
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

IEEE TRANSACTIONS ON MULTIMEDIA 1

Enhancing the Robustness of Neural Collaborative
Filtering Systems Under Malicious Attacks
Yali Du, Meng Fang, Jinfeng Yi, Chang Xu, Jun Cheng, and Dacheng Tao, Fellow, IEEE

Abstract—Recommendation system has become ubiquitous in
online shopping in recent decades due to its power in reducing
excessive choices of customers and industries. Recent collabo-
rative filtering methods based on the deep neural network are
studied and introduce promising results due to their power in
learning hidden representations for users and items. However,
it has revealed its vulnerabilities under malicious user attack.
With the knowledge of a collaborative filtering algorithm and
its parameters, the performance of this recommendation system
can be easily downgraded. Unfortunately, this problem is not
addressed well, and the study on defending recommendation
systems is insufficient.

In this paper, we aim to improve the robustness of rec-
ommendation systems based on two concepts: stage-wise hints
training and randomness. To protect a target model, we introduce
noise layers in the training of a target model to increase its
resistance to adversarial perturbations. To reduce noise layers’
influence on model’s performance, we introduce intermediate
layers’ outputs as hints from a teacher model to regularize
the intermediate layers of a student target model. We consider
white box attacks under which attackers have the knowledge of
the target model. The generalizability and robustness properties
of our method have been analytically inspected in experiments
and discussions, and the computation cost is comparable to
training a standard neural network-based collaborative filtering
model. Through our investigation, the proposed defensive method
can reduce the success rate of malicious user attacks and
keep the prediction accuracy comparable to standard neural
recommendation systems.

Index Terms—Recommendation Systems, Adversarial Learn-
ing, Collaborative Filtering, Malicious Attacks

I. INTRODUCTION

In the recent decade, recommendation systems have be-
come a pivotal tool for both industries and customers due
to information explosion on the Internet. On the one hand,
customers rely on recommendation systems to generate the
list of items that are possibly favored by customers without

Y. Du is with Faculty of Engineering and Information Technology, Univer-
sity of Technology Sydney, 81 Broadway Street, Ultimo, NSW 2007, Australia
and the UBTECH Sydney Artificial Intelligence Centre and the School
of Information Technologies, the Faculty of Engineering and Information
Technologies, the University of Sydney, 6 Cleveland St, Darlington, NSW
2008, Australia(e-mail: yali.du@student.uts.edu.au).

M. Fang is with the Tencent AI Laboratory, Shenzhen 518057, China (e-
mail: moefang@gmail.com)

J. Yi is with JD AI Research, Beijing 100020, China (e-mail: yijin-
feng@jd.com)

J. Cheng is with Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China (e-mail:
jun.cheng@siat.ac.cn)

C. Xu and D. Tao are with the UBTECH Sydney Artificial Intelligence Cen-
tre and the School of Information Technologies, the Faculty of Engineering
and Information Technologies, the University of Sydney, 6 Cleveland St, Dar-
lington, NSW 2008, Australia (email: {c.xu, dacheng.tao}@sydney.edu.au).

skimming through the enormous choices [1], [2]. On the
other hand, industries aim to build effective recommendation
systems that can predict users’ potential interests in unseeing
items and thus make appropriate recommendations to generate
revenue [3]. Successful recommendation systems are capable
of correctly modeling users’ favor over items based on their
previous interactions, such as ratings, review comments [4].
The key to building this effective recommendation system is
modeling the hidden factors of both users and items relying on
human feedback [5], [6]. Matrix factorization has become one
of the most successful approaches that map users and items
into a shared hidden space, and then predict new ratings by
the interaction of user and item’s latent representations [6],
[7]. Recently, deep learning algorithms are used to discover
good representations of users and items due to their power in
learning discriminative representations of different examples
[8], [9], [10], [11], [12] and achieve good results.

By using these recommendation algorithms, such as fac-
torization based approaches, the developers make an implicit
assumption that they are secure. However, due to the open
property of recommendation systems [13], [14], recent works
show that factorization based approaches are vulnerable to
malicious user attacks [15]. Malicious users are threatening
artifacts to the recommendation systems that can be crafted if
the adversary knows the architecture of the recommendation
system or legitimate user data [15], [16], [17]. Attackers, on
the one hand, try to craft malicious user data that degrade
the system’s performance, on the other hand, they will keep
their behaviors close to normal users to avoid detection. In
attacking a recommendation system, malicious users’ goals
are diversified. By carefully exploit from training data and the
structure of recommendation systems, adversaries can mislead
the system to produce the target value that is far from the
ground truth to achieve their malicious goals. The general
purpose for an adversary falls into two categories: to promote
(or demote) the popularity of a specific set of items and
decrease the overall accuracy of the target recommendation
systems to downgrade users’ trust on it [18]. One important
rule for crafting malicious examples for collaborative filtering
is to keep the adversarial data close to the legitimate data,
making them hard to be detected by the human.

Different attacks such as random attacks and push attacks
have been investigated [16], [17], [18]. While [16], [17]
are both built upon the neighbor-based collaborative filtering
system. [15] proposes a more aggressive data poisoning attack
to decrease the general performance of collaborative filtering
models which is based on full knowledge of the learning
algorithm and training data. By solving a min-max objective

IEEE TRANSACTIONS ON MULTIMEDIA 2

function, the optimal set of malicious users can be reached
to contaminate collaborative filtering system’s performance.
Despite these attack strategies on collaborative filtering sys-
tems, the defense approaches for collaborative filtering are
limited [15]. A close line of established research in robust
collaborative filtering lies in robust matrix completion [19],
[20], [21] in which a few entries or columns are randomly
perturbed. However, none of them handle maliciously con-
taminated features for collaborative filtering.

In this paper, we focus on designing an effective training
paradigm for obtaining robust collaborative filtering models.
We investigate the recent popular neural network based col-
laborative filtering algorithms and design defensive methods
for trustworthy collaborative filtering. Inspired by knowledge
distillation [22], [23], we consider to build our training
paradigm by using knowledge from different layers of a
teacher model to improve the training of student models. The
standard collaborative filtering model is treated as a teacher.
We use the similar structure to build a student collaborative
filtering model. Extra noise layers are added before dense
layers in a student model to improve its robustness to small
perturbations. Note that the student model usually has the same
or smaller size than the teacher model and the discrepancy
between dimensionality of intermediate layers from teacher
and student can be mitigated by a mapping function. By
introducing intermediate representations from a teacher, we
first make the student model to learn to predict the intermediate
representations of the teacher, then train the whole student
model. The noise layer enforces the student network to learn
the neural layers that are robust to perturbations [?], and the
hints training paradigm regularizes the student model to have
similar performance to the teacher model.

We summarize the contributions of this paper in the follow-
ing:

• We propose an effective training strategy to obtain ro-
bust neural network based collaborative filtering system.
Moreover, our model is one of the first works addressing
this problem.

• We analytically demonstrate that the proposed framework
can reduce the system’s sensitivity to adversarial gradi-
ents exploited by malicious users and retain accuracy in
predictions.

• We experimentally verify that our proposed neural collab-
orative filtering algorithm performs to be less sensitive to
adversarial perturbations generated by the state-of-the-art
C&W attack than approaches that do not deploy our de-
fensive training strategy and retain accuracy comparable
to standard models.

The rest of this paper is structured as follows. In Section
II, we discuss related works. We introduce preliminary knowl-
edge of neural collaborative filtering approach and the attack
strategy in Section III. The formalization of our method is
presented in Section IV followed by analytical discussion in
Section V. Empirical verifications are presented in Section VI
and the paper is concluded in Section VII.

II. RELATED WORKS

In this section, we briefly review the collaborative filtering
algorithms, the threatening factors to them and possible trans-
ferable robust training techniques from other applications.

Collaborative filtering contains two main group of ap-
proaches: nearest neighbor-based [24] and model-based ap-
proaches [25], [26]. For nearest neighbor-based algorithms, a
user’s (item’s) preference is estimated from users (items) that
have similar profiles with it. For model-based collaborative
filtering, a parametric model is constructed and the estimated
from the observed interactions between users and products,
henceforth makes predictions on unseen entries. Model-based
methods have been proved to be superior to neighbor-based
methods, and among them, matrix factorization algorithms
[27], [28], [29] are the most popular model-based collaborative
filtering techniques. Factorization-based methods estimate the
hidden user and item factors from their past interactions and
make predictions by multiplication of estimated user and
item factors. To boost the collaborative filtering performance,
another established line of works make use of side information
and construct inductive matrix completion model [30], [31].

An effective recommendation system heavily relies on accu-
rately modeling the hidden representations for users and items.
Due to the power of neural networks in representation learning,
recently neural network-based collaborative filtering (NeuCF)
becomes popular and claims promising performance on a set
of benchmarks. Neural network-based collaborative filtering
models take paired user and item features as inputs [9], [10].
Through feature embedding layers, user and item features
are projected into their respective latent space ensuing by
different neural network layers and activation functions. [10]
utilizes bilinear decoder to map the embedded user and item
factors to ratings, and [9] uses a linear classifier with sigmoid
activation function. While autoencoder-based approaches [32]
take either item or user feature as inputs, they can be treated as
a special case of standard NeuCF architecture. [11], [33] share
similar architectures to autoencoder-based models but utilizes
a stochastic approach. Instead of ReLU or logistic units, [33]
utilizes stochastic units with a particular distribution such as
binary of Gaussian, while [11] proposes a more advanced
model capable of handling high dimensional binary vectors.

While many works have been devoted to improving the per-
formance of recommendation systems from different aspects,
such as proposing new algorithms, employing various content
information or side information, the security of collaborative
filtering algorithms is not broadly studied. Below we first
introduce attacking techniques ensuing by studies on defensive
models.

In [16], [17], [18], researchers study attacks on neighbor-
based collaborative filtering. [15] studies data poisoning attack
on factorization-based recommendation systems, which attacks
during the training phase of collaborative filtering. [34] shows
that the accuracy and robustness reaches a balance. While they
achieve superior performance in impairing existing algorithm’s
performance, the investigation of the provable defense strategy
is limited. A trending topic that attracts huge attention is the
vulnerabilities of deep neural networks (DNN) [35], [36], [37].

IEEE TRANSACTIONS ON MULTIMEDIA 3

By adding some imperceptible perturbation to the image, the
classification results DNN might vary a lot, owing to the
finding in [35] that the smoothness assumption lying under
many kernel methods does not hold. Different attacks claim
overwhelming success in generating adversarial examples. To
name a few, fast gradient sign method (FGSM) [36] generates
adversarial perturbations in the direction of loss function gradi-
ents; Jacobian Saliency Map Attack (JSMA) [37] estimates the
output’s sensitivity to input feature dimensions and modifies
the most impactive features until it varies the classification;
and C&W attack solves an optimization problem to find
malicious perturbed images. Through light modifications to
these attacks, they can be applied to Neural collaborative
filtering algorithm as well.

Compared with the adversarial attack, the defense is a much
more challenging task, and fewer works have been devoted
to this problem, especially in the area of recommendation
systems. Distillation [38] is proposed as a defense to adver-
sarial perturbations through training a student network guided
by a teacher [39]. By training a network with soft labels,
the distilled network will be prone to avoid over-fitting on
training data, and thus be robust to maliciously perturbed
inputs lying on the “blind spots” of non-linear networks. It can
significantly reduce the effectiveness of adversarial examples
on DNNs. However, Carlini and Wagner propose a powerful
attack (C&W attack) that can still acquire high success rate
on DNNs trained with defensive distillation [40]. Several
variations includes [?], [41] follow a similar framework to
C&W attack. The C&W attack has been recognized as the
state-of-the-art white-box attack.

III. PRELIMINARIES

We first revisit the matrix factorization (MF) in collaborative
filtering algorithms and then neural network based collabora-
tive filtering, which is the target model of attack and defense
in this work. Then we describe adversarial attack details for
the model in recommendation systems.

Notations: Throughout this paper, we consider histograms
of dimension n + 1. We use bold upper case letters X for
matrices, and bold lower case letters x for vectors. Lower
case letters stand for scalars in R.

A. Neural Collaborative Filtering

Consider a recommendation system with Ni users and Nj
items and let i, j indicate i-th user and j-th item respec-
tively, we denote the observed rating value as rij such that
i ∈ [Ni], j ∈ [Nj] which indicates the interactions between
users and items. Let rij ∈ {1, 2, ..., L} and Ω denote the
index set of m observations with (i, j) ∈ Ω and R denote the
underlying rating matrix. One would be interested in finding
hidden factors of users and items and predict the interactions
between them in the following factorization form:

rij = uiv
>
j , (1)

where root mean square error is often applied to measure the
recovery distance between ground truth ratings and predicted
ones. Based on the side information of customers and products,

FC layers

MLP layers

Encoder

User Item

𝒓𝒊𝒋

Predictor

Embeddings

Latent vectors

Embeddings

Latent vectors

Fig. 1: Overview of a neural collaborative filtering architecture.
It encodes user and item features, then uses multi-layer per-
ceptrons to process their hidden representations, and generates
rating predictions after fully-connected (FC) layers.

inductive matrix completion (IMC for short) assumes that
ratings are generated by multiplying feature vectors of users
and items to an unknown low-rank matrix. Based on this fact,
rating predictions can be generated by rij = xiMy>j , where
xi ∈ Rdx and yj ∈ Rdy denote the features for i-th user and
j-th item respectively, dx and dy are the dimension of user and
item profile features. M ∈ Rdx×dy is the underlying matrix
that aligns user and item side features.

Neural collaborative filtering is an extension based on
classical collaborative filtering models. As shown in Figure
1, neural collaborative filtering takes user and item IDs pi
and qj as input and encodes them to hidden representation as
hidden factors. The embedding vectors for users and items are
concatenated together and then feed to multi-layer perceptron
layers. Denote the concatenated embeddings as π,

π(pi, qj) =

[
emb(pi)
emb(qj)

]
,

the neural collaborative filtering algorithm can be formulated
as:

f(pi, qj) = φout(φX(...φ2(φ1(π(pi, qj)))...)), (2)

where φ(·) is dense layer with respective activation functions.
Since neural collaborative filtering aims to predict implicit
feedbacks between users and items, the output layer is a sig-
moid activation function and f(pi, qj) output the probability of
if pi is relevant to qj . In this work, we make slight modification
to the input by including side information together with user
and item IDs. The concatenated embedding of users and items
are now

π(pi, qj) =

emb(pidi)

emb(pfeai)
emb(qidj)

emb(qfeaj)

 .
In the following, we will introduce attacks on the user and
item’s features to mislead the model to make wrong decisions.

IEEE TRANSACTIONS ON MULTIMEDIA 4

B. Adversarial attacks

Previous works have shown that certain vulnerabilities of
recommendation systems should be taken into consideration
[15], [16], [17]. We consider the situation that adversary at-
tacks a given neural collaborative filtering model to downgrade
its overall performance. To answer how adversary craft ficti-
tious user or item data to contaminate the model performance
in the testing phase, we hence introduce the C&W attack [40]
which has been recognized as the most powerful white-box
attack.

For neural collaborative filtering system, we have two inputs
from users and items. To jointly attack both user and item
features, the adversary generally adds small perturbations
(δpi, δqj) into the input features such that F (pi + δpi, qj +
δqj) 6= rij . C&W attack generates adversarial perturbations
by solving an optimization problem. Due to the binary nature
of implicit feedback prediction problem, we slightly changing
the adversarial goal of C&W attack to make the NeuCF model
make less confident predictions, which is formulated as:

minδpi,δqj ‖δpi‖+ ‖δqj‖
s.t. f(pi + δpi, qj + δqj) ≤ 0.5.

(3)

This problem is equivalent to the following form:

minδpi,δqj‖δpi‖+ ‖δqj‖+ c · f(pi + δpi, qj + δqj) (4)

where c is a suitable constant. The norm in the objective is
specified depending on the perturbation shapes that adversary
chooses. The perturbations can be small variations on all
dimensions or sufficient alternations on a selected group of
feature dimensions. Therefore, L1, L2 and L∞ norm can be
employed on the objective in Equation (3). Since it is easier
to perturb the user’s features than the item’s in practice, it will
not be necessary to perturb pi and qj at the same time. Notice
that C&W attack is a white-box attack algorithm in which both
the architecture and weights in F are known. An adversary can
thus solve Equation (4) by optimization methods.

IV. STAGE-WISE HINTS TRAINING FOR ROBUST NEURAL
COLLABORATIVE FILTERING

Our approach contains two main components: stage-wise
hints training and randomness. We design a teacher-student
architecture based on knowledge transfer. The student model
is similar to the structure of the teacher and but noise layers
are deployed before each dense layer. First, we train basic
collaborative filtering as a teacher. Second, we train a student
model stage-wisely with different hints, which are intermediate
representations from the teacher. Last, we train the whole
student network with knowledge distillation.

A. Knowledge transfer from a teacher

Inspired by distillation network [22], we start our method
with a basic model named as a teacher. We follow the same
structure as used in [9] and include side information to
construct a feature-based neural collaborative filtering network
that takes user and item information as input and output
implicit feedback of whether (user, item) pairs have interaction
before.

MLP layers

User Item

MLP layers

Encoder

User Item

Hints 𝜽𝑯
Guided
𝜽𝑮Hints 𝜽𝑯

Guided
𝜽𝑮

FC layers
FC layers

Noise layer

Teacher Student

2

𝜽𝑮

1

Fig. 2: The graph illustration of student training procedure:
(i) Step 1 is the hints training process which aligns the
output between intermediate layers of teachers and students;
θr denotes the regression parameters that align the output
dimension of teacher and students; (ii) Step 2 is the knowledge
distillation training process with noise layers added before
MLP layers.

At first, we choose a hidden layer of the encoder of the
teacher and obtain the output of this layer and use this output
as the knowledge for transferring. The knowledge is also called
hints because it allows a student network to mimic it [23]. In
this way, the student network is guided by the knowledge from
the teacher. The knowledge is constructed by using the hints
module, defined as

hki = embH(pi, qj , θH), (5)

where θH denotes the parameters for hints module which
is a subnet of teacher network up to the respective hidden
layer, and embH indicates the corresponding deep nested
functions. hki denotes hints knowledge and ki is the index
of intermediate layer.

We also have a student model, which has a similar archi-
tecture with the teacher but it can be a thinner and deeper
network than the teacher. We transfer the knowledge hki from
the teacher to the student. We use this knowledge as the output
of a hidden layer of the encoder of the student to control how
to train the student. Thus the training of the student network
is guided by this knowledge. When training the student, there
is a guided module in the student. This part is controlled by
hki , that is

L(θG, θr) =
1

2
||hki − σ(θr · embG(pi, qj , θG) + b)||. (6)

We add a regressor parameterized by θr on top of the guided
layer of the student in case that the sizes of the student and
teacher are different.

Figure 2 shows the hints transfer from embedding layers of
a teacher to a student before feeding to Multi-layer perceptron
(MLP). The teacher has a larger dimension for user and item’s
embeddings. Thus θr is introduced to map the student model’s
embedding to the space of the teacher model’s embedding.

Finally, based on pre-trained parameters in guided layers,
we train the parameters of the whole student network with

IEEE TRANSACTIONS ON MULTIMEDIA 5

knowledge distillation. The distilled model is trained by the
following objective function:

minθF −
1

|Ω|
∑

(i,j)∈Ω

∑
l∈{1,...,L}

Fl logF dl (pi, qj), (7)

where F is the output of softmax layer of teacher model,
F d indicates that of student model and θF is the whole set
of parameters for F . {1, ..., L} denotes the label set. As we
predict implicit feedbacks, 1 indicates pi is relevant to qj
and 0 otherwise [9]. We have binary output and the objective
function for distillation is structured as following:

− 1

|Ω|
∑

(i,j)∈Ω

(1− F1) log(1− F d1 (pi, qj))F1 logF d1 (pi, qj),

(8)
If the amplitude of adversarial gradients is high, executing

cost of adversary will be low, since altering the input, the
variations of outputs will vary a lot. In this way, a good way
to protect the model from being attacked is to reduce the
variations around inputs.

B. Stage-wise hints training of the student model

Rather than learn from only the softmax layer or an inter-
mediate layer of the teacher, we train the student model stage-
wisely based on hints from different layers of the teacher. We
allow different hints obtained from the same teacher, which
is different from the usage of distillation in previous works.
Based on Equation (5), we choose different size of modules
and then obtain different hints h1, · · · , hm corresponding to
these modules respectively. For stage-wise training, the guided
module in each stage in the student model is different and
follows the rule from shallow to deep.

We summarize the stage-wise training regime in Algorithm
1. By setting a standard collaborative filtering model as the
teacher, we choose m hints modules from teacher model and
m guided modules from the student model. Then we update
the student network by m stages. We train the student model
from shallow to deep, which implies that g1 < g2 < ... < gm
and h1 < h2 < ... < hm. After stage-wise hints training, the
student model is acquainted with knowledge from the teacher
and can predict the intermediate representations of the teacher
model.

C. Randomness by injecting noises

As mentioned in Section IV-A, to protect the model from
being attacked one need to reduce the variations around inputs.
This is not easy to be controlled during white-box attacks. On
the contrary, we train the collaborative filtering model that
is robust to variations of inputs. We consider improving the
robustness of neural networks by adding randomness into the
network structure. In particular, we introduce a new “noise
layer” that fuses input vector with a randomly generated noise,
defined as

θiS ← θiS + ε, ε ∼ N (0, δ2), (9)

where θiS is i-th layer student model. If ε = 0, no noise is
introduced. If ε > 0, through minimizing Equation (6), we

Algorithm 1 A sketch of stage-wise hints training based on
a pre-trained teacher model

Input: teacher network θT , student network θS , g1, ..., gm,
h1, ..., hm

Output: student model acquainted of transferred knowledge
θ∗S

1: for m hints modules do
2: θH ← {θ1

T , ..., θ
hi

T }
3: θG ⇐ {θ1

S , ..., θ
gi
S }

4: initialize θr
5: Choose a intermediate layer from the teacher T and

generate a hint hm
6: Train the guided layers of the student using hm

θ∗G = arg minθG L(θG, θr)
7: {θ1

S , ..., θ
gi
S } = {θ∗1G , ..., θ

∗g
G }

8: end for

are looking for a student model that spans the same space of
activations of teacher model but is robust to perturbations as
well.

The noise introduced in training time is crucial for increas-
ing the target model’s robustness to perturbations. Through
hints training strategy, the guided layer will be robust to the
perturbations as well as produce similar results to the hints
layer. The final step is training the student model by knowledge
distillation strategy. Figure 3 shows the framework of the
proposed method. The teacher model generates several useful
hints and distills the knowledge to student model by different
stages.

D. Relation to other works

The stage-wise hints training with knowledge distillation
can be seen as a particular form of curriculum learning [42].
By choosing a proper sequence of tasks to learning, curriculum
learning is proved to accelerate the convergence and improve
generalization. In this work, we use a teacher model as a guide
and train the student model from simple to complex ones,
which would considerably ease training [43]. [23] adopts a
single stage hints training framework which can be seen as a
special case of our method. While [23] uses hints to guide the
training of a thinner and deeper network, we use hints training
together with randomness to increase model’s robustness to
perturbations.

Except for the training of the teacher model, our method
does not introduce computation overhead on training student
model. Though we train the student model in multi-stages, the
overall epochs of training are not increased much. If a well-
performed neural collaborative filtering model has already
existed, the cost for training our robust neural collaborative
filtering model can be further reduced.

V. ANALYSIS OF STAGE-WISE HINTS TRAINING STRATEGY

In this section, we first establish the robustness definition for
neural collaborative filtering model and illustrate the vulnera-
bility of NeuCF. Then we analytically investigate the impact of
our multiple hints training strategy to the neural collaborative

IEEE TRANSACTIONS ON MULTIMEDIA 6

𝜽𝑺𝜽𝑺
𝜽𝑻

Hints
𝜽𝑯𝟏

Hints
𝜽𝑯𝟐

Hints
𝜽𝑯𝒎

Teacher Student

Guided
𝜽𝑮𝒎

Guided
𝜽𝑮𝟐

𝜽𝑺

Noise layer

Guided
𝜽𝑮𝟏

Noise layer
Noise layer

Stage-wise hints training

𝒓𝒊𝒋……

1
2 𝒎

Fig. 3: The stage-wise hints training framework. Steps 1 to m are the hints training routine that is illustrated in Figure 2 but
need to be repeated m times for m different hints modules from the teacher.

Rating +1
Rating -1Movie factors 𝒗𝒋

User factors 𝒖𝒊

Fig. 4: The graph illustration of vulnerabilities of the collab-
orative filtering system

filtering system from two perspectives: (i) model’s sensitivity
to adversarial perturbations, (ii) generalizability of neural
collaborative filtering model.

A. Robustness of neural collaborative filtering system

The robustness of a neural collaborative algorithm to adver-
sarial perturbations is defined as its capacity against perturba-
tions. A robust neural collaborative filtering algorithm should
(i) show good prediction accuracy in the training set and
testing set as well as (ii) model a smooth neural collaborative
filtering machine that can make stable predictions around the
neighborhood of a legitimate user. The definition of robustness
introduced in [38] can be slightly modified to the collaborative
filtering here, which is:

ρadv(F) = Eµ[∆adv(pi, qj , F)] (10)

where inputs (i, j) are drawn from an unknown distribution µ
that neural collaborative filtering algorithm attempt to model

with function F . ∆adv(i, j, F) is defined as the minimal
perturbations needed to wrongly predict sample (i, j):

∆adv(i, j, F) = arg min
δpi,δqj

{‖δpi‖+ ‖δqj‖ :

F (pi + δpi, qj + δqj) 6= F (pi, qj)}
(11)

where ‖ · ‖ is the norm that need to be specified according to
systems’ requirements. A robust neural collaborative filtering
system requires higher average minimum perturbations to
wrongly predict an example from distribution µ.

To illustrate the vulnerability of neural collaborative filtering
algorithm, we consider using a bilinear decoder [10] to predict
a user’s preference on an item. Assume user and item features
are embedded into ui = embuser(pi),vj = embitem(qj), the
prediction function is as follows:

p(rij = l) =
euiQlv

>
j∑L

l=1 e
uiQlv>

j

. (12)

If user feature factor U is fixed, the collaborative filtering
problem can be taken as a linear classification problem for
each item vj . In Figure 4, we show a possible solution for
given positive and negative ratings in red and blue color. If we
treat item factor vj as the classifier indicated by the straight
line in Figure 4 and the blue dots and red triangles as user
feature vectors, then predicting their interactions labeled as
“+1” or “-1” can be treated as a binary classification problem.
In Figure 4, although this is a correct solution which classifies
both positive and negative ratings correctly, we can see that
it is vulnerable to attacks since six examples in green eclipse
are very close to the decision boundary. By slightly perturb
the input user feature pi or item features qj , the six points in
the green eclipse will be wrongly predicted.

Note that we consider a linear case to make the intuition
simple to be understood. In other cases, the hyperplane would
be more complexed. Figure 4 indicates that to let positively
(negatively) labeled user have a larger neighborhood with same

IEEE TRANSACTIONS ON MULTIMEDIA 7

labels will lead to a more robust neural collaborative filtering
system. During training the NeuCF model, our goal is to con-
verge to a function F ∗ that is against adversarial perturbations
and generalize well. According to the universality theorem
proposed in [44] for neural networks, the existence of such F ∗

is guaranteed. The hints training technique is thus deployed in
the network training and helping it converge to the optimal
F ∗ without getting stuck into local optima.

B. Impact of stage-wise hints training on model sensitivity to
inputs

Through our hints training strategy, the model’s sensitiv-
ity to malicious perturbations is reduced. We then derive
the distilled model’s sensitivity to input features. Denote
g(pi, qj) =

∑L
h=1 e

zh(pi,qj)/T , we then have that

∂Fl(pi, qj)

∂pik
=

∂

∂pik

(
ezl/T∑L
h=1 e

zh/T

)
=

1

g2(pi, qj)

(
∂ezl/T

∂pik
g(pi, qj)− ezl/T

∂g(pi, qj)

∂pik

)
=

1

g2(pi, qj)

ezl/T

T

(L∑
h=1

∂zl
∂pik

ezh/T −
L∑
h=1

∂zh
∂pik

ezh/T
)

=
1

T

ezl/T

g2(pi, qj)

(L∑
h=1

(∂zl
∂pik

− ∂zh
∂pik

)
ezh/T

)
. (13)

The last equation shows that Jacobian decreases with increas-
ing temperature T because Jacobian is inversely proportional
to T , and outputs of last hidden layer are divided by T before
exponentiated.

This analysis shows that by using high temperature T in
the network, the amplitude of adversarial gradients change is
reduced with the variation of inputs. It is important to notice
that the high temperature T only changes the amplitude of
logit but not the relative orders of these logits, which does not
influence the prediction accuracy. At test time, temperature
T is set to T = 1, which will lead to more discrete rating
predictions.

If we have a look into the hints training formulated by
Equation (6), hints from teacher network plays as a regu-
larization term that constrains the guided module make the
correct prediction and being robust to random perturbations
simultaneously.

The proposed training strategy has several superiorities.
Firstly, the distillation technique only smooths the amplitude of
logits but not change the relative order of different logits, thus
does not reduce the model’s accuracy. Secondly, the distillation
technique has a low impact on the model’s architecture while
proposing a new architecture requires much effort in analyzing
its effectiveness. Furthermore, the slight modification to the
training procedure does not reduce the model’s speed in
the testing phase. By introducing the distilled model, a low
computation cost of training a teacher model is added to the
training phase, but it is a fixed cost and is acceptable.

C. Impact of stage-wise hints training on model’s generaliz-
ability

When training a student network with noise added to its
guiding layer, we are optimizing the following problem:

θ∗ = arg min
θ

Eε∼N (0,σ2)L(Fθ,ε(pi, qj), rij). (14)

Based on the obtained parameters θ, we make predictions for
ratings using the following form:

r̂ij = arg maxFθ(pi, qj). (15)

To explain why minimizing Equation (14) is able to yield
similar prediction to original network, according to [?], we
show that minimizing Equation (14) is equal to minimize the
upper bound of the inference loss. Specifically, we have:

Eε∼N (0,σ2)L(Fθ,ε(pi, qj), rij)

=− Eε∼N (0,σ2) logFθ,ε(pi, qj) · [rij]
≥− logEε∼N (0,σ2)Fθ,ε(pi, qj) · [rij]
≥− logEε∼N (0,σ2)Fθ,ε(pi, qj) · [r̂ij], (16)

where the first inequation holds because of Jensen’s inequality
and second inequation comes from Equation (15). This vali-
dates that minimizing Equation (14) is equal to minimizing the
upper bound of − logFθ,ε(pi, qj)[r̂ij] which is the inference
loss.

VI. EXPERIMENTS

In the following, we empirically evaluate the effectiveness
of the proposed robust training strategy against adversarial
attacks.

A. Dataset information

Since reviewing items is an onerous process in real recom-
mendation systems, items that have more ratings from users
are implicitly more popular than these that own fewer ratings.
To simplify the discussion of our robust training strategy, we
focus on this binary implicit feedback prediction problem.
In this case, the untargeted and targeted attacks are equal.
The attack aims to downgrade the overall performance of
the collaborative filtering system. We experiment with two
publicly available dataset MovieLens-1M and MovieLens-
100K [?]. MovieLens-1M1 includes 6,040 users, 3,952 movies
and 1,000,209 anonymous ratings among them. We follow
the setting in [9] which use MovieLens to investigate the
implicit signal from explicit rating feedback. The one million
ratings are transformed into implicit feedback indicating if the
user has rated the corresponding item. This dataset include
information for both users and items, such as “gender”, “age”,
“occupation” for users and “genre”, “release date” for movies.

MovieLens-100K2 includes 100,000 ratings by 943 users on
1682 items. Each user has rated at least 20 movies. This dataset
contains the same kind of side information as MovieLens-1M
and we testify the collaborative filtering model’s performance
on predicting implicit feedbacks between users and items.

1http://grouplens.org/datasets/movielens/1m/
2https://grouplens.org/datasets/movielens/100k/

IEEE TRANSACTIONS ON MULTIMEDIA 8

TABLE I: Overview of architectures of the teacher and student
model. The second last dense layer determines the latent factor
for the neural collaborative filtering model which is 64 and 32
for teacher and student model in this table.

Layer Type Teacher Student
Embedding 64 units 32 units
Embedding 64 units 32 units
Dense 64 units 32 units
Dense 64 units 32 units
Concatenate layer 256 units 128 units
ReLU Dense Layer 128 units 64 units
ReLU Dense Layer 64 units 32 units
ReLU Dense Layer 1 unit 1 unit
Sigmoid Activation 1 unit 1 unit

TABLE II: Overview of hyperparameters for training the
model. For two stage hints training of student model, we train
the model by 10 epochs in each stage and 10 epocs in final
knowledge distillation training.

Parameter Teacher Student
Learning Rate 0.001 0.001
Optimizer Adam Adam
Batch Size 128 128
Total Epochs 20 30
Temperature 10 10

B. Overview of the experimental setup

To evaluate the proposed hints training strategy, we will
compare its influence on model’s generalizability to testing
examples and its robustness to malicious attacks. For the
neural collaborative filtering model, we develop a feature-
based neural collaborative filtering model (FNCF) based on
multi-layer percepetron model (MLP3). We follow a similar
structure of that used in [9] and deploy a model with three
dense layers. For latent factor as 64 and 32 of teacher and
student model, the details of the architecture is shown in Table
I. The teacher and student model share similar structure but
the teacher model has larger latent factor which is the input
dimensionality of the last dense layer. Both of them takes four
inputs, which are user IDs, item IDs, user side information and
item side information. The temperature for distillation is set to
10 through all the experiments. The set of hyper-parameters
are presented in Table II.

1) Baseline setup: For the baseline of robust training strat-
egy, we adopt distillation as a defense studied in [38]. The
robust training strategy are listed as follows:
• FNCF-Distill trains a neural collaborative filtering model

with knowledge distillation;
• FNCF-Single is a special case of our stage-wise hints

training under which only the middle layer’s representa-
tions of teacher model serve as hints to train the student
model which is 128 units of a ReLU dense layer in
Table I. Distillation training is deployed after single hint
training.

• FNCF-Multi trains a model with two hints module and
knowledge distillation. The hints modules produce output
at first and second ReLU dense layer which are at length
of 128 and 64 respectively as shown in Table I.

3https://github.com/hexiangnan/neural collaborative filtering

8 16 32 64

Num of factors

0.6

0.62

0.64

0.66

0.68

T
o
p
1
0
@

H
R

MovieLens 1M

FNCF

FNCF-Distill

FNCF-Single

FNCF-Multi

8 16 32 64

Num of factors

0.3

0.32

0.34

0.36

0.38

0.4

T
o
p
1
0
@

N
D

C
G

MovieLens 1M

FNCF

FNCF-Distill

FNCF-Single

FNCF-Multi

8 16 32 64

Num of factors

0.64

0.66

0.68

0.7

0.72

T
o
p
1
0
@

H
R

MovieLens 100K

FNCF

FNCF-Distill

FNCF-Single

FNCF-Multi

8 16 32 64

Num of factors

0.25

0.3

0.35

0.4

0.45

T
o
p
1
0
@

N
D

C
G

MovieLens 100K

FNCF

FNCF-Distill

FNCF-Single

FNCF-Multi

Fig. 5: Comparisons of FNCF with FNCF-Single, FNCF-Multi
and FNCF-Distill at temperature T = 10 and noise level σ =
0.05.

To train the specified model, we use Keras [45] with Tensor-
flow [46] as the backend, which simplifies the implementation
of architectures with multi-input and multi-output. The ad-
versarial sample crafting is implemented by Tensorflow [46]
based on pre-trained Keras models.

2) Evaluation criteria: To evaluate the performance of
predictions on implicit feedbacks, we adopt the popular leave-
one-out evaluation [9], [47] which construct the validation and
test set by holding out one record for each user respectively.
To judge the ranking list generated by collaborative filtering
algorithms, we utilize Hit Ratio (HR) which is a recall-based
metric and Normalized Discounted Cumulative Gain (NDCG)
[48] with the rank list length set to be K = 10. HR is
formulated by:

HR@K =
Number of hits@K

N
, (17)

where N is the size of test set. Since HR@K is a recall-based
metric, it does not reflect the model’s capability of getting the
top ranks correct. NDCG assigns higher score to results on
top ranks, which is calculated by:

NDCG@K = ZK

K∑
i=1

2ri − 1

log2(i+ 1)
. (18)

3) Adversarial example crafting: The adversarial goal of
adversary is to alter the input (pi, qj) of a neural collaborative
filtering model F to make the model F ’s prediction deviate
from its groundtruth value. We use the C&W attack4, with the
L2 norm regularization on perturbation variable δ and make
slightly changes to adapt to our model with paired input. Note
that as instructed by C&W attack, we take the output of logits
layer to implement attacks, which is possible to circumvent
the distillation as the defense.

4https://github.com/carlini/nn robust attacks

IEEE TRANSACTIONS ON MULTIMEDIA 9

TABLE III: Different models’ performance under different noise levels at temperature T = 10.

MovieLens 1M
Top10@HR Top10@NDCG

Noise level 0 0.01 0.05 0.1 0.2 0 0.01 0.05 0.1 0.2
FNCF 0.6576 0.6576 0.6576 0.6576 0.6576 0.3802 0.3802 0.3802 0.3802 0.3802

FNCF-Single 0.6579 0.6575 0.6575 0.6584 0.6591 0.3797 0.3814 0.3821 0.3818 0.3818
FNCF-Multi 0.6548 0.6538 0.6571 0.6573 0.6591 0.3805 0.3799 0.3824 0.3823 0.3835

MovieLens 100K
Top10@HR Top10@NDCG

Noise level 0 0.01 0.05 0.1 0.2 0 0.01 0.05 0.1 0.2
FNCF 0.7158 0.7158 0.7158 0.7158 0.7158 0.4216 0.4216 0.4216 0.4216 0.4216

FNCF-Single 0.7116 0.7126 0.7137 0.7147 0.7126 0.4201 0.4189 0.4216 0.4203 0.4179
FNCF-Multi 0.7126 0.7137 0.7094 0.7147 0.7094 0.4200 0.4214 0.4188 0.4198 0.4195

TABLE IV: Model’s robustness against adversarial perturbations under different noise levels at temperature T = 10.

MovieLens 1M
Success rate L2 distortion

Noise level 0 0.01 0.05 0.1 0.2 0 0.01 0.05 0.1 0.2
FNCF 0.7320 0.7320 0.7320 0.7320 0.7320 0.8415 0.8415 0.8415 0.8415 0.8415

FNCF-Distill 0.7210 0.7210 0.7210 0.7210 0.7210 0.9790 0.9790 0.9790 0.9790 0.9790
FNCF-Single 0.7870 0.7250 0.6730 0.6320 0.6000 0.8446 0.8869 0.8210 0.7715 0.7808
FNCF-Multi 0.7810 0.7930 0.6420 0.6160 0.6120 0.8676 0.9155 0.8502 0.7318 0.7341

MovieLens 100K
Success rate L2 distortion

Noise level 0 0.01 0.05 0.1 0.2 0 0.01 0.05 0.1 0.2
FNCF 0.7783 0.7783 0.7783 0.7783 0.7783 1.0716 1.0716 1.0716 1.0716 1.0716

FNCF-Distill 0.7653 0.7653 0.7653 0.7653 0.7653 1.1173 1.1173 1.1173 1.1173 1.1173
FNCF-Single 0.7300 0.7050 0.6183 0.5800 0.5750 1.1183 1.0831 0.9994 0.9746 1.0004
FNCF-Multi 0.7200 0.7100 0.7000 0.6583 0.6533 1.0821 1.0645 1.0622 1.0313 1.0379

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

c

10

20

30

40

50

60

70

80

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

 (
%

)

MovieLens 1M: attack on user

FNCF

FNCF-Distill

FNCF-Single

FNCF-Multi

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

c

0

20

40

60

80

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

 (
%

)

MovieLens 1M: attack on user + item

FNCF

FNCF-Distill

FNCF-Single

FNCF-Multi

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

c

0

20

40

60

80

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

 (
%

)

MovieLens 100K: attack on user

FNCF

FNCF-Distill

FNCF-Single

FNCF-Multi

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

c

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

 (
%

)

MovieLens 100K: attack on user + item

FNCF

FNCF-Distill

FNCF-Single

FNCF-Multi

Fig. 6: Attack success rate on FNCF, FNCF-Single, FNCF-
Multi and FNCF-Distill at temperature T = 10 and noise level
σ = 0.05.

C. Influence on model’s generalizability

In this set of experiments, we compare FNCF’s performance
with three training strategies under a different number of
hidden factors. As shown in Figure 5, we observe that FNCF-
Multi and FNCF-Single reach comparable performance to
FNCF on both datasets. This verifies that the noise layer in
FNCF-Multi and FNCF-Single will not introduce significant
decreases in model’s generalization. FNCF-Distill achieves
disparate performance than the other three methods. Although
FNCF-Distill has significant improvement on HR@K on

MovieLens-1M, it performs poorly in terms of NDCG. This
reflect that FNCF-Distill cannot make confident predictions on
users and items’ relations.

Furthermore, we quantify the noise’s influence on the
model’s generalizability. In Table III, we vary the noise levels
and observe that there are no significant variations between
FNCF and FNCF-single, FNCF-Multi. Introducing noises into
FNCF-Single renders a few variations to the prediction perfor-
mance, which is acceptable. One can claim that the variations
introduced by hints training process are moderate and can be
neglected.

D. Impact on adversarial perturbations

In this set of experiments, we evaluate our training strategy’s
influence on malicious attacks by adversaries. For the exam-
ples to be attacked, we first select the examples that hit the
top-10 list in predictions which are about 3900 for MovieLens-
1M and 675 for MovieLens-100K. Then we randomly select
1000 examples from MovieLens-1M and all 675 examples
from MovieLens-100K as the examples to be changed. We
implement C&W attack on “user” and “user+item” which
is discussed in Section III-B. For FNCF-Single and FNCF-
Multi, the noise level is set to σ = 0.05. We report the
success rate of C&W attack on different models under different
const c specified in Equation (4). From Figure 6, we observe
that FNCF-Distill does not show effectiveness on resisting
adversarial attacks. FNCF-Single and FNCF-Multi reports
lower attack success rates compared to baselines. This verifies
the effectiveness of the proposed hints training algorithm.

IEEE TRANSACTIONS ON MULTIMEDIA 10

E. Model’s robustness under different noise levels
In this battery of experiments, we evaluate the model’s

robustness against malicious perturbations. The robustness
measurement is defined in Equation (10). To exhaustively
search over the entire input space is impossible. We average
the distortions on examples that are successfully attacked.
As shown in Table IV, with the increase of noise levels,
the success rate of attack on both FNCF-Single and FNCF-
Multi decreases, which validate the effectiveness of our robust
training algorithm. The resulting L2 distortion is also reported
in Table IV. Notice that when no noise is introduced in σ = 0,
FNCF-Single is more robust than FNCF-Distill. We credit this
improvement to the hints training step that regularizes the
student network.

VII. CONCLUSION

We have proposed a robust training strategy for neural
collaborative filtering systems to improve its robustness to
adversarial perturbations. We first use multiple hints to guide
the training of multiple students. We also add noise layers
in the student models to obtain robust units that are not
sensitive to perturbed inputs. By ensembling multiple students
with noise layers, we obtain the benefits that recommendation
performance is not degraded, and the model’s robustness is
improved. Our experiments on benchmark datasets emphasize
that defensive method with mixture models and noise training
can still work even under current strong attackers.

REFERENCES

[1] L. Sun, X. Wang, Z. Wang, H. Zhao, and W. Zhu, “Social-aware
video recommendation for online social groups.” IEEE Transactions on
Multimedia, vol. 19, no. 3, pp. 609–618, 2017.

[2] Z. Xu, L. Chen, Y. Dai, and G. Chen, “A dynamic topic model and matrix
factorization-based travel recommendation method exploiting ubiquitous
data,” IEEE Transactions on Multimedia, vol. 19, no. 8, pp. 1933–1945,
2017.

[3] Y. Zhou, J. Wu, T. H. Chan, S. wai Ho, D.-M. Chiu, and D. Wu,
“Interpreting video recommendation mechanisms by mining view count
traces,” IEEE Transactions on Multimedia, 2017.

[4] J. Mcauley, “Hidden factors and hidden topics : Understanding rating
dimensions with review text,” in RecSys, 2013.

[5] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings of KDD
Cup and Workshop, vol. 2007. New York, NY, USA, 2007, pp. 1–4.

[6] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[7] Y. Du, C. Xu, and D. Tao, “Privileged matrix factorization for collabora-
tive filtering,” in Proceedings of the 26th International Joint Conference
on Artificial Intelligence. AAAI Press, 2017, pp. 1610–1616.

[8] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for
recommender systems,” in ACM International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp. 1235–1244.

[9] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proceedings of the 26th International Confer-
ence on World Wide Web. International World Wide Web Conferences
Steering Committee, 2017, pp. 173–182.

[10] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix
completion,” KDD Deep Learning Day, 2018.

[11] Y. Zheng, B. Tang, W. Ding, and H. Zhou, “A neural autoregressive
approach to collaborative filtering,” in International Conference on
Machine Learning, 2016, pp. 764–773.

[12] Y. Wang, X. Lin, L. Wu, and W. Zhang, “Effective multi-query expan-
sions: Collaborative deep networks for robust landmark retrieval,” IEEE
Transactions on Image Processing, vol. 26, pp. 1393–1404, 2017.

[13] G. Liu, Q. Chen, Q. Yang, B. Zhu, H. Wang, and W. Wang, “Opinion-
walk: An efficient solution to massive trust assessment in online social
networks,” in INFOCOM IEEE Conference on Computer Communica-
tions. IEEE, 2017, pp. 1–9.

[14] Q. Yang and H. Wang, “Toward trustworthy vehicular social networks,”
IEEE Communications Magazine, vol. 53, no. 8, pp. 42–47, 2015.

[15] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, “Data poisoning attacks
on factorization-based collaborative filtering,” in Advances in Neural
Information Processing Systems, 2016, pp. 1885–1893.

[16] M. P. O’Mahony, N. J. Hurley, and G. C. Silvestre, “Promoting rec-
ommendations: An attack on collaborative filtering,” in International
Conference on Database and Expert Systems Applications. Springer,
2002, pp. 494–503.

[17] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Effective
attack models for shilling item-based collaborative filtering systems,”
in Proceedings of the 2005 WebKDD Workshop, vol. 2005, 2005, pp.
13–21.

[18] S. K. Lam and J. Riedl, “Shilling recommender systems for fun and
profit,” in Proceedings of the 13th International Conference on World
Wide Web. ACM, 2004, pp. 393–402.

[19] Y. Chen, H. Xu, C. Caramanis, and S. Sanghavi, “Robust matrix com-
pletion and corrupted columns,” in Proceedings of the 28th International
Conference on Machine Learning, 2011, pp. 873–880.

[20] Y. Chen, A. Jalali, S. Sanghavi, and C. Caramanis, “Low-rank matrix
recovery from errors and erasures,” IEEE Transactions on Information
Theory, vol. 59, no. 7, pp. 4324–4337, 2013.

[21] F. Nie, H. Wang, X. Cai, H. Huang, and C. Ding, “Robust matrix
completion via joint schatten p-norm and lp-norm minimization,” in
IEEE 12th International Conference on Data Mining (ICDM). IEEE,
2012, pp. 566–574.

[22] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS Deep Learning and Representation Learning
Workshop, 2015. [Online]. Available: http://arxiv.org/abs/1503.02531

[23] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” International Conference
on Learning Representations, 2015.

[24] G. Linden, B. Smith, and J. York, “Amazon. com recommendations:
Item-to-item collaborative filtering,” IEEE Internet computing, vol. 7,
no. 1, pp. 76–80, 2003.

[25] J. D. Rennie and N. Srebro, “Fast maximum margin matrix factorization
for collaborative prediction,” in Proceedings of 22nd International
Conference on Machine Learning. ACM, 2005, pp. 713–719.

[26] Y. Du, C. Xu, and D. Tao, “Collaborative rating allocation,” in Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, 2017, pp. 1617–1623.

[27] K. Yu, S. Zhu, J. Lafferty, and Y. Gong, “Fast nonparametric matrix
factorization for large-scale collaborative filtering,” in Proceedings of
the 32nd international ACM SIGIR conference on Research and Devel-
opment in Information Retrieval. ACM, 2009, pp. 211–218.

[28] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization.” in
Advances in Neural Information Processing Systems, vol. 1, no. 1, 2007,
pp. 2–1.

[29] ——, “Bayesian probabilistic matrix factorization using markov chain
monte carlo,” in Proceedings of International Conference on Machine
Learning. ACM, 2008, pp. 880–887.

[30] P. Jain and I. Dhillon, “Provable inductive matrix completion,”
arXiv preprint arXiv:1306.0626, pp. 1–22, 2013. [Online]. Available:
http://arxiv.org/abs/1306.0626

[31] K.-Y. Chiang, C.-J. Hsieh, and I. S. Dhillon, “Matrix completion with
noisy side information,” in Advances in Neural Information Processing
Systems, 2015, pp. 3447–3455.

[32] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders
meet collaborative filtering,” in Proceedings of the 24th International
Conference on World Wide Web. ACM, 2015, pp. 111–112.

[33] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann
machines for collaborative filtering,” in Proceedings of the 24th Inter-
national Conference on Machine learning. ACM, 2007, pp. 791–798.

[34] C. E. Seminario and D. C. Wilson, “Robustness and accuracy tradeoffs
for recommender systems under attack.” in FLAIRS Conference, vol.
314, 2012.

[35] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations. Citeseer, 2014.

[36] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations, 2015.

[37] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 372–387.

IEEE TRANSACTIONS ON MULTIMEDIA 11

[38] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp.
582–597.

[39] C. Gong, D. Tao, W. Liu, L. Liu, and J. Yang, “Label propagation via
teaching-to-learn and learning-to-teach,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 6, pp. 1452–1465, 2017.

[40] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE Symposium on Security and Privacy (SP). IEEE,
2017, pp. 39–57.

[41] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in International Conference on Machine Learning, 2018, pp. 274–283.

[42] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[43] C. Gülçehre and Y. Bengio, “Knowledge matters: Importance of prior
information for optimization,” Journal of Machine Learning Research,
vol. 17, no. 1, pp. 226–257, 2016.

[44] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems (MCSS), vol. 2, no. 4, pp.
303–314, 1989.

[45] F. Chollet et al., “Keras,” https://keras.io, 2015.
[46] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning,” in Proceedings of the 12th USENIX
conference on Operating Systems Design and Implementation. USENIX
Association, 2016, pp. 265–283.

[47] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Proceedings
of the Twenty-fifth Conference on Uncertainty in Artificial Intelligence.
AUAI Press, 2009, pp. 452–461.

[48] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware
explainable recommendation by modeling aspects,” in Proceedings of the
24th ACM International on Conference on Information and Knowledge
Management. ACM, 2015, pp. 1661–1670.

