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Abstract: Reservoir computing (RC) is a potential neuromorphic paradigm for physically realiz-
ing artificial intelligence systems in the Internet of Things society, owing to its well-known low
training cost and compatibility with nonlinear devices. Micro-electro-mechanical system (MEMS)
resonators exhibiting rich nonlinear dynamics and fading behaviors are promising candidates for
high-performance hardware RC. Previously, we presented a non-delay-based RC using one single
micromechanical resonator with hybrid nonlinear dynamics. Here, we innovatively introduce a
nonlinear tuning strategy to analyze the computing properties (the processing speed and recognition
accuracy) of the presented RC. Meanwhile, we numerically and experimentally analyze the influence
of the hybrid nonlinear dynamics using the image classification task. Specifically, we study the
transient nonlinear saturation phenomenon by fitting quality factors under different vacuums, as well
as searching the optimal operating point (the edge of chaos) by the static bifurcation analysis and
dynamic vibration numerical models of the Duffing nonlinearity. Our results in the optimal operation
conditions experimentally achieved a high classification accuracy of (93 ± 1)% and several times
faster than previous work on the handwritten digits recognition benchmark, profit from the perfect
high signal-to-noise ratios (quality factor) and the nonlinearity of the dynamical variables.

Keywords: nonlinear dynamics; reservoir computing; micromechanical resonator; pattern recognition

1. Introduction

Currently, artificial neural networks (ANN) [1] are widely used in the emerging
field of artificial intelligence (AI) to process a considerable amount of information that
is generated by various terminal sensors all the time. Inspired by the way the human
brain works, recurrent neural networks (RNNs) [2–4] have emerged as one of the most
powerful neuromorphic computing paradigms to solve complex time-dependent tasks.
However, the complex and time-consuming training algorithms to train the connection
weights between the nodes make it computationally expensive and difficult to implement
on hardware. The reservoir computing (RC) [5] paradigm provides a solution to this by
using an RNN with fixed connection weights (the reservoir) to transform inputs into a
higher dimensional representation prior to them being passed to a linear readout layer with
trainable weights. The core features inherited from recurrent neural networks make them
suitable for temporal information processing. Moreover, time multiplexing allows it to be
performed even if the reservoir consists of only a single dynamical node. Virtually any
device or material exhibiting sufficient nonlinear dynamics and fading memory characteris-
tics can be used as a physical reservoir. Such implementations have the potential for lower

Micromachines 2022, 13, 317. https://doi.org/10.3390/mi13020317 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13020317
https://doi.org/10.3390/mi13020317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi13020317
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13020317?type=check_update&version=1


Micromachines 2022, 13, 317 2 of 10

energy costs than traditional software implementations of RC (echo state networks [6,7]
or liquid state machines [8]) as they can directly utilize the intrinsic characteristics of the
physical systems. This has led to a wide range of systems being proposed as suitable
reservoirs, such as electronic devices [9,10], optoelectronics [11–15], spintronic devices [16],
memristors [17–22], and micromechanical resonators [23–25].

Particularly, micromechanical resonator-based RC combines the advantages of the
micro-electro-mechanical system (MEMS) devices [26,27] and the physical RC [28,29], such
as small size, low consumption, compatibility with CMOS technology or MEMS sensors
(MEMS accelerometers, MEMS pressure sensors, and so on), rendering it convenient to
process sensing signals in the analog domain directly (especially signal identification and
classification), and greatly reduces the amount of redundant terminal data and improves
the security of information. Very recently, a single silicon beam resonator device was first
proposed to achieve RC using a classical Duffing nonlinearity as the source of nonlinearity
and was found to have huge potential applications in combining the functions of sensing
and computing [23]. However, these studies mainly focused on the pioneering realization of
new RC hardware such as single beam resonators and neural accelerometers [23,24], while
the in-depth exploration of the relationship between the nonlinear mechanism of MEMS
devices and the RC performance is lacking. In our previous study, we first proposed a
novel RC architecture using a single hybrid nonlinear (HNL) resonator [25] and verified its
competitive performance through different tasks. Furthermore, we originally demonstrated
that the transient nonlinearity affects the memory capacity of the reservoir and part of the
nonlinear mapping ability at the same time, while the duffing nonlinearity of the resonator
provides the main nonlinear mapping function. The combination of the two nonlinearities
(HNL) achieved high recognition accuracy and increased the processing speed by hundreds
of times compared with the original time-delay feedback RC architecture.

Here, we propose a hybrid nonlinear combinatorial modulation strategy to search for
the optimal operating condition to achieve higher accuracy and faster computing speed
for the hardware RC we have presented in our previous work. Furthermore, we study
the physical mechanism of the influence of two nonlinearities in-depth by constructing
experimental and simulation models. Meanwhile, we study the transient nonlinear sat-
uration phenomenon by fitting quality factors under different vacuums, as well as the
static bifurcation analysis in the Hamiltonian system and the dynamics vibration analysis
according to the numerical model in the Duffing nonlinearity. The results demonstrate that
the best operating point is located at the edge of chaos [23,30]. Significantly, this work may
offer an optimization method to improve the computing properties of hardware RC using
MEMS devices with similar principles.

2. Hardware RC Implementation

The clamped–clamped silicon beam micro-resonator was fabricated on a (100) p-doped
silicon on glass substrate by the standard Silicon on Glass (SOG) process. The device layer
thickness of T = 40 µm defines the width of the beam, the electrode length is Le = 360 µm,
and the length, in-plane thickness, and the gap between the beam and the drive/sense
electrode were chosen to be L = 500 µm, W = 6.5 µm, and d = 3 µm, respectively. Essentially,
electrostatically actuated MEMS resonators may exhibit rich dynamics, and the parallel
plate drive and detection modes are more prone to complex nonlinearity than comb drive
and detection modes. The actual device SEM diagram of the designed resonator is shown in
Figure 1a, and its displacement can be approximated by the Duffing nonlinear equation [26]:

m
..
z + c

.
z + k1z + k3z3 =

1
2

C0d

(d− z)2 (Vdc + Vac sin Ωt)2 − 1
2

C0d

(d + z)2 (Vdc)
2 (1)

where z,
.
z, and

..
z are the displacement, velocity, and acceleration of the resonator, respec-

tively, wn =
√

k1/m is the natural angular frequency of the resonator in its linear regime,
m is the effective mass of the beam, c is damping term, k1 is linear stiffness term, k3 is Duffing
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nonlinear stiffness term, k1 = 32ETW3

L3 , k3 = k1√
2W3 , E is the Young’s modulus of silicon, C0

and d are the initial capacitance and gap of the parallel plate, C0 = ε0×Le×T
d ≈ 4.307e− 14 F,

ε0 is the permittivity of vacuum, Vdc is the bias voltages, and Vac and Ω are the driving
amplitude and frequency.

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 11 
 

 

where 𝑧, 𝑧, and 𝑧 are the displacement, velocity, and acceleration of the resonator, re-
spectively, 𝑤 = 𝑘 𝑚⁄  is the natural angular frequency of the resonator in its linear re-
gime, m is the effective mass of the beam, 𝑐 is damping term, 𝑘  is linear stiffness term, 𝑘  is Duffing nonlinear stiffness term, 𝑘 = , 𝑘 = √ , E is the Young’s modulus 
of silicon, 𝐶  and d are the initial capacitance and gap of the parallel plate, 𝐶 = × × ≈4.307𝑒 − 14 F, 𝜖  is the permittivity of vacuum, 𝑉  is the bias voltages, and 𝑉  and Ω 
are the driving amplitude and frequency. 

As shown in Figure 1a, the designed micro-resonator was put on a vacuum adjusta-
ble sealed chamber to change the air pressure for different quality factors (Q). Before being 
supplied to the drive electrode, the input signal is preprocessed in the digital domain; the 
LABVIEW (LABVIEW 2019, National Instruments, Texas, United States) program controls 
12-bits NI 6366 X Series Data Acquisition (DAQ) (National Instruments, Texas, United 
States) to realize a conversion of digital to analog, which modulates a sinusoidal drive of 
amplitude and frequency. Simultaneously, the resonator response is measured by MEMS 
interface circuit, then digitized by DAQ, detecting its envelope and down-sampling, be-
fore saving it and triggering the next sample loop. Figure 1b shows an example of a reso-
nator motion driven by the random amplitude modulated sine wave signal with an inter-
val time of θ = 6.25 ms; it depicts the hybrid nonlinear interaction mechanism between 
neurons, which was described in [25]. The best performance of the HNL-RC can be tuned 
by the nonlinear tuning (transient nonlinear and Duffing nonlinear), the transient nonlin-
ear function 𝑥(𝑡) = 𝑥 ± Β × 𝑒  can be derived by the typical linear underdamped sec-
ond-order oscillation system, its nonlinear strength mainly limited with quality factor Q 
when fixed the natural angular frequency 𝑤 . The Duffing nonlinear characteristic re-
sponse is very sensitive to the choice of the reference operating points, which are normally 
determined by testing the amplitude hysteresis curve and frequency hysteresis curve 
shown in Figure 1c,d. Finally, the study of nonlinear physical properties and tuning the-
ory are beneficial to build a better HNL resonator reservoir that will be proved by the 
handwritten digit recognition task below. 

 
Figure 1. Nonlinear dynamics of the double clamped beam resonator under different stimulation. 
(a) Schematic of the experimental setup of the single hybrid nonlinear (HNL) reservoir computer. 
(b) HNL reservoir states response to different amplitude input signals; it depicts the complex con-
nection between neuron nodes. (c) Amplitude sweeping open-loop experiment in different air 

Figure 1. Nonlinear dynamics of the double clamped beam resonator under different stimulation.
(a) Schematic of the experimental setup of the single hybrid nonlinear (HNL) reservoir computer.
(b) HNL reservoir states response to different amplitude input signals; it depicts the complex connec-
tion between neuron nodes. (c) Amplitude sweeping open-loop experiment in different air pressure
and a fixed bias voltage of Vdc = 30 V, to obtain the hysteresis curve about the excitation amplitude
and suitable effective Vac range. (d) Frequency sweep open-loop experiment for a fixed bias voltage
of Vdc = 30 V, Vac = 1 V and Q ≈ 1500, to obtain the driving frequency fd = 189.5 KHz at the front
bifurcation point. (e) Quality factor estimates of the resonator with nonlinear vibrations. It depicts
the fitting result of the data on the left side of the resonate frequency point of the “Sweep up” curve
in (d).

As shown in Figure 1a, the designed micro-resonator was put on a vacuum adjustable
sealed chamber to change the air pressure for different quality factors (Q). Before being
supplied to the drive electrode, the input signal is preprocessed in the digital domain;
the LABVIEW (LABVIEW 2019, National Instruments, Texas, United States) program
controls 12-bits NI 6366 X Series Data Acquisition (DAQ) (National Instruments, Texas,
United States) to realize a conversion of digital to analog, which modulates a sinusoidal
drive of amplitude and frequency. Simultaneously, the resonator response is measured
by MEMS interface circuit, then digitized by DAQ, detecting its envelope and down-
sampling, before saving it and triggering the next sample loop. Figure 1b shows an
example of a resonator motion driven by the random amplitude modulated sine wave
signal with an interval time of θ = 6.25 ms; it depicts the hybrid nonlinear interaction
mechanism between neurons, which was described in [25]. The best performance of the
HNL-RC can be tuned by the nonlinear tuning (transient nonlinear and Duffing nonlinear),
the transient nonlinear function x(t) = x0 ± B× e−

wn
2Q t can be derived by the typical linear

underdamped second-order oscillation system, its nonlinear strength mainly limited with
quality factor Q when fixed the natural angular frequency wn. The Duffing nonlinear
characteristic response is very sensitive to the choice of the reference operating points,
which are normally determined by testing the amplitude hysteresis curve and frequency
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hysteresis curve shown in Figure 1c,d. Finally, the study of nonlinear physical properties
and tuning theory are beneficial to build a better HNL resonator reservoir that will be
proved by the handwritten digit recognition task below.

We performed a benchmark task called handwritten digit recognition that is common
in reservoir computing for hardware implementations. The Mixed National Institute of
Standards and Technology (MNIST) database [31] was created by “remixing” the digit
samples written by high school students and employees of the United States Census Bureau.
Each sample in the dataset was composed of a 28 × 28 gray value matrix. We randomly
selected 1000 samples from the original training database, which contained 100 samples for
each of the digits “0–9” (900 samples as a training set, 100 samples as a test set). The chosen
part of the MNIST handwritten digit database contained 1000 grey images that we called
the GMNIST dataset, and BMNIST is binary images dataset transformed from GMNIST for
the transient nonlinear analysis.

A basic RC system processing of the pattern recognition was performed in the reser-
voir, as shown in Figure 2a. The original grayscale image 28 pixels × 28 pixels was
trimmed to a 22 pixels × 20 pixels image for reducing redundant information. Then,
the 22 pixels × 20 pixels matrix was transformed into 1 × 440 temporal sequences of in-
put pulse streams with separation time θ, and the driver carrier signal was multiplied
at a certain frequency and then placed into the HNL reservoir, which is constructed by
440 “neural” nodes. Finally, we obtained a 440 × 10 readout network that was used for
classification after training. In order to perform the MNIST classification function, ten
appropriate target functions were constructed as ten linear classifiers; each is a polynomial
function composed of the optimal weight coefficient vector w, and to prevent the overfitting
caused by excessive feature information during the training stage, we introduced ridge
regression with Tikhonov regularization (L2 norm) to solve this problem and obtain the
minimum mean square error between predicted value y and target value yt by adjusting
the regularization coefficient λ.
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Figure 2. Handwritten digit recognition using an HNL resonator-based RC system. (a) Schematic
diagram of the training process; put the n× 440 (n is the number of samples) input digits matrix
to the reservoir in sequence, then obtain the states matrix X, and the ridge regression algorithm is
activated to work for the final optimal 10-classifiers weight matrix Wi; (b) Single handwritten digit
test process in the test dataset, signal preprocessing is shown in the yellow box.
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{
yi(t) = wT

i x(t)
wi = ytiX

T(XXT + λI
)−1 (2)

where i is represented different classifiers coefficient, x(t) is an RC response vector of
each sample, X is the data matrix that contains response signals of all samples, and I is a
unit matrix.

After the training process, we applied every test sample to the optimal ten classifiers,
as shown in Figure 2b. It would select the actual digit through a “winner-takes-all” ap-
proach, the predicted results would be picked up from the 10 classifier output results by
the maximum method, then every target function is +0 if the digit does not correspond
to the sought digit, and +1 if it does. Finally, we obtained the recognition accuracy after
comparing it with the target value, and the final accuracy is the average after ten-order
cross-validation.

3. Transient Nonlinearity Tuning

The principle of HNL-RC networks regulation changes due to the introduction of
transient nonlinearity, which exists in the oscillation starting and decay stages of the
resonator compared to the time-delay RC only with Duffing nonlinear source. In the
HNL-RC, the fading memory and the nonlinear richness would be simultaneously changed
through quality factor Q, due to the decay time function T = 2Q

wn
and the transient nonlinear

function; it is different from the time-delay RC that must be adjusting the length of the
mask (M), feedback factor value, and feedback loops under fixed a decay time T. Hence,
all the above analysis points to the kernel parameter, Q, which mainly determines the RC
system’s computation speed and part of the nonlinear mapping capability, so this property
is essential to study and optimize for recognizing and processing temporal sequences.

3.1. Q Value Fitting Model

Conventional quality factor measurement methods include the −3 dB bandwidth
method and ring-down method, etc. [32,33]. However, the measurement condition is
generally linear vibration state, which is not completely suitable for the nonlinear vibration
state. Here, we used a sweep frequency data (SFD) fitting model to estimate Q that is
suitable for linear and nonlinear vibration states. For theoretical analysis, the electrostatic
drive term (Formula (1)’s right side) can be simplified by Taylor expansion, and the third
term can be retained and rewritten as Formula (3), then the detailed derivation process of
the SFD Formula (4) can be seen [32].

m
..
z + c

.
z + K1z + K3z3 = Fact sin Ωt (3)

where K1 = k1 − ke1, K3 = k3 − ke3, ke1, ke3, Fact are the linear, cubic nonlinear electrical

terms, and magnitude of the forcing term at frequency Ω, respectively, ke1 =
2C0V2

dc
d2 ,

ke3 = 3C0
d ke1, Fact =

C0VacVdc
md .

The results R2 = 0.9715 and Qestimate ≈ 1383 using the above transient nonlinear
function to fit the by the ring-down method, and R2 = 0.9999, Qestimate ≈ 1051 using the
SFD fitting function in the same simulation setup (Q = 1000), which proves the superiority
of the SFD fitting method. Figure 1e shows the SFD fitting results for the sweep frequency
experiment in a fixed are pressure, and it provides accurate calibration for the following
experiments to evaluate the influence of Q value on transient nonlinearity.

f = fn

(
1 + bx2 − 1

2Q

√
1
x2 − 1

)
(4)

where fn is represented the natural frequency of the resonator, x = A
Amax

is amplitude ratio,
and A is resonator response amplitude, and b is a simplification factor.
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3.2. Experimental Analysis

In order to avoid the interference of the Duffing nonlinearity on the classification
performance of the system as much as possible, we introduced the BMNIST database that
is composed of binary data. Firstly, the Q value was estimated by the SFD fitting model
in different air pressures, and we chose four different Q as the verification experiments
according to the real test conditions. Figure 3a illustrates the classification accuracy im-
proves from 77% to 89% in the experimental results, which reveals the increased noise
and weak nonlinear strength in a low-Q environment decrease the system recognition
performance, the simulation accuracy also increased by 3% under the same parameters
setup as possible without system noise, and more Q values are chosen for deeper study.
Similar to the saturation conclusion, the accuracy is not improved with a larger Q than the
optimal value. The histogram distribution about the response digits “7” and “9” is more
intuitive. Figure 3b implies that it is easier to distinguish between the optimal Q value
than lower. The computing speed is several times improved while ensuring the nonlinear
richness of the reservoir is unchanged by tuning the Q value, which can commonly be used
in almost all hardware-RC implementation systems with a similar principle.
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Figure 3. BMNIST classification results in simulation and experimental tests. (a) Classification
accuracy with different Q. The test conditions of the experiment are Vdc = 30 V and Vac = 1.5 V,
fd = 189.5 KHz, the optimal θ = 1

2 T. (b) Calibration results about Q vs. Pressure by sweep frequency
data (SFD) model; different pressures were adjusted by the vacuum chamber needle valve, and the
BMNIST experiment was carried out under four stable pressure conditions chosen from this result.
(c) Histogram distribution of HNL-RC states output for a single sample.
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4. Duffing Nonlinearity Tuning
4.1. Experimental Analysis

In the HNL-RC architecture, Duffing nonlinearity is the most essential source of
nonlinear richness for pattern classification tasks. Thus, to obtain insight into the optimal
operating conditions, we investigated the image recognition systematically in a wide range
of the amplitude Vac. We turned to evaluate the gain in overall performance provided by
the experiments at the optimal Q. The GMNIST dataset is used to test Duffing nonlinearity
performance due to taking into account the richer nonlinear response triggered by multi-
valued information. The classification performance is expressed in two ways: the error rate
that shows the percentage of digits that have been wrongly classified, and the t-Distributed
Stochastic Neighbor Embedding (t-SNE) technique to represent our reservoir response data
in a 2D plot (see Figure 4b) to visualize how the data separation occurs and understand the
recognition capacity of the different operation point.
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Figure 4. Optimal Duffing nonlinear working interval for handwritten digit recognition. (a) Clas-
sification error rate results after simulation and experiment by changing the driving voltage Vac.
The best–recognized accuracy is (93± 1)% when Vac = 5 V, Vdc = 30 V and fd = 189.5 KHz,
Q ≈ 1500. (b) Two–dimensional representation of the two t-SNE components: left one with Vac = 1 V,
right one with Vac = 5 V in (a).

Overall, as shown in Figure 4a, for a wide range of values of Vac, the Duffing nonlin-
earity gradually reduces the classification error rate, except for the point Vac = 1 V due to
the input signal data being distributed on the upper and lower branches of the amplitude
hysteresis curve so that the correlation between the contexts is de-correlated. An optimum
nonlinearity is reached for Vac = 5 V providing the highest classification rate of (93± 1)%,
which is visualized by t-SNE in Figure 4b. During the data reduction, the probability of
two vectors being neighbors is conserved, allowing visualization of the structure in the
data. Each digit is represented by colored dots for all data points of the utterances.

4.2. Simulation Analysis

In particular, the error rate drastically increased when the Vac > 5 V, even the res-
onator fails. In order to have a deep insight into the resonator vibration, static bifurcation
analysis of the Hamiltonian system is carried out to obtain the bifurcation sets. In this
theoretical analysis, the dissipation and excitation voltage can be regarded as small pertur-
bations, and the premises are Vdc � Vac and high Q value. Furthermore, some particular
phenomena may be overlooked by Taylor’s expansion of the electrostatic force when static
bifurcation analysis is carried out. Therefore, the corresponding non-dimensional equation
of the Hamiltonian system of Formula (5) [34–36] without any approximation would be
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more appropriate to investigate the whole equilibrium position property and complicated
vibration properties of the resonator.{ .

x = y
.
y = −αx− βx3 + 4γx

1−2x2+x4 + ε
(
−µy + 2γVac sin wτ

Vdc(1−2x+x2)

) (5)

Introduce the following non-dimensional variables:

τ = wnt; w =
Ω
wn

; x =
z
d

; α =
k1

m× w2
n

; β =
k3d2

m× w2
n

; γ =
C0V2

dc
2m× w2

n × d2 (6)

Figure 5a shows the number of abscissa coefficients varies (equilibrium positions) as
the variation of Vdc under β = 0.15 (determined by the resonator size). Here, the static

pull-in voltage can be derived by γ = (1+β)3

27β2 , which detailed analysis in [35] under different
β and γ conditions. In the analysis model, the Vpull−in ≈ 93 V can be represented as the
boundary when the perturbations are assumed to be small enough, the method of multiple
scales is generally used to investigate the dynamic nonlinear behavior of the resonator with
small Vac for explaining the above experimental results. However, the excitation amplitude
to be studied exceeds the boundary condition of theoretical analysis; hence, we constructed
the numerical model using Formula (1) to study the changes in nonlinear vibration by the
phase portraits. As shown in Figure 5b–e, which illustrates the displacement–acceleration
and the displacement–velocity phase portraits for an AC voltage of 5 V and a pull-in AC
voltage 5.3 V in the fixed DC bias 30 V, the dynamics system results verify the optimal
operating point occurs at the edge of chaos, as observed before.

Detailed numerical studies, including phase portrait, bifurcation diagram, and Poincare
map, demonstrate the analytical prediction and reveal the effect of excitation amplitude on
the system transition to chaos, and this procedure can be observed more obviously between
stable and pull-in states in the special resonator size [37].
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Figure 5. Simulation models to analyze the complex nonlinear oscillations (nonlinear/chaotic region)
in the electrostatic resonator. (a) Static bifurcation of the Hamiltonian system versus Vdc under fixed
β (solid line is the one stable center point; points are unstable saddle points), (b,c) Phase plots of the
steady period response at an AC voltage (5 V): no AC symmetry breaking, (d,e) Phase plots of the
steady period response at a boundary critical AC voltage (5.3 V): AC symmetry breaking and pull–in.

5. Conclusions

To summarize, we numerically and experimentally studied the mechanism and op-
timization method of the micromechanical resonator-based RC with hybrid nonlinear
dynamics and innovatively introduced a nonlinear tuning strategy to analyze the com-
puting properties (the processing speed and recognition accuracy) of the presented RC.
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Specifically, we studied the influencing mechanism of transient nonlinearity by fitting
quality factors through the SFD equation under different vacuums. Furthermore, we nu-
merically verified its saturated nonlinear characteristics and corresponding optimal values,
which increased the processing speed of the system several times. Additionally, both the
static bifurcation analysis and dynamic vibration numerical model were used to prove
the optimal Duffing nonlinear operating point is the edge of chaos, which is intuitively
observed by the phase portraits and t-SNE plots, as well as the high handwritten digits
recognition accuracy of (93± 1)% experimentally under the optimal conditions. Our results
demonstrate that the HNL-RC architecture based on micro–resonator can achieve higher
speed information processing capabilities and recognition accuracy by the above strategies
of nonlinear tuning, which is very suitable for pattern recognition tasks and pave a way to
build a better physical reservoir.
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