that diversity with 
key trait markers targeted for marker-assisted selection. 
Reviewed by Cobb et al. (2018) in a companion paper, 
the effective application of MAS to a breeding program 
depends on having accurate marker systems capable of 
properly identifying QTL[+] and QTL[−] lines. The use of 
diagnostic markers based on the functional polymorphism 
is obviously ideal (Barr 2009), but many times such knowl-
edge is unavailable. Using linked markers then becomes 
necessary, but the efficacy of a linked marker depends on 
linkage phase, allele frequency, genomic region, and the 
nature of the QTL interval. With sequence data available 
on lines representing the key pedigrees within a breeding 
program, haplotypes can easily be determined and breed-
ing program specific error rates for markers of potential 
value can be determined (see Fig. 1). Quality metrics for 
assessing the value of a marker in the context of an elite 
breeding program had recently suggested by Platten et al. 
(2019).

Fig. 1  Accuracy determination of three linked SNP markers for a 
bacterial leaf blight resistance gene (xa5) among resequenced lines 
in the IRRI Irrigated breeding program. a The haplotype of the vali-
dated donor line indicates the known resistant haplotype. b IRBB 
60, IRBB 61 and IRBB 64 as validated trait donors for the resistant 
xa5 allele. c A breeding line with a negative marker score for trait 
marker 1, but harboring the QTL[+] haplotype (i.e., a false negative 

for marker 1). d A breeding line with a positive marker score for trait 
marker 2, but possessing a QTL[−] haplotype (i.e., a false positive 
for trait marker 2). e Line exhibiting a favorable phenotypic response 
from another unlinked locus or phenotyping error. f Seed source 
variation (error) between the phenotyped source and the sequenced 
source showing susceptible phenotypes among the QTL[+] haplotype 
group
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Germplasm enhancement and pre‑breeding

Careful management of genetic variation, as important as it 
is, will not compensate for when heritable variation is sim-
ply not present among elite lines—for example when a major 
disease resistance allele is not present in the elite gene pool. 
In these cases, pre-breeding or germplasm enhancement 
is necessary and careful strategies need to be deployed in 
order to introgress the needed variation without unnecessar-
ily contaminating the elite breeding gene pool with parents 
of average or low value. The need to focus this effort and 
to resource it independently is discussed above, but some 
tactical considerations for pre-breeding activities are worth 
noting.

The most common approach to pre-breeding is to use 
genetic mapping to identify QTL for key phenotypic vari-
ation and to introgress those QTL into the elite gene pool. 
While genetic mapping is a powerful strategy to resolve 
complex traits into discrete Mendelian units (quantitative 
trait loci or QTL; Barr 2009), it is important to recognize 
that the effect size of the QTL affects the deployment strat-
egy substantially. QTLs with small effects rarely warrant 
marker-assisted introgression. The expense of fine map-
ping and marker development for small-effect QTL is rarely 
worthwhile when they constitute only a small proportion of 
the genetic variation for the trait in existing breeding germ-
plasm (Hill et al. 2008; Boyle et al. 2017). For many species, 
the primary value of exotic genetic variation is the identifica-
tion and deployment of rare alleles with large effects that can 
be introduced into elite breeding programs via a thoughtful 
implementation of marker-assisted selection (see Cobb et al. 
2018 for a more in-depth discussion on QTL deployment).

Selection intensity

New technologies for increased selection intensity

In terms of the breeder’s equation, generating and testing 
more selection candidates while holding the number of 
selected candidates constant lead to higher selection inten-
sity (i) which in turn increases the rate of genetic gain. 
Selection intensity can also be increased by selecting fewer 
parents; however, it is usually more advisable to determine 
the number of parents to select based on whether the objec-
tive of the breeding program is long- or short-term genetic 
gain (Bernardo et al. 2006). Thus, increasing i by way of 
increasing population sizes requires that either budgets be 
increased, or a reduction in the cost of testing each selection 
candidate.

As budgets are usually fixed, several new technologies 
have been proposed to help reduce the cost of testing as a 
way to increase i, thereby increasing gain from selection. 
For example, genomic selection proposed by Meuwissen 

et al. (2001) could be used to increase the total number of 
selection candidates with a fixed budget if genotyping is 
less costly than phenotyping. Further, sparse testing designs, 
wherein individual lines are unreplicated or partially repli-
cated across locations, but relatives are randomized among 
locations to allow estimates of haplotype x environment 
effects, can reduce the replication of selection candidates 
within and across environments. This reduces field costs 
and would allow a larger number of selection candidates 
to be tested (Endelman et al. 2014; Roorkiwal et al. 2018). 
Simulation studies by Lorenz (2013) and Riedelsheimer 
et al. (2013) found that the application of genomic predic-
tion generally led to greater response to selection because 
phenotyping all selection candidates, even at reduced levels 
of replication, increased both the accuracy and intensity of 
selection.

Aside from genomic selection, low-cost screening of 
large population sizes prior to more advanced yield testing 
based on conventional MAS and/or phenotyping remains 
useful and can lead to high i for specific traits such as disease 
resistance. However, it is possible that selection imposed in 
early generations or prior to more extensive phenotyping 
could actually reduce gain from selection for traits evalu-
ated in more advanced stages of testing such as grain yield 
and quality due to unfavorable genetic correlations between 
traits evaluated in early generations and traits evaluated sub-
sequently. For example, intense selection for early flowering 
in early generations would actually lead to less response to 
selection for grain yield in subsequent stages due the effect 
that direct and indirect selection has on reducing the genetic 
variance (Bulmer 1971) prior to inter-mating. Additionally, 
intense selection based on traits or markers prior to advanced 
testing could reduce the selection candidate population from 
thousands to hundreds, substantially reducing i and gain 
from selection for traits tested at advanced stages. Thus, 
large-scale screening and selection prior to advanced test-
ing should be done with careful consideration of the impacts 
it will have on the overall gain from selection for all traits of 
interest. It should be noted that in some breeding programs 
where high priority “must-have” traits are at low frequency 
among elite lines, it may be worth sacrificing the highest 
yielding individuals, in order to increase the frequency of 
such a trait in the short term before refocusing on agronomic 
performance.

In addition to marker-based solutions to increasing selec-
tion intensity, one emergent technology that could enable 
greater gain from selection by increasing i is high-through-
put phenotyping (HTP). Rapid and low-cost data capture 
using sensors can be converted into variables that may be 
useful as secondary traits for indirect selection either on their 
own or as part of pedigree or genomic prediction schemes. 
Studies by Rutkoski et al. (2016) and Sun et al. (2017) found 
that pedigree and genomic prediction accuracies for grain 
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yield in wheat approached those of direct phenotypic selec-
tion when data on secondary traits measured using an aerial 
HTP platform were utilized. This suggests that it may be 
possible to increase gain from selection with a fixed budget 
by increasing the number of selection candidates planted in 
yield trials, phenotyping secondary traits using HTP, and 
only harvesting a portion of the yield trial. Such an approach 
may be especially advantageous where the cost of harvesting 
is high, such as when trials are conducted in remote loca-
tions and/or when the harvesting must be done manually.

It should be noted, however, that genetic gain is not line-
arly related to the number of selection candidates. Increasing 
the number of selection candidates tenfold, from 10 out of 
100 to 10 out of 1000, increases standardized selection dif-
ferential, and therefore genetic gain, by only 52% (Table 1). 
The difficulty and expense of trying to increase genetic gain 
through increased selection intensity relative to reduced 
cycle time are discussed in more detail later.

Selection accuracy

Phenotyping is currently (and is likely to remain) the most 
expensive component of a plant breeding operation. HTP 
may have some applications for helping to increase selection 
intensity, but may have more important effects on enhancing 
selection accuracy. The value of improvements in phenotyp-
ing is usually expressed by citing increases in broad sense 
heritability (H2). While this metric is useful for compar-
ing two phenotyping strategies, it is important to recall that 
genetic gain is proportional to the genetic accuracy, which is 
the square root of the narrow-sense heritability (h2). This has 
big implications for deciding how to invest a breeding pro-
gram’s limited resources. For most breeding programs, the 
best way to increase heritability is to better sample the tar-
geted population of environments by increasing the number 
of yield trial locations. This turns out to be a very expensive 
option and is limited by physical capacity and partnerships 
as much as it is by budgets. Thus, most innovations in phe-
notyping have focused on extracting more information from 
existing yield trials. This can lead to making large expen-
ditures in capital equipment and/or digital devices, and as 

such, careful thought needs to be put into a phenotyping 
strategy for a breeding program (Cobb et al. 2013).

HTP and the digitization of data collection

Breeding programs in recent years have witnessed an influx 
of engineering solutions such as robotics, imaging systems, 
and unmanned vehicles to increase the throughput of phe-
notyping (Tattaris and Reynolds 2016; Awada et al. 2018). 
These solutions have provided significant cost savings and 
efficiency gains to breeding programs via automation of rou-
tine processes, addition of new data types for more unbiased 
selection, and the scaling up of data collection processes at 
a reduced cost. While these technologies are the focus of 
several reviews, one unifying principle across them that is 
seldom discussed is the value of digitized data collection. 
Digitization of breeding data, both phenotypic and geno-
typic, is crucial for breeding programs to scale up in the 
twenty-first century. With cost of computing power decreas-
ing exponentially, it has enabled genotyping data (already 
in digital form) to be used with ease and minimal manual 
curation. However, this is not the same for phenotypic data 
as many public plant breeding programs to date are still rely-
ing on paper and pen to record and subsequently transcribe 
data into usable formats (Rife and Poland 2015). Manual 
data collection strategies like this render phenotypic data 
collection expensive, labor-intensive and error-prone. Mac-
kay and Caligari (1999) went so far as to simulate the effect 
of common typographical errors on the rate of genetic gain 
and found significant reductions in response to selection for 
error rates as low as 1%. Paradoxically, they showed that in 
many cases, response to selection would actually increase if 
selection intensity is reduced simply because misrepresented 
data points are disproportionately found among selected can-
didates. The idea to digitize phenotypic data collection in 
plant breeding was discussed as early as the 1990s by Berke 
and Baenziger (1992), but due to the high cost of field-ready 
electronic devices at the time and lack of technical skills to 
deploy them, adoption rates of digital field data collection 
remained low until the smartphone revolution of last decade. 
The advent of high-performance computing that fits in the 
palm of our hand has led many teams to develop software 

Table 1  Relationship 
between proportion selected, 
standardized selection intensity 
(i), and genetic gain

Effective population 
size (Ne)

Proportion 
selected

Total population Standardized selection 
differential

Genetic gain 
relative to 
N = 100

10 0.1 100 1.75 1
10 0.05 200 2.063 1.18
10 0.01 1000 2.665 1.52
10 0.005 2000 2.892 1.65
10 0.001 10,000 3.367 1.92
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that permits the digital collection of phenotype data in the 
field. One such example of this is the PhenoApps (http://
pheno apps.org/apps/). The PhenoApps tools are completely 
open-source Android-based applications that aid breeding 
programs in digitizing data collection and maintaining the 
chain of custody (Rife and Poland 2015). Additional soft-
ware tools include Phenobook (Crescente et al. 2017) and 
the PhenoTyper (Köhl and Jürgen 2015).

Breeding data management

It should be intuitively recognized that digitizing the collec-
tion of data is actually a fairly easy problem to solve relative 
to the grand challenge of bringing all sources of breeding 
data together to inform selection decisions. Platforms need 
to be built that bring phenotype data, genotype data, pedi-
gree data, and ultimately climate and weather data together 
in interoperable ways that permit the analysis of multi-year, 
multi-location, and multivariate information on generations 
of related lines. Sophisticated breeding informatics systems 
must be created and incorporated into breeding workflows 
to enable better predictions on the performance of different 
genotypes across various environments. These systems need 
to be robust in their architecture, computationally power-
ful, accessible even in remote locations, and user-friendly. 
There are currently very few systems available to public-
sector breeding programs at the time of this publication fully 
capable of accomplishing this task, and no single system is 
in widespread use across public plant breeding programs; 
however, Rathore et al. (2018) provide a thorough overview 
of some of the strongest contenders. A fully functional and 
integrated system should seamlessly: (1) define, display, 
and permit the revision of distinct breeding zones, their tar-
get markets, and corresponding product profiles for more 
accurately selecting and advancing germplasm, classifying 
trial locations, and advancing selection candidates against 
defined criteria; (2) permit simplified workflows for trial 
design, trial management, and phenotyping procedures that 
allow breeding teams to quickly and easily implement robust 
statistical designs; (3) employ yield trial analytics with phe-
notypic spatial correction, location data quality evaluations, 
multi-location analytical capabilities, and the generation and 
display of pedigree estimated breeding values (pEBV) and 
genomic estimated breeding values (gEBV); (4) intuitively 
integrate pedigree, genotype, phenotype, and climate infor-
mation across years, geographies, and generations to more 
accurately predict, summarize, and interpret variance com-
ponents such as genotype, location, year, agronomic man-
agement regimes, and their interaction terms; (5) simply, 
intuitively, and powerfully permit creating and tracking the 
progression of germplasm through the breeding program; 

and (6) effectively track breeding operations, budgets, and 
activities at different timescales.

Such systems would be central and formative to breeding 
teams endeavoring to efficiently conduct their operations, 
make selection decisions, optimize resources, summarize 
outputs, and explore the genetic consequences of breed-
ing decisions. In order to maintain flexibility, avoid obso-
lescence, and leverage extensibility, these systems should 
ideally be modular in design with advanced data models, 
generic, extendable, and scalable software logic, and built 
using an architected approach with clear specifications. Fig-
ure 2 illustrates some suggested data and analysis modules 
that, together, could fully enable breeding operations. 

Cycle time

Given the complexity of the other parameters in the breeder’s 
equation, cycle time is the easiest to understand, cheapest to 
manipulate, and the most powerful parameter for increasing 
genetic gain. Cycle time (or generation interval) involves 
recycling breeding material back into the crossing block as 
quickly as a breeder can determine that a genotype is above 
average in breeding value for a desired quantitative trait. 
Despite its simplicity, manipulating cycle time requires care-
ful planning and consideration of breeding strategy because 
a breeding team can move as quickly in the wrong direction 
as they can in the right one.

Rapid generation advance for inbred and hybrid crops

For many inbred and hybrid crops, public-sector plant breed-
ing has maintained a strong legacy of pedigree breeding 
strategies focused on heavy visual selection during segre-
gating generations. While effective for the identification of 
semidwarf progenies during the Green Revolution, visual 
selection during inbreeding is no longer effective when plant 
type is fixed (Atlin et al. 2017). In self-pollinated crops, 
approaches for rapidly developing fixed lines, such as dou-
bled haploid (Maluszynski et al. 2003; Asif 2013) or single 
seed descent (Collard et al. 2017) methodologies, effectively 
partition genetic variation exclusively between lines, permit-
ting the rapid evaluation and promotion of high-performing 
material. In general, modern breeding methods for self-pol-
linated crops should aim to develop fixed lines at the lowest 
possible cost and in the minimum possible amount of time.

Rapid generation advance (RGA) technique was first 
proposed by Goulden (1939) and later modified by Grafius 
(1965). Its most recent iteration has been in the form of 
“speed breeding.” (Watson et al. 2018). An RGA system 
shortens generation cycle through modified environments 
and early seed harvest in  F2–F6 generations (Collard et al. 
2017). These methods are regularly reviewed, and new mod-
ifications are often published (Choo et al. 1985; Snape 1989; 

http://phenoapps.org/apps/
http://phenoapps.org/apps/
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Maluszynski et al. 2003; Forster et al. 2007; Touraev et al. 
2009; Tadesse et al. 2012; Dwivedi et al. 2015; Humphreys 
and Knox 2015; van Ginkel and Ortiz 2018; Watson et al. 
2018). Depending on the crop, the strategy, the growing 
season, and the budget, specialized facilities are sometimes 
needed to be able to accelerate generations and achieve the 
desired cycle time. The particular biology of the crop dic-
tates the most successful approaches, but many techniques 
have been applied, including harvesting of immature seed 
in soybeans (Carandang et al. 2006) and pigeon pea (Saxena 
et al. 2017) and light manipulation in chickpea (Gaur et al. 
2007), sorghum (Rizal et al. 2014) and rice (Tanaka et al. 
2016). More recently, seven generations of oats and triti-
cale had been developed in 1 year through RGA, (Liu et al. 
2016) using stress to induce flowering followed by embryo 
rescue. Likewise Watson et al. (2018) had recently achieved 
six generations per year in wheat, barley, and chickpea.

In addition to the speed, one of the primary advantages 
of RGA compared to other methods can be the reduction in 
the cost per new recombinant relative to pedigree breeding, 
which has a very high land and labor requirement for each 
fixed line generated. Embryo rescue, growth chambers, and 

other technologies with a high cost of entry or skilled labor 
requirement will be most successful where high volumes and 
economies of scale can spread the cost among many pro-
grams. For individual breeding programs deploying RGA as 
a single seed descent method, usually a greenhouse facility 
or even a field RGA will suffice. Such a setup was developed 
at the International Rice Research Institute (IRRI), reduc-
ing the cost of line fixation from hundreds of dollars (under 
pedigree selection) to USD $0.74 using a greenhouse-based 
RGA and USD $0.29 using field RGA (Fig. 3; Collard et al. 
2017).

Emphasizing cycle time over other selection parameters

Accelerating breeding cycles can be the most efficient way 
to increase the rate of genetic gain, but it has been under-
exploited in most breeding programs, which have focused 
more on the other three parameters of the breeder’s equation, 
namely heritability, selection intensity, and additive genetic 
variance. Unfortunately, manipulating these variables is 
effective initially, but they are subject to rapidly diminishing 
returns on investment and thus offer an expensive pathway 

Fig. 2  Modular design of breeding system functional capabilities. 
Sky blue-colored modules address breeding strategy and objectives; 
orange boxes correspond to the management and creation of breeding 
experiments; purple boxes illustrate genotyping workflows; yellow 
boxes for modules enabling phenotypic and environmental data col-

lection; green boxes represent pre-breeding and gene bank manage-
ment; blue boxes highlight modules for breeding analytics. Detailed 
explanations of numbered modules are provided in the body of the 
manuscript (color figure online)
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to increased rates of genetic gain. In the case of heritability, 
once modest levels are achieved (in the range of 0.5–0.7) 
it is rarely worth the often substantial investment required 
to secure additional testing locations needed to increase it 
further. Heritability does not scale linearly with replication 
(i.e., doubling the number of yield trial locations will not 
double the heritability). Compounding this effect is the fact 
that neither does genetic gain scale linearly with heritability 
(i.e., doubling the heritability does not translate to double 
the response to selection). Genetic gains are proportional 
to the accuracy, which is the square root of heritability, and 
thus scales according to a square root function with her-
itability (Fig. 4). Thus, increasing heritability from 0.6 to 
0.8 comes at significant cost but only increases the rate of 
genetic gain by √(0.8/0.6), or 15%. An even more extreme 
form of diminishing returns affects efforts to increase the 
rate of genetic gain by increasing population size and selec-
tion pressure. Increasing selection intensity tenfold (i.e., 
requiring a tenfold increase in the size of the population gen-
erated and screened if effective population size (Ne) remains 
constant) will increase the standardized selection differen-
tial (and therefore genetic gain), by only 52%, assuming the 
same heritability (see Table 1). A 52% increase in genetic 
gain for a tenfold increase in program size and cost is an 
untenable solution for most breeding programs.

The impact of reducing breeding cycle length for most 
programs is potentially much greater than increasing herit-
ability above about 0.6, or reducing the selected proportion 
below 5%. While the RGA methods described above allow 
breeding cycles to be reduced to three or 4 years compared 
to pedigree selection, there is an opportunity for breeding 
cycles to be shortened much further, potentially to just 1 year 

in the many annual cereal, oilseed, and legume crops that are 
not strongly photoperiod-sensitive. Most breeding programs 
in self-pollinated crops unnecessarily lengthen the breeding 
cycle by initiating selection for breeding value (i.e., selecting 
parents) only among highly homozygous lines. This adds 
significant time even relative to schemes that assess breed-
ing value and select on non-inbred candidates. Most pro-
grams advance lines only two seasons per year and therefore 
would take 3 years to generate a fixed line with enough seed 

Fig. 3  Rapid generation 
advance strategies at the Inter-
national Rice Research Institute. 
a RGA greenhouse facility. b 
Field RGA nursery in vegetative 
stage. c Field RGA nursery at 
panicle seeding
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Fig. 4  Diminishing returns on selection accuracy relative to increases 
in heritability. Since selection accuracy is expressed as a square root 
function (solid line) and not a linear function (dotted line) relative 
to heritability, linear increases in heritability (x-axis), which require 
significant financial investment, have diminishing impacts on selec-
tion accuracy (y-axis). Even modest heritabilities can command suffi-
cient selection accuracy to drive genetic gain (orange shaded portion) 
(color figure online)
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to enter in a yield trial before choosing to recycle lines as 
parents.

The breeding cycle could be greatly accelerated by select-
ing  F2.3 (or  S0.1) lines for use as parents in a rapid-cycle 
recurrent selection program to improve the breeding value 
of a population, rather than selecting highly inbred lines 
that can be used directly as cultivars. This amounts to a par-
tial decoupling of parent selection for, and commercial line 
extraction from, elite breeding populations. This is not a 
novel idea; most traditional phenotypic recurrent selection 
programs were based on recombination of parents from the 
first or second generation of self-pollination, rather than 
highly inbred lines that can be directly commercialized. In 
recent years, the development and simulation of genomic 
selection protocols have demonstrated that breeding cycles 
can be completely decoupled from commercial line devel-
opment, by selecting parents purely on the basis of GEBV 
(Heffner et al. 2009; Gaynor et al. 2016), but it has not yet 
been widely demonstrated experimentally that this extreme 
decoupling of population advancement from phenotyping 
will permit effective estimation of breeding value in crop 
breeding programs. Recurrent selection involving crossing, 
field testing of non-inbred progeny, and recombination in a 
single year is amenable to genomic selection for breeding 
value, especially after several cycles have been completed 
and linkage disequilibrium increases among parental selec-
tion candidates due to the increased relatedness of the elite 
source population.

An aggressive but effective single-year recurrent selection 
program applicable to most self-pollinated species, includ-
ing rice, was developed by K.J. Frey and his students in the 
1970s (Frey et al. 1988), consisting of the following steps:

(1) A closed breeding population is created by inter-mating 
a set of selected lines chosen for high breeding value 
and complementary defensive and quality traits; the 
initial population must undergo two rounds of inter-
mating to generate segregating  S0 progeny.

(2) S0.1 lines are generated by allowing  S0 plants to self-
pollinate.

(3) S0.1 lines are phenotyped for yield and other traits in 
agronomic trials. While in some species seed may be 
limited at this juncture, in many of the cereal species 
with high tillering capacity, enough seeds for several 
replicates of field testing could potentially be produced 
from a single plant.

(4) The best-performing  S0.1 lines are inter-mated.
(5) Steps 2 through 4 are then repeated for several cycles.

A genetic simulation can be used to show that radically 
shortening the breeding cycle from 4 years to one will 
greatly increase selection response even if selection intensity 
and heritability are reduced. Using a deterministic genetic 

gain simulation tool developed by Rutkoski (2018), differ-
ent scenarios were simulated using the range of phenotypic 
values for yield from the IRRI 2016 Observational yield 
trial of the Drought Breeding Network. Several scenarios 
demonstrate the viability of ultrashort breeding cycles to 
drive increased genetic gain:

(1) A conventional breeding program involving selec-
tion among 1000  F5.6 lines evaluated at h2 of 0.3, with 
N = 10 parents selected per cycle, and a breeding cycle 
of 4 years, over a single cycle.

This scenario represents a typical, if fairly aggressive, 
self-pollinated crop breeding program based on the selec-
tion of parents from among highly homozygous selection 
candidates.

(2) A rapid-cycle (1 year per cycle) recurrent selection 
program involving selection among 100  S0.1 lines per 
cycle, with N = 10, evaluated at h2 = 0.2, over four 
cycles.

This represents the fastest recurrent selection program 
possible in rice that still permits phenotypic evaluation each 
cycle. Narrow-sense heritability is assumed to be lower than 
the larger, conventional program posited in (1), because the 
quantity of seed per  S0.1 line available for field phenotyping 
would likely be smaller than the quantity available from  F5.6 
lines, limiting replication over environments, and because 
the additive genetic variance among  F5:6 lines is somewhat 
greater than that among  S0:1  (F2:3) lines.

(3) A rapid-cycle (1 year per cycle) recurrent selection 
program involving selection among 100  S0.1 lines per 
cycle, with N = 10, evaluated at h2 = 0.15, over four 
cycles.

This scenario is identical to (2), but with an even more 
severe reduction in  h2.

The results (Table 2) indicate that rapid-cycle recurrent 
selection in a population is only 10% as large in each cycle 
as in the conventional program resulted in substantially 
greater genetic gains, even assuming considerably reduced 
heritability. Even with heritability only 50% as high as in the 
conventional 4-year program of a single cycle of selection 
in fully inbred progeny, the rapid-cycle RS program, over 
4 years, resulted in 50% higher rates of gain per year than 
the conventional program.

A key and under-recognized element of rapid-cycle recur-
rent selection is that it delivers higher gains than long cycle, 
large population breeding at a much lower cost, because 
much smaller populations are evaluated each cycle and in 
total. In the current example, the conventional program 



638 Theoretical and Applied Genetics (2019) 132:627–645

1 3

requires the generation and phenotyping of 1000 selection 
candidates during the single 4-year cycle. In the rapid-cycle 
recurrent selection programs, 100 selection candidates are 
generated and phenotyped per year, for a total of 400. Per-
haps 10 sublines would be extracted from each of 10 selected 
parents at the second and fourth cycles, to develop 100 fixed 
lines as candidate varieties for potential commercialization 
every second year. In total, the 4 years of recurrent selection 
would involve the creation and testing of 600 lines compared 
to the 1000 lines for the conventional program, while deliv-
ering much higher rates of genetic gain. In oats, Frey et al. 
(1988) achieved yield gains of 5.4% per cycle and there-
fore per year, using this protocol. Less aggressive schemes 
requiring 2 or 3 years per cycle have been widely used in 
self-pollinated crops, usually generating gains per year that 
are at least as high as those achieved from pedigree breeding 
programs. For example, Payne et al. (1986) achieved gains 
of 3.8% per cycle or 1.28% per year over three cycles, using 
a protocol requiring 3 years per cycle in oats. In soybean, 
Kenworthy and Brim (1979) evaluated a plan identical to 
that used in oats by Frey et al. (1988), but with cycles com-
pleted over 2 years. Over three cycles, an average gain of 
5% per cycle or 2.5% per year was achieved for grain yield.

Shifting away from the long cycles inherent in pedigree 
breeding strategies toward a more accelerated 3–4-year cycle 
based on rapid generation advance (for inbred and hybrid 
crops) has the potential to make a step change in the rate at 
which varietal improvement is occurring. Further acceler-
ating that by abandoning inbreeding to near fixation before 
selection for breeding value and redeploying the ultra-rapid 
single-year recurrent selection cycles will enhance the pro-
ductivity of plant breeding programs by yet another step.

Breeding program management

Successful modern breeding programs are complex and 
moderately expensive scientific enterprises, wherein prod-
ucts are developed and delivered by teams charged with 
delivering a steady stream of incrementally improved vari-
eties that meet the market and farmer requirements cap-
tured in the product profile. It is a critical function of the 

management of breeding organizations to properly incentiv-
ize, support, and monitor the effectiveness of these teams, 
and to instill a culture of continuous improvement wherein 
the breeding pipeline is constantly assessed and new meth-
ods integrated as they become available.

Diagramming the breeding process

One of the most valuable exercises a breeding team under-
takes in initiating its continuous improvement process is to 
articulate and communicate the breeding strategy clearly and 
formally. However, this is rarely done, especially in public 
programs, wherein the details of the breeding strategy are 
often unarticulated and subject to change on the breeder’s 
whim. Figure 5 illustrates one example of how a multi-year 
RGA-based breeding strategy might be sketched out in terms 
of activities, accountability, and the flow of information and 
genetic material. While the illustrated schema is generalized 
and may not be applicable to any one program, it serves as a 
model for visualizing whom in a breeding team is responsi-
ble for which activities, and when they occur. When such a 
diagram is created and communicated with others, it allows 
breeders, pathologists, physiologists, agronomists, geneti-
cists, and other members of the breeding team to understand 
where they interact with the strategy, how breeding activi-
ties fit together, identify and alleviate bottlenecks, and most 
importantly where innovations might be applied.

Accountability and metrics of success

A process diagram of the breeding strategy also allows for 
transparency and accountability, and helps breeding man-
agement teams develop key performance indicators that 
assess the value of activities in delivering genetic gains. As 
part of a culture of continuous improvement, all breeding 
programs should be aiming to increase their rate of genetic 
gain by optimizing breeding pipelines, and demonstrating 
improvement by regularly measuring their outputs and pro-
gress against robust and relevant metrics. Often plant breed-
ing programs are measured against the number of varieties 
nominated or released per year to the local government’s 
variety release pipelines. This metric often over-estimates 

Table 2  A comparison of 
simulated genetic gains based 
on three breeding scenarios

Metrics One cycle, 4 years/
cycle, h2 = 0.3

Four cycles, 1 year/
cycle, h2 = 0.2

Four cycles, 
1 year/cycle, 
h2 = 0.15

Number of lines phenotyped per cycle 1000 100 100
Total genetic gain (kg ha−1) 455 954 686
Annual genetic gain (kg ha−1 yr−1) 113.75 238.5 171.5
Genetic standard deviation units per year 0.32 0.82 0.68
% genetic gain per year 2.22 4.66 3.35
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success rates because many released varieties are never 
adopted by farmers (Maredia and Raitzer 2010). In private-
sector breeding programs, numbers of units sold or market 
share are common metrics of success, but such information 
is difficult to obtain for public-sector programs, particularly 
in developing countries, and comes with the added socio-
economic complication of calculating who benefits and how 
equitably the benefit is distributed. Ceccarelli (2015) pro-
vides a good review of this topic and suggests that cost/bene-
fit ratios should be used to measure plant breeding efficiency. 
In public-sector programs, direct estimation of genetic trend 

(Piepho et al. 2014), delivered under farmer management, is 
the likely the best method for assessing long-term breeding 
program effectiveness. This metric can be captured relatively 
easily if the breeding organization continuously evaluates 
newly released materials in on-farm agronomy trials.

The role of senior managers and funders in driving the 
efficiency of public plant breeding programs cannot be over-
stated. Optimization of a breeding program will not likely 
occur without explicit leadership and direction that incentiv-
izes innovation, efficiency, and the delivery of genetic gains 
under farmer management. Moreover, it is imperative for 

Fig. 5  Process flow diagram for a generalized inbred breeding program based on single seed descent. Columns correspond to people, teams, or 
service providers. Colors indicate seasonal activities. Arrows indicate the flow of information and/or breeding material through the pipeline
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senior management and financial stakeholders to be aware 
of performance against key indicators such as the average 
age of parental material, selection intensities (i.e., number of 
parents in the crossing block), selection accuracies (i.e., her-
itability in multi-location trials), number of lines advanced 
to each stage, length of the breeding cycle, and percentage of 
external germplasm used as parental material. Furthermore, 
it is worth mentioning the need for long-term, stable fund-
ing to support public breeding programs to deliver on the 
intended targets. The fragmented, restricted, and short-term 
funding models that are prevalent in most public breeding 
grants (especially in the developing world) incur the risk 
of short-circuiting breeding efficiency through frequent rea-
lignments of breeding targets or driving variable selection 
intensities and accuracies due to unpredictable and fluctuat-
ing budgets.

Considerations for the future

Public-sector plant breeders and managers have a tremen-
dous responsibility to the world as the sector often serves 
the communities most in need of increased rates of genetic 
gains. In many cases, public breeding programs are often 
the sole source of improved germplasm for the farmers they 
serve (Lopez-Pereira and Filippello 1995). Despite being 
immensely important, increasing rates of genetic gain in 
public plant breeding programs can be extremely challeng-
ing. Making changes to the breeding process in the name of 
increasing rates of genetic gain is often seen as very risky. 
Breeders often view their current pipelines as close to opti-
mal and worry that if changes fail and the breeding program 
in turn fails, there will be dire consequences for the world’s 
most vulnerable people. This leads to a level of conservatism 
that can make change extraordinarily difficult. But of course 
change must occur in order to improve. In fact, rates of 
genetic gain and varietal replacement in much of the devel-
oping world have been very low since the end of the Green 
Revolution period, and the potential positive impact of opti-
mizing breeding pipelines to modestly increase selection 
differential and accuracy, and substantially reduce breeding 
cycle time, greatly outweighs the risk of continuing to rely 
on visual selection in outmoded pedigree breeding schemes.

Strengthening public breeding 
through collaboration and purposeful innovation

As plant breeding teams navigate the early twenty-first 
century, a few key changes need to be made to the political 
and social landscapes to ensure continued success. First, 
funding the modernization of public-sector breeding pro-
grams as a dedicated activity must take place. Given the 
challenges of implementing modern approaches in public 

breeding programs, an argument can be made for donors 
to fund the modernization process itself as separate and 
focused activity. This is the approach being taken by the 
Bill and Melinda Gates Foundation (BMGF) and the 
CGIAR through the establishment of the Excellence in 
Breeding Platform (EiB; https ://www.cgiar .org/wp/wp-
conte nt/uploa ds/2018/05/SC6-04_Multi -Funde r-Breed ing-
Initi ative -updat e.pdf.), a clearing house and consultancy 
for supporting the implementation of best practices in 
breeding programs serving the developing world. Second, 
unlike private-sector organizations, public plant breeding 
programs struggle to leverage and benefit from the col-
lective investment, skills and experience across crops that 
large transnational breeding companies can command. As 
a result, public plant breeding programs must form inter-
active communities of practice that allow them to aggre-
gate demand and stimulate the development of low-cost 
genotyping, phenotyping, and open-access IT systems 
for storage, management, analysis, and exchange of data 
(Spindel and McCouch 2016). Here again, the Bill and 
Melinda Gates Foundation is leading an effort within the 
CGIAR through the High Throughput Genotyping Project 
(http://cegsb .icris at.org/high-throu ghput -genot yping -proje 
ct-htpg/) and the Genomics Open Breeding Informatics 
Initiative (GOBii; http://gobii proje ct.org/). In an effort to 
deal with diminishing research funds and increased costs, 
many public breeding programs targeting the same agro-
ecologies will need to work together in coordinated breed-
ing networks. Through this process, and other collabora-
tive exercises, public plant breeding communities need to 
come together to lift one another up to a higher standard 
of operating.

By coming together in the next few decades, public plant 
breeding communities will have an opportunity to develop 
a common way of understanding challenges, opportuni-
ties, and progress against standardized sets of metrics. 
They will need to establish industry-wide standards, com-
mon vocabulary, and shared protocols for integrating new 
technology into the breeding process. Breeding teams and 
senior management of breeding institutes can both be opti-
mistic about opportunities to include new technologies and 
improved ways of operating and increasing rates of genetic 
gain per dollar invested. It is reasonable to expect through 
the thoughtful and consistent application of new technolo-
gies to breeding strategies, funders of public plant breed-
ing efforts will gain increased confidence in the approaches 
being adopted and in the capacity of public plant breeding 
programs to meet the demands of an increasingly complex 
world.

https://www.cgiar.org/wp/wp-content/uploads/2018/05/SC6-04_Multi-Funder-Breeding-Initiative-update.pdf
https://www.cgiar.org/wp/wp-content/uploads/2018/05/SC6-04_Multi-Funder-Breeding-Initiative-update.pdf
https://www.cgiar.org/wp/wp-content/uploads/2018/05/SC6-04_Multi-Funder-Breeding-Initiative-update.pdf
http://cegsb.icrisat.org/high-throughput-genotyping-project-htpg/
http://cegsb.icrisat.org/high-throughput-genotyping-project-htpg/
http://gobiiproject.org/
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Conclusions

Public-sector plant breeding programs serving farmers 
in the developing world can deliver much higher rates of 
genetic gain if breeding programs are optimized to select 
for quantitative traits. Traditional pedigree breeding meth-
ods based on visual selection do not work well after plant 
type is fixed, and therefore, breeding pipelines serving 
smallholder farmers in the developing world must be mod-
ernized to optimize the key components of the breeder’s 
equation. Accuracy of selection for yield and other quan-
titative traits must be increased by testing more selection 
candidates in multi-location trials earlier in the breeding 
process, using experimental designs that effectively con-
trol field noise at low levels of within trial replication (e.g., 
p-rep designs). Selection intensity can be increased by 
replacing slow and ineffective pedigree selection, which 
requires visual selection of widely spaced plants in each 
inbreeding generation and is therefore extremely expen-
sive in terms of time and labor, with single seed descent 
and bulk generation advancement techniques that rapidly 
move lines to fixation without selection, relying on MAS 
and a single visual selection step to ensure that only lines 
with appropriate plant type, phenology, and high-value 
haplotypes for disease resistance, stress tolerance, and 
quality are advanced to expensive multi-location trials. 
It should be noted, however, that returns on investment 
in both accuracy and selection intensity offer expensive 
pathways to increased genetic gain; investments in accu-
racy through increased replication rapidly run into dimin-
ishing returns once heritability exceeds 0.5 or so, and the 
relationship between genetic gain and selection intensity 
(i.e., population size) is roughly logarithmic rather than 
linear, meaning that a tenfold increase in program size is 
needed to double genetic gain. Modestly scaled breeding 
programs can achieve good genetic gains with stage one 
yield trials consisting of four or five well-managed p-rep 
trials conducted at locations representative of the TPE, 
with roughly 200 entries already fixed for phenology, plant 
type, and must-have qualitative traits, applying a selection 
intensity of 5% to maintain an effective population size of 
at least 10 per cycle.

The most underutilized pathway to increased genetic 
gains is likely reduced cycle time. Breeding cycles can 
be accelerated by immediately advancing parents selected 
from stage one testing for use as parents of the next cycle; 
additional years of testing are unlikely to increase accu-
racy of breeding value estimation enough to compensate 
for slower breeding cycles (of course, additional testing is 
needed before commercialization). Much greater reduc-
tions in cycle time can be achieved by selecting parents on 
the basis of breeding value before they are inbred to near 

fixation, an approach whose efficacy was confirmed in a 
large number of recurrent selection experiments in maize, 
small grains, and legume crops in the 1960s through the 
1990s. Classic, closed recurrent selection breeding plans 
can be made much more effective by integrating genomic 
selection. Accelerating the breeding cycle in such schemes 
can deliver genetic gains equivalent to those delivered 
in much larger and more expensive breeding programs 
that cycle more slowly and apply higher selection inten-
sity each cycle. The greatest reductions in cycle time are 
achievable with pure genomic selection breeding plans 
(e.g., Gaynor et al. 2016), in which no inbreeding or phe-
notyping is conducted between cycles of recombination; 
however, such plans require extremely large and expen-
sively produced training populations to deliver selection 
accuracy, and are unlikely to be feasible in many crop spe-
cies for some years.

The changes outlined in this discussion will require 
some initial investment on the part of most breeding pro-
grams, but will result in greater genetic gains per dollar of 
operating budget. More importantly than additional invest-
ment, the modernization of public breeding programs will 
require strong support and guidance from research manag-
ers. Research managers in the CGIAR and national breeding 
programs must clearly convey to breeding teams that they 
will be supported in and held accountable for the delivery of 
genetic gains in product profiles valued by farmers, proces-
sors, and consumers. External evaluation and consultancy 
will often be needed to help programs design and imple-
ment these changes, as programs rarely have all the neces-
sary skills in-house.

A critical change that must be supported by research man-
agers is shifting away from performance evaluation systems 
that emphasize the number of journal articles published 
or varieties released and toward the contribution of team 
members to the overall objective of generating genetic gain 
in the product profile. This will require understanding how 
individual team members contribute to the overall process 
and designing performance metrics accordingly.

Taken together, the improvements in product focus, selec-
tion accuracy, selection intensity, and cycle length, driven 
by the effective application of new genotyping, phenotyp-
ing, and decision support technologies, have the potential to 
raise the current rate of genetic gain in the staple food crops 
produced by farmers in the developing world from a cur-
rent rate that is likely well under 1% annually (and in many 
instances not significantly different than zero) to at least 2%. 
In the process, farmers will be better protected against a 
rapidly changing climate and better able to adapt to rapidly 
commercializing production systems.
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