
Semantic Web 1 (0) 1–5 1
IOS Press

Enhancing the Scalability of Expressive
Stream Reasoning via input-driven
Parallelization
Thu-Le Pham a,*, Muhammad Intizar Ali a and Alessandra Mileo b

a Insight Centre for Data Analytics, National University of Ireland, Galway, IDA Bussiness Park, Lower Dangan,
Galway, Ireland
E-mails: thule.pham@insight-centre.org, ali.intizar@insight-centre.org
b Insight Centre for Data Analytics, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
E-mail: alessandra.mileo@insight-centre.org

Editors: First Editor, University or Company name, Country; Second Editor, University or Company name, Country
Solicited reviews: First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company name,
Country
Open reviews: First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name, Country

Abstract. Stream reasoning is an emerging research area focused on providing continuous reasoning solutions for data streams.
The exponential growth in the availability of streaming data on the Web has seriously hindered the applicability of state-of-
the-art expressive reasoners, limiting their applicability to process streaming information in a scalable way. In this scenario, in
order to reduce the amount of data to reason upon at each iteration, we can leverage advances in continuous query processing
over Semantic Web streams. Following this principle, in previous work we have combined semantic query processing and non-
monotonic reasoning over data streams in the StreamRule system. In the approach, we specifically focused on the scalability of
a rule layer based on a fragment of Answer Set Programming (ASP). We recently expanded on this approach by designing an
algorithm to analyze input dependency so as to enable parallel execution and combine the results. In this paper, we expand on
this solution by providing i) a proof of correctness for the approach, ii) an extensive experimental evaluation for different levels
of complexity of the input program, and iii) a clear characterization of all the algorithms involved in generating and splitting
the graph and identifying heuristics for node duplication, as well as partitioning the reasoning process via input splitting and
combining the results.

Keywords: Semantic Web, stream reasoning, non-monotonic reasoning, Answer Set Programming, parallel reasoning, data
partitioning, dependency graph

1. Introduction

The variety of real-world applications in several do-
mains, such as the Internet of Things, Social Networks
and Smart Cities, requires reasoning capabilities that
can handle incomplete and potentially inconsistent in-
put streams, and extract knowledge from them to sup-

*Corresponding author. E-mail: thule.pham@insight-
centre.org.

port decision making. While semantic technologies for
handling data streams focus on query pattern match-
ing and have limited support for complex reasoning
capabilities, logic-based non-monotonic reasoning ap-
proaches are very expressive but can be quite costly
in terms of efficiency. Expressive stream reasoning
for the Semantic Web explores advances in semantic
stream processing technologies for representing and
processing data streams on the one hand, and non-
monotonic reasoning approaches for performing com-

1570-0844/0-1900/$35.00 c� 0 – IOS Press and the authors. All rights reserved

mailto:thule.pham@insight-centre.org
mailto:ali.intizar@insight-centre.org
mailto:alessandra.mileo@insight-centre.org
mailto:thule.pham@insight-centre.org
mailto:thule.pham@insight-centre.org

2 F. Author et al. / Scalable Expressive Stream Reasoning

plex rule-based inference on the other hand. This com-
bination is based on the principle of having a 2-tier ap-
proach where: i) a semantic stream query processor is
used to filter semantic data elements (typically RDF
triples), and ii) a non-monotonic reasoner is used for
computationally intensive tasks over the filtered data.
Since the grounding phase in rule-based inference is
responsible for the size of the program to be evaluated,
such a combined approach improves the scalability of
complex reasoning over Semantic Web streams by re-
ducing the input to the non-monotonic reasoner.

Current expressive reasoning systems over RDF
data streams, like ASR [12], EP-SPARQL [2], and
StreamRule [24], support non-monotonic reasoning
over data streams in different ways. In particular,
ASR uses the DLVhex solver [14], EP-SPARQL uses
ETALIS [3] which is implemented based on SWI-
Prolog1, and StreamRule uses the Clingo solver [16] as
a subprocess to infer new knowledge from data streams
and a given rule set. SWI-Prolog is a Prolog engine
which is built on SLD-resolution and unification as the
basic mechanism to manipulate data structures while
DLVhex and Clingo are ASP systems which are based
on the stable model (answer set) semantics of logic
programming [13]. Considering the expressive power
of ASP and higher declarativity compared to Prolog,
we focus on ASP-based reasoning.

In order to support ASP solvers for reasoning about
RDF data streams, a middle layer is required for trans-
formation between data formats. For example, the
StreamRule system intercepts the query results (out-
put RDF stream) filtered by the RDF Stream Process-
ing (RSP) engine and translates them into ASP syntax
before streaming them into the ASP reasoner Clingo.
Given the data transformation overhead, the perfor-
mance of the reasoning subprocess should be mea-
sured by not only the processing time of the solver but
also the time required for data transformation. More-
over, the reasoning component needs to return results
faster than when the new input window arrives, in or-
der to ensure the stability of the whole system. This re-
quires optimization techniques that can further speed
up the processing [19].

We address this scalability issue by an approach to
parallelization based on splitting the input stream (not
the logic program) that we have first introduced in [27].
We extend our preliminary work from [27] in this pa-
per with the following key contributions:

1http://www.swi-prolog.org

– we propose a better characterization of our for-
mal algorithm for analyzing dependencies among
input data based on the structure of a given logic
program (a set of logic rules). This program is
constructed under the stratified negation fragment
of normal ASP [13], which ensures uniqueness of
the solution; the algorithm characterizes different
relationships between two predicates appearing in
the input data in form of so-called input depen-
dency graph;

– we provide a process that uses this input depen-
dency graph to construct a plan for partitioning
input data; when the graph is connected, it is de-
composed into subgraphs such that the number of
common nodes is as small as possible; this par-
titioning plan will guide the reasoning process to
split input data on-the-fly;

– we fully implement our approach as an extension
of StreamRule for validation and testing of our
algorithms. With StreamRule, our reasoner does
not need to deal with input data elements that are
unrelated to the reasoning task since they are fil-
tered out by the stream processor. We believe this
idea of filtering massive input to related input for
specific complex reasoning tasks is promising for
handling scalability of stream reasoning over Se-
mantic Web streams.

– we provide a formal proof that the correctness for
the approach under the stable model semantics of
ASP is guaranteed;

– we conduct a detailed experimental evaluation on
the effectiveness of our approach via experiments
with different levels of expressivity of the logic
program, namely: positive rules, recursive posi-
tive rules, and stratified negation. Results show
that our approach can achieve higher expressivity
and higher scalability compared to state-of-the-
art stream processing engines.

The remainder of this paper is organized as follows.
Section 2 provides the necessary preliminaries on ASP,
the StreamRule idea and conceptual framework, and
introduces our motivating example. Section 3 defines
in details our input dependency analysis process, in-
cluding the generation of the graph, the heuristics for
node duplication and the process of building a parti-
tioning plan. In Section 4, we report on the extension
of the StreamRule system with components in charge
of partitioning and combining the results of the infer-
ence process, and we provide a proof of correctness
of the results for the proposed method. Section 5 pro-

http://www.swi-prolog.org

F. Author et al. / Scalable Expressive Stream Reasoning 3

vides an extensive evaluation of our approach through
three different experiments. A comprehensive discus-
sion of related work is given in Section 6, followed by
concluding remarks and directions for future work in
Section 7.

2. Preliminaries & Motivating Example

2.1. Answer set programming

Answer Set Programming (ASP) is a declarative
problem solving paradigm with a rich yet simple mod-
eling language and high performance solving capabili-
ties for computationally hard problems. ASP is rooted
in deductive databases, logic programming and con-
straint solving [13]. For this paper, we focus on normal
ASP with stratified negation.

Syntax.
In ASP, a variable or a constant is a term2. An atom

is p(t1, ..., tn), where p is a predicate of arity n and
t1, ..., tn are terms. A literal is either a positive literal
p or a negative literal not p, where p is an atom. A
normal logic program is the program that consists of
rules of the form:

q p1, ..., pk, not pk+1, ..., not pm

where q, p1, ..., pm are atoms and m > k > 0.
Given a rule r as above, we define head(r) =

{q} as the head of r, while body(r) = {p1, ..., pk
, not pk+1, ..., not pm} is the body of r. body+(r)
(respectively, body�(r)) denotes the set of atoms oc-
curring positively (respectively, negatively) in body(r).
A rule where head(r) = ; is referred to as an integrity
constraint. A rule where body(r) = ; is called a fact.
A term, an atom, a literal, a rule, a program is ground
if no variable appears in it. According to the database
terminology, a predicate occurring only in facts is re-
ferred to as an EDB (extensional database) predicate,
all others as IDB (intensional database) predicates.
EDB predicates are relations stored in a database,
while IDB ones are relations defined by one or more
rules. Thus, an IDB predicate can appear in the body
or head of a rule while an EDB predicate is only in the
body. We only allow stratified negation to appear in a
program, i.e., the program should contain no recursion

2We do not consider functional symbols, although they are cur-
rently allowed in some extensions of ASP.

through negation. Intuitively, recursion through nega-
tion (or unstratified negation) happens when two or
more predicates are mutually defined over not such as
{b not a, a not b}.

Semantics.
Let P be a program. The Herbrand Universe, UP,

of P is a set of all constants appearing in P. The Her-
brand Base, BP, of P is a set of all ground atoms con-
structible from the predicate symbols appearing in P
and the constants of UP. ground(P) denotes the set of
all the ground instances of the rules occurring in P. An
interpretation, M, for P is a subset of BP. A ground
rule rg 2 ground(P) is satisfied with respect to M
if body+(rg) ✓ M and body�(rg) \ M = ; only if
head(rg) \ M 6= ;. M is a model of P if M satisfies
all ground rules in ground(P). The reduct, PM , of P
relative to M is given by {head(rg) body+(rg)|rg 2
ground(P) and body�(rg) \ M = ;}. M is an answer
set of P if it is a minimal model of PM (i.e., M is a
model of PM and @M0 ⇢ M such that M0 is a model of
PM). If P is stratified then M is a unique answer set of
P.

2.2. StreamRule

StreamRule is a framework that combines the lat-
est advances in stream query processing for Seman-
tic Web data, with non-monotonic stream reasoning.
The approach is based on the assumption that not all
raw data from the input stream might be relevant for
the complex reasoning, and the stream query process-
ing can help to reduce the information load over the
logic-based stream reasoner. The conceptual architec-
ture of StreamRule is shown in Figure 1. Abstraction
and filtering on raw streaming data are performed by a
stream query processor using query patterns as filters.
The filtered stream is processed by a data format pro-
cessor and returned as input facts to a non-monotonic
rule engine together with the declarative encoding of
the problem at hand. The output of the rule engine,
which we call solutions or answer sets, is fed into the
data format processor for transformation to any other
format (such as back to RDF triples) for further pro-
cessing.

The main limitation of StreamRule is that the sta-
bility of the system depends on the ability of the rea-
soner to produce results faster than the next input win-
dow arrives. For this reason, as a first step in targeting
the scalability challenge, we focused on a mechanism
to enhance the processing time of the logic-based rea-

4 F. Author et al. / Scalable Expressive Stream Reasoning

Stream
query

processor

Query

Non-monotonic
Rule Engine

Logic
Program

Web of
Data Solutions

Data
Format

Processor

Filtered Stream

Facts

Data
Format

Processor

Stream Rule

Answer
Sets

Reasoner R

Fig. 1. Conceptual architecture of StreamRule

soner by designing a formal strategy for input depen-
dency analysis, and using it to enable parallelism at the
reasoning layer of StreamRule (the reasoner R in Fig-
ure 1). A follow-up of the proposed approach is that we
can gather information on the process at the reasoning
layer that can potentially be used to dynamically adapt
the parameters of the RSP engine for adaptive scala-
bility management. We do not tackle this aspect in this
paper but it is part of our ongoing work as discussed in
Section 7.

For the rest of the paper, we use RSP engine to refer
to the semantic stream query processing engine (e.g.,
C-SPARQL [5]), solver to refer to the non-monotonic
rule engine (e.g., Clingo), reasoner R to refer to the
subprocess in StreamRule which includes the solver
and the data format processor (the dashed box in Fig-
ure 1), and reasoner PR (the gray box in Figure 6)
to refer to the optimized version of R with the paral-
lel approach that will be detailed in the following sec-
tions. Before introducing our motivating example, we
also want to briefly introduce some notation that will
be used therein and after. In the reasoner R, a given
logic program (or program), denoted as P, is a set of
rules (with stratified negation) in ASP. pre(P) denotes
the set of predicates in P. inpre(P) denotes predicates
provided as input data items of P. As illustrated in Fig-
ure 1, the reasoner R receives input data items from
the RSP engine. We assume that unrelated predicates
are filtered out by the RSP engine through appropriate
queries. In this way, inpre(P) ✓ pre(P). An input win-
dow (or window), W, is a set of input data items that the
reasoner R processes per computation. From the logi-
cal point of view, the data items in W can be referred to
as ground atoms. pre(W) defines the set of predicates
of ground atoms in W. Therefore, pre(W) ✓ inpre(P).

2.3. Motivating Example

Consider the following example: A city manager
wants to know real-time events happening in the city
in order to make informed decisions on traffic man-
agement, reaction to vandalism/crime, management

of traffic congestions, reduction of risks for driver-
s/cyclists/pedestrians, and so on. To do that, he de-
ploys an instance of the StreamRule system that inte-
grates and filters relevant semantic streams from dif-
ferent sources (via RSP engine queries) and uses them
to detect events of interest, such as traffic_jam and
car_fire as defined in the logic program P in Listing
1. P is given as input to the solver in StreamRule, to-
gether with inpre(P) = {average_speed, car_number,
traffic_light, car_in_smoke, car_speed, car_location}.
The reasoner R is triggered whenever a new input win-
dow W arrives from the RSP engine.

As an illustrative example, assume at time t,
a filtered input window (in ASP format) arrives
as follows: W = {average_speed(newcastleRoad,
10), car_number(newcastleRoad, 55), traf-
fic_light(newcastleRoad), car_in_smoke(car1, high),
car_speed(car1, 0), car_location(car1, dangan-
Road)}. This example is probably not presenting
issues in terms of performance, but as the number
of cars, segments, traffic lights and other events
increases, the scalability of the system becomes an
issue.

In order to process W faster, partitioning W ran-
domly as in [19] could generate wrong results. For
example W1 = {average_speed(newcastleRoad, 10),
car_number(newcastleRoad, 55), car_in_smoke(car1,
high)} and W2 = {traffic_light(newcastleRoad),
car_speed(car1, 0), car_location(car1, dan-
ganRoad)}. Reasoning in parallel over these
two input partitions produces as a result the
event traffic_jam(newcastleRoad) and the action
give_notification(newcastleRoad) is triggered, which
is not correct. The accurate answer is the event
car_fire(danganRoad) detected and the notification
about the danganRoad segment. Partitioning ran-
domly the input stream may reduce the processing
time of a logic-based reasoner but we may lose the
accuracy of the results in return. Therefore, the parti-
tioning process should consider the relations between
ground atoms in the input window, and distribute the
computation accordingly across multiple instances of

F. Author et al. / Scalable Expressive Stream Reasoning 5

(r1) v e r y _ s l o w _ s p e e d (X) :� a v e r a g e _ s p e e d (X,Y) , Y<20 .
(r2) many_cars (X) :� car_number (X,Y) , Y>40 .
(r3) t r a f f i c _ j a m (X) :� v e r y _ s l o w _ s p e e d (X) , many_cars (X) , n o t t r a f f i c _ l i g h t (X) .
(r4) c a r _ f i r e (X) :� ca r_ in_smoke (C , h igh) , c a r _ s p e e d (C , 0) , c a r _ l o c a t i o n (C ,X) .
(r5) g i v e _ n o t i f i c a t i o n (X) :� t r a f f i c _ j a m (X) .
(r6) g i v e _ n o t i f i c a t i o n (X) :� c a r _ f i r e (X) .

Listing 1: Sample rules for detecting events

the rule set (logic program). Note that this approach is
different from distributing the processing by splitting
the rules, and it targets instead the input predicates.
How this input analysis is done will be detailed in the
following section.

3. Input Dependency Analysis

In this section, we discuss the problem of analyzing
the dependency of input elements in a window W for
the reasoner R with respect to a set of ASP rules in a
program P with stratified negation. We first introduce
the concept of input dependency graph that shows how
input data items in W relate to each other with respect
to the logic program P (Section 3.1). Thereafter, we
present a heuristic-based algorithm for creating a parti-
tioning plan which is used to split streaming input data
on the fly (Section 3.2).

3.1. Input Dependency Graph

In order to build an input dependency graph among
data items in an input window W, we follow a 2-
step approach: first, the dependency graph as defined
in [10] is extended to capture additional relationships
that go beyond dependencies among IDB predicates
and also consider EDB predicates; second, only pred-
icates appearing in W and their dependencies will be
extracted from the graph built in the first step, in order
to capture only the relationships among input data.

The concept of dependency graph has been widely
used in ASP as a tool to analyze the structure of non-
ground answer set programs [10, 26]. It has been ef-
ficiently used in parallel instantiation algorithms that
generate a much smaller ground program equivalent
to a given logic program. Note that the computa-
tion of most ASP systems follows a two-phase ap-
proach: an instantiation (or grounding) phase gener-
ates a variable-free program which is then evaluated

by propositional algorithms in the solving phase. The
instantiation process in ASP can be expensive from a
computational viewpoint and the size of the ground
program has a huge effect on the performance of
the solver. To address this issue, the idea of parallel
grounding has been investigated, which relies on the
concept of dependency graph. As defined in [10], a
dependency graph G is a directed graph where nodes
are IDB predicates and arcs show the relationship be-
tween a positive IDB predicate in the body with a pred-
icate in the head of a rule. This graph divides the input
program P into subprograms, according to the depen-
dencies among the IDB predicates of P, and identifies
which of them can be grounded in parallel.

However, in this paper, we are not partitioning the
logic program for the grounding process. We are fo-
cusing instead on partitioning the input on-the-fly and
evaluating each partition in parallel with a copy of the
whole program P. Our approach intuitively generates a
smaller ground program (because of the reduced input)
and a smaller search space, speeding up both ground-
ing and solving. It is to be noted that this is not the
reason why we restrict the approach to consider pro-
grams with stratified negation: we restrict the expres-
sivity of ASP programs to ensure the correctness of re-
sults of the parallel reasoning. This is not guaranteed
if we have unstratified negation.

The reasons for us to follow the input partitioning
approach are: (i) input data (or input facts) have a
significant impact on the reasoning performance in a
streaming scenario and can affect results more than the
complexity of the rules, and (ii) in the context of dy-
namic environments, the amount of input data at each
execution varies in terms of rate and size, thus having
different effects on performance. We assume that the
input predicates can be either IDB or EDB predicates.
Therefore, besides the dependencies among IDB pred-
icates defined in the dependency graph, other relation-
ships should be taken into account, such as between

6 F. Author et al. / Scalable Expressive Stream Reasoning

two EDB predicates, or between an IDB predicate and
an EDB predicate.

In order to capture this aspect, we first define an
extended dependency graph from the definition in
[10]. This graph shows different types of dependency
among predicates in P by considering: i) the (transi-
tive) relation between two predicates (both IDB and
EDB) in the body of a rule, ii) both positive and nega-
tive literals.

Definition 1. Let P be a logic program. The extended
dependency graph of P, denoted as GP = hNP, EPi, is
a graph in which:

i) NP is a set of nodes, where each node represents
a predicate in pre(P).

ii) EP = EP1 [EP2 , where:
(a) EP1 contains undirected edges eu = (pu, qu)

if pu and qu occur in the body of a rule
r in P. Moreover, (pu, pu) 2 EP1 if pu 2
body�(r).

(b) EP2 contains directed edges ed = hpd, qdi if
qd occurs in the head of r and pd occurs in
the body of r.

Note that pu, qu, pd, qd are predicates that can ap-
pear in either a positive or a negative literal.

Example 1. Consider the program P in Listing 1. The
extended dependency graph GP illustrated in Figure
2 represents different relations among predicates in P
including directed and undirected edges.

Based on the extended dependency graph, we in-
troduce the concept of input dependency graph of P
with respect to inpre(P). This input dependency graph
describes how predicates in inpre(P) depend on each
other. Below, we describe the meaning of direct path
that is used to build the input dependency graph.

Definition 2. Given the extended dependency graph
GP = hNP, EPi of the logic program P, a directed
path from node p1 to node pn is a sequence of
nodes p1, p2, ..., pn such that pi 2 NP, i = 1..n and
hp j, p j+1i 2 EP2 , j = 1..n� 1.

Definition 3. Let P be a logic program, GP =
hNP, EPi be an extended dependency graph of P, and
inpre(P) be a set of input predicates of P. The in-
put dependency graph of P with respect to inpre(P) is
an undirected graph Ginpre(P)

P = hNinpre(P)
P , Einpre(P)

P i,
where Ninpre(P)

P ⇢ NP is a set of nodes and Einpre(P)
P

is a set of edges. Ninpre(P)
P contains a node for each

predicate in inpre(P), and 8p, q 2 Ninpre(P)
P , (p, q) 2

Einpre(P)
P if one of the following conditions is satisfied:

i) p 6= q and there is a sequence of nodes
p1, p2, ..., pn�1, pn (n > 1, p1 = p, pn = q) such
that 9i 2 [1, n), (pi, pi+1) 2 EP1 and there are
two directed paths: one is from p1 to pi if p1 6= pi
and the other is from pn to pi+1 if pn 6= pi+1.

ii) p = q and ((p, p) 2 EP1 or 9u 2 NP, (u, u) 2
EP1 , hp, ui 2 EP2).

Example 2. Consider the extended dependency
graph GP in Example 1 with the input predicates
inpre(P) = {average_speed, car_number, traffic_light,
car_in_smoke, car_speed, car_location}. The input
dependency graph Ginpre(P)

P is shown in Figure 3.

Definition 4. Let P be a logic program and inpre(P)
be a set of input predicates of P. Predicates p, q 2
inpre(P) depend on each other if there is an edge (p,q)
in the input dependency graph Ginpre(P)

P .

In Definition 3, the first condition represents depen-
dencies among all ground atoms of two different pred-
icates in inpre(P) (predicate level) while the second
condition shows dependencies among ground atoms of
a self-loop predicate (atom level). Note that a self-loop
predicate is one that has an edge connecting the predi-
cate to itself. When two different predicates depend on
each other or a predicate depends on itself, it means
that their ground atoms can contribute to infer a new
fact by firing a single rule or multiple rules. Therefore,
all ground atoms of dependent predicates need to be
processed together in order to guarantee that rules in P
are fired properly and to ensure correctness of results.

We will conclude this section by reporting the two
algorithms that generate an input dependency graph
with a given extended dependency graph and a set
of input predicates. The algorithm for building an ex-
tended dependency graph is not reported because it is
trivial from Definition 1.

Algorithm 1 creates an input dependency graph as
defined in Definition 3. Ninpre(P)

P and Einpre(P)
P con-

tain vertexes and edges of the graph. At the begin-
ning, each predicate in inpre(P) is identified as a ver-
tex (Line 2). Each vertex is checked to see if it depends
on other vertexes according to the conditions in Def-
inition 3. In Line 5-9, the algorithm checks condition
(i) in Definition 3 by calling the underlying function
CheckDependency which is detailed in Algorithm 2.
Line 10-17 create a self-loop for a vertex if condition
(ii) in Definition 3 holds. First, it takes a self-loop in
EP1 that is related to the current vertex (Line 10-12).
Then, it creates a self-loop for a vertex if this vertex
implies another self-loop vertex (Line 13-17).

F. Author et al. / Scalable Expressive Stream Reasoning 7

average_speed very_slow_speed

car_number

many_cars

traffic_light

traffic_jam

car_in_smoke

car_speed

car_location

car_fire

give_notification

Fig. 2. Extended dependency graph GP

The goal of the function CheckDependency is to
check if two separated vertexes v1 and v2 depend on
each other as per condition (i) in Definition 3. There
is a basic dependency between two predicates if there
is an undirected link between them (Line 12-13). Oth-
erwise, the algorithm will find if there are two di-
rect paths connected by an undirected edge between
those two vertexes. This function is extended from the
breadth-first search algorithm to discover those paths.
This algorithm will terminate at Line 13 or when all
vertexes are checked.

3.2. Partitioning Plan

In this section, we show how to use the input depen-
dency graph for building a plan to partition streaming
data on the fly. The input dependency graph is defined
as an undirected graph. Therefore, we consider sepa-
rately two cases based on the connectivity of the graph:
not connected and connected3.

The input dependency graph Ginpre(P)
P that is not

connected induces naturally a subdivision of the graph
into several connected components (or components).
A connected component of an undirected graph is a
maximal connected subgraph of the graph. For in-
stance, Ginpre(P)

P in Figure 3 is decomposed into two
components which have separate sets of nodes from
inpre(P): {average_speed, traffic_light, car_number}
and {car_in_smoke, car_speed, car_location}. These
sets of nodes are used as a partitioning plan in the parti-
tioning process for splitting ground atoms in a window
on-the-fly.

3An undirected graph is connected if, for every pair of vertexes,
there is a path in the graph between those vertexes.

Algorithm 1 Creating input dependency graph
Input: an extended dependency graph GP and a set of
input predicates inpre(P)
Output: an input dependency graph Ginpre(P)

P

1: procedure IDG(GP, inpre(P))
2: Ninpre(P)

P inpre(P)
3: Einpre(P)

P {}
4: for v1 2 Ninpre(P)

P do
5: for v2 2 Ninpre(P)

P do
6: if CheckDependency(v1, v2,GP) then
7: Einpre(P)

P = Einpre(P)
P [{(v1, v2)}

8: end if
9: end for

10: if (v1, v1) 2 EP1 then
11: Einpre(P)

P = Einpre(P)
P [{(v1, v1)}

12: end if
13: for v 2 NP do
14: if (v, v) 2 EP1 & hv1, vi 2 EP2 then
15: Einpre(P)

P = Einpre(P)
P [{(v1, v1)}

16: end if
17: end for
18: end for
19: return Ginpre(P)

P = hNinpre(P)
P , Einpre(P)

P i
20: end procedure

However, there are some cases where the input de-
pendency graph Ginpre(P)

P is connected so that it is
not straightforward to identify and separate connected
components. For example, consider the logic program
P0 which includes P in Listing 1 and the following
rule:

(r7) t r a f f i c _ j a m (X) :� c a r _ f i r e (X) ,
many_cars (X) .

8 F. Author et al. / Scalable Expressive Stream Reasoning

Algorithm 2 Check dependency between 2 vertexes
Input: two vertexes v1, v2 and an extended depen-
dency graph GP
Output: true/false

1: procedure CHECKDEPENDENCY(v1, v2,GP)
2: queueV1 [v1]
3: queueV2 [v2]
4: checked {}
5: while queueV2 6= ; do
6: tempV2 queueV2.remove(0)
7: while queueV1 6= ; do
8: tempV1 queueV1.remove(0)
9: if (tempV1, tempV2) 2 checked then

10: continue
11: end if
12: if (tempV1, tempV2) 2 EP1 then
13: return true
14: else
15: for htempV1, cVi 2 EP2 do
16: Add cV into queueV1

17: end for
18: end if
19: Add (tempV1, tempV2) into checked
20: end while
21: Add v1 into queueV1

22: for htempV2, cVi 2 EP2 do
23: Add cV into queueV2

24: end for
25: end while
26: return false
27: end procedure

Assume that inpre(P0) = inpre(P). The input de-
pendency graph Ginpre(P0)

P0 is shown in Figure 4. This
graph is connected. Our data partitioning approach
cannot be applied if the input dependency graph cannot
be decomposed as in this case. To cope with this issue,
we introduce the decomposing process to divide the
graph by duplicating some common nodes. Algorithm
3 describes this process. The algorithm has two main
steps: (1) finding all maximal cliques of the graph, (2)
(heuristic-driven) merging of two cliques for which the
ratio between common vertexes and different vertexes
is bigger than 0.5 (Line 8). A clique C is a subset of
the node set of a graph, such that there exists an edge
between each pair of nodes in C. A maximal clique is a
clique that cannot be extended by adding more nodes.
Line 2 computes all maximal cliques of the input de-
pendency graph by using a function supported in the

Toolkit class of the graphstream package 4. After that,
the algorithm checks for each pair of cliques whether
they can be merged. This algorithm always terminates
when it can not find any pair of cliques that verify the
condition in Line 8.

average_speed

car_number

traffic_light

car_in_smoke

car_speed

car_location

Fig. 3. Input dependency graph Ginpre(P)
P

average_speed

car_number

traffic_light
car_in_smoke

car_speed

car_location

Fig. 4. Input dependency graph Ginpre(P0)
P0

average_speed

car_number

traffic_light
car_in_smoke

car_speed

car_location
car_number

Fig. 5. Output of the decomposing process for Ginpre(P0)
P0

Example 3. Consider the input dependency graph
Ginpre(P0)

P0 in Figure 4. Step 1 of the Algorithm 3
finds two maximal cliques C1 = {traffic_light, av-
erage_speed, car_number} and C2 = {car_number,
car_in_smoke, car_speed, car_location}. These two
cliques are not merged since the rate between common
predicates and different predicates is 1

5 < 0.5. There-
fore, they are considered as two sets of nodes in the
partitioning plan (see Figure 5), which guides the par-
allel reasoning process.

4http://graphstream-project.org

F. Author et al. / Scalable Expressive Stream Reasoning 9

Algorithm 3 Decomposing process

Input: input dependency graph Ginpre(P)
P

Output: Partitioning plan
1: procedure DECOMPOSEIDG(Ginpre(P)

P)
2: cliques getMaximalCliques(Ginpre(P)

P)
3: while true do
4: flag false
5: for each (C1 6= C2) 2 cliques do
6: nCNodes |intersect(C1,C2)|
7: nDNodes |C1| + |C2| - 2*nCNodes
8: if nCNodes/nDNodes > 0.5 then
9: Add merge(C1,C2) into cliques

10: Remove C1,C2 from cliques
11: flag true;
12: break
13: end if
14: end for
15: if !flag then
16: break
17: end if
18: end while
19: return cliques
20: end procedure

4. Parallel Reasoning in StreamRule

4.1. Implementation

The StreamRule framework extended with the parti-
tioning process described in this paper is shown in Fig-
ure 6. The extension consists of the partitioning han-
dler and the combining handler in the reasoning layer.
The partitioning handler splits an input window W
coming from the RSP engine into several sub-windows
taking into account the input dependency. The combin-
ing handler combines outputs from parallel instances
of the reasoner. For the realization of the partition-
ing process, the analysis of input dependency is made
available within the framework initially at design time.
To achieve this, a logic program and a set of input pred-
icates are given in advance in order to build an input
dependency graph as defined in Definition 3. Then the
graph decomposing process described in Section 3.2
builds a partitioning plan by decomposing this graph
into several components, with duplicated predicates
when needed.

The partitioning handler. At run-time, the parti-
tioning handler starts to split an input window on-the-
fly by using the partitioning plan provided at design-
time. Algorithm 4 shows the partitioning process.

First, the group() method classifies items in the win-
dow by their predicates (Line 3). For each group of
items, the algorithm identifies a set of communities’
IDs that groups belong to based on the partitioning
plan (Line 5). Finally, it adds that group into the proper
partitions corresponding to those IDs.

The combining handler. Given a program P under
stratified negation and an input window W, the answers
provided by R over P and W (notated as AnsP(W)) are
computed as:

AnsP(W) =
n[

i=1

AnsP(Wi)

Where Wi (i = 1..n) are partitions of W provided by
the partitioning handler.

Algorithm 4 Partitioning method
Input: a partitioning plan ⇢ and an input window W
Output: sub-windows of W

1: procedure PARTITION(⇢,W)
2: Partitions [];
3: G group(W);
4: for g 2 G do
5: C findCommunities(⇢, g.predicate);
6: for c 2 C do
7: Add g.items into Partitions[c];
8: end for
9: end for

10: return Partitions;
11: end procedure

4.2. Correctness

In order to ensure our approach provides all and only
the expected results when the input is split and pro-
cessed in parallel, in this section we provide a sketch
of the correctness proof.

Proposition 1. Given Ginpre(P)
P that is not connected,

G1, ...,Gn (n > 1) are connected components of
Ginpre(P)

P , and W is an input window such that
pre(W) ✓ inpre(P):

AnsP(W) =
n[

i=1

AnsP(Wi)

where W =
Sn

i=1 Wi, and pre(Wi) is the set of nodes
of Gi.

10 F. Author et al. / Scalable Expressive Stream Reasoning

Logical
Program

Find input
dependency graph

Input
predicates

Design tim
e

Run tim
e Stream

query
processor

Query

Web of
Data

Solutions

Reasoner RFiltered Stream
Partitioning

Handler
Reasoner R

Combining
Handler. .

 .

Input
dependency

graph

Partitioning
Plan

Decomposing
Process

Reasoner PR
Extended StreamRule

Fig. 6. The Extended StreamRule

Proof. We introduce some notations that are used in
the proof:

– pre(body(r)): a set of predicates appearing in the
body of rule r.

– pre_head(r): a predicate appearing in the head of
rule r.

– ground(p): a set of ground atoms over the predi-
cate p.

Suppose a 2 AnsP(W), we consider the following
cases:

– a is created by firing one rule r in P
) 8pi,p j2pre(body(r))(pi 6= p j), (pi, p j) 2 Einpre(P)

P
) 9i 2 [1, n] : 8p 2 pre(body(r)), ground(p) ⇢
Wi
) a 2 AnsP(Wi)
) a 2

Sn
i=1 AnsP(Wi)

– a is created by firing two rules r1, r2 in P
) pre_head(r1) 2 pre(body(r2))

⇤ If pre(body(r2)) = {pre_head(r1)}
) 8p 2 pre(body(r1)),
(pre_head(r1), p) /2 Einpre(P)

P
) 9Wi 6= Wj : pre(body(r1)) ⇢ pre(Wi)
and pre_head(r1) 2 pre(Wj)
) 8p 2 pre(body(r1)), ground(p) ⇢ Wi
and ground(pre_head(r1)) ⇢ Wj
) a 2 AnsP(Wi) (by firing both r1 and r2)
or a 2 AnsP(Wj) (by firing r2)
) a 2

Sn
i=1 AnsP(Wi)

⇤ Else
) 8p 2 pre(body(r1)), 8q 2
pre(body(r2)), (p, q) 2 Einpre(P)

P

) 9i = [1..n] : 8p 2 pre(body(r1)) [
pre(body(r2)), ground(p) ⇢ Wi
) a 2 AnsP(Wi)
) a 2

Sn
i=1 AnsP(Wi)

– Similarly, when a is created by firing k rules
r1, ..., rk in P
) 9i 2 [1..n] : 8p, q 2Sk

j=1 pre(body(r j)), (p, q) 2 Einpre(P)
P ! p, q 2

pre(Wi)
) 9Wi : a 2 AnsP(Wi)
) a 2

Sn
i=1 AnsP(Wi)

Suppose a 2
Sn

i=1 AnsP(Wi)) 9i 2 [1..n] : a 2
AnsP(Wi)

– If a is created by firing a set of positive rules
) a 2 AnsP(W) because Wi ⇢ W

– If a is created by firing a set of rules (e.g.,
r1, ..., rk) with negation-as-failure
) 8p 2

Sk
i=1 pre(body�(r j)), ground(p) ⇢ Wi

and @Wj 6= Wi: ground(p) ⇢ Wj
) a 2 AnsP(W).

Proposition 2. Given Ginpre(P)
P that is connected and

W is an input window such that pre(W) ✓ inpre(P):

AnsP(W) =
n[

i=1

AnsP(Wi)

where W =
Sn

i=1 Wi, and pre(Wi) are computed by
the Algorithm 3.

Proof. When Ginpre(P)
P is connected, Algorithm 3 de-

composes inpre(P) into pre(Wi), i = 1..n and the

F. Author et al. / Scalable Expressive Stream Reasoning 11

intersection of any two sets pre(Wi) and pre(Wj)
(pre(Wi) 6= pre(Wj)) may be not empty. Without
loosing generality, assume that pre(Wi) \ pre(Wj) =
{p}, p 2 inpre(P). The partitioning process in Al-
gorithm 4 adds all ground atoms over p into both Wi
and Wj. In this way, we do not loose the dependen-
cies between p with other predicates in pre(Wi) (or
in pre(Wj)). Therefore, the correctness of the parallel
reasoning process is maintained as proved in Proposi-
tion 1.

5. Evaluation

We evaluate the performance of our optimized rea-
soner PR on input programs with different levels of
expressivity: positive rules (experiment 1), positive re-
cursive rules (experiment 2), and stratified negation
rules (experiment 3). In each experiment, we compare
the performance against state-of-the-art engines sup-
porting the same level of expressivity with respect to
two metrics: latency and memory consumption. La-
tency refers to the time consumed by the engines be-
tween input arrival and output generation while mem-
ory consumption reflects the usage of system mem-
ory during execution. The experiments were conducted
on a machine with 24-core Intel(R) Xeon(R) 2.40
GHz and 96G RAM. We used Java 1.8 with heap
size from 5GB to 20GB for C-SPARQL and Clingo
4.5.4 for the reasoners. The experiments code and
data is available at https://github.com/ThuLePham/
SR_Experiments. The empirical results, which are de-
tailed in the following subsections, are encouraging as
they show that our approach achieves higher expres-
sivity and outperforms other related systems.

5.1. Experiment 1: Positive rules

In this experiment, we select C_SPARQL as a com-
parable system to handle positive rules. We do not con-
sider CQELS [23] because its processing mode does
not allow certain positive rules to be expressed: both
PR and C_SPARQL process streaming data in batches
while CQELS processes every new data item immedi-
ately and therefore cannot reason about elements ap-
pearing in the same window. We compare PR against
C_SPARQL by using the well-known stream process-
ing benchmark CityBench [1]. In particular we use
query Q1, Q2, and Q10 as representative samples in
terms of number of query patterns and presence of join
operators. Details of those queries are available in the

CityBench github5. To make sure that both engines re-
turn the same result format (triple) for a fair compari-
son, we modify the SELECT statement in both queries
to a CONSTRUCT statement, and we refer to them
as to Q1C, Q2C, and Q10C respectively. We trans-
late queries Q1C, Q2C, and Q10C into ASP positive
rule sets for PR. We refer to those rule sets as R1C,
R2C, and R10C respectively. Listing 2 shows the rule
set obtained by translating Q1C. We evaluate latency
and memory consumption of the two engines by in-
creasing the input streaming rate. The streaming rate
can be changed by changing the frequency parame-
ter in the CityBench configuration. We stream data for
10 minutes with two different frequencies f = 1 and
f = 2. Results shown in Figure 7 and Figure 9 in-
dicate that the latency for PR is minimal compared
to C_SPARQL in both frequencies and queries. More
specifically, PR performs almost 3 times (or more)
faster than C_SPARQL for queries Q1C, Q2C in the
case of frequency f = 1 (or f = 2, respectively).
For query Q10C, the performance of both PR and
C_SPARQL remains the same in both f = 1 and
f = 2. Also, it is noticeable that the memory consump-
tion of PR is less than a half of C_SPARQL memory
consumption (see Figure 8 and Figure 10). Notice that
with those queries in CityBench, the input dependency
graph is strongly connected (there is an edge between
any two vertexes), therefore the parallel optimization
cannot be exploited. It represents that our reasoner out-
performs C-SPARQL engine without triggering its par-
allel optimization mode.

5.2. Experiment 2: Recursive positive rules

For the experiment with recursive positive rules that
are not supported by C_SPARQL, we compare PR
against R and Jena reasoner6 by using a widely used
benchmark for reasoning systems, the Lehigh Univer-
sity Benchmark (LUBM [21]). We selected a different
benchmark for experiment 2 due to limitations regard-
ing expressivity of rules in CityBench. In order to eval-
uate these engines, we create a set of rules as in Listing
3 which includes 4 recursive rules over 15 rules. We
use Univ-Bench Artificial Data Generator7 to generate
and stream data to the engines. Due to the fact that the
Jena reasoner does not support data stream process-

5https://github.com/CityBench/Benchmark
6https://jena.apache.org/documentation/inference/
7https://github.com/rvesse/lubm-uba

https://github.com/ThuLePham/SR_Experiments
https://github.com/ThuLePham/SR_Experiments
https://jena.apache.org/documentation/inference/
https://github.com/rvesse/lubm-uba

12 F. Author et al. / Scalable Expressive Stream Reasoning

o b s e r v e r B y (ObId) :� s sn_obse rvedBy (ObId , " _ A a r h u s T r a f f i c D a t a 1 8 2 9 5 5 ") .
o b s e r v e r B y (ObId) :� s sn_obse rvedBy (ObId , " _ A a r h u s T r a f f i c D a t a 1 5 8 5 0 5 ") .
_ r e s u l t (ObId , V) :� o b s e r v e r B y (ObId) , s a o _ h a s V a l u e (ObId , V) ,

s s n _ o b s e r v e d P r o p e r t y (ObId , P) , r d f _ t y p e (P , " c t _ C o n g e s t i o n L e v e l ") .

Listing 2: Rules translated from query Q1 in CityBench

0

500

1,000

1,500

2,000

2,500

3,000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

R1C R2C R10C Q1C Q2C Q10C

Fig. 7. Latency (f = 1)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

R1C R2C R10C Q1C Q2C Q10C

Fig. 8. Memory consumption (f =1)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

R1C R2C R10C Q1C Q2C Q10C

Fig. 9. Latency (f = 2)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

R1C R2C R10C Q1C Q2C Q10C

Fig. 10. Memory consumption (f =2)

ing, we run this experiment in two settings: static and
streaming.

Static setting. In this setting, we evaluate PR, R and
Jena reasoner with different sizes of input data from
5k to 100k (k=1000) triples. We trigger each engine
3 times per each input data size and take the average.
Figure 11 and Figure 12 show the effect over latency
and memory consumption with increasing number of
triples for the three engines. A closer look at the re-
sults in Figure 11 reveals that PR outperforms R over
subsequent increase from 10k to 100k (R can not pro-
cess 60k and 100k triples). Compare to Jena, PR is
slightly slower when the input size is smaller than 30k.
However, PR is considerably faster than Jena when the
number of triples is bigger than 30k. When the input

size increases from 60k to 100k triples, the latency of
Jena increases sharply from 200 seconds to 750 sec-
onds while PR’s latency only increases slightly from
100 seconds to 200 seconds. This is an indication of
the scalability of our approach over increasing size of
the input. For memory consumption, Figure 12 shows
that all engines have increasing memory consumption
issue but Jena seems to be better at memory manage-
ment when increasing the number of input triples.

Streaming setting. In the streaming setting, we trig-
ger PR and R by streaming triples for 10 minutes with
various rates from 1k to 5k triples/second. We use the
time-based window size of 3 seconds with the sliding
step of 2 seconds. Figure 13 reports latency observed
from PR and R. It shows that PR performs as R at

F. Author et al. / Scalable Expressive Stream Reasoning 13

p r e f i x r d f : < h t t p : / / www. w3 . org /1999/02/22 � r d f�syn t ax�ns # >.
p r e f i x un i be n : < h t t p : / / www. l e h i g h . edu / ~ zhp2 / 2 0 0 4 / 0 4 0 1 / univ�bench . owl # >.

(r1) r d f _ t y p e (X, " P r o f e s o r ") :� r d f _ t y p e (X, " u n i b e n _ F u l l P r o f e s s o r ") .
(r2) r d f _ t y p e (X, " P r o f e s o r ") :� r d f _ t y p e (X, " u n i b e n _ A s s o c i a t e P r o f e s s o r ") .
(r3) r d f _ t y p e (X, " P r o f e s o r ") :� r d f _ t y p e (X, " u n i b e n _ A s s i s t a n t P r o f e s s o r ") .
(r4) canBecomeDean (X,U) :� r d f _ t y p e (X, " P r o f e s s o r ") , un iben_worksFor (X,D) ,

u n i b e n _ s u b O r g a n i z a t i o n O f (D,U) .
(r5) canBecomeHeadOf (X,D) :� un iben_worksFor (X,D) .
(r6) c o m m o n R e s e a r c h I n t e r e s t s (X,Y) :� u n i b e n _ r e s e a r c h I n t e r e s t (X, R) ,

u n i b e n _ r e s e a r c h I n t e r e s t (Y, R) .
(r7) commonPu l i ca t ion (X,Y) :� u n i b e n _ p u b l i c a t i o n A u t h o r (P ,X) ,

u n i b e n _ p u b l i c a t i o n A u t h o r (P ,Y) .
(r8) c o m m o n R e s e a r c h I n t e r e s t s (X,Y) :� commonPul i ca t ion (X,Y) .
(r9) u n i b e n _ t e a c h e r O f (Y, C) :� c o m m o n R e s e a r c h I n t e r e s t s (X,Y) , u n i b e n _ t e a c h e r O f (X, C) .
(r10) c o m m o n R e s e a r c h I n t e r e s t s (X,Y) :� u n i b e n _ a d v i s o r (X, Z) , u n i b e n _ a d v i s o r (Y, Z) .
(r11) c a n R e q u e s t R e c o m m e n d a t i o n L e t t e r (X, Z) :� u n i b e n _ a d v i s o r (X, Z) .
(r12) c a n R e q u e s t R e c o m m e n d a t i o n L e t t e r (X, Z) :� t e a c h e s (Z ,X) .
(r13) t e a c h e s (X,Y) :� u n i b e n _ t e a c h e r O f (X, C) , u n i b e n _ t a k e s C o u r s e (Y, C) .
(r14) t e a c h e s (X,Y) :� u n i b e n _ t e a c h i n g A s s i s t a n t O f (X, C) , u n i b e n _ t a k e s C o u r s e (Y, C) .
(r15) s u g g e s t A d v i s o r (X,Y) :� t e a c h e s (Y,X) .

Listing 3: A set of ASP rules inspired from LUBM

0

100

200

300

400

500

600

700

800

5k 10k 30k 60k 100k

La
te
nc
y	
(s
)

Number	 of	triples

R PR Jena

Fig. 11. Latency (recursive rules with static setting)

0

500

1000

1500

2000

2500

3000

3500

5k 10k 30k 60k 100k

M
em

or
y	
(M

B)

Number	 of	triples

R PR Jena

Fig. 12. Memory consumption (recursive rules with static setting)

the streaming rate of 1k triples/second. The reason for
this is that the number of input triples is small enough
and the Clingo solver does not suffer from exponen-
tial grounding. However, we observe a benefit of par-
allel optimization in PR at the streaming rates of 3k
and 5k triples/second where PR performs much faster
than R. In addition, the latency of PR is more stable
than the one of R during the 10-minute streaming. This
means that our approach generates a smaller ground
program and a smaller search space, speeding up both
grounding and solving of the reasoner. For memory
consumption that is illustrated in Figure 14, PR con-
sumes slightly less memory than R. The figures also

shows that there is a considerable increase in memory
consumption when streaming rate increases from 1k to
5k triples/seconds.

5.3. Experiment 3: Stratified negation rules

We now focus on a rule set which has stratified nega-
tions. We modify rules r5, r12 and r15 in the rule set
of experiment 2 with 3 negation-as-failure atoms as in
Listing 4. As a result, the experimental rule set now in-
cludes 4 recursive rules and 3 negation-as-failure rules
over 15 rules. We compare PR against R only since
the Jena reasoner does not support negation-as-failure.

14 F. Author et al. / Scalable Expressive Stream Reasoning

0

5,000

10,000

15,000

20,000

25,000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Fig. 13. Latency (recursive rules with streaming setting)

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Fig. 14. Memory consumption (recursive rules with streaming
setting)

Similar to experiment 2, we evaluate the same two en-
gines for 10 minutes with various streaming rates from
1k to 5k triples/second. Figure 15 and Figure 16 illus-
trate a similar pattern in latency and memory consump-
tion as observed in the experiment 2. PR has faster rea-
soning time at streaming rates 3k and 5k triples/sec-
ond, but consumes slightly higher memory compared
to R at 5k triples/seconds.

6. Related Works

Parallel strategies were important features of
database technology in the nineties in order to speed
up the execution of complex queries [9]. In Semantic
Web, the parallelism in reasoning has been studied in
[15, 25, 28–30] where a set of machines is assigned
a partition of the parallel computation. [15] presents
a distributed ontology reasoning and querying system
which employs Distributed Hash Table method to or-
ganize the instance data. [25] has a distributed pro-
cess over large amounts of RDF data using a proposed
divide-conquer-swap strategy, which extends the tradi-
tional approach of divide-and-conquer with an iterative
procedure whose result converges towards complete-
ness over time. Similarly, [30] proposes a technique
for materializing the closure of an RDF graph based on
MapReduce [11]. The authors in [29] also use MapRe-
duce to explore the reasoning in the form of defeasible
logic. They restrict this logic to the argument defea-
sible logic. Afterwards, they apply a similar approach
to systems based on the well-founded semantics [28].
While the works in [15, 25, 30] focus on monotonic
reasoning, [28, 29] examine non-monotonic reasoning
over massive data. However, these attempts do not con-
sider the streaming setting and do not rely on the stable
model semantics.

In ASP, several works about parallel techniques for
the evaluation of a logic program have been proposed
[4, 10, 17, 20, 26], focusing on both phases of the ASP
computation, namely grounding and solving. Concern-
ing the parallelization of the grounding phase, the
work in [4] is applicable only to a subset of the pro-
gram rules. Therefore, in general, this work is unable
to exploit parallelism fruitfully in the case of programs
with a small number of rules. [10] explores some struc-
tural properties of the input program via the defined
dependency graph in order to detect subprograms that
can be evaluated in parallel. [26] extends this work
with parallelism in three different steps of the ground-
ing process: components, rules, and single rule level.
The first level divides the input program into subpro-
grams, according to the dependency graph among IDB
predicates of that program. The second level allows
for concurrently evaluating the rules within each sub-
program. The third level partitions the extension of a
single rule literal into a number of subsets. This step
is especially efficient when the input program consists
of few rules and two first levels have no effects on
the evaluation of the program. For the solving step
which is carried out after the grounding step, [20]
proposes a generic approach to distribute the search-
ing space in order to find the answer sets, which per-
mits exploitation of the increasing availability of clus-
tered and/or multiprocessor machines. [17] introduces
a conflict-driven algorithm to compute the answer sets
based on constraint processing and satisfiability check-
ing. In short, [4, 10, 26] focus on parallel instantia-
tion by splitting a logic program in order to obtain
a smaller ground program, [17, 20] compute the an-
swer sets from that ground program in parallel. These
approaches have been implemented in state-of-the-art
ASP solvers such as Clingo and DLV. In this paper,
we are not partitioning the logic program. We are fo-

F. Author et al. / Scalable Expressive Stream Reasoning 15

(r05) canBecomeHeadOf (X,D) :� un iben_worksFor (X,D) , un iben_headOf (Z ,D) ,
n o t c o m m o n R e s e a r c h I n t e r e s t s (X, Z) .

(r012) c a n n o t R e q u e s t R e c o m m e n d a t i o n L e t t e r (X, Z) :� t e a c h e s (Z ,X) , n o t u n i b e n _ a d v i s o r (X, Z) .
(r015) s u g g e s t A d v i s o r (X,Y) :� t e a c h e s (Y,X) , n o t u n i b e n _ a d v i s o r (X, Z) .

Listing 4: Negation-as-failure rules

-1000

1000

3000

5000

7000

9000

11000

13000

15000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Fig. 15. Latency (recursive and stratified negation rules)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Fig. 16. Memory consumption (recursive and stratified negation
rules)

cusing instead on partitioning the input and evaluating
each partition on a different copy of the whole program
with the intuition that this approach is data-driven and
can result in a faster run-time analysis since it does
not consider the whole program in any case, but only
the rules that are triggered based on the (partitioned)
streaming input.

A different approach to enhance the scalability of
expressive stream reasoning is based on incremental
methods. There are two reasoners proposed recently
based on the LARS framework [7], namely Ticker [8]
and Laser [6]. Ticker translates the plain LARS (more
specifically, a fragment of LARS) to ASP and supports
two reasoning strategies: one utilizes Clingo with a
static ASP encoding and the other applies truth mainte-
nance techniques to adjust models incrementally. Sim-
ilarly, Laser also relies on incremental model update to
avoid unnecessary re-computations by annotating for-
mula with two time markers. However, this engine re-
stricts its logic programs to a stratified tractable frag-
ment of LARS to ensure the uniqueness of models.

7. Conclusion and Future Work

Scalability is a key challenge for the applicability
of reasoning techniques to rapidly changing informa-
tion. In this paper, we consider the challenge of cre-

ating new semantic knowledge from diverse and dy-
namic data for complex problem solving, and doing
that in a scalable way. To address this challenge, we fo-
cus on an approach that leverages semantic technolo-
gies to integrate and pre-process RDF streams on one
side, and expressive inference enhanced with parallel
execution on the other side.

Building upon previous work, and following up on
our initial investigation of the trade-off between scal-
ability and expressivity of rule-based reasoning over
streaming RDF data, in this paper we provided a clear
characterization and formal definition of our approach
to parallelization of stream reasoning by input depen-
dency analysis (both at the predicate and at the atom
level) that was first introduced in [27]. We imple-
mented the proposed approach as an extension of the
StreamRule reasoner and provided a proof of correct-
ness under the assumption that no recursion through
negation is present in the rules, thus guaranteeing the
uniqueness of the solution. Furthermore, we consid-
ered the different levels of expressivity that are sup-
ported by the reasoning layer of our prototype imple-
mentation and conducted a detailed experimental eval-
uation by comparison with different systems based on
their expressivity. This evaluation indicates that our
reasoner not only has a competitive performance in
comparison with existing systems but it also supports

16 F. Author et al. / Scalable Expressive Stream Reasoning

higher expressivity of reasoning tasks. This work is
also a demonstration that expressive reasoning is pos-
sible also in streaming environments, and it paves the
way for investigating feasible solutions in this space.

Our performance evaluation demonstrates that the
combination of RDF Stream Processing and ASP-
based reasoning for heterogeneous and highly dynamic
data is possible and promising, even when recursion
and default negation are used, and that the performance
does not degrade for simpler tasks, thus being compa-
rable with alternative systems.

Stream reasoning is a new and active area of re-
search within Semantic Web, Knowledge Represen-
tation and Reasoning community and there are many
open questions and interesting directions for investiga-
tion that we are currently working on as next steps, we
discuss a few in the remainder of this section.

In order to avail the full power of ASP-based rea-
soning, the ability to generate multiple solutions is key,
but this requires a deeper investigation of how correct-
ness can be maintained when partitioning and merging
results in the presence of multiple answer sets. This
is a key step we are currently exploring to exploit the
full expressivity of ASP-based reasoning for semantic
streams.

Another direction for investigation is related to the
definition of multiple heuristics for splitting the graph
and duplicating nodes. Our current solution is based
on finding and merging cliques using a threshold score
on the ratio between common and different vertexes, to
decide where to split and duplicate. Different heuris-
tics that also consider the size of the cliques and that
aim at load balancing would contribute to the over-
all performance of the system. Leveraging information
about the distribution of ground atoms across the dif-
ferent predicates could also be a good information to
design better heuristics and for load balancing. This
could also inform the current partitioning function so
that the splitting process does not rely on predicate-
level analysis only. We believe this can have an impor-
tant effect on computation time that needs to be further
investigated.

Despite incremental evaluation and parallel execu-
tion are different ways of tackling the scalability is-
sue, we believe a comparison with these systems in
terms of expressivity vs. scalability trade-off will en-
able us to share important insights for future work
and advances in the Stream Reasoning field. There-
fore, another part of our ongoing work is to perform
an extensive evaluation aimed at comparing our rea-
soner with Ticker and Laser. To do so, we are currently

building a benchmark for ASP-based stream reasoning
which builds upon state-of-the-art static ASP bench-
marking [18] and RDF stream processing benchmarks
(e.g., [1], [22]). Our resulting benchmark is designed
to cover various expressivity levels of complex reason-
ing and will support configurable parameters (e.g., in-
put streaming rate, window size) for evaluating the be-
havior of the stream reasoners.

References

[1] M. I. Ali, F. Gao, and A. Mileo. CityBench: A config-
urable benchmark to evaluate RSP engines using smart city
datasets. In M. Arenas, O. Corcho, E. Simperl, M. Strohmaier,
M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin,
K. Thirunarayan, and S. Staab, editors, International Semantic
Web Conference, pages 374–389. Springer, Cham, 2015. DOI:
10.1007/978-3-319-25010-6_25.

[2] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-
SPARQL: A unified language for event processing and stream
reasoning. In Proceedings of the 20th International Confer-
ence on World Wide Web, WWW ’11, pages 635–644. ACM,
New York, USA, 2011. DOI: 10.1145/1963405.1963495.

[3] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream
reasoning and complex event processing in ETALIS. Semantic
Web, 3(4):397–407, 2012. DOI: 10.3233/SW-2011-0053.

[4] M. Balduccini, E. Pontelli, O. Elkhatib, and H. Le. Issues in
parallel execution of non-monotonic reasoning systems. Par-
allel Computing, 31(6):608–647, 2005. DOI: 10.1016/j.parco.
2005.03.004.

[5] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Gross-
niklaus. C-SPARQL: SPARQL for continuous querying. In
Proceedings of the 18th International Conference on World
Wide Web, WWW ’09, pages 1061–1062. ACM, New York,
USA, 2009. DOI: 10.1145/1526709.1526856.

[6] H. R. Bazoobandi, H. Beck, and J. Urbani. Expressive
stream reasoning with Laser. In C. d’Amato, M. Fernandez,
V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange,
and J. Heflin, editors, International Semantic Web Confer-
ence, pages 87–103. Springer, Cham, 2017. DOI: 10.1007/
978-3-319-68288-4_6.

[7] H. Beck, M. Dao-Tran, and T. Eiter. LARS: A logic-based
framework for analyzing reasoning over streams. In A. M.
Tjoa, L. Bellatreche, S. Biffl, J. van Leeuwen, and J. Wieder-
mann, editors, SOFSEM 2018: Theory and Practice of Com-
puter Science, pages 87–93. Springer, Cham, 2018. DOI:
10.1007/978-3-319-73117-9_6.

[8] H. Beck, T. Eiter, and C. Folie. Ticker: A system for in-
cremental ASP-based stream reasoning. Theory and Prac-
tice of Logic Programming, 17(5-6):744–763, 2017. DOI:
10.1017/s1471068417000370.

[9] F. Cacace, S. Ceri, and M. Houtsma. A survey of parallel exe-
cution strategies for transitive closure and logic programs. Dis-
tributed and Parallel Databases, 1(4):337–382, 1993. DOI:
10.1007/bf01264013.

[10] F. Calimeri, S. Perri, and F. Ricca. Experimenting with paral-
lelism for the instantiation of ASP programs. Journal of Algo-
rithms, 63(1):34–54, 2008. DOI: 10.1016/j.jalgor.2008.02.003.

10.1007/978-3-319-25010-6_25
10.1145/1963405.1963495
10.3233/SW-2011-0053
10.1016/j.parco.2005.03.004
10.1016/j.parco.2005.03.004
10.1145/1526709.1526856
10.1007/978-3-319-68288-4_6
10.1007/978-3-319-68288-4_6
10.1007/978-3-319-73117-9_6
10.1017/s1471068417000370
10.1007/bf01264013
10.1016/j.jalgor.2008.02.003

F. Author et al. / Scalable Expressive Stream Reasoning 17

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008. DOI: 10.1145/1327452.1327492.

[12] T. M. Do, S. W. Loke, and F. Liu. Answer set programming for
stream reasoning. In C. Butz and P. Lingras, editors, Advances
in Artificial Intelligence, pages 104–109. Springer, Berlin, Hei-
delberg, 2011. DOI: 10.1007/978-3-642-21043-3_13.

[13] T. Eiter, G. Ianni, and T. Krennwallner. Answer set program-
ming: A primer. In S. Tessaris, E. Franconi, T. Eiter, C. Gutier-
rez, S. Handschuh, M.-C. Rousset, and R. A. Schmidt, editors,
Reasoning Web. Semantic Technologies for Information Sys-
tems, pages 40–110. Springer, Berlin, Heidelberg, 2009. DOI:
10.1007/978-3-642-03754-2_2.

[14] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. DLVhex:
A prover for Semantic Web reasoning under the answer set se-
mantics. In IEEE/WIC/ACM International Conference on Web
Intelligence, pages 1073–1074. IEEE, 2006. DOI: 10.1109/
WI.2006.64.

[15] Q. Fang, Y. Zhao, G. Yang, and W. Zheng. Scalable dis-
tributed ontology reasoning using DHT-based partitioning. In
J. Domingue and C. Anutariya, editors, Asian Semantic Web
Conference, pages 91–105, Berlin, Heidelberg, 2008. Springer.
DOI: 10.1007/978-3-540-89704-0_7.

[16] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu,
and T. Schaub. Answer set programming for stream reason-
ing. CoRR, abs/1301.1392, 2013. http://adsabs.harvard.edu/
abs/2013arXiv1301.1392G.

[17] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven an-
swer set solving: From theory to practice. Artificial Intelli-
gence, 187-188:52–89, 2012. DOI: 10.1016/j.artint.2012.04.
001.

[18] M. Gebser, M. Maratea, and F. Ricca. The design of the seventh
answer set programming competition. In M. Balduccini and
T. Janhunen, editors, International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, pages 3–9. Springer,
Cham, 2017. DOI: 10.1007/978-3-319-61660-5_1.

[19] S. Germano, T.-L. Pham, and A. Mileo. Web stream rea-
soning in practice: on the expressivity vs. scalability trade-
off. In B. ten Cate and A. Mileo, editors, Web Reasoning and
Rule Systems, pages 105–112. Springer, Cham, 2015. DOI:
10.1007/978-3-319-22002-4_9.

[20] J. Gressmann, T. Janhunen, R. E. Mercer, T. Schaub, S. Thiele,
and R. Tichy. Platypus: A platform for distributed answer set
solving. In C. Baral, G. Greco, N. Leone, and G. Terracina,
editors, International Conference on Logic Programming and
Nonmonotonic Reasoning, pages 227–239. Springer, Berlin,
Heidelberg, 2005. DOI: 10.1007/11546207_18.

[21] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2):158–182, 2005. DOI:
10.1016/j.websem.2005.06.005.

[22] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter,
and M. Fink. Linked stream data processing engines: Facts
and figures. In P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tu-
dorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler,
G. Schreiber, A. Bernstein, and E. Blomqvist, editors, Inter-
national Semantic Web Conference, pages 300–312. Springer,
Berlin, Heidelberg, 2012. DOI: 10.1007/978-3-642-35173-0_
20.

[23] D. Le-Phuoc, M. Dao-Tran, J. Xavier Parreira, and
M. Hauswirth. A native and adaptive approach for unified
processing of linked streams and linked data. In L. Aroyo,
C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy,
and E. Blomqvist, editors, The Semantic Web – ISWC 2011,
pages 370–388. Springer, Berlin, Heidelberg, 2011. DOI:
10.1007/978-3-642-25073-6_24.

[24] A. Mileo, A. Abdelrahman, S. Policarpio, and M. Hauswirth.
StreamRule: a nonmonotonic stream reasoning system for the
Semantic Web. In W. Faber and D. Lembo, editors, Web Rea-
soning and Rule Systems, pages 247–252. Springer, Berlin,
Heidelberg, 2013. DOI: 10.1007/978-3-642-39666-3_23.

[25] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije, and
F. van Harmelen. Marvin: Distributed reasoning over large-
scale Semantic Web data. Web Semantics: Science, Services
and Agents on the World Wide Web, 7(4):305–316, 2009. DOI:
10.1016/j.websem.2009.09.002.

[26] S. Perri, F. Ricca, and M. Sirianni. Parallel instantiation of ASP
programs: techniques and experiments. Theory and Practice
of Logic Programming, 13(2):253–278, 2013. DOI: 10.1017/
S1471068411000652.

[27] T.-L. Pham, A. Mileo, and M. I. Ali. Towards scalable non-
monotonic stream reasoning via input dependency analysis. In
2017 IEEE 33rd International Conference on Data Engineer-
ing (ICDE), pages 1553–1558. IEEE, 2017. DOI: 10.1109/
ICDE.2017.226.

[28] I. Tachmazidis, G. Antoniou, and W. Faber. Efficient computa-
tion of the well-founded semantics over big data. Theory and
Practice of Logic Programming, 14(4-5), 2014.

[29] I. Tachmazidis, G. Antoniou, G. Flouris, and S. Kotoulas. To-
wards parallel nonmonotonic reasoning with billions of facts.
In Proceedings of the Thirteenth International Conference
on Principles of Knowledge Representation and Reasoning,
KR’12, pages 638–642. AAAI Press, 2012. http://dl.acm.org/
citation.cfm?id=3031843.3031926.

[30] J. Urbani, S. Kotoulas, E. Oren, and F. Harmelen. Scalable
distributed reasoning using MapReduce. In A. Bernstein, D. R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and
K. Thirunarayan, editors, Proceedings of the 8th International
Semantic Web Conference, pages 634–649. Springer, Berlin,
Heidelberg, 2009. DOI: 10.1007/978-3-642-04930-9_40.

10.1145/1327452.1327492
10.1007/978-3-642-21043-3_13
10.1007/978-3-642-03754-2_2
10.1109/WI.2006.64
10.1109/WI.2006.64
10.1007/978-3-540-89704-0_7
http://adsabs.harvard.edu/abs/2013arXiv1301.1392G
http://adsabs.harvard.edu/abs/2013arXiv1301.1392G
10.1016/j.artint.2012.04.001
10.1016/j.artint.2012.04.001
10.1007/978-3-319-61660-5_1
10.1007/978-3-319-22002-4_9
10.1007/11546207_18
10.1016/j.websem.2005.06.005
10.1007/978-3-642-35173-0_20
10.1007/978-3-642-35173-0_20
10.1007/978-3-642-25073-6_24
10.1007/978-3-642-39666-3_23
10.1016/j.websem.2009.09.002
10.1017/S1471068411000652
10.1017/S1471068411000652
10.1109/ICDE.2017.226
10.1109/ICDE.2017.226
http://dl.acm.org/citation.cfm?id=3031843.3031926
http://dl.acm.org/citation.cfm?id=3031843.3031926
10.1007/978-3-642-04930-9_40

	Introduction
	Preliminaries & Motivating Example
	Answer set programming
	Syntax.
	Semantics.

	StreamRule
	Motivating Example

	Input Dependency Analysis
	Input Dependency Graph
	Partitioning Plan

	Parallel Reasoning in StreamRule
	Implementation
	Correctness

	Evaluation
	Experiment 1: Positive rules
	Experiment 2: Recursive positive rules
	Experiment 3: Stratified negation rules

	Related Works
	Conclusion and Future Work
	References

