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Abstract Several studies have demonstrated the prospects of spectral ordering for data
mining. One successful application is seriation of paleontological findings, i.e. ordering the
sites of excavation, using data on mammal co-occurrences only. However, spectral ordering
ignores the background knowledge that is naturally present in the domain: paleontologists
can derive the ages of the sites within some accuracy. On the other hand, the age information
is uncertain, so the best approach would be to combine the background knowledge with
the information on mammal co-occurrences. Motivated by this kind of partial supervision
we propose a novel semi-supervised spectral ordering algorithm that modifies the Laplacian
matrix such that domain knowledge is taken into account. Also, it performs feature selection
by discarding features that contribute most to the unwanted variability of the data in boot-
strap sampling. Moreover, we demonstrate the effectiveness of the proposed framework on
the seriation of Usenet newsgroup messages, where the task is to find out the underlying flow
of discussion. The theoretical properties of our algorithm are thoroughly analyzed and it is
demonstrated that the proposed framework enhances the stability of the spectral ordering
output and induces computational gains.

Keywords Spectral ordering · Semi-supervised learning · Laplacian · Matrix perturbation
theory · Eigengap · Seriation · Paleontology

1 Introduction

In this paper, we consider the task of ordering the observations in the data, accompanied by
partial supervision and feature selection, aiming at a more stable ordering. Although it may
initially seem surprising the we employ partial supervision and feature selection in a common
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framework, it is analytically demonstrated in the paper, that each component addresses a dif-
ferent cause of instability of the results. In our context, stability refers to the variation of
the end result with respect to small changes in the data; in practice we will measure this by
bootstrap sampling.

In distance based ordering, the task is to find a permutation of objects such that similar
objects become adjacent; in addition, the more dissimilar the objects are, the larger the order
distance between them. The standard optimization problem formulation used for deriving the
distance based ordering is known to be NP-hard [11], and spectral ordering [2,6] presents a
popular, algorithmically feasible approach for deriving approximate solutions. Despite the
name “ordering”, the aim is not to rank the objects into any preference ranking, and the first
and last object in the ordering are merely those that are maximally dissimilar to each other.
Algorithmically, the order solution is derived by the eigenvector corresponding to the second
eigenvalue of the data Laplacian matrix.

Our main application area is paleontology: our observations (objects, instances) are sites
of excavation and our features (attributes, variables) are mammal genera whose remains
are found at these sites. In addition, we have auxiliary information on the estimated ages
of the sites; this information is uncertain to some degree. Spectral ordering of the sites of
excavation can be based solely on the co-occurrences of the mammal genera, irrespective of
the ages of the sites. It has been shown [9] that this kind of plain spectral ordering is a fast
and standardized way of biochronological ordering of the sites. Albeit the favorable results
in the biochronological ordering task, the spectral ordering does not take into account the
background knowledge that naturally exists in the domain. The successful incorporation of
domain knowledge is expected to increase the quality of the results.

In the current study, we take advantage of the domain knowledge of the ages of the sites
and combine that with the spectral ordering, ending up with a semi-supervised spectral order-
ing.1 In addition, we consider feature selection. Towards this target the features that contribute
most to the unwanted variation of the data (measured by bootstrap sampling) will be removed.
These features correspond to mammals whose observations are noisy. The paleontological
data is noisy in many respects [10]: the preservation, recovery and identification of fossils
are all random to some extent. These uncertainties are, however, hard to quantify, and a
systematic way of characterizing the uncertainty would be most welcome—the behaviour of
the features in bootstrap sampling is here chosen for this task.

Another domain of application is text document data in which the observations are Usenet
newsgroup articles and the features are the most common terms. There is a natural underlying
order in the data, as people respond to each others’ postings. As “domain knowledge” we use
the time stamps of the articles. This might lead to a slightly different ordering, as the users
often respond to old postings instead of the newest ones, but it can however serve as initial
domain knowledge.

The two components of the proposed framework, namely partial supervision and feature
selection will make the resulting ordering more stable with respect to small variations in the
data. As it is analyzed in detail in Sect. 6, each component of the framework addresses a
different cause of instability of the spectral ordering results.

The theoretical analysis suggests and the experiments verify that the main advantages of
the proposed framework as induced by the enhancement of stability are twofold:

– The results become more resilient to perturbations of the input, thus the reliability of the
results is increased.

1 In the context of this work we will use the terms “semi-supervised” and “partial supervision” to refer to the
domain knowledge interchangeably.

123



Enhancing the stability and efficiency of spectral ordering 245

– The power method [23] computes the ordering result more efficiently than in the original
setting.

2 Spectral ordering

Given a set of n objects and a pairwise similarity measure between them, the task of dis-
tance based ordering is to derive the order indexes of the objects such that similar objects
are placed in adjacent orders while dissimilar objects are placed far apart. More formally,
distance sensitive ordering considers the following optimization problem:

min
r

∑

i, j

(r(i) − r( j))2wi j

where wi j is the similarity between objects i and j and vector r is the permutation of
{1, 2, . . . , n} that optimizes the objective function. The values of the elements r(i) of vector
r reflect the ordering of the objects.

It is known that the general optimization problem related to distance based ordering is
NP-hard [11], and thus approximate solutions should be considered. A popular approach is
spectral ordering [2,6] that performs a continuous relaxation on the solution vector r , and
reduces the optimization problem to a standard eigenvalue-eigenvector problem. Such relax-
ations are commonly used in data mining to effectively approximate several computationally
hard problems with matrix-based algorithms [15]. In the context of this work we rely on a
slight modification of the standard spectral ordering formulation as derived by [6], where the
authors derive the ordering solution as the second eigenvector2 of the normalized Laplacian
matrix L = D−1/2W D−1/2. Here, W is the object-object similarity matrix W = X T X , D
is the diagonal degree matrix containing the row sums of W , and the data matrix X con-
tains the objects as its columns and the features as its rows. Other choices of W are also
possible: W can essentially be any positive semi-definite object-object similarity matrix.
The use of the normalized Laplacian facilitates the theoretical analysis of the proposed semi-
supervised spectral ordering framework and also presents theoretical advantages [22] over
the unnormalized Laplacian that is commonly used for spectral ordering.

It should be noted that in the spectral graph theory literature the normalized Laplacian
matrix is commonly referred to as L = I − D−1/2W D−1/2, however, in the context of this
paper, we will employ the aforementioned notation and consider the normalized Laplacian as
L = D−1/2W D−1/2. This matrix is well studied in the context of spectral graph theory (e.g.
[21] and references therein) and it is known to have 1 as its largest eigenvalue. Moreover,
by defining the object-similarity matrix W = X T X , L = D−1/2W D−1/2 becomes positive
semi-definite.

3 Two factors that determine the stability of spectral ordering

A common approach for measuring the stability of spectral algorithms requires the quantifi-
cation, in the form of an error perturbation matrix E , of the uncertainty associated with the
input matrix (e.g. [16]). Based on the matrix E , the stability of spectral ordering is determined
by the similarity of the ordering solution as derived by the original Laplacian matrix L versus

2 We consider the eigenvalues ordered in decreasing order, i.e. the first eigenvalue is the largest eigenvalue
and so on. The first eigenvector is the eigenvector that corresponds to the largest eigenvalue and so on.
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the perturbed Laplacian matrix L + E . Further details on the computation of E in the domain
of interest will be provided in Sect. 6.3.

Based on this formulation, the stability of the ordering solution can be derived by Matrix
Perturbation Theory, and more precisely Stewart’s theorem on the perturbation of invariant
subspaces [20]. Based on Stewart’s theorem we can derive an upper bound on the difference
between the ordering solution of L versus L + E . The upper bound applies when the smallest
eigengap between the second eigenvalue of L and the rest is larger than four times the spectral
norm of matrix E . In the case of spectral ordering the smallest eigengap is determined by
the eigengap between the first and the second eigenvalue of the Laplacian matrix and the
eigengap between the second and the third.

The upper bound gets smaller as the eigengap enlarges and the norm of the perturbation
matrix E decreases. Thus, the stability depends on two factors: the size of the eigengap and
the norm of the perturbation.

We can state the aforementioned result in a more formal manner using the condition num-
ber of the eigenvector problem. Recall that the condition number is a common tool in linear
algebra for assessing the sensitivity of a solution with respect to small variations of the input.
In the case of spectral ordering, we are interested in assessing the sensitivity of the eigenvec-
tor with respect to small perturbations of the Laplacian matrix. That is, we are interested in
deriving an expression ||u − ũ|| ≤ κ||E ||, where u and ũ are eigenvectors of L and L + E
respectively and κ is the condition number of eigenvector u. The general definition of the
eigenvector condition number is rather complicated. However, it is largely simplified in the
case of Hermitian matrices where it is defined as κ = 1

min _eigengap , with min _eigengap being
the minimum eigengap between the eigenvalue corresponding to eigenvector u and the rest.
Thus, the condition number of the spectral ordering problem will depend on the eigengap
between the first and the second eigenvalue, as well as the eigengap between the second and
the third.

As we analyze further in the subsequent section, these eigengaps are not a mere theoretical
artifact but are associated with the data-structure as well as computational issues related to
the derivation of the spectral ordering solution.

4 Semantics of the eigengaps

4.1 Eigengap λ1 − λ2

The eigengap between the first and the second eigenvalue of the Laplacian matrix is asso-
ciated with the level of data connectivity. More precisely, if we consider the Laplacian
D−1/2W D−1/2 and the associated graph (i.e. a graph with edge weights W (i, j)), then
the size of the second eigenvalue is associated with the cost of producing two separated
clusters [7,21]. In fact when the eigengap is 0, i.e. the algebraic multiplicity of first eigen-
value is larger than 1, then the graph is disconnected and the clusters can be produced with
zero cost. The following theorem illustrates this relation (note that we have appropriately
changed the theorem statement from [21] to take into account that we consider the Laplacian
D−1/2W D−1/2 instead of I − D−1/2W D−1/2):

Theorem 4.1 (can be found in [21]) Let G be an indirected graph with non-negative weights
W . Then the multiplicity k of the eigenvalue 1 of matrix L = D−1/2W D−1/2 equals the num-
ber of connected components in the graph. The eigenspace of 1 is spanned by the vectors
D1/2eAi of those components, where eAi is such that e( j)Ai = 1 for all vertices j that belong
to the connected component Ai .
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Enhancing the stability and efficiency of spectral ordering 247

Theorem 4.1 signifies that when the second eigenvalue is close to the first, a small amount
of perturbation can make the graph disconnected, thus significantly affecting the second
eigenvector. Thus, spectral graph theory provides us with the necessary tools for understand-
ing the source of instability when the eigengap between the first and the second eigenvalue
is small.

4.2 Eigengap λ2 − λ3

In order to study the eigengap between the second and the third eigenvalue of the Laplacian
matrix L , we assume that the data is adequately connected (i.e. the algebraic multiplicity of
the largest eigenvalue is 1) and consider the following transformation: L ′ = L − vvT, where

v is the first eigenvector of Laplacian L (i.e. v = D1/2e
||D1/2e|| with D being the degree matrix

of the Laplacian L and e a unit vector, e(i) = 1 for all i). With this definition the matrix
L ′, apart from v, has exactly the same eigenvectors and eigenvalues as L . Thus the second
eigenvalue of L is the largest eigenvalue of L ′. This transformation is always possible and
requires solely the computation of the degree matrix D.

The transformation of matrix L makes apparent the relevance of the power method [23]
for computing the spectral ordering solution. Recall that the power method does not derive
the full eigen-decomposition of a matrix and can compute solely the dominant eigenvalue
and corresponding eigenvector. It starts with an initial vector b0, and then computes itera-
tively bk+1 = Abk||Abk || . If matrix A has an eigenvalue that is strictly larger than the rest and if
the initial vector b0 has a non-zero component in the direction of the dominant eigenvector,
then the rate of convergence of bk will be determined by |λ2|

|λ1| , where λ1 is the dominant in
magnitude eigenvalue of A and λ2 is the second in magnitude eigenvalue. The larger the
eigengap between |λ2| and |λ1|, the faster the convergence.

Based on L ′, the power method can be used to derive the ordering solution. The power
method will converge with rate λ3

λ2
, where λ2 is the second eigenvalue of L (and thus the dom-

inant eigenvalue of L ′) and λ3 is the third eigenvalue of L (and thus the second eigenvalue
of L ′).

This analysis illustrates that the convergence of the power method for computing the
ordering solution depends on the eigengap between the second and the third eigenvalue of
the Laplacian matrix. A method that successfully enlarges this eigengap will increase the
efficiency of the power method.

5 Elements of linear algebra

In order to study the behavior and the properties of the proposed spectral ordering framework,
we need to recall certain elements of linear algebra. Firstly, we recall Weyl’s theorem on the
perturbation of eigenvalues.

Theorem 5.1 (Weyl, can be found in [20]) Let A be a symmetric matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn and E a symmetric perturbation with eigenvalues ε1 ≥ ε2 ≥ · · · ≥ εn.
Then for i = 1, . . . , n the eigenvalues λi of A + E will lie in the interval [λi + εn, λi + ε1].

Another theorem we will employ is concerned with the affect of rank-k updates to matrix
eigenvalues.

Theorem 5.2 (Wilkinson [23], can also be found in [18]) Suppose B = A + τ · uuT where
A ∈ R

n×n is symmetric, u ∈ R
n has unit Euclidean norm and τ ∈ R. Then, there exist
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m1, . . . , mn ≥ 0,
∑n

i=1 mi = 1, such that

λi (B) = λi (A) + miτ, i = 1, . . . , n

Moreover, concerning rank-k updates B = A + ∑k
i=1 τi · uuT , there exist mi j ≥ 0, i =

1, . . . , n, j = 1, . . . , k with
∑n

i=1 mi j = 1, such that

λi (B) = λi (A) +
k∑

j=1

mi jτ j , i = 1, . . . , n.

6 Proposed spectral ordering framework

As we have mentioned in the introductory section, the proposed framework considers partial
supervision and feature selection with the general aim of stabilizing the spectral ordering
results. In this section we will present each component of the framework and demonstrate
their contribution to the stability of the results. Recall that in Sect. 3 we have stated that
stability essentially depends on two factors, namely the size of the relevant eigengaps as well
as the uncertainty associated with the Laplacian matrix estimates. In the subsequent sections
it is analytically demonstrated that the semi-supervised component is associated with the
enlargement of the eigengaps, while the feature selection is concerned with the reduction of
uncertainty.

6.1 Semi-supervised framework

The semi-supervised component assumes that an input ordering of the objects is provided
and aims at adjusting the original object similarities such that the input ordering is taken into
account. Recall that the original object similarities are used for computing the
Laplacian matrix L = D−1/2W D−1/2 (here W (i, j) is the similarity between object i and
j) that derives the ordering solution. The proposed method essentially aims at adjusting the
values of the W matrix based on the input ordering.

In order to achieve this goal, we initially construct a Laplacian matrix that produces the
input ordering, i.e. whose second eigenvector gives the same result as the input order. If we
consider the initial input ordering r (i.e. r(i) is the order of object i) as a permutation of
{1, 2, . . . , n}, and a degree matrix D, we can define the initial input Laplacian as:

L input = v0v
T
0 + 1

2
v1v

T
1

where v0 = D1/2e
||(D1/2e)|| , with e being the unit vector (i.e. ei = 1 for all i) and

v1(i) = r(i) − (∑
i r(i)

√
di

)
/
(∑

i

√
di

)

||r(i) − (∑
i r(i)

√
di

)
/
(∑

i

√
di

) || , (1)

with di being the i th diagonal element of the degree matrix D.
In order to understand the definition of the L input matrix, one should initially observe that

vector v0 is essentially the largest eigenvector of any Laplacian matrix with degree matrix D
(if there are no disconnected components). Moreover, vector v1 is by construction orthogonal
to v0 and produces exactly the same ordering as r . Based on the above we can write L input

in the form of a Laplacian with degree matrix D, i.e. L input = D−1/2Winput D−1/2, which
has exactly two eigenvectors v0 and v1, with corresponding eigenvalues 1 and 1

2 . The Winput
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matrix will contain the object similarities that generate the input ordering. Notice that this
construction is possible for any degree matrix D.

It should also be noted that there exist different possible definitions of the v1 eigenvector
that are orthogonal to v0 and also preserve the initial input order. However, the specific choice
of v1 imposes equal distances between the elements of the eigenvector v1 and thus also on the
“continuous” ordering solution between the objects. In the absence of further knowledge on
the initial input ordering it would not be reasonable to impose the additional bias of unequal
distances between the objects.

Based on the definition of L input we derive the final Laplacian as a linear combination of
the original data Laplacian (thereafter referred to as Ldata) and L input as:

Lsemi = cLdata + (1 − c)L input

where 0 ≤ c ≤ 1 is a confidence factor associated with each component of the summation.
The behavior of Lsemi can be understood if we write Lsemi as:

Lsemi = D−1/2(cWdata + (1 − c)Winput)D−1/2

which is possible since L input is defined with the same degree matrix as Ldata. This illustrates
the main intuition of the semi-supervised framework that essentially adjusts the similarities
of the original Laplacian such that the ordering is taken into account.

Intuitively one would expect that the use of supervision increases the reliability of the
ordering results. This intuition is reflected in the eigengaps of Lsemi. As demonstrated in the
subsequent analysis, they can be enlarged with an appropriate choice of the c parameter, as
compared to Ldata.

6.2 Theoretical analysis of the semi-supervised framework

We will now analyze theoretically the behavior of the eigenvalues of Lsemi with respect to
the parameter c, the eigenstructure of Ldata as well as the ordering solutions of Ldata and
L input. In most theorems we derive the required amount of supervision (i.e. required value
for (1 − c) or c) such that the desired eigenvalue bounds or eigengaps are achieved. We can
summarize the theoretical results as follows:

– Theorem 6.1 demonstrates that the parameter c can fully control the eigenvalues of Lsemi,
almost independent of the structure of the Laplacians Ldata and L input.

– Theorem 6.2 demonstrates that if the eigenvalues of Ldata are close to the bounds we wish
to derive for the eigenvalues of Lsemi, then these can be achieved with little supervision
(i.e. small values for (1 − c)).

– Theorems 6.3–6.5 demonstrate that the behavior of the eigenvalues depends also on the
ordering solutions as derived by Ldata and L input. When the ordering solutions conform
to a high degree, then the eigengaps are enlarged even with little supervision (i.e. small
values for (1 − c)).

– Theorem 6.6 demonstrates the dependency of the condition number of the spectral order-
ing problem with respect to the c parameter.

We will start with the dependence of the eigenvalues of Lsemi with respect to the parameter
c. The following theorem demonstrates that with an appropriate choice of the parameter c,
large eigengaps can be achieved.

Theorem 6.1 Let Ldata be an n × n normalized Graph Laplacian, c a real number such
that 0 ≤ c ≤ 1 and L input be the Laplacian as derived by an initial input ordering.
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Define the matrix Lsemi = cLdata+(1−c)L input . Its largest eigenvalue will be λ1(Lsemi) = 1,
its second eigenvalue will reside in the interval 1

2 − c
2 + cλn(Ldata) ≤ λ2(Lsemi) ≤ 1

2 + c
2 ,

where λn(Ldata) is the smallest eigenvalue of matrix Ldata, and its third eigenvalue will be
smaller than c, λ3(Lsemi) ≤ c.

Proof In order to compute the appropriate bounds for the eigenvalues of Lsemi we can employ
Weyl’s theorem on the matrices cLdata, (1 − c)L input and Lsemi = cLdata + (1 − c)L input and
derive for the largest eigenvalue of Lsemi, λ1(Lsemi) :

λ1(Lsemi) ≤ λ1(cLdata) + λ1((1 − c)L input)

Based on the fact that λ1(cLdata) = c · 1 = c (since the largest eigenvalue of Ldata is 1) and
λ1((1 − c)L input) = (1 − c) · 1 (since the largest eigenvalue of L input is 1) we can derive:

λ1(Lsemi) ≤ 1.

Moreover for the first Laplacian eigenvector v0, we have that Lsemiv0 = [cLdata +
(1 − c)L input]v0 = cLdatav0 + (1 − c)Lsemiv0 = c · v0 + (1 − c) · v0 = v0. Thus v0 is
an eigenvector of Lsemi with corresponding eigenvalue 1. Thus

λ1(Lsemi) = 1.

Concerning the second eigenvalue of Lsemi we can employ Weyl’s theorem and state:

λ2((1 − c)L input) + λn(cLdata) ≤ λ2(Lsemi) ≤ λ2((1 − c)L input) + λ1(cLdata).

It holds λ2((1 − c)L input) = (1 − c) 1
2 , λn(cLdata) = cλn(Ldata) and λ1(cLdata) = c. Thus,

(1 − c)
1

2
+ cλn(Ldata) ≤ λ2(Lsemi) ≤ (1 − c)

1

2
+ c

⇔ 1

2
− c

2
+ cλn(Ldata) ≤ λ2(Lsemi) ≤ 1

2
+ c

2
.

Concerning the third eigenvalue of Lsemi we can employ Weyl’s theorem and state:

λ3(Lsemi) ≤ λ3((1 − c)L input) + λ1(cLdata).

We have λ3((1−c)L input) = (1−c) ·0 = 0 (since L input has only two non-zero eigenvalues)
and λ1(cLdata) = c. Thus

λ3(Lsemi) ≤ c. �	
The bounds derived in the theorem above depend solely on the parameter c and illustrate

that with an appropriate choice of c, large eigengaps can be achieved. However, if the eigen-
gaps of matrix Ldata are already large, then little supervision (i.e. smaller values of (1 − c))
is required. The subsequent theorem illustrates this connection.

Theorem 6.2 Let Ldata be an n×n normalized Graph Laplacian, and L input be the Laplacian
as derived by an initial input ordering. Define the matrix Lsemi = [cLdata + (1−c)L input]. In
order to derive an upper bound λ2 ≥ 1

2 on the second eigenvalue of Lsemi, λ2(Lsemi) ≤ λ2,

we must set c = λ2− 1
2

λ2(Ldata)− 1
2

. In order to derive an upper bound on the third eigenvalue of

Lsemi, λ3(Lsemi) ≤ λ3, we must set c ≤ λ3+λ2− 1
2

λ3(Ldata)+λ2(Ldata)− 1
2

.
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Proof In order to apply Wilkinson’s theorem, we consider that matrix Lsemi is composed by
a rank-2 update on matrix cLdata. We can write for the three largest eigenvalues of Lsemi:

λ1(Lsemi) = cλ1(Ldata) + m11(1 − c) + m12
1 − c

2

λ2(Lsemi) = cλ2(Ldata) + m21(1 − c) + m22
1 − c

2

λ3(Lsemi) = cλ3(Ldata) + m31(1 − c) + m32
1 − c

2

Since the largest eigenvalue of Lsemi is equal to 1, we have: λ1(Lsemi) = 1 ⇒ cλ1(Ldata) +
m11(1 − c) + m12

1−c
2 = 1 ⇒ c + (m11 + m12

2 )(1 − c) = 1 ⇒ m11 + m12
2 = 1.

Moreover, we have
∑n

i=1(mi1 + mi2
2 ) = 1 + 1

2 ⇒ m11 + m12
2 + ∑n

i=2(mi1 + mi2
2 ) =

1 + 1
2 ⇒ ∑n

i=2(mi1 + mi2
2 ) = 1

2 .
Thus m21 + m22

2 ≤ 1
2 .

Now for the second eigenvalue we can write:

λ2(Lsemi) = cλ2(Ldata) + m21(1 − c) + m22
1 − c

2
≤ cλ2(Ldata) + 1 − c

2
.

Recall that we aim at determining the appropriate c such that the upper bound λ2 is achieved.
Thus we have:

cλ2(Ldata) + 1 − c

2
= λ2 ⇒ c = λ2 − 1

2

λ2(Ldata) − 1
2

.

In order to derive the appropriate bound for the third eigenvalue we should initially observe
that m21 + m22

2 = λ2(Lsemi)−cλ2(Ldata)
1−c .

Thus,
∑n

i=3(mi1+ mi2
2 ) = 1

2 − λ2(Lsemi)−cλ2(Ldata)
1−c ⇒ m31+ m32

2 ≤ 1
2 − λ2(Lsemi)−cλ2(Ldata)

1−c .
Now for the third eigenvalue we can write:

λ3(Lsemi) = cλ3(Ldata) + m31(1 − c) + m32
1 − c

2
≤ cλ3(Ldata)

+1 − c

2
− λ2(Lsemi) + cλ2(Ldata).

Recall that we aim at determining the appropriate c such that the upper bound λ3 is achieved.
Thus we have:

cλ3(Ldata) + 1 − c

2
− λ2(Lsemi) + cλ2(Ldata) = λ3 ⇒

c = λ3 + λ2(Lsemi) − 1
2

λ2(Ldata) + λ3(Ldata) − 1
2

≤ λ3 + λ2 − 1
2

λ2(Ldata) + λ3(Ldata) − 1
2

�	
The derived c for the second eigenvalue is meaningful when the desired upper bound

λ2(Lsemi) is smaller than λ2(Ldata), and when both are larger that 1
2 , as this ensures that

c ∈ [0, 1]. This is a natural setup because in order to achieve stability one should lower the
second eigenvalue, as this will enlarge the eigengap between the first eigenvalue (which is
always equal to 1) and the second. Concerning the derived c for the third eigenvalue, it is
meaningful (i.e. c ∈ [0, 1]), when λ3(Lsemi) is smaller than λ3(Ldata).

One would generally expect the behavior of the Lsemi = cLdata + (1 − c)L input matrix
to also depend on the eigenvectors of Ldata and L input and not solely on the eigenvalues.
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It would be intuitive to consider that when the ordering solutions as derived by Ldata and
L input conform to a high degree, then even with little supervision (i.e. small values of (1−c)),
the reliability of the ordering results is rapidly increased. This is demonstrated in the following
theorems.

Theorem 6.3 (Best case scenario) Let Ldata = v0v
T
0 + λ2v2v

T
2 + · · · + λnvnvT

n be the data
Laplacian matrix and L input = v0v

T
0 + 1

2v1v
T
1 . If the ordering solution as derived by the sec-

ond eigenvector of Ldata is equal to the provided supervision v2 = v1, then the eigenvalues of
matrix Lsemi = cLdata + (1−c)L input will be λ1(Lsemi) = 1, λ2(Lsemi) = cλ2(Ldata)+ 1−c

2 ,
and λi (Lsemi) = cλi (L), for i = 3, . . . , n. Moreover, the required supervision for achieving
the eigengap λ1(Lsemi)−λ2(Lsemi) = gap, is c = 1/2−gap

λ2(Ldata)−1/2 , and the required supervision

for achieving the eigengap λ2(Lsemi) − λ3(Lsemi) = gap, is c = 1/2−gap
1/2−(λ2(Ldata)−λ3(Ldata))

.

Proof We have that the original data Laplacian is decomposed as Ldata = v0v
T
0 +λ2v2v

T
2 +

· · · + λnvnvT
n and L input = v0v

T
0 + 1

2v2v
T
2 (since the two matrices induce the same order

solution, i.e. v2 = v1). Thus:

Lsemi = cLdata + (1 − c)L input

= v0v
T
0 +

(
cλ2(Ldata) + 1 − c

2

)
v2v

T
2 + cλ3(Ldata)v3v

T
3 + · · · + cλn(Ldata)vnvT

n .

Based on the above, we can derive the required c value as:

λ1(Lsemi) − λ2(Lsemi) = gap ⇒ 1 − cλ2(L) − 1 − c

2
= gap ⇒

c = 1/2 − gap

λ2(Ldata) − 1/2

and

λ2(Lsemi) − λ3(Lsemi) = gap ⇒ cλ2(Ldata) + 1 − c

2
− cλ3(Ldata) = gap ⇒

c = 1/2 − gap

1/2 − (λ2(Ldata) − λ3(Ldata))
.

�	
On the other hand, when the initial input ordering solution corresponds to the eigenvector

of Ldata that is associated with the smallest eigenvector, then more supervision (i.e. larger
values of (1 − c)) is required.

Theorem 6.4 (Worst case scenario) Let Ldata = v0v
T
0 + λ2v2v

T
2 + · · · + λnvnvT

n be the
data Laplacian matrix and L input = v0v

T
0 + 1

2v1v
T
1 . If the provided supervision is equal

to the last eigenvector of the Laplacian matrix v1 = vn, then the eigenvalues of matrix
Lsemi = cLdata + (1 − c)L input, will be λ1(Lsemi) = 1, λn(Lsemi) = cλn(Ldata) + 1−c

2 and
the rest will be λi (Lsemi) = cλi (Ldata), for i = 2, . . . , n −1. Moreover, the required supervi-
sion for achieving the eigengap λ2(Lsemi)−λ3(Lsemi) = gap, is c = 1/2−gap

1/2+(λ2(Ldata)−λn(Ldata))
.

Proof We have that Lsemi = cLdata + (1 − c)L input = v0v
T
0 + cλ2(Ldata)v2v

T
2 + cλ3(Ldata)

v3v
T
3 + · · · + (cλn(Ldata) + 1−c

2 )vnvT
n . Thus the eigengap between the second and the third

eigenvalue will steadily become smaller as supervision increases (i.e. (1−c) increases), until
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the eigenvalue corresponding to the eigenvector vn gets larger than cλ2(Ldata). Based on the
above, we can derive the required c value as:

λ2(Lsemi) − λ3(Lsemi) = gap ⇒ cλn(Ldata) + 1 − c

2
− cλ2(Ldata) = gap ⇒

c = 1/2 − gap

1/2 − (λn(Ldata) − λ2(Ldata))
.

�	

In general, we can express the initial input ordering solution (i.e. the second eigenvector
of L input) as a linear combination of the eigenvectors of Ldata. Based on this decomposition,
it would be intuitive to expect that the eigenvectors that do not participate in the input ranking
solutions are downgraded in importance. This is demonstrated in the subsequent theorem.

Theorem 6.5 Let Ldata = v0v
T
0 + λ2v2v

T
2 + · · · + λnvnvT

n be the data Laplacian matrix
and L input = v0v

T
0 + 1

2v1v
T
1 . Write v1 as a linear combination of the eigenvectors of the

data Laplacian matrix,3 v1 = w2v2 + w3v3 + · · · + wnvn. Then the eigenvalues of Lsemi =
cLdata + (1 − c)L input are λ1(Lsemi) = 1, and λi (Lsemi) = cλi (Ldata) for all i such that
wi = 0.

Proof We have that L input = v0v
T
0 + 1

2v1v
T
1 = v0v

T
0 + 1

2 (w2v2+w3v3+· · ·+wnvn)(w2v
T
2 +

w3v
T
3 +· · ·+wnvT

n ). It is evident that for those vi such that wi = 0 we will have L inputvi = 0.
Thus, Lsemivi = cλi (Ldata)vi . �	

This theorem signifies that the eigenvectors that do not participate in the input ranking
solution will be quickly downgraded in importance (through the shrinkage of their eigen-
values), while the rest will finally converge to v1. The same effect will take place concerning
the eigenvectors that have small significance in the solution (i.e. wi ≈ 0).

The following theorem is concerned with the condition number of the spectral ordering
problem versus the eigengaps and the level of supervision.

Theorem 6.6 Let Ldata be an n × n normalized Graph Laplacian, c a real number such that
0 ≤ c ≤ 1 and L input be the Laplacian as derived by an initial input ordering. Define the
matrix Lsemi = cLdata + (1 − c)L input. The condition number of the spectral ordering prob-
lem (i.e. the second eigenvector) of Lsemi is κ = max{ 1

λ1(Lsemi)−λ2(Lsemi)
, 1

λ2(Lsemi)−λ3(Lsemi)
}.

Moreover,
i f κ = 1

λ1(Lsemi)−λ2(Lsemi)
then 2

1+c−2cλn(Ldata)
≤ κ ≤ 2

1−c ;
i f κ = 1

λ2(Lsemi)−λ3(Lsemi)
then κ ≥ 2

1+c ;
i f κ = 1

λ2(Lsemi)−λ3(Lsemi)
and c < 1

3−2λn(Ldata)
then κ ≤ 2

1−3c+2cλn(Ldata)
.

Proof Recall that in the case of a Hermitian matrix the condition number of an eigenvector
with corresponding eigenvalue λ is defined as κ = 1

min _eigengap , where min _eigengap is the
minimum eigengap between λ and the rest of the eigenvalues. Thus, in the case of the second
eigenvector of Lsemi, the minimum eigengap is determined by λ1(Lsemi) − λ2(Lsemi) and
λ2(Lsemi) − λ3(Lsemi), thus κ = max{ 1

λ1(Lsemi)−λ2(Lsemi)
, 1

λ2(Lsemi)−λ3(Lsemi)
}.

3 This is always possible since {u2, . . . , un} are orthogonal to v0 and to each other, thus forming a basis for
every vector that is orthogonal to v0.
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In order to derive the range of values that κ will assume, recall that in Theorem 6.1 we
have shown that λ1(Lsemi) = 1 and 1

2 − c
2 + cλn(Ldata) ≤ λ2(Lsemi) ≤ 1

2 + c
2 . Based on

these inequalities we can derive that

2

1 + c − 2cλn(Ldata)
≤ 1

λ1(Lsemi) − λ2(Lsemi)
≤ 2

1 − c
.

Also, in Theorem 6.1 we have shown that λ3(Lsemi) ≤ c. Thus we can derive that when
c < 1

3−2λn(Ldata)
(which implies that 1 − 3c + 2cλn(Ldata) > 0) it holds that

2

1 + c
≤ 1

λ2(Lsemi) − λ3(Lsemi)
≤ 2

1 − 3c + 2cλn(Ldata)
.

In the case c ≥ 1
3−2λn(Ldata)

, we can solely prove that

2

1 + c
≤ 1

λ2(Lsemi) − λ3(Lsemi)
.

�	
Recall that the condition number κ of the spectral ordering problem essentially provides

us with an upper bound on the error of the ordering solution when an E perturbation is
applied on the Laplacian matrix, i.e. ||u − ũ|| ≤ κ||E ||. Here u and ũ are eigenvectors
of L and L + E , respectively. It can be observed that when c → 1, no upper bound on
the error can be induced by the inequalities derived in Theorem 6.6. This is an expected
behavior as when c → 1, κ depends mostly on the eigengaps of the data-Laplacian matrix.
However, as c assumes smaller values the solution becomes more heavily biased by the
input Laplacian L input and the upper bounds rapidly decrease. This is also observed in the
experiments.

6.3 Quantification of uncertainty

As we have analyzed in Sect. 3, an integral component of stability assessment is the quanti-
fication of uncertainty in the form of an error-perturbation matrix E . Since we have already
defined three matrices in the previous section (Ldata, L input and Lsemi), we will need to define
an appropriate perturbation matrix E for each. We will begin with L input that is associated
with the initial input ordering. Suppose we can characterize the degree of reliability in the
supervision by comparing two rankings produced by the domain knowledge: if these are
close to each other, then the domain knowledge is reliable. For both rankings we generate a
corresponding eigenvector as was described in Sect. 6.1, and the difference between these
vectors will be denoted as v = u1 −u2 where u1 and u2 are the two ranking eigenvectors. The
element v(i) gives the uncertainty related to object i . The input perturbation matrix Einput is
a rank-1 matrix

Einput = 1/2vvT. (2)

We will define the error-perturbation matrix for the Ldata matrix in a way that will enable
feature selection for uncertainty reduction. We initially observe that the order solution of
Ldata = D−1/2W D−1/2 = D−1/2 XT X D−1/2 can be derived by D−1/2 XTu2, where u2 is
the second eigenvector of the “feature Laplacian” L feat = X D−1 XT. Notice that Ldata and
L feat have the same eigenvalues and if u is an eigenvector of L feat, then D−1/2 XTu is an
eigenvector of Ldata. Thus the stability of the ordering solution can be derived by the sta-
bility of the L feat matrix. In order to quantify the uncertainty associated with the elements
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of L feat, we bootstrap the observations and produce bootstrap confidence intervals for the
elements of the L feat matrix (pair-wise feature similarities). Consequently, we define matrix
Edata such that Edata(i, j) is the maximum difference between L feat(i, j) and the endpoints
of the respective confidence interval.

The error-perturbation matrix of Lsemi is derived by the norms of the matrices that take
part in the summation. More precisely, we define

||Esemi||2 = c||Edata||2 + (1 − c)||Einput||2. (3)

Having defined all the appropriate error-perturbation matrices, we can move on to eval-
uate the stability of the spectral ordering framework and explore possible approaches for
uncertainty reduction.

6.4 Feature selection for uncertainty reduction

Based on the definition of Edata as the perturbation of a feature × feature matrix, we can
consider feature selection for uncertainty reduction. The proposed framework is similar in
spirit to [16], where the features that contribute maximally to the norm of Edata matrix are
sequentially removed. More precisely, at each step of the algorithm, the feature that corre-
sponds to the column (or row) of matrix Edata that has the highest norm is removed. Although
we employ feature selection in the same manner as in [16], we should stress that there are
some important differences. The main difference is concerned with the fact that the new
perturbation matrix E ′

data, as induced by the removal of a feature, will not be a principal
submatrix of Edata. This is because the removal of a feature will influence the values of the
degree matrix D, thus affecting the confidence intervals of all the feature-pairs. In order to
address this issue, we recompute the confidence intervals and Edata matrix after each feature
is removed. However, it should be noted that when there is a large number of features, we can
expect that the degree matrix is not severally affected and thus we can consider the principal
submatrix of Edata (after removing the row and column i that corresponds to the removed
feature) as an accurate approximation of the new perturbation matrix E ′

data. When this is the
case, it is guaranteed that the uncertainty as expressed by the norm ||Edata||2 will be reduced.

7 Related work

Concerning the semi-supervised component, our work is conceptually related to Pagerank
[4]. Pagerank is considered as one of the top algorithms is Data Mining [24] and aims at
deriving the stationary probability of the random walk based on a weighted linear combina-
tion of the transition matrix and a random jump or prior knowledge matrix, in the form of
A = [cP + (1 − c)S]T, where P is the row-stochastic transition matrix and S = euT, where
u contains the random jump component or the prior distribution. Apart from the intuitive
probabilistic interpretation of the A matrix, it has been shown that parameter c can control
the eigengap between the largest and the second eigenvalue.

Theorem 7.1 (Haveliwala and Kamvar [12]) Let P be an n × n row-stochastic matrix. Let
c be a real number such that 0 ≤ c ≤ 1. Let S be the n × n rank-one row-stochastic matrix
S = euT, where e is the n-vector whose elements are all ei = 1 and u is an n-vector that
represents a probability distribution. Define the matrix A = [cP + (1 − c)S]T. Its second
eigenvalue is |λ2| ≤ c.
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As it illustrated in Sect. 6.1, the proposed semi-supervised approach essentially biases
the original object-similarities such that the input ordering is taken into account. Under this
view, we can consider our work as related to other frameworks that aim at learning the object
similarity matrix for spectral learning (such as [3] and references therein). Conceptually
closer to our approach is the work of Meila et al. [17], where the eigengap is explicitly
used for constructing the appropriate objective function. More precisely, the authors con-
sider the task of learning the object similarity matrix and define an optimization problem
that maximizes the appropriate eigengap and minimizes a modified MNCut criterion. The
need for a large eigengap is justified both by theoretical and empirical findings. Interest-
ingly, although we do not explicitly require that the appropriate eigengap is maximized in
our semi-supervised framework, this is achieved as a consequence of our Lsemi construction
process.

Concerning the feature selection component our work is conceptually related to Stability
based Sparse PCA [16]. In this work the authors consider the use of feature selection for
uncertainty reduction in the context of PCA, and demonstrate empirically that feature selec-
tion can stabilize the PCA results in several real-world UCI datasets.

We use results from matrix perturbation theory [20], stating that the rank-k approximation
of a matrix A is close to a rank-k approximation of A + E , if E has weak spectral prop-
erties compared to those of A. Somewhat similar properties have been used in a different
setting, namely speeding up SVD and kernel PCA: Achlioptas [1] shows how to choose the
perturbation E based on the elements of the A matrix, such that the matrix A + E is either a
quantized or sampled version of A, making eigenvalue algorithms work faster.

The prospects of spectral ordering in the paleontological domain have been demonstrated
by Fortelius et al. [9]. In this work, plain spectral ordering of the sites, based on mammal
co-occurrences and discarding the age information of the sites, was considered. In addi-
tion, Puolamäki et al. [19] present a full probabilistic model that again only considers the
co-occurrences in the data.

We have presented a semi-supervised approach for spectral ordering; the semi-
supervision is realized by feeding an initial ordering into the process. The initial input order-
ing suggests which objects should stay close together and which objects should be placed
far away in the final ordering. This is similar in spirit to constraint-based clustering in which
the user provides pairwise constraints on some data objects, specifying whether they must
or cannot be clustered to the same cluster.4 Chen et al. [5] have presented a semi-supervised
non-negative matrix factorization framework for clustering. In their approach, the user can
provide “must-link” or “cannot-link” constraints on a few data objects.

Kalousis et al. [13] have studied the stability of feature selection algorithms. Similarly to
our approach, they measure the sensitivity of the end result with respect to variations in the
training set. Their problem setting is classification in high dimensional spaces, and the task
is to select a small number of features that accurately classify the learning examples.

8 Empirical results

In the experiments we aim at verifying that the proposed framework enhances the stability
of spectral ordering and increases the relevant eigengaps. Recall that this will increase the
reliability of the ordering results and improve on the convergence rate of the power method.
The experiments indeed verify the anticipated behavior.

4 Remember that spectral ordering can be seen as continuous clustering.
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8.1 Data sets

8.1.1 Paleontological data

The paleontological data we are considering consists of findings of land mammal genera in
Europe and Asia 25 to 2 million years ago. The data set is stored and coordinated in the
University of Helsinki, Department of Geology [8]. Our version of the data set was down-
loaded on June 26, 2007.

The observations in our data are the sites of excavation, and our features are mammal
genera whose remains are found at these sites. In total we have 1,887 observations and 823
features. The data matrix is 0-1 valued: an entry xi j = 1 means that mammal i was found
at site j , and 0 otherwise. The data is very sparse: about 1 per cent of the entries are non-
zero. We will also work with a small subset of data containing 1,123 observations and 18
features (the most common ones); this subset is more dense, having 12 per cent of its entries
nonzero. Thereafter we will refer to the sparse dataset as paleosp and the dense dataset as
paleod .

In addition, we have auxiliary information on the estimated ages of the sites: an approx-
imate age for each site, and also a more precise age for some sites; the methods available
for estimating the ages vary from site to site, and thus at some sites the information is more
certain than at others. The approximate ages will be used to construct an initial ranking rinput

of the sites, and this will be used as an input in the semi-supervised setting, results of which
will be presented in Sect. 8.2. Both the precise and approximate ages will be needed when
quantifying our belief in the initial ranking, that is, defining the perturbation matrix Einput of
L input as discussed in Sect. 6.3; empirical results on this will be shown in Sect. 8.5.

We will assume that the data is fully connected in that the algebraic multiplicity of the
first eigenvalue of the data Laplacian is 1. If this is not the case, the removal of discon-
nected observations will be a preprocessing step. In addition, we will preprocess the data
such that almost-disconnected components are removed too: these correspond to objects that
are very weakly connected to the rest of the objects. For such objects j , the value r( j) in
the order vector r (obtained by sorting the second eigenvector) is very large compared to
other r( j ′).

8.1.2 Newsgroup data

The other data set we will consider is a subset of the 20 Newsgroup corpus,5 consisting of
Usenet messages from four newsgroups ‘sci.crypt’, ‘sci.med’, ‘sci.space’ and ‘soc.religion.
christian’. We have converted the documents into a binary term by document matrix using
the Bow toolkit.6 The 2,000 features of the data set consist of the most common terms in the
documents, except for the stop words. The number of observations (documents, articles) is
3,987; there are 1,000 documents from each newsgroup, except for some empty documents
that contain none of the 2,000 terms.

In the semi-supervised setting we will again need an input ordering that is either given by a
domain expert or otherwise known. For newsgroup data, the input ordering is simply the time
ordering of the documents in each newsgroup. The aim of the spectral ordering would be to
reveal the flow of the discussion: who responds to whom. Spectral ordering is based on the co-
occurrences of the terms, and documents belonging to the same discussion tend to share more

5 http://www.cs.cmu.edu/~textlearning/
6 http://www.cs.cmu.edu/~mccallum/bow/
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terms than any two randomly chosen documents. The flow of the discussion is to some degree
given by the time stamps of the documents, but not completely: people might respond to old
documents, and there might be several discussions going on simultaneously. Thus our confi-
dence in the input ordering is limited, similarly to what was the case in paleontological data.

The newsgroup data is quite dense, as opposed to the sparse paleontological data, and there
is no need to preprocess the data by removing disconnected components. In addition, we will
see that the eigengaps are quite large in the original newsgroup data and the supervision
cannot significantly increase them. However, there are other benefits in the semi-supervision
and feature selection that we will demonstrate in the sequel.

8.2 Effect of supervision on the stability

Let us first demonstrate that the eigengaps of the data Laplacian increase when domain knowl-
edge is taken into account. These experiments are performed on the sparse and large paleosp

dataset, where the initial eigengaps are small. Recall that the stability of spectral ordering
essentially depends on two factors, one of which are the eigengaps between the first and
second eigenvalue and the second and third eigenvalue of the Laplacian. Figure 1 shows the
behavior of the eigengaps of the semi-supervised Laplacian Lsemi = cLdata + (1 − c)L input

at a varying level of supervision. Choosing 1 − c = 0 corresponds to no supervision, in
which domain knowledge is not taken into account and the spectral ordering is done based
on feature co-occurrences only; the eigengaps at c = 1 thus show the eigengaps of the data
Laplacian. In contrast, 1 − c = 1 corresponds to the trivial case of full supervision of the
ranking, in which co-occurrences in the data are not taken into account but only the domain
knowledge ranking is used. We observe that both eigengaps increase rapidly when the level
of supervision increases. Thus the spectral ordering becomes more stable as more emphasis
is put on the domain knowledge.

For newsgroup data, the eigengaps are large in the original data, and we do not need to
apply supervision to increase them. The data are dense, and the co-occurrences in the data
give a quite stable spectral ordering.

Fig. 1 Eigengaps
λ1(Lsemi) − λ2(Lsemi) (+) and
λ2(Lsemi) − λ3(Lsemi) (◦)
versus the level of supervision.
Horizontal axis: 1 − c, confidence
in domain knowledge. 1 − c = 0:
no supervision; 1 − c = 1: full
supervision. Paleontological data
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8.3 Computational gains of the supervision

As analyzed in Sect. 4.2, increasing the eigengap between the second and the third eigenvalue
of the Laplacian matrix will enhance the convergence of the power method.

For any square matrix A whose dominant eigenvalues are λ1 > λ2, the rate of conver-
gence of the power method is determined by λ2

λ1
. The power method will output the first

eigenvector of A. In spectral ordering we do not need the first eigenvector but instead the
second eigenvector of the Laplacian matrix L . To take advantage of the power method,
we apply a trivial transformation L ′ = L − vvT where v is the first eigenvector of L ,
obtained easily from the degree matrix of the Laplacian, as demonstrated in Sect. 4.2. The
first eigenvalue of L ′ will equal the second eigenvalue of L , and similarly for the eigen-
vectors. Thus applying the power method on L ′ will give us the spectral ordering solu-
tion. The rate of convergence of the power method on L ′ is dependent on λ3

λ2
where λ2

and λ3 are the second and third eigenvalues of L , and respectively equal to the first and
second eigenvalue of L ′. Thus increasing the eigengap λ2 − λ3 will speed up the power
method.

Theorems 6.1 and 6.2 demonstrated that the eigengaps will depend on the amount of
supervision, that is, value of 1 − c. In this section we will show that the choice of c will
indeed affect the number of iterations needed in the power method on two data sets: the
large and sparse paleontological data set having 1,887 observations and 823 features, and the
newsgroup data set having 3,987 observations and 2,000 features.

Figure 2 shows the number of iterations needed until convergence in the power method
on the paleontological and newsgroup data sets. The power method was iterated until the
Euclidean norm of the difference between two consecutive solutions of the dominant eigen-
vector was smaller than 10−15. Changing this limit did not seem to make a difference in the
pattern observed in the figures. The error bars show the standard deviation over 20 random
initializations of the power method. The horizontal axis shows 1 − c, the amount of supervi-
sion: the larger 1 − c is, the more we emphasize the input ordering given by a domain expert.
We can see that as the supervision increases, the power method converges more easily. The
pattern is quite strong even though the data sets are modest in size, and on larger data sets
the computational gains are expected to be significant.
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Fig. 2 Number of iterations needed in the power method versus the level of supervision. Left: paleontological
data, right: newsgroup data. Horizontal axis: 1−c, confidence in domain knowledge. 1−c = 0: no supervision;
1 − c = 1: full supervision. The error bars show the standard deviation over 20 random initializations
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Fig. 3 Condition number of the spectral ordering problem versus the level of supervision. Left: paleonto-
logical data, right: newsgroup data. Horizontal axis: 1 − c, confidence in domain knowledge. 1 − c = 0: no
supervision; 1 − c = 1: full supervision

8.4 Condition number versus supervision

The condition number, measuring the sensitivity of the eigenvector with respect to small vari-
ations in the Laplacian, is a well defined tool to assess the stability of the spectral ordering
problem. The smaller the condition number, the better. In Theorem 6.6 we have shown how
the condition number κ is dependent on the eigengaps and the level of supervision. Figure 3
depicts the behaviour of the condition number as a function of 1 − c: at 1 − c = 0, no
supervision is applied, and the figure shows the condition number of the data Laplacian. At
1 − c = 1, the spectral ordering solution is dictated by the input ordering only and not by the
data. We can see that the condition number decreases as the level of supervision increases.
The data sets employed here are the paleontological data having 1,887 observations and 823
features, and the newsgroup data having 3,987 observations and 2,000 features.

8.5 Effect of feature selection on the stability

We will then demonstrate that the stability of the spectral ordering increases as features are
removed step by step. The removed features will be chosen based on their contribution on
the variability of the feature-feature similarity matrix, measured as matrix Edata discussed in
Sect. 6.4. It should be noted that after each feature is removed, Lsemi is reevaluated based on
L input and Ldata which are appropriately recomputed.

We will measure the stability of the spectral ordering by a “stability factor” s f that depends
on the eigengaps and the norm of the perturbation matrix:

s fsemi = min(λ1(Lsemi) − λ2(Lsemi), λ2(Lsemi) − λ3(Lsemi))

||Esemi||2 (4)

For the stability factor we will need appropriate values for Lsemi and ||Esemi||2.
Let us first construct the semi-supervised Laplacian Lsemi = cLdata + (1 − c)L input. For

this we need to carefully choose the confidence factor c reflecting our belief in the observed
data versus the input ranking. We can either rely on a domain expert or better still, derive c
from the body of domain knowledge: for the paleontological data we will choose to define

c = ||Einput||2/(||Edata||2 + ||Einput||2) (5)
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Fig. 4 Stability factor during
feature selection. Horizontal axis:
iteration. One feature is removed
at each iteration. Paleontological
data
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which naturally characterizes the confidence such that a large perturbation in the initial input
ranking leads to a high confidence in the observed data, and vice versa. In the definition (5),
the data perturbation Edata will be obtained by bootstrap sampling as discussed in Sect. 6.3.
The input perturbation Einput for paleontological data will be derived based on the availability
of approximate or precise ages for each site: in addition to the initial ranking rinput based on
approximate ages of the sites, we construct another initial ranking rs using the precise ages
available for some of the sites. (The sites for which a precise age is not available will get an
average ranking in rs .) For both rankings rinput and rs we generate a corresponding eigen-
vector, vinput and vs , using Eq. (1). We then take the difference between these eigenvectors
as v = vinput − vs and use that in place of v in Eq. (2), to measure the difference between the
two orderings. This gives us the perturbation Einput associated with the domain knowledge.

In the case of newsgroup data, we cannot objectively assess the quality of the input rank-
ing, because we do not have several alternative rankings available as we did in the case
of paleontological data above. The confidence factor c must thus be selected manually via
experimentation.

Having now defined the value for c, we can construct the matrix Lsemi = cLdata + (1 −
c)L input.

For the stability factor in Eq. (4) we also need the value for ||Esemi||2. Based on the
definition for c in Eq. (5), Eq. (3) now simplifies

||Esemi||2 = c||Edata||2 + (1 − c)||Einput||2 = 2||Edata||2||Einput||2
||Edata||2 + ||Einput||2 (6)

Having now defined all components of the stability factor (4) let us see how it behaves
when features are iteratively removed. Figure 4 shows the results on paleontological data. We
have employed the subset paleod of 1,123 observations and 18 features in this experiment.
At each iteration, one feature is removed based on its contribution to the data perturbation.
Simultaneously, a few observations typically get removed, as they have become disconnected
with the other observations due to the removal of the feature in question. The stability factor
of the semi-supervised Laplacian increases during feature selection, showing that feature
selection enhances the stability of spectral ordering.

In the results shown in Fig. 4, the value of the confidence parameter c was computed anew
at each iteration. The value of c increased slightly but monotonically during the iterations:
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Fig. 5 Eigengap between the 2nd and 3rd eigenvalue during feature selection. One feature is removed at each
iteration (horizontal axis). Left: Paleontological data. Semi-supervised spectral ordering (◦), original spectral
ordering (∗). Right: Newsgroup data, original spectral ordering. Each curve is a random subset having 200
observations

in the beginning, c ≈ 0.42, and after the six iterations shown in the figure, c ≈ 0.46. Recall
that c = 0 would correspond to a perfect confidence in the domain expert opinion, and c = 1
a perfect confidence in the observed data, so the change in c corresponds to an increased
confidence in the observed data. In feature selection, the feature that most contributes to
||Edata|| is removed; this decreases the value of ||Edata||. In the light of the definition of c in
(5) the increase of c is now no surprise.

Again, for the newsgroup data we cannot in practice measure the value of the stability
factor as the input perturbation ||Einput|| is not available due to reasons discussed above: we
do not have two or more alternative input rankings.

8.6 Computational gains of feature selection

Finally, let us describe a nice side-effect of feature selection. Recall that the eigengap between
the second and third eigenvalue affects the convergence of the power method, as discussed
in Sect. 4.2. Figure 5(left) shows that this eigengap increases during feature selection, both
in the original paleontological data and in the semi-supervised setting. Thus the removal of
“noisy” features can enhance the behaviour of the power method. The data set employed here
is the smaller paleontological data having 1,123 observations and 18 features.

We also demonstrate the behaviour of the eigengap in the newsgroup data, without super-
vision. We have taken random subsets containing 200 observations. In each subset, the
eigengap between the second and third eigenvalue increases during feature selection, as
seen in Fig. 5(right).

This behaviour is not directly predicted by our theoretical analysis presented in the pre-
vious sections—but not prevented either. Further research is needed to find the theoretical
justification of the findings in Fig. 5.

9 Discussion

In this paper, we have shown how to increase the stability of spectral ordering using two
separate tools: partial supervision in the form of a (possibly uncertain) domain knowledge
ordering, and feature selection.
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We have presented a detailed theoretical analysis showing how the eigengaps of the
Laplacian affect the stability, and how partial supervision will increase the eigengaps. The
eigengaps are those between the first and second eigenvalue of the Laplacian, and similarly
between the second and third eigenvalue. Feature selection in turn will decrease the norm of
the perturbation matrix E that quantifies the uncertainty associated with the observed data.

Our main application area is paleontology: we have considered the ordering of the sites of
excavation in paleontological data, by complementing spectral ordering with domain knowl-
edge of the approximate ages of the sites. The paleontological data is noisy in that many
observations are missing, and prone to small changes when the findings are more carefully
examined. Also, we never have access to the exact ages of the sites. Thus when ordering
the sites, the best we can aim at is an ordering that is as stable as possible with respect to
small variations in the data. This motivates our task of optimizing the stability of spectral
ordering. We have shown that in the paleontological data, the eigengaps quickly increase as
semi-supervision is used. Also, feature selection, by removing the mammals that contribute
most to the variation of the results in bootstrap sampling, is demonstrated to increase the
stability of spectral ordering.

Another data set we have employed is newsgroup data in which the observations are
newsgroup documents and the features are the most common terms. Although very different
in nature, this data set shares the problem of noisy observations in some respect: In natural
language documents, many terms are omitted although they would fit in the topic, as the
documents are short and synonymous terms might have been used instead.

In order to illustrate the effect of the eigengaps on the stability of the ordering, we have
also reported the condition number of the spectral ordering problem. This measure illustrates
in a more explicit manner the dependence of stability on the size of the eigengap: if the eigen-
gap tends to zero, the spectral ordering problem becomes ill-conditioned. Empirical results
demonstrate that the condition number decreases as the amount of supervision increases in
both paleontological and newsgroup data.

We have also shown that the supervision enhances the efficiency of spectral ordering when
the power method is employed. This is demonstrated empirically in both application areas.
The observed pattern is a direct consequence of the enlargement of the eigengap between the
second and the third eigenvalue.

An interesting avenue for future research is to consider extrapolation methods for accel-
erating spectral ordering computations. Kamvar et al. [14] have shown how to accelerate
PageRank computations and it might be possible to follow their approach.

In future work we also aim at exploring the potentials of our framework in different appli-
cation domains, where partial supervision is naturally present. Moreover, we aim at extending
the proposed framework to spectral clustering.
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