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ABSTRACT 

The RSA public key and signature scheme is often used in modern communications technologies; it is one of the 

firstly defined public key cryptosystem that enable secure communicating over public unsecure communication 

channels.       

In praxis many protocols and security standards use the RSA, thus the security of the RSA is critical because any 

weaknesses in the RSA crypto system may lead the whole system to become vulnerable against attacks.  

This paper introduce a security enhancement on the RSA cryptosystem, it suggests the use of randomized 

parameters in the encryption process to make RSA many attacks described in literature, this enhancement will 

make the RSA semantically secure, this means that that an attacker cannot distinguish two encryptions from each 

other even if the attacker knows (or has chosen) the corresponding plaintexts 
A comparison introduced in this paper between the basic RSA and the modified RSA version shows that the 

enhancement can easily be implemented.  

This paper also briefly discuss some other attacks on the RSA and the suitable choice of RSA parameter to avoid 

attacks, also an important issue for the RSA implementation is how to speed up the RSA encryption and decryption 

process. 

 

Keywords: RSA cryptosystem, RSA signature, RSA Problem, Public Key Cryptosystems, Private Key Cryptography, 

Crypto Analysis, Finite Fields, Quantum Computers. 

 

 

1.    INTRODUCTION 
The computer and communication technology's today are very important parts for a strong economy, thus it is 

important to have suitable security standards systems and technologies to meet that security needs.  

Many security systems and protocols have been developed that are based on standards, such standards comes mostly 

from well known standard organizations (e.g. Internet Architecture Board (IAB), Internet Engineering Task Force 

(IETF), etc.) that specify a huge set of security protocols, algorithms and applications which provide security 

services and meets the needs for data privacy and secure communication. 

A powerful tool for protection is the use of Cryptography. Cryptography underlies many of the security mechanisms 

and builds the science of data encryption and decryption.  Cryptography [1] enables us to securely store sensitive 

data or transmit across insecure networks such that it cannot be read by anyone except the intended recipient. By 

using a powerful tool such as encryption we gain privacy, authenticity, integrity, and limited access to data. In 

Cryptography we differentiate between private key cryptographic systems (also known as conventional 

cryptography systems) and public key cryptographic systems.  
Private Key Cryptography, also known as secret-key or symmetric-key encryption, has an old history, and is based 

on using one shared secret key for encryption and decryption. The development of fast computers and 

communication technologies did allow us to define many modern private key cryptographic systems, e.g. in 1960's 

Feistel cipher [2], Data Encryption Standard (DES), Triple Data Encryption standards (3DES), Advanced 

Encryption Standard (AES), The International Data Encryption Algorithm (IDEA), Blowfish, RC5, CAST, etc. The 

problem with private key cryptography was the key management, a system of n communicating parties would 

require to manage ((n-1)*n)/2 this means that to allow 1000 users to communicate securely, the system must manage 

499500 different shared secret key, thus it is not scalable for a large set of users.     

A new concept in cryptography was introduced in 1976 by Diffie and Hellman [2] this new concept was called 

public-key cryptography and is based on using two keys (Public and Private key). The use of public key 

cryptography solved many weaknesses and problems in private key cryptography, many public key cryptographic 
systems were specified (e.g. RSA [3], ElGamal [4], Diffie-Hellman key exchange [2], elliptic curves [5], etc.). The 

security of such Public key cryptosystems is often based on apparent difficulties of some mathematical number 

theory problems (also called "one way functions") like the discrete logarithm problem over finite fields, the discrete 

logarithm problem on elliptic curves, the integer factorization problem or the Diffie-Hellman Problem, etc. [1].  
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One of the firstly defined and often used public key cryptosystems is the RSA. The RSA cryptosystem is known as 

the ―de-facto‖ standard for Public-key encryption and signature worldwide and it has been patented in the U.S. and 

Canada. Several standards organizations have written standards that use of the RSA cryptosystem for encryption, 

and digital signatures [6], in praxis RSA is used in many internet security protocol and applications e.g. securing 

emails, securing e-payment and in related certification solutions.    
The RSA cryptosystem was named after his inventors R. Rivest, A. Shamir, and L. Adleman and is one of the 

mostly used public-key cryptosystem, the patent (4,405,829) was registered in the 14 of December 1977 (and did 

expired on September 21, 2000), it was assigned to the Massachusetts Institute of Technology, and it covers the 

RSA public-key encryption and the digital signature method.  

Many well known standard organizations specified security standards which define the implementation and the use 

of RSA in security systems [7] [8].  

Due to the wide use of the RSA cryptosystem, is it critical to ensure a high level of security for the RSA, in this 

paper I introduce a new enhancement to the security of the RSA cryptosystem, this is achieved by using randomized 

parameter, this will make the encrypted message more difficult for an adversary to break, thus making the RSA 

more secure.  

 

2.    PROBLEM FORMULATION 
The security of the RSA cryptosystem is based on the intractability of the RSA problem. This means that if in the 

future the RSA problem is generally solved then the RSA cryptosystem will no longer be secure. 

 

Definition The RSA problem (RSAP) is the following: given a positive integer n that is a product of two distinct 

odd primes p and q, a positive integer e such that gcd(e,(p-1)(q-1))=1, and an integer c, find an integer m such that  

me=c (mod n)  

 

This means that the RSA problem is based on finding the e-th roots modulo a composite integer n.  

 

Definition For n ≥ 1, let φ(n) denote the number of integers in the interval [1,n] which are relatively prime to n. The 

function φ is called the Euler phi function (or the Euler totient function) 
 

The RSAP has been studied for many years but still an efficient solution was not found thus it is considered as being 

difficult if the parameters are carefully chosen, but if the factors of n are known then the RSA problem can easily be 

solved, an adversary can then compute Euler ø(n) = (p-1)(q-1) function, and the private key d,  once d is obtained 

the adversary can decrypt any encrypted text. 

 

It is also widely believed that the RSA and the integer factorization problems are computationally equivalent, 

although no proof of this is known. 

 

Fact The problem of computing the RSA decryption exponent d from the public key (n, e) and the problem of 

factoring n are computationally equivalent [6]. 

 
This imply that when generating RSA keys, it is important that the primes p and q be selected in sufficient size such 

that factoring n = p*q should be computationally infeasible; 

 

The RSA schemes are defined over Zn
* groups of ø(n) order , next we define such groups.  

 
Let p be a prime number, then Zp denotes the set of integers {0, 1, 2, … , p - 1}, where addition and multiplication 
are performed modulo p. It is well-known that there exists a non-zero element gZp such that each non-zero 

element in Zp can be written as a power of g such element g is called a generator of Zp. A group is called cyclic if 

such element g exists. 

 

Definition A Field is a non empty set F of elements with two operations ―+‖ (called addition) and ― ・ ‖ (called 

multiplication) satisfying the following axioms: for all a, b, c F, 

 

i. F is closed under + and ・ , i.e., a + b and a ・ b are in F; 

ii. Commutative laws: a + b = b + a, a ・  b = b ・  a; 

iii. Associative laws: (a + b) + c = a + (b + c),  a ・  (b ・  c) = (a ・  b) ・  c; 
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iv. Distributive law: a ・  (b + c) = a ・  b + a ・  c. 

 

Furthermore, two distinct identity elements 0 and 1 (called the additive and multiplicative identities, respectively) 

must exist in F satisfying: 

 

v. a + 0 = a for all a   F; 
vi. a ・ 1 = a and a ・ 0 = 0 for all a   F; 

vii. For any a in F, there exists an additive inverse element (-a) in F such that a + (-a) = 0; 

viii.  For any a ≠ 0 in F, there exists a multiplicative inverse element a-1 in F such that a・  a-1 =1   

 

Definition A Finite field of prime order p or prime power q = pf (f >=1) is commonly denoted Fq or GF(q) (Galois 

field) and because Zm is a field if and only if m is a prime, we denote the field Zm  by Fm. This is called a prime field.  

 

Definition Let α   Zp
* .If the order of α is φ(n), then α is said to be a generator or a primitive element of Zp

*. If  Zp
*  

has a generator, then Zp
* is said to be cyclic. 

 

Definition The integers modulo n, denoted Zn, is the set of (equivalence classes of) integers {0, 1, 2, ..., n-1}. 

Addition, subtraction, and multiplication in Zn are performed modulo n.   
 

Definition The multiplicative group of Zn is Zn
* = {a   Zn | gcd(a, n) = 1}. In particular. If n is a prime, the Zn

* = {a 

| 1 ≤ a ≤ n-1}.  

 

Definition The order of Zn
* is defined to be the number of elements in Zn

*, namely |Zn
*| and is equal to φ(n) .  

 

Note also that if a Zn
* and b Zn

*, then a*b Zn
*, and so Zn

* is closed under multiplication. 

 

Definition The Discrete Logarithm Problem is the following: given a prime p, a generator α of Zp
*, and an element β  

 Zp
*, find the integer x, 0 ≤ x ≤ p-2, such that αx = β (mod p).  

 
Now the definition of algorithms in Zn (e.g. computing multiplicative inverses in Zn, the repeated square-and-

multiply algorithm for exponentiation in Zn, etc.) as described in literature [6] enable us to define the RSA schemes.   

 

The following algorithms describe the RSA key generation, and the RSA cryptosystem (basic version) 

 

Algorithm 2.1: Key generation for the RSA public-key encryption 

 Each user A creates an RSA public key and the corresponding private key. 

User A should do the following: 

1. Generate two large random (and distinct) primes pA and qA, each roughly the same size. 

2. Compute nA = pA*qA and ø(nA) = (pA-1)(qA-1). 

3. Select a random integer eA , 1 < eA < ø(nA), such that gcd(eA, ø(nA))=1. 

4. Use the Euclidean algorithm to compute the unique integer dA, 1 < dA < ø(nA), such that  
eA*dA ≡ 1 (mod ø(nA)).    

5. User A public key is (nA, eA) and A’s private key is dA  

 

Definition The integer's eA and dA in RSA key generation are called the encryption exponent and the decryption 

exponent, respectively, while nA is called the modulus. 

 

Algorithm 2.2: The RSA public-key encryption and decryption (Basic version) 

User B encrypts a message m for user A, which A decrypts.  

1. Encryption. User B should do the following: 

(a) Obtain user A authentic public key (nA, eA). 

(b) Represent the message as an integer m in the interval [0,nA-1] 
 (c) Compute c = meA mod n 

(d) Send the encrypted text message c to user A. 

2. Decryption. To recover plaintext m from c, user A should do the following: 

 (a) Use the private key dA to recover m = (meA)dA mod n  
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The original RSA encryption, decryption does not contain any randomized parameter making the RSA cryptosystem 

deterministic, which means that an attacker can distinguish between two encryptions, based on this many of the 

attacks listed below can be performed on the RSA basic version. 

  

3. Enhancing the security of the RSA cryptosystem 

 
The key generation remain unchanged as in the original RSA, see above. The following algorithms describe the 

enhanced RSA cryptosystem. 

 

Algorithm 3.1: The enhanced RSA public-key encryption and decryption (Modified version) 

User B encrypts a message m for user A, which A decrypts.  

1. Encryption. User B should do the following: 

(a) Obtain user A authentic public key (nA, eA). 

(b) Represent the message as an integer m in the interval [0,nA-1] 

(c) Select a random integer k , 1 < k < nA, such that gcd(k, nA))=1 

(d) Compute  c1 =  keA mod nA  

(e) Compute  c2 =  m
eA k mod nA 

(f) Send the encrypted text message (c1, c2) to user A  
2. Decryption. To recover plaintext m from c2, user A should do the following: 

(a) Use own private key dA and compute: c1
dA = k mod nA 

(b) Use the Euclidean algorithm and calculate the unique integer s, 1< s < nA, such that s*k ≡ 1 (mod nA).    

(c) Compute c2s = (m eA k) s = (meA) k s = m eA mod nA          

(d) Recover m, use the private key dA and compute:  ( m eA) dA = m mod nA  

 

The following example illustrates the use of modified RSA cryptosystem.  

 

Example: (RSA Encryption/Decryption) 

Key Generation: Assume pA = 2350, qA= 2551, nA = pA*qA = 6012707   

1. Encryption. User B should do the following: 
(a) User A authentic public key eA = 3674911 

(b) Message m = 31 

(c) Random k = 525   

(d) Compute: 5253674911 = 20639 mod 6012707 

(e) Compute: 313674911 525 = 2314247 mod 6012707 

(f) Send (20639, 2314247) to user A 

2. Decryption. To recover plaintext m from c, user A should do the following: 

 (a) User A private key dA = 422191, compute:  20639422191 = 525 mod 6012707 

 (b) Extended GCD(525,6012707)  s = 3516002 

 (c) Compute: 2314247 * 3516002 = 2913413 mod 6012707 

 (d) Recover m: 2913413422191 = 31 mod 6012707  

 
 

The RSA encryption/decryption is much slower than commonly used symmetric-key encryption algorithms such as 

the well know algorithm DES and this is the reason why in practice RSA encryption is commonly used to encrypt 

symmetrical keys or to encrypt small amount of data, there are many software solutions or hardware 

implementations to speeding up the RSA encryption/decryption process. For more information about speeding up 

RSA software implementations see [6].       

 

Because the basic version of the RSA cryptosystem has no randomization component an attacker can successfully 

launch many kinds of attacks, now we discuss some of these attacks. 

 

1. Known plain-text attack; a known-plaintext attack is one where the adversary has a quantity of plaintext and 
corresponding cipher-text [6]. 

 

Given such a sorted set S 

 = {{p1,c1},{p2,c2},..., {pr,cr}} (where pi 
  P plaintext set, ci   C ciphertext set, r < ø (n) is the order of Zn*) an 

adversary can determine the plaintext px if the corresponding cx is in S. 
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The following example shows the relationship between the length of S and the probability of finding a searched 

element px in S.  

   

Example: assume p = 10^8, the function f = x/p, where x   Zn* 

 

 
The optimal case is when length(S) = ø (n), this will enable us to determine pi  for each given ci but this also means 
that we will need a huge storage space of 2*ø (n)  elements which is impractical for a 1024 bits ø (n),, and it would 

require O(ø (n), *log(ø (n),)) comparisons operations to sort.     

 

The modified version of the RSA described above use k as randomizing parameter; this can protect the encrypted 

text against known plain text attacks, because even if we know px, in the equation: 

 

px = kxmx 

 

kx and mx will still remain unknown. 

 

Next we investigate the probability p that two encrypted blocks of the same message m have equal random integer 

ki,, this probability is equal: 
   

Pk1=k2(m) = 2/n,  

 

Where n is the RSA modulus, the following sketch show that for approx. 1024 bit n, the probability is very close to 

zero.  

 
 

2. Chosen Cipher Text Attack: RSA has the property that the product of two cipher texts is equal to the encryption 

of the product of the respective plaintexts. That is m1
e m2

e = (m1m2) 
e mod n.  Because of this multiplicative property 

2 ́  10 8 4 ́  10 8 6 ́  10 8 
Length S 

0.2 

0.4 

0.6 

0.8 

1 
x j n 

2 ́  10 299 4 ́  10 299 6 ́  10 299 8 ́  10 299 1 ́  10 300 
n 

1 ́  10 -298 

2 ́  10 -298 

3 ́  10 -298 

4 ́  10 -298 

p k1 = k2 m 
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a chosen-cipher text attack is possible. the algorithm can be described as follows: Let c = me mod m, the attacker 

chooses a random number r where 1 < r < n, such that gcd(r, n))=1 then  compute x = re mod n, c’ = x * c mod n, z 

= r-1 mod n, and send c’ to victim. The victim compute m’ = (c’)d mod n, then send m’ to the attacker, the attacker 

recovers original message m = z * m’ mod n. This attack is based on the theoretical assumption that the attacker has 

access to a decryption device that returns the complete decryption for a chosen cipher text. The run time estimation 

is O( m’ * n3), which is polynomial thus impractical. 
 

3. Exhaustive Search Attack: It involves systematically checking all possible keys until the correct key is found. In 

the worst case, this would involve traversing the entire search space, thus O(n) elements to check. To avoid such 

attack is it important for RSA security that the size of the modulus n which depends on the size of the prime's p and 

q, where p and q should be so selected that factoring is computationally infeasible.  

 

4. Johan Håstad and Don Coppersmith Attack:  If the same clear text message is sent to more recipients in an 

encrypted way, and the receivers share the same exponent e, but different p, q, and n, then it is easy to decrypt the 

original clear text message via the Chinese remainder theorem [6]. Johan Håstad [9] described this attack and Don 

Coppersmith [10] improved it. 

 

5. Common Modulus Attack: If also same message m is encrypted twice using the same modulus n, then one can 
recover the message m as follows: Let c1=me1

 mod n, and c2=me2
 mod n be the cipher texts corresponding to message 

m,  where gcd(e1,e2)=1, then attacker recovers original message m1=c1

a * c2
b mod n for e1*a+e2*b=1. Using the 

extended great common divisor (GCD) one can determine a and b then calculate m without knowing private key d, 

this is known in the literature as the Common Modulus Attack that requires O((log k)2), where k is maximum size of 

a or b. 

 

6. Timing Attack: One attack on the RSA implementation is the Timing Attack; Kocher [11] demonstrated that an 

attack can determine a private key by keeping track on how long a computer takes to decrypt a message. 

  

7. Small Public/Private exponent e/d Attack: To reduce decryption time, one may wish to use a small value of 

private exponent d or reduce the encryption time using a small public exponent e, but this can result in a total break 
of the RSA cryptosystem as Coppersmith [12] and M.Wiener [13] showed. 

 

8. Adaptive chosen cipher text attacks: In 1998, Daniel Bleichenbacher [14] described the first practical adaptive 

chosen ciphertext attack, against RSA-encrypted messages using the PKCS #1 v1 [15] padding scheme (a padding 

scheme randomizes and adds structure to an RSA-encrypted message, so it is possible to determine whether a 

decrypted message is valid.) Bleichenbacher was able to mount a practical attack against RSA implementations of 

the Secure Socket Layer protocol (SSL) [16], and to recover session keys, here it is important to mention that such 

protocol is still often used in internet to secure emails and e-payment via internet. As a result of this work, 

cryptographers now recommend the use of provably secure padding schemes such as Optimal Asymmetric 

Encryption Padding, and RSA Laboratories has released new versions of PKCS #1 that are not vulnerable to these 

attacks. 

 
9. Attacks on the factorization problem: Some powerful attacks on the RSA cryptosystem are the attacks on the 

factorization problem; the factoring algorithms to solve the factorization problem come in two parts: special purpose 

and general purpose algorithms. The efficiency of special purpose depends on the unknown factors, whereas the 

efficiency of the latter depends on the number to be factored. Special purpose algorithms are best for factoring 

numbers with small factors, but the numbers used for the modulus in the RSA do not have any small factors. 

Therefore, general purpose factoring algorithms are the more important ones in the context of cryptographic systems 

and their security.  

 

A major requirement to avoid factorization attacks on the RSA cryptosystem is that p and q should be about the 

same bits length and sufficiently large. For a moderate security level p and q should be at least 1024 bits length, this 

will result in a 2048 bit length for modulus n. furthermore p and q should be random  prime number and not of some 
special case binary bit structure.  

 

The following table summarizes the running time for some of the well known integer factoring algorithms where p 

denotes the smallest prime factor of n, and e=2.718 is the Euler’s constant. 

 

http://en.wikipedia.org/wiki/Chosen-ciphertext_attack
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Johan_H%C3%A5stad
http://en.wikipedia.org/wiki/Daniel_Bleichenbacher
http://en.wikipedia.org/wiki/Adaptive_chosen_ciphertext_attack
http://en.wikipedia.org/wiki/Adaptive_chosen_ciphertext_attack
http://en.wikipedia.org/wiki/Adaptive_chosen_ciphertext_attack
http://en.wikipedia.org/wiki/Padding_(cryptography)
http://en.wikipedia.org/wiki/Secure_Socket_Layer
http://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding
http://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding
http://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding
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Table: Factorization algorithms  

Algorithm Runtime estimation 

1.Pollard’s Rho [17] O( p ) 

2.Pollard’s p-1  [18] 

 
O(p*) where p* is the largest prime factor of p-1. 

3.William’s p+1 [19] 

 
O(p*) where p* is the largest prime factor of p+1. 

4. Elliptic Curve Method  (ECM) [20] 

 
O(e(1+o(1)) (2ln p ln ln p)1/2 ) 

5. Quadratic Sieve (Q.S.) [21]  

 
O(e(1+o(1)) (ln N ln ln N )1/2) 

6. Number Filed Sieve (NFS) [22] 

 
O(e(1.92+o(1))(ln N)1/3(ln ln N)2/3) 

 
In 2010, the largest number factored by a general-purpose factoring algorithm was 768 bits long [23] using 

distributed implementation thus some experts believe that 1024-bit keys may become breakable in the near future so 

it is currently  recommended to use 2048 for midterm security and a 4096-bit keys for long term security.   

 

Now, the described RSA security enhancement in this paper can protect us against the following attacks: 

 

Table: RSA enhancement is immune against the following attacks 

Attack Justification 

1. Known plain-text attack Is not possible as described above 

2. Small public exponent e  Is not possible due to the use of random integer k 

3. Johan Hasted and Don Coppersmith attack Is not possible because every msg. have unique ki 

4. Common Modulus Attack Is not possible because every msg. have unique ki 

5. Timing Attack Using k in encryption and decryption process will 

make it difficult to distinguish between the time for 

k and the time for public e or private key d   

6. Adaptive chosen cipher text attacks One can use randomized integer k instead of secure 

padding.  

 

This will make the RSA cryptosystem more secure compared with the basic version of the RSA cryptosystem. The 

enhancement makes the RSA cryptosystem semantically secure this means that an attacker cannot distinguish two 
encryptions from each other even if the attacker knows (or has chosen) the corresponding plaintexts  

 

For more detailed information about attacks on RSA see [6] [24].   

 

4.    CONCLUSIONS 
In this paper I briefly discussed enhancing the security of the RSA public-key cryptosystem, this enhancement use 

randomized parameter to change every encrypted message block such that even if the same message is sent more 

than once the encrypted message block will look different. 

The major advantage gained in the security enhancement described above is making RSA system immune against 

many well known attacks on basic RSA cryptosystem, thus making the RSA encryption more secure, this is essential 

because RSA is implemented in many security standards and protocols and a weak RSA may result in a whole 
compromised system. One solution that is used in praxis to overcome this problem is the use of padding bits in the 

encryption process, but this may not always work well if we have a long message where many blocks are without 

padding or if the adversary knows the padding bits.    

Although the security enhancement make RSA more secure nevertheless it should be noted that the RSA modulus n 

bit length should be at least 2048 to ensure a moderate security and to avoid powerful attacks on the discrete 

logarithm and factorization problem. This security consideration and other mentioned in literature should be used to 

define an improved version of the RSA. 
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Many public key cryptographic system such as the RSA build their security on the intractability of the factorization 

and the discrete logarithm problem, if such problem are solved in future due to new mathematic insights or new 

computer technologies [25] this may result in huge set of compromised public key crypto and security systems. 
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