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Abstract 

Securing access to affordable energy services is of central importance to our 
societies. To do this sustainably, energy systems design should be – amongst 
other things – environmentally compliant and reconcile with the integrated 
management of potentially limiting resources. 

This work considers the role for so-called 'Smart Grids' to improve the delivery 
of energy services. It deals with the integration of renewable energy technologies 
to mitigate climate change. It further demonstrates an approach to harmonise 
potentially conflicting energy, water and land-use strategies. Each presents 
particular challenges to energy systems analysis. 

Computer aided models can help identify energy systems that most effectively 
meet the multiple demands placed on them. As models constitute a simple 
abstraction of reality, it is important to ensure that those dynamics that 
considerably impact results are suitably integrated. In its three parts, this thesis 
extends long-term energy system models to consider improved integration 
between: (A) supply and demand through Smart Grids; (B) timeframes by 
incorporating short-term operating constraints into long-term models; and (C) 
resource systems by linking multiple modelling tools.  

In Part A, the thesis explores the potential of Smart Grids to accelerate and 
improve electrification efforts in developing countries. Further, a long-term 
energy system model is enhanced to investigate the Smart Grid benefits 
associated with a closer integration of supply, storage and demand-side options. 
In Part B, the same model is extended to integrate flexibility requirements. The 
benefits of this integration are illustrated on an Irish case study on high levels of 
wind power penetrations. In Part C, an energy model is calibrated to consider 
climate change scenarios and linkages with land-use and water models. This 
serves to assess the implications of introducing biofuels on the small island 
developing state of Mauritius. 

The thesis demonstrates that too weak integration between models and resource 
systems can produce significantly diverging results. The system configurations 
derived may consequently generate different – and potentially erroneous – 
policy and investment insights. 

Keywords: Power system models; Energy system models; Resource system 
models; Smart Grids; Operating reserve; Biofuels; Sub-Saharan Africa; Ireland; 
Mauritius;  
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Sammanfattning 

Säker och prisvärd tillgång till energitjänster är en central fråga för dagens 
samhällen. För att tillgodose samhällen med hållbara energitjänster bör 
energisystemen designas för att – bland annat – möta de miljömässiga kraven 
samt hantera potentiellt begränsade resurser. Den här avhandlingen undersöker 
de ”smarta” elnätens roll för bättre tillhandahållande av energitjänster. 
Avhandlingen behandlar integration av förnybar energiteknik för minskad 
klimatpåverkan samt demonstrerar ett tillvägagångssätt för att förena potentiellt 
motstridiga energi-, vatten- och markanvändningsstrategier. Dessa uppvisar 
särskilda utmaningar i energisystemanalyser.  

Datorstödda modeller kan användas för att identifiera energisystem som på 
effektivast sätt möter samhällets krav. Datorstödda modeller är, per definition, 
förenklingar av verkligheten och det är därför viktigt att säkerställa en korrekt 
representation av det verkliga systemets dynamik. Den här avhandlingen 
förstärker energisystemmodeller för långsiktsprognoser utifrån tre aspekter: 
förbättra integrationen av (A) tillgång och efterfrågan genom smarta elnät; (B) 
olika tidsaspekter genom att inkludera kortsiktiga operativa begränsningar; samt 
(C) resurssystem genom att sammanlänka olika modelleringsverktyg.  

I del A utforskades de smarta elnätens potential för att förbättra elektriska 
system i utvecklingsländer. En befintlig energisystemmodell förstärktes för att 
behandla smarta elnät och kan därmed fånga fördelarna förknippade med 
energilagring och energianvändning. I del B utvidgades en energisystemmodell 
för långsiktsprognoser med flexibilitet för kortsiktiga operativa begränsningar. 
En fallstudie fokuserad på ett vindkraftsdominerat irländskt elnät genomfördes 
för att demonstrera fördelarna av modellutvecklingen. I del C kalibrerades en 
energisystemmodell för att ta klimatscenarier i beaktande samt energisystemets 
kopplingar till markanvändning och vattenresurssystem. En fallstudie fokuserad 
på Mauritius energisystem genomfördes för att undersöka konsekvenserna av en 
potentiell introducering av biobränslen.  

Avhandlingen demonstrerar att undermålig integration av energimodeller och 
resurssystem kan leda till avsevärda avvikelser i resultaten. Slutsatser som dras 
utifrån dessa resultat kan därmed leda till vitt skilda – och potentiellt felaktiga – 
underlag för investeringar och energipolitiska rekommendationer. 

Nyckelord: kraftsystemmodeller; energisystemmodeller; resursmodeller; smarta 
elnät; operativ reservkapacitet; biobränslen; Afrika söder om Sahara; Irland; 
Mauritius;  



 

 

 



 

vii 

Publications 

This doctoral thesis is based on the publications listed below. All underlying 
energy related analysis and energy model development1 was performed by the 
author of this thesis. 

I. Welsch, M., Bazilian, M., Howells, M., Divan, D., Elzinga, D., Strbac, 
G., Jones, L., Keane, A., Gielen, D., Balijepalli, V.S.K.M., Brew-
Hammond, A., Yumkella, K., Smart and Just Grids for sub-Saharan 
Africa: Exploring options, Renewable and Sustainable Energy Reviews 
20, pp. 336–352, 2013. 

II.a. Welsch, M., Howells, M., Bazilian, M., DeCarolis, J., Hermann, S., 
Rogner, H.H., Modelling Elements of Smart Grids – Enhancing the 
OSeMOSYS (Open Source Energy Modelling System) code. Energy 46 
(1), pp. 337–350, 2012. 

II.b. Welsch, M., Howells, M., Bazilian, M., DeCarolis, J., Hermann, S., 
Rogner, H.H., Supplement to: Modelling Elements of Smart Grids – 
Enhancing the OSeMOSYS Code (DESA/12/2), Working Paper 
Series. KTH Royal Institute of Technology, Stockholm, 2012. 

III. Welsch, M., Howells, M., Hesamzadeh, M., Ó Gallachóir, B., Deane, 
J.P., Strachan, N., Bazilian, M., Kammen, D.M., Jones, L., Rogner, 
H.H., Strbac, G., Supporting Security and Adequacy in Future Energy 
Systems – The need to enhance long-term energy system models to 
better treat issues related to variability, revisions submitted.  

IV. Welsch, M., Deane, J.P., Howells, M., Rogan, F., Ó Gallachóir, B., 
Rogner, H.H., Bazilian, M., Incorporating Flexibility Requirements into 
Long-term Models – A Case Study on High Levels of Renewable 
Electricity Penetration in Ireland, submitted. 

V. Howells, M., Hermann, S., Welsch, M., Bazilian, M., Segerström, R., 
Alfstad, T., Gielen, D., Rogner, H., Fischer, G., van Velthuizen, H., 
Wiberg, D., Young, C., Röhrl, R.A., Mueller, A., Steduto, P., Ramma, I., 
Integrated analysis of climate change, land-use, energy and water 
strategies, Nature Climate Change 3 (7), pp. 621–626, 2013. 

                                                      
1  In this context, the term ‘development’ either refers to the calibration of an existing modelling 

framework or model code extensions to account for previously ignored dynamics. 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

viii 

VI. Welsch, M., Hermann, S., Howells, M., Rogner, H.H., Young, C., 
Ramma, I., Bazilian, M., Fischer, G., Alfstad, T., Gielen, D., Le Blanc, 
D., Röhrl, A., Steduto, P., Müller, A., Adding Value with CLEWS – 
Modelling the Energy System and its Interdependencies for Mauritius. 
Applied Energy 113, pp. 1434–1445, 2014. 

 

Papers I – VI and Paper VI were directly integrated into the three main parts of 
this thesis, apart from some expansions and adjustments to improve readability. 
Part A focuses on integration between technologies and draws on Paper I for 
Section 1 and Paper II.a and II.b for Section 2. Papers III and IV were 
restructured and merged within Part B, which focuses on integration between 
timeframes. Part C focuses on integration between resource systems. The 
findings of Paper V were summarised in Section 1 of Part C, which otherwise 
draws on Paper VI. 
 

Other journal papers, book chapters and contracted work by the author which 
served to inform this thesis include: 

1. Welsch, M., Perspectives for the Development of Smart Grids for 
Developing Countries (DCs) and Emerging Markets (EMs) – 
Discussion Paper, in: GIZ Visionary Workshop. Berlin, Germany, 2011. 

2. Welsch, M., Mentis, D., Howells, M., Long Term Energy Systems 
Planning: Accounting for Short Term Variability and Flexibility, Book 
Chapter in: Renewable Energy Integration: Practical Management of 
Variability, Uncertainty and Flexibility in Power Grids, Elsevier, 
submitted. 

3. Hermann, S., Welsch, M., Segerström, R.E., Howells, M.I., Young, C., 
Alfstad, T., Rogner, H.-H., Steduto, P., Climate, land, energy and water 
(CLEW) interlinkages in Burkina Faso: An analysis of agricultural 
intensification and bioenergy production, Natural Resources Forum 36, 
245–262, 2012. 

4. Rogan, F., Cahill, C.J., Daly, H.E., Dineen, D., Deane, J.P., Heaps, C., 
Welsch, M., Howells, M., Bazilian, M., Ó Gallachóir, B., LEAPs and 
Bound – An Energy Demand and Constraint Optimized Model of the 
Irish Energy System, Energy Efficiency, 2013. 

5. Bazilian, M., Miller, M., Detchon, R., Liebreich, M., Blyth, W., Futch, 
M., Modi, V., Jones, L., Barkett, B., Howells, M., MacGill, I., Kammen, 
D.M., Mai, T., Wittenstein, M., Aggarwal, S., O’Malley, M., Carvallo, 
J.P., Welsch, M., Pugh, G., Weston, R., Arent, D.J., Accelerating the 



  Publications 

ix 

Global Transformation to 21st Century Power Systems, The Electricity 
Journal 26, 39–51, 2013. 

6. Taliotis, C., Miketa, A., Howells, M., Hermann, S., Welsch, M., Broad, 
O., Rogner, H., Bazilian, M., Gielen, D., An indicative assessment of 
investment opportunities in the African electricity supply sector, 
submitted. 

7. Taliotis, C., Bazilian, M., Welsch, M., Gielen, D., Howells, M., Grand 
Inga to power Africa: Scenarios to 2035, submitted. 

 



 

 

 

 

 

 



  

xi 

Acknowledgements 

First and foremost, I would like to express my gratitude to Prof. Mark Howells. 
He was essentially the reason why I moved away from Vienna in 2011 to pursue 
a PhD in Stockholm. I especially appreciate his flexibility and trust, which gave 
me the privilege of deciding freely on the details of the scope and focus of this 
thesis. While leaving space for creativity, his overall guidance and strategic sense 
for research gaps were vital in assuring the relevance of the papers I wrote. The 
additional support received by our associate professors Holger Rogner and 
Morgan Bazilian were an invaluable quality control and were crucial for getting 
my papers through the review process so smoothly. Further, my work profited 
significantly from the great collaboration with Charlie Heaps from Stockholm 
Environment Institute. 

Both through this and my previous job, Sebastian became a close friend and 
associate in my struggles regarding the move to Stockholm and the work on my 
PhD. His good humour and balanced priorities in life often helped in taking the 
edge off stressful situations. Together with Mark, the three of us were the first 
staff of the Division of Energy Systems Analysis. But our team grew bigger at a 
fast pace. Oliver, Dayo, Costantinos and Rebecka were the first ones to join, 
and we have since grown to a lively group of about 15 PhD and master 
students. I would like to thank all of them for the work we did and especially for 
the great company, allowing me to clear my head while chatting over a mug of 
coffee. I also appreciate the great support by Anneli and Petra, who helped me 
navigate through the administrative processes at KTH. 

Further, I would like to thank all other friends in Stockholm and in particular 
my close friends from around Innsbruck. During my trips back home it was 
always a great relief to have such a diverse circle of friends, where nobody 
shares the same work related interest, but everyone shares an interest in each 
other. Especially, I would like to thank Eva Maria. While my PhD brought me 
to Stockholm, it is she who makes me want to stay for longer. Thank you for 
your support and understanding during these stressful times! 

Most of all I would like to thank my family, and especially my parents who gave 
me the opportunity to freely decide on my educational career. It is just so much 
easier to try out new things and explore new places in the world knowing there 
is always a stable base back home to which I can return and recover from any 
struggles.  



 

 

 

 



 

xiii 

Nomenclature 

Abbreviations 

a Annum 

AC Alternating Current 

AEZ Agro-Ecological Zones 

AGECC The UN Secretary General’s Advisory Group on Energy and 
Climate Change 

AIMMS Advanced Interactive Multidimensional Modeling System 

AMI Advanced Metering Infrastructure 

AMMO ActiveX Mathematical Modeling Objects 

AMPL A Mathematical Programming Language 

BAU Business As Usual 

BPL Broadband over Power Line 

CAES Compressed Air Energy Storage 

CAPP Central African Power Pool 

CC Combined cycle 

CCS Carbon Capture and Storage 

CEMAC Economic and Monetary Community of Central Africa 

CES Constant Elasticity of Substitution 

CGE Computable General Equilibrium 

COMESA Common Market for Eastern and Southern Africa 

COPT Capacity Outage Probability Table 

CPLEX IBM ILOG CPLEX Optimization Studio 

CPU Central Processing Unit 

CUE Cost Of Unserved Energy 

DC Direct Current 

dena Deutsche Energie-Agentur 

DOE U.S. Department of Energy 

DSM Demand Side Management 

EAC East African Community 

EAPP East African Power Pool 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

xiv 

EC European Commission 

ECOWAS Economic Community of West African States 

EEG Erneuerbare Energien Gesetz 

EMCAS Electricity Market Complex Adaptive System 

ENTSO-E European Network of Transmission System Operators for 
Electricity  

EPRI Electric Power Research Institute 

ETP European Technology Platform 

ETS EU Emissions Trading System 

ETSAP Energy Technology Systems Analysis Program 

EU European Union 

EUR Euro 

FEMA Forum of Energy Ministers of Africa 

GAMS General Algebraic Modeling System 

GCM General Circulation Models 

GDP Gross Domestic Product 

GEA Global Energy Assessment 

GHG Greenhouse Gas 

GIS Geographic Information System 

GLPK GNU Linear Programming Kit 

GWh Gigawatt Hour 

GWa Gigawatt Year 

HOMER Hybrid Optimization Model for Electric Renewables 

HV High Voltage 

HVDC High Voltage Direct Current 

IAEA International Atomic Energy Agency 

IIASA International Institute for Applied Systems Analysis 

ICT Information and Communication Technology 

IEA International Energy Agency 

IGCC Integrated Gasification Combined Cycle 

IPCC Intergovernmental Panel on Climate Change 

IRP Integrated Resource Planning 

KTH Kungliga Tekniska Högskolan 

ktoe Kilotonne of Oil Equivalent 



  Nomenclature 

xv 

kWh Kilowatt Hour 

LEAP Long-range Energy Alternatives Planning System 

LOLE Loss of Load Expectation 

LOLP  Loss of Load Probability 

MAED Model for Analysis of Energy Demand 

MATLAB Matrix Laboratory 

MESSAGE Model of Energy Supply Strategy Alternatives and their General 
Environmental Impacts 

MDG Millennium Development Goal 

MPS Mathematical Programming System 

MTTR Mean Time To Repair 

MW Megawatt 

MWh Megawatt Hour 

NEA Nuclear Energy Agency 

NETL National Energy Technology Laboratory 

NREL National Renewable Energy Laboratory 

OCGT Open Cycle Gas Turbine 

OECD Organisation for Economic Co-operation and Development 

OSeMOSYS Open Source Energy Modelling System 

PSI Paul Scherrer Institute 

PV Photovoltaic 

RAM Random Access Memory 

ReEDS Regional Energy Deployment System 

RISDP Regional Indicative Strategic Development Plan 

SADC Southern African Development Community 

SAPP South African Power Pool 

SCADA Supervisory Control and Data Acquisition 

SEI Stockholm Environment Institute 

SIDS Small Island Developing State 

TED Technology and Environmental Database 

TIMES The Integrated MARKAL-EFOM System 

TJ Terajoule 

TSO Transmission System Operator 

UCC University College Cork 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

xvi 

UCL University College London 

UCT University of Cape Town 

UK United Kingdom 

UKERC UK Energy Research Centre 

UN United Nations 

UNEP United Nations Environment Programme 

UNIDO United Nations Industrial Development Organisation 

UPFC Unified Power Flow Controller 

U.S. United States of America 

USD U.S. Dollar 

VoLL Value of Lost Load 

V2G Vehicle-to-Grid 

WAPP West African Power Pool 

WASP Wien Automatic System Planning Programme 

WEAP Water Evaluation and Planning System 

WEC World Energy Council 

WEM World Energy Model 

WTO World Trade Organization 

 
 

Indices and Parameters 

To improve readability, indices and parameters of any model enhancements are 
defined before presenting their algebraic formulations. 

Box 1: Indices Used in Equations to Model Elements of Smart Grids 81 

Box 2: Parameters used to Model Elements of Smart Grids 82 

Box 3: Indices Used to Enhance Integration Between Timeframes 135 

Box 4: Parameters Used to Enhance Integration Between Timeframes 135 

Box 5: Additional Indices for Pumped Storage Hydropower 181 

Box 6: Parameters Used to Model Pumped Storage Hydropower 181 



 

xvii 

Table of Contents 

INTRODUCTION 1 

1 The Need for Energy Systems Analysis 1 

1.1 Selected Complexities 2 

1.2 Models as Tools to Inform Energy Strategies 5 

2 Integration 7 

3 Objectives, Structure and Contribution of this Thesis 8 

3.1 Objective 8 

3.2 Academic Contributions 8 

4 Modelling Families 11 

4.1 The Value of Such a Categorisation 14 

4.2 Accounting Frameworks 15 

4.3 Simulation Models 16 

4.3.1 Energy System Simulation Models 16 

4.3.2 Production Simulation Models 16 

4.4 Optimisation Models 18 

5 Modelling Tools Used or Extensively Drawn from in this Work 21 

5.1 OSeMOSYS 21 

5.2 MARKAL & TIMES 24 

5.3 MESSAGE 25 

5.4 LEAP 26 

5.5 PLEXOS 27 

6 Concluding Remarks 28 

PART A INTEGRATION BETWEEN SUPPLY AND DEMAND 29 

1 Smart and Just Grids for sub-Saharan Africa 31 

1.1 Introduction 31 

1.1.1 Rationale and Scope 31 

1.1.2 Electricity in sub-Saharan Africa 32 

1.1.3 A Smart Grid Approach 34 

1.2 The sub-Saharan African Context 37 

1.2.1 A New Emphasis 38 

1.2.2 Opportunities for Leapfrogging 43 

1.2.3 Implications on Network Regulations and Markets 44 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

xviii 

1.2.4 Smart Grids vs. Super Grids 46 

1.3 Identifying Specific Options 47 

1.4 Selected Assessment Criteria 55 

1.5 Indicative Assessment 61 

1.6 Further Work 65 

1.7 Conclusion 67 

2 Modelling Elements of Smart Grids 68 

2.1 Introduction 68 

2.1.1 Rationale and Scope 68 

2.1.2 Extending OSeMOSYS 70 

2.2 Conceptual description 71 

2.2.1 Variability in Generation 72 

2.2.2 Prioritising Demand Types 72 

2.2.3 Demand Shifting 73 

2.2.4 Storage 76 

2.2.5 Bringing It All Together 80 

2.3 Algebraic Formulation 81 

2.3.1 General 81 

2.3.2 Variability in Electricity Generation 84 

2.3.3 Prioritising Demand Types 85 

2.3.4 Demand Shifting 88 

2.3.5 Storage 94 

2.3.6 Bringing It All Together 103 

2.4 Application 105 

2.4.1 Variability in Generation 106 

2.4.2 Prioritising Demand Types 107 

2.4.3 Demand Shifting 108 

2.4.4 Storage 110 

2.4.5 Bringing It All Together 110 

2.4.6 Computational Requirements 112 

2.5 Conclusion 113 

PART B INTEGRATION BETWEEN TIMEFRAMES 115 

1 Short-term Variability and Long-term Outlooks 117 

1.1 Rationale 117 

1.2 Scope 119 

1.3 The Need for Flexibility 120 

1.4 Key Implications for Energy Systems Models 122 



 Table of Contents 

xix 

1.4.1 Temporal Resolution 122 

1.4.2 Reliability Considerations 123 

1.4.3 Linking Long-term with Short-term Models 125 

2 Extending OSeMOSYS 126 

2.1 Capacity Credit of Wind 126 

2.1.1 An Approximation Based on Penetration Levels 126 

2.1.2 Limitations 128 

2.2 Balancing 130 

2.2.1 Capturing Reserve Requirements 130 

2.2.2 Implementation in OSeMOSYS 132 

2.2.3 Limitations 133 

3 Conceptual Description and Algebraic Formulation 134 

3.1 Key Elements of the Code Expansions 134 

3.2 Capacity Credit of Wind Power 137 

3.2.1 Conceptual Description 137 

3.2.2 Key Variables 138 

3.2.3 Capacity Credit Formula 140 

3.3 Balancing 143 

3.3.1 Conceptual Description 143 

3.3.2 Meeting Reserve Demands 146 

3.3.3 Considering Ramping Characteristics 147 

3.3.4 Operational Constraints 155 

4 Test Case 159 

4.1 Main Assumptions 159 

4.2 Results 161 

4.2.1 Conventional Model 161 

4.2.2 Calculated Wind Capacity Credit 163 

4.2.3 Secondary Reserve 164 

4.2.4 Primary and Secondary Reserve 166 

4.3 Discussion 170 

5 An Irish Case Study 173 

5.1 Ireland and its Power System 174 

5.2 Soft-linking a Long-term Energy Model with an Operational Power 
System Model 175 

5.3 Enhancing a Long-term Model 176 

5.4 Capacity Credit Calculations 178 

5.5 Modelling Ireland’s Pumped Storage Hydropower Plant 179 

5.6 Assumptions 185 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

xx 

5.6.1 Analysis to 2020 185 

5.6.2 Analysis to 2050 187 

5.7 Results for 2020 188 

5.8 Results until 2050 191 

5.9 Discussion 195 

6 Conclusion 196 

PART C INTEGRATION BETWEEN RESOURCE SYSTEMS 199 

1 Resource Integration and Mauritius 201 

1.1 Rationale for Considering Resource Integration 201 

1.2 A Brief Background on Mauritius 203 

1.2.1 Economy 203 

1.2.2 Climate, Agricultural Land-Use and Water 204 

1.2.3 The Energy System 205 

1.2.4 ‘Medine’ and ‘F.U.E.L.’ 206 

1.3 Contextual Work 206 

1.4 Transitioning from Energy to Multi-resource Modelling 209 

2 Methodology 209 

2.1 Modelling Tools 209 

2.2 ‘Current Practice Approach’ 210 

2.3 ‘CLEWS Approach’ 213 

3 Scenarios 216 

3.1 Current Practice Approach 217 

3.1.1 Scenarios without Climate Change Considerations 217 

3.1.2 Scenarios with Climate Change Considerations 218 

3.2 CLEWS Approach 218 

3.2.1 2NC+CCCLEWS: Ethanol – Second Generation, New Crop, 
Water Stress, CLEWS Approach 219 

3.3 Assumptions Related to Agriculture and Water Supply 219 

4 Results 220 

4.1 Business as Usual 220 

4.1.1 Current Practice Approach 220 

4.1.2 CLEWS Approach 221 

4.2 Ethanol – First Generation 223 

4.2.1 Current Practice Approach 223 

4.2.2 CLEWS Approach 224 

4.3 Ethanol – Second Generation 225 



 Table of Contents 

xxi 

4.3.1 Current Practice Approach 225 

4.3.2 CLEWS Approach 227 

4.4 Adding Value with CLEWS – Summary of the Findings 228 

5 Conclusions 229 

CONCLUDING REMARKS AND RECOMMENDATIONS 231 

1 Concluding Remarks 231 

2 Recommendations for Future Work 233 

REFERENCES 235 

APPENDICES 

Annex A Selected Top-down Models 261 

Annex A.1 Input-Output Models 261 
Annex A.2 Computational General Equilibrium Models 262 

Annex B Qualitative Ranking of Smart Grid Options 263 

Annex C Modelling Elements of Smart Grids – Code 

Implementation 267 

Annex C.1 Variability in Electricity Generation 267 
Annex C.2 Prioritising Demand Types, Demand Shifting and Storage 274 

Annex C.2.1 Prioritising Demand Types 275 
Annex C.2.2 Demand Shifting 276 
Annex C.2.3 Storage 278 
Annex C.2.4 Integration into OSeMOSYS 281 

Annex D Operating Reserve and Capacity Credit of Wind – 

Code Implementation 283 

Annex E Detailed Test Case Assumptions 299 

Annex F The Irish Pumped Storage Hydropower Plant – Code 

Implementation 303 

Annex G Power Plant Data for CLEWS Study on Mauritius 305 



 

 

 
 
 
 
 



 

1 

Introduction 

This introduction presents energy models as tools to analyse energy systems and pathways. 

Section 1 outlines various challenges for decision making that models may help address. It 

highlights that models rely on numerous assumptions and require transparency to avoid 

misinterpretation or miscommunication. Section 2 defines the term ‘integration’ as it is applied 

in this thesis, and interprets it in the context of energy system modelling. Section 3 explains the 

level of integration addressed within the three main parts of this thesis. Section 4 presents a 

categorisation of energy modelling approaches. Section 5 provides background information on 

modelling tools frequently referred to in this thesis before Section 6 concludes this introduction. 

Further detail regarding some of the modelling categories is provided in Annex A. 

1 The Need for Energy Systems Analysis 

Energy is deeply integrated into the fabric of our economies and everyday lives. 
We rely on energy to power our industries, meet our transportation needs, 
regulate the temperature of our buildings, and ensure the operation of our 
appliances. Still, close to 1.3 billion people lack access to electricity, and 2.6 
billion people do not have clean cooking facilities at their disposal [1]. Without 
affordable access to modern forms of energy, their development will continue to 
be significantly hampered. Further, poverty, which is often associated with a 
lack of access to energy services, generally increases a population’s vulnerability 
to the adverse effects of climate change [2]. These adverse effects are likely to 
increase, since global average temperatures are expected to rise by 2.8 °C to 
4.5 °C if no countermeasures are taken [3]. The energy system contributes with 
over two thirds of the total global greenhouse gas (GHG) emissions. 
Accelerating access to energy while securing the current and future supply of 
climate-friendly energy are therefore key policy goals to ensure development and 
mitigate climate change. 
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1.1 Selected Complexities 

The means to achieve these goals in a balanced manner are not trivial. 
According to the Global Energy Assessment [2], the world’s future energy use 
over the next decades to 2050 will exceed all recorded consumption in history if 
current trends prevail. A major transformation of our energy systems is required 
to ensure a sustainable supply of energy. Many complex and diverse issues need 
to be addressed when trying to assess the extent of this transformation, inter 

alia2:  

 Economy: Economic development and population growth rates are key 
drivers for energy system advances. Estimating how our economies 
evolve is central to assessing future energy demand [1]. Economic 
considerations are also closely related to decisions on how to meet 
demand. For example, capital-intensive investments in technologies with 
long payback periods are more likely to occur in economies with access 
to an adequate choice of financial instruments [4]. Further, interrelations 
between various sectors of an economy may require consideration. The 
scale and types of investments in the energy system will for example 
affect the employment situation across the economy [5], and job creation 
may be an important argument when designing policies to steer such 
investments [6].  

 Resources: Once the demand for energy is estimated, the analysis of its 
supply should be matched with the available resources. This requires 
assessments of locally and internationally available reserves and resource 
potentials, including cost estimates for their exploitation. The final choice 
of the resources used further depends on environmental, social and 
economic considerations. The market price of resources has a significant 
influence on related technology investments and vice versa. For example, 
the U.S. shale gas revolution led to lower gas prices and replacements of 

                                                      
2  In this thesis, political, market and environmental issues were considered by aligning some of 

the case studies closely with available energy strategies and country development plans. 
Similarly, economic development and associated energy demand growth were either aligned 
with government projections or compared with previous modelling efforts. Resource 
availabilities, technological developments and related costs were taken from the literature, 
coordinated with national research institutes and derived from own modelling approaches. 
Assumptions regarding the consumer acceptance of demand-side integration are mentioned in 
Section 2.4 of Part A. Further assumptions are discussed in detail when presenting the model 
applications in Part A, B and C of this thesis. 
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coal-fired with gas-fired power plants [3]. Apart from energy resources, 
links to other resource systems such as land-use and water require 
consideration to ensure an overall efficient resource management.  

 Technology: A range of alternative technologies exist to exploit these 
resources and meet demand for energy services. Technological 
developments may significantly influence the economic viability of 
resource extractions. For example, improvements in hydraulic fracturing 
were one of the triggers for the U.S. shale gas boom [7]. End-use 
technologies may further strongly influence the shape of daily demand 
profiles. For example, shifting from compression to adsorption cooling 
fuelled by a district heating and cooling system may reduce daily 
variations in electricity demand [8]. Advancements in so-called ‘Smart 
Grids’ may further enable a better integration of end-use technologies. 
They might allow utilities to deliver energy services such as heating or 
cooling rather than merely electricity. Utilities may therefore profit from 
the increased flexibility in when to meet these service demands [9]. 
Further, many future technologies like algae biofuels or carbon capture 
and storage are on the horizon, sometimes with limited information 
about their future performance characteristics and potential cost 
implications. 

 Environment: The main driver for investments in clean energy 
technologies may be climate policies. While many uncertainties are 
involved, it is estimated that additional investments of 16 trillion USD are 
required to meet the global climate change target of 2.0 °C [1]3. Further, 
adaptation measures like desalination and increased pumping for 
agricultural irrigation may affect energy demand, and increased water 
diversions from reservoirs may decrease the hydropower storage 
potential. In addition to climate change related impacts, ambitions to curb 
negative local environmental implications from energy systems may also 
strongly affect future technology choices.  

                                                      
3  Climate change mitigation may trigger considerable co-benefits with regard to energy 

sustainability, e.g., by increasing energy security and environmental impact [10]. A 
prioritisation of climate change as the sole objective of energy planning should however be 
avoided, as it may lead to deficiencies in achieving other socio-political and economic 
targets [11]. 
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 Public Acceptance & Consumer Choices: Economic, technical and 
environmental attributes are not the only criteria for technology 
investments. For example, consumers may not choose to invest in 
economically profitable energy efficiency measures due to various 
barriers, such as high upfront costs combined with lack of access to 
finance. Further examples of barriers include lack of information and an 
unbalanced distribution of costs and benefits between stakeholders [12]. 
Public acceptance is also a key factor to consider. For example, limited 
experience exists regarding consumer acceptance of the closer demand-
side integration that Smart Grids are expected to provide. What is 
acceptable may further differ significantly from one country to another. 
For example, Sweden had two municipalities competing for a final 
repository for spent nuclear fuel [13]. Such a situation is unthinkable in 
Germany, which is known for its strong anti-nuclear movement that 
ultimately facilitated a nuclear phase out until 2022 [14,15].  

 Geopolitics, Policies & Markets: Foreign relations and associated 
energy security considerations may strongly affect a country’s or region’s 
acceptable level of energy dependence. For example, pipeline projects to 
connect the European Union (EU) to gas reserves in Azerbaijan gained in 
attractiveness in response to the conflict over gas exports from Russia to 
Europe via the Ukraine in 2009 [16,17]. Politics may further strongly 
influence the design of energy markets and could cause significant 
distortions. For example, to ensure affordable and secure supplies, global 
fossil fuel subsidies are currently roughly six times higher than those for 
renewable energy [1]. Through shaping the design of emission markets 
such as the EU Emissions Trading System (ETS), policies influence the 
emission price and thus the associated investments in clean energy 
technologies. The parallel implementation of national renewable energy 
policies may however confine the effectiveness of such trading schemes. 
For example, the German Renewable Energy Sources Act (EEG) and its 
feed-in tariffs have been criticised for their overlap with the EU 
ETS [18]. Further, energy policies may accelerate access to clean and 
affordable energy, for example, through clear targets and dedicated funds 
and finance mechanisms which help consumers afford the high upfront 
costs when switching to cleaner fuels [2]. 

 

Many hypothetical future energy system designs might form a functional basis 
of our future economies. However, identifying the most effective design 
becomes a challenge as the complexities involved are also afflicted with 
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uncertainties. Yet, they require consideration to ensure that the information that 
underpins future energy investment strategies and policies paves the way 
towards economically efficient, environmentally friendly and socially acceptable 
energy systems. 

 

1.2 Models as Tools to Inform Energy Strategies 

Computer aided energy modelling as further described in Section 4 of this 
introduction has been used since the mid-1970s to assess future energy system 
designs and pathways [19–22]. Models commonly serve as test-beds to 
investigate system configurations and developments which would be 
impractical, too expensive or impossible to test in ‘real-world’ conditions [23]. 
Modelling may be described as an art rather than a science and results of long-
term energy models are not predictive. Yet, if designed correctly and applied 
with due diligence, they may represent economically, thermodynamically and 
environmentally consistent energy system scenarios.  

Scenarios may however be functionally predictive in the short-term, e.g., when a 
utility applies a model to optimise its day-ahead dispatch. Scenarios applied for 
long-term energy system analysis are more likely to be exploratory. For example, 
they may be set up to test out hypotheses regarding technological development 
or operational strategies (refer to Section 4.2.4 of Part B), to test the impact of 
various policy instruments like a transport fuel tax [24], or to investigate the 
energy system’s resilience to certain shocks, like interruptions of the gas 
supply [25]. In addition to such exploratory elements, long-term models are 
often set up to assess how best to achieve certain strategic design criteria and 
targets. Such criteria and targets may include maintaining the availability of 
adequate supply infrastructure while fulfilling greenhouse gas emission reduction 
targets [26]. 

As we are attempting to represent an unknown future, models are characterised 
by a suite of simplifications and assumptions. It is good practice to reveal at 
least those which may significantly influence results. This is required to promote 
adequate result interpretation, especially by those not involved in the modelling 
process.  

For example, assumptions about the diffusion of energy efficient technologies 
will strongly influence energy demand. This, in turn, has implications on 
investments in energy conversion technologies, resource use and associated 
emissions. Further, the model’s boundaries, i.e., which aspects are included or 
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excluded, may significantly influence results. For example, a regional model may 
calculate greenhouse gas emission reductions in response to the introduction of 
a carbon tax. Yet, if the model boundaries are not adequately chosen, it may not 
be possible to assess the risk of ‘carbon leakage’, i.e., the compensation of some 
of the reductions by increases in another region. This may for example be due 
to the resulting increases of fossil fuel costs, which may cause polluting 
industries to shift some of their production to other regions with less stringent 
regulatory frameworks. 

Given their different simplifications and assumptions, variations in the results of 
long-term models may be significant. This is demonstrated by comparative 
studies by Hake et al. [27] for Germany and by Krey and Clarke [28] for global 
energy-economic and integrated assessment models. Scenario comparisons, 
sensitivity analyses and probabilistic assessments allow taking the uncertainties 
associated with some of the assumptions into account. This might help to 
highlight those strategies which perform well under a wide range of potential 
future developments. For example, this may serve to assess the flexibility and 
robustness of energy systems, i.e., the extent to which they facilitate future 
adaptations and perform well under various potential developments [29]. 

Due to the numerous abstractions required, communicating modelling results is 
challenging, but a key requirement to ensure their usefulness for policy 
making [30]. Communication needs to vary depending on the audience. While 
policy makers might be satisfied with a concise summary, a third party wanting 
to challenge the modelling results requires much more detail. Transparency is 
key in helping ensure the credibility of modelling processes. If not accounted 
for, there may well be no way for an external audience to reliably identify the 
main drivers of the results [31]. To avoid potential misinterpretations, all 
modelling assumptions and code applied in this thesis were made public and are 
presented as part of this thesis. 
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2 Integration 

Integration may be defined as “the act of combining or adding parts to make a 
unified whole” [32]. This implies that considering integration is increasingly 
important the more holistic an assessment should be. The nature of the parts 
which need to be combined or added to make a unified whole depends largely 
on the context. Jakeman and Letcher [33] and Kelly (Letcher) et al. [34] provide 
a categorisation in the context of integrated assessments. According to them, 
integration can be considered between:  

 Social, economic and environmental issues, 

 Stakeholders and knowledge, 

 Disciplines of natural and human science, 

 Processes or models, and 

 Temporal and spatial scales of consideration. 
 

None of these categories is necessarily mutually exclusive. Considering 
integration within one category might in fact not be possible without 
considering integration within another.  

Models are applied to gain insights into parts of such ‘a unified whole’. 
Ultimately, this unified whole may include our economies and their 
interrelations with the wider environment. Assessed parts thereof may be our 
power systems, our energy systems, or our resource systems in general. The 
appropriate level of integration within and between these aspects varies with the 
investigation at hand. 

Based on the case studies presented in Section 5 of Part B and in Part C of this 
thesis, it seems evident that too weak integration may result in incomplete 
analysis and potentially misleading insights. Derived conclusions may therefore 
be misleading and might not allow reaching a desired future state most 
effectively – or at all. Yet increased integration may not be a panacea. Too much 
integration might give a false sense of accuracy. Further it will result in 
increasingly complex models. Such models are likely to be significantly more 
time-consuming to develop, might challenge the available computational power, 
may be inflexible to adjust to changing assumptions, and might be more difficult 
to interpret.  

Deciding on the appropriate level of integration requires striking a balance 
between simple and flexible versus more accurate and holistic approaches. 
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3 Objectives, Structure and Contribution of this Thesis 

3.1 Objective 

In their current state, long-term energy models are broadly applied from sub-
national to global planning. The model applications may consider various 
aspects of integration as defined in Section 2 of this introduction. For example, 
they may consider the implications of policies, may account for emissions, and 
calculate the economic performance of technologies. Refer to Sections 4 and 5 
of this introduction for a discussion of different model families and tools. 

Building on publically available models, the overall objective of this thesis is to 
enhance the level of integration considered in long-term bottom-up energy 
system models beyond what is typically considered within a single off-the-shelf 
tool. Levels of integration were added in a quasi step-wise approach as outlined 
in Fig. 1. This thesis further aims to demonstrate the implications of the 
increases in integration on modelling results and conclusions. 

 
Fig. 1: Elements of integration as considered in this thesis 

 

3.2 Academic Contributions 

Part A of this thesis focuses on the increased integration between electricity 
supply and demand that might be facilitated by Smart Grids. Various attributes 
related to Smart Grids have been modelled in depth [35–38]. Yet, a 
comprehensive and openly available modelling framework to assess Smart Grid 
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solutions at an energy system level is neither easily found [39], nor typically 
applied to assess electrification options in developing regions. Lean4, transparent 
and open tools like OSeMOSYS may be easily accessible to test out and 
communicate new hypotheses and modelling approaches related to Smart Grids. 

Accordingly, OSeMOSYS was extended in Part A to be able to assess the 
potential energy system implications of selected elements which may form part 
of Smart Grids. More specifically, these elements include variable electricity 
generation, a prioritisation of demand types, flexible demands, and storage 
devices. The model extensions are explained comprehensively at various levels 
of detail, from a conceptual overview to the code implementation. Smart Grids 
may offer opportunities for developing countries to accelerate access to 
electricity services [40]. This might include elements which are at the focus of 
attention in developed countries as well as options which specifically address the 
needs of developing countries. A selection of such elements and a qualitative 
preliminary assessment of their potential are further presented in Part A. 

Part B discusses the need for increased integration between temporal scales. 
Due to their long-term outlook and coarse temporal resolution, high-level long-
term energy system planning tools usually do not focus on the time scales 
associated with short-term variability of supply and demand [41]. They may 
therefore misrepresent the investments required to balance this variability [42]. 
A separate suite of electricity market simulation models and operational power 
system tools is specifically designed and has successfully been applied to 
investigate short-term variability [36,43–45]. However, these tools commonly 
exclude non-electricity sectors like heat or transport, or may focus on 
operational aspects of power systems rather than capacity investments. To 
address this gap, long-term energy system are sometimes interlinked with power 
system tools [29,45–50]. 

Part B demonstrates an approach to capture the key implications of short-term 
operating requirements within a single long-term energy system model. This 
enables insights regarding optimised future capacity investments while ensuring 
the system’s flexibility to balance variability. Specifically, an approach to 
consider the contribution of wind power installations to the system adequacy is 
implemented in OSeMOSYS [51]. Further, this tool was extended to ensure the 

                                                      
4  With a concise code adjusted to the investigation at hand. While such a ‘lean’ tool may have 

less functionality compared to traditional long-term models, it comes without any organically 
grown code legacy. 
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power system’s capability to balance short-term upward and downward power 
variations across two timeframes. This capability is modelled based on user-
defined demands for so-called operating reserve services, and technology 
specific minimum stable operation levels, operating reserve contributions and 
cycling characteristics. The model enhancements were then tested in an 
application and benchmarked against a more detailed short-term electricity 
system model of Ireland. 

Part C focuses on integration between energy and other resource systems. 
Climate, energy, land-use and water systems are highly linked. Efficient 
management of these resources requires a consideration of such links to avoid 
an uncoordinated resource use and potentially conflicting resource policies [52]. 
Government structures and the associated division of responsibilities are not 
often established with the ability to capture these linkages [53]. Historically, 
related decision-making is often based on fragmented assessments of resource 
systems and their interdependencies are rarely taken into account. Yet, models 
would offer useful tools to assess integration between resource systems, as 
demonstrated extensively in the literature [54–64]. 

Part C demonstrates the importance of considering resource linkages by 
assessing the added value of this form of increased integration. This was 
achieved by comparing results from an energy model considering climate change 
assumptions with those of an interlinked land-use, energy and water model. 
Mauritius served as a case study for the application of this modelling approach. 
The broad co-authorship of the underlying papers helped integrate a relatively 
wide set of perspectives. The author of this thesis contributed to this effort with 
the configuration of the energy model and the interpretation of its results. In 
response to this broader effort, the Government of Mauritius has announced 
the appointment of a so-called ‘high-level CLEWS panel’. This was set up to 
ensure coherent policies between Climate, Land-use, Energy and Water 
strategies (CLEWS) [65]. 

The term integration is extensive and may be interpreted differently depending 
on the context. This is reflected in the various existing tools and approaches 
applied to consider integrated planning [54,66,67]. Only a subset of the issues 
related to integration could be taken into account in this work. Refer to 
Section 2 of the concluding chapter of this thesis for selected examples of how 
this work could be extended. 
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4 Modelling Families 

Numerous specialised models have been developed to inform the design of 
energy strategies, focusing on issues such as policies, investments and 
operational aspects. This section presents some families of such modelling tools 
as background information to the analysis that follows. The methodology for 
considering aspects of integration with these tools is described in detail in 
Section 2.2 of Part A, Section 2 of Part B and Section 2 of Part C of this thesis. 

Note that the presented modelling families are exemplary and by no means 
definitive or exhaustive. Various potential categorisations exist, each of which 
may be interpreted differently depending on the context and the author’s 
perspective (refer to Section 4.1 of this introduction). 

One way to categorise energy models is by their scope. Some focus on the entire 
energy system, others single out the power system. Some are specifically applied 
to focus on short-term dispatch and operational issues, other to assess long-
term investment decisions. Some models cover only supply or demand, others 
both. 

Energy models can also be grouped in aggregated top-down economic or 
disaggregated bottom-up engineering models [68]. Top-down models draw on 
macroeconomic relationships to derive and inform insights. They can be 
especially useful to assess the effects of cross-sectoral policies like carbon 
taxes or fuel subsidies [69]. A typical characterisation of top-down models 
includes [70]: 

 Econometric models 

 Input-output models 

 Computational general equilibrium models 
 

Econometric models draw on statistical analysis of historical time-series as a 
basis for future projections [68].  This type of models may base their projections 
on variables such as gross domestic product (GDP), population, or energy 
prices [71]. Input-output models consider the interrelations within an economy 
by capturing the monetary or commodity flows between various sectors. They 
usually provide a static snapshot of an economy. Computational general 
equilibrium (CGE) tools are dynamic models which ensure that an economy 
wide general equilibrium between sectoral demands and supplies occurs. Top-
down models were not applied or drawn on in this thesis due to their lack of 
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technological detail. Further explanations on input-output and CGE models are 
provided in Annex A.  

The main focus of this thesis is on bottom-up models, as they enable a more 
detailed representation of technologies within the energy system. They are 
therefore particularly valuable for investigating issues such as the role of 
individual technologies or energy sector specific policies such as technology or 
emission targets. Bottom-up models are characterised by their reliance on 
thermodynamic relations between the production, conversion and use of energy 
carriers. In general, they do not take cross-sectoral interdependencies into 
account. A typical characterisation of bottom-up models applied and extended 
in this thesis includes [72]: 

 Accounting frameworks 

 Simulation models 

 Optimisation models 
 

Accounting frameworks calculate physical flows of energy carriers within the 
entire energy system. They are entirely driven by exogenous assumptions about 
the interrelations within the energy system. Simulation models simulate the 
energy system based on specified rules for behaviour, operation and investment. 
Optimisation models calculate system investments and operations by 
maximising or minimising an objective function subject to a set of constraints. 
They may calculate a partial economic equilibrium if they include sufficient 
detail to derive dynamic balances between the supply and demand of 
commodities [70,73]. The overall optimisation across all technologies of the 
energy system differentiates them from simulation models. Further differences 
between these bottom-up models are delineated further in the chapters 4.2 – 4.4 
of this introduction. 

Bottom up and top down models have different strengths and weaknesses [70], 
due to which they may be strongly complementary. The consideration of 
economic feedback loops in top-down models may enable an understanding of 
the impacts of energy policies on the broader economies of a nation, a region or 
the world. This enables insights regarding macroeconomic effects such as 
structural changes, overall economic activity or employment. The rather 
generalised information derived from top-down models may be complemented 
by details derived from bottom-up models. These models are highly data 
dependent and rely on many assumptions. Yet, the aggregated information from 
such models may help inform top-down analysis with respect to capital flows, 
non-monetary barriers and intra-sectoral structural change. 
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Even within bottom-up modelling tools such complementarity is strong, for 
example between energy and power system models. A simplified illustration of 
this complementarity is suggested in Fig. 2. The investment decisions and policy 
recommendations derived from a long-term bottom-up model may serve as 
input for a market simulation model. The market model may assess a shorter 
time period with a much higher temporal resolution to calculate electricity prices 
and reliability indicators. Derived extreme load and demand combinations may 
serve as input for so-called ‘electric power system models’ with a strong 
electrical engineering focus.  

 

 

Fig. 2: How energy system models may inform power systems analysis 

The focus of this thesis is on long-term bottom-up energy system analysis and to a  
limited extent power market analysis. The figure is based on discussions with Jørgensen P.  

from the Danish Transmission System Operator (TSO) (personal communication,  
10 October 2013) and represents a general tendency, rather than a strict categorisation. 

 

Models focusing on AC or DC load flow analysis may serve to investigate 
various grid configurations. Such models may cover timeframes of hours or 
years. Based on the derived transmission capacities, steady-state, transient or 
dynamic stability analyses may serve to assess disturbances in power systems. 
Stability analyses usually cover timeframes of up to several minutes. They may 
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provide important insights on the design of the components of the transmission 
and distribution system. Andersson [74] provides some examples of approaches 
to model electric power systems. 

While energy system models may implicitly inform stability analyses, in general 
the opposite is not necessarily true, i.e., the overall future mix of generation and 
demand-side technologies as calculated by energy system models might not be 
affected by the results of stability analyses. As the focus of this thesis is on 
analysing the composition of future energy systems, electric power system 
models are not directly considered as an integral part. However, in some cases 
they may suggest limits to the future penetration of individual technologies 
within power systems. Such models may therefore inform the set-up of long-
term energy system models. For example, results from such tools were used to 
limit the maximum instantaneous penetration of wind power in a case study on 
Ireland (refer to Section 5.6.1 of Part B). 

 

4.1 The Value of Such a Categorisation 

Allocating energy modelling tools to one of these families is particularly difficult 
as many flexible hybrid tools evolved which combine several elements of 
different modelling families. For example, the model LEAP can combine 
elements of an accounting framework with those of an optimisation or 
simulation model based on macroeconomic assumptions [75]. Refer to 
Section 5.4 of this introduction for further details on LEAP.  

Further, while a production simulation model does not need to be an 
optimisation model, all optimisation models rely in one way or another on an 
underlying production simulation model. Optimisation models may as well be 
combined with a simulation approach, for example, by modelling different 
technology pathways in different model runs [76]. This approach may be applied 
to investigate the value of certain technology mixes which the model initially did 
not consider as cost-optimal. As another example for hybrid approaches, the 
results of econometric analyses may serve as inputs to other top-down as well as 
bottom-up models [77]. 

Also the terms bottom-up and top-down models may be used differently 
depending on the context. For example, from an engineering perspective, even 
models considering individual power plants may be categorised as top-down if 
plants are treated as black-boxes [28]. Further, while simulation models are 
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grouped as bottom-up models in this thesis, the term may as well be used to 
refer to top-down macroeconomic models based on input-output tables [78]. 

A categorisation of modelling tools is further complicated by the various names 
which are often used to describe one and the same model. For example, when 
focussing on the entire energy or power system, certain linear optimisation 
models may be referred to as capacity expansion or partial-equilibrium models. 
While not necessarily interchangeable, these terms are not mutually exclusive. 
Yet, only one out of several possible terms may be presented when describing a 
model.  

As many modelling tools exist, the categorisations of bottom-up models detailed 
in the following chapters are useful for communicating the main underlying 
principles between analysts. It should be noted that the tools within any one of 
these categories can be highly divergent. For example, a report by the 
Intergovernmental Panel on Climate Change (IPCC) notes that differences in 
the input assumptions applied in models within one modelling family may be 
more significant than the structural differences between the modelling 
families [79]. 

 

4.2 Accounting Frameworks 

Accounting frameworks capture the physical flows of various energy carriers 
and ensure that energy and thermodynamic balances are obeyed. They may take 
the form of spreadsheet based tools and often serve as a depository for large 
databases and for results processing [38]. Models which are generally referred to 
as accounting frameworks include MAED [80] or elements of LEAP (refer to 
Section 5.4 of this introduction). 

Accounting frameworks are based on verifiable, exogenously defined 
interrelations between components of the energy system. They are frequently 
applied to assess the differences between various scenarios. All elements and 
interrelations considered within an accounting framework are defined by the 
analyst. The resulting simplicity of the accounting frameworks is a main 
advantage and enables transparency regarding the applied assumptions [77]. Yet, 
ensuring the consistency of the corresponding input data and assumptions with 
the applied scenarios requires a thorough understanding of the energy system. 
All other bottom-up energy system models build on elements of accounting 
frameworks as a basis for their analysis. 

 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

16 

4.3 Simulation Models 

4.3.1 Energy System Simulation Models 

A simulation model simulates the energy system and its operation [81]. For 
example, simple rules for the dispatch of technologies or future investments 
may be considered. However, simulation models combine a variety of different 
modelling approaches [72]. They may consider decentralised, microeconomic 
decision-making of the individual players in energy markets [38], drawing on 
game theory and agent-based modelling to simulate adaptive systems [82,83]. 
They may simulate consumer and producer behaviour in response to drivers 
such as income, energy security, public policies and endogenous energy prices. 
All players may pursue and optimise their own goals individually. The overall 
outcome at system level may therefore diverge from an overall energy or 
electricity sector-wide optimum. 

EnergyPLAN constitutes one example of a simulation model [84]. It enables an 
exogenous specification of electricity market prices [84]. Another well-known 
example is the World Energy Model (WEM), which informs the International 
Energy Agency’s (IEA) World Energy Outlook [85]. It is driven by 
econometrically derived assumptions regarding sectoral energy demands. These 
are based on macroeconomic estimations regarding economic growth, 
demographics, fossil fuel prices and technological developments. Due to its 
combination of macroeconomic approaches with the simulation of explicit 
technology choices, the WEM might be classified as a hybrid model [70]. 
 

4.3.2 Production Simulation Models 

Production simulation models may be interpreted as a subset of simulation 
models. They are specifically designed to calculate the power systems’ dispatch 
and costs of generating electricity [86]. They are also frequently applied to assess 
related power system characteristics such as its reliability and emissions. 
Depending on the focus of their application, production simulation models may 
be referred to as dispatch models, unit-commitment models, short-term 
planning models, or operational power system models. Solving methods range 
from sorting units based on a predefined merit order to advanced approaches 
like genetic algorithms, dynamic programming and linear and mixed-integer 
programming [87].  



Introduction | Modelling Families 

17 

Production simulation models may be based on time slices, load distribution or 
load duration curves. Time slices combine representative times within a year 
(refer to Section 2.2 in Part A for further explanations). A load-duration curve 
specifies the number of hours a certain load is exceeded [88].  

Commonly, production simulation models analyse a predefined power system 
configuration, as opposed to the expansion of capacities. Naturally, production 
simulation models will therefore focus on shorter timeframes and model the 
dispatch in more detail than capacity expansion models. Due to these 
characteristics they might also be applied to check the accuracy of results of 
capacity expansion models, as explained in Section 1.4.3 of Part B of this thesis 
and further demonstrated in Section 5.2  of Part B.  

One way to classify production simulation models is by the way they consider 
power plant availabilities. 
 

4.3.2.1 Derating Method 

This method is the simplest approach to consider power plant availabilities. 
Forced outages are implicitly taken into account by defining average available 
power plant capacities. These derated capacities are applied throughout the 
dispatch period to deterministically5 calculate the generation mix. Due to its 
simplicity and fast calculation times, the derating method is commonly 
integrated into long-term energy system simulation and optimisation models 
(refer to Sections 4.3.1 and 4.4 of this introduction). 

The disadvantage of the derating method is that the importance of fast ramping 
power plants for compensating generation outages may be significantly 
underestimated [86]. Further, system indices such as the Loss of Load 
Probability (LOLP) may not be assessed. The LOLP is defined as “the 
probability that at least one consumer is involuntarily disconnected due to 
capacity limitations in the system” [89]. These short-comings are addressed by 
the more comprehensive probabilistic production cost and Monte Carlo 
simulations. 
 

  

                                                      
5  I.e., no randomness occurs in the sense that the same set of input parameters will always 

calculate the same output values. 
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4.3.2.2 Probabilistic Production Cost Simulation 

Probabilistic production cost simulations draw on probability distributions of, 
for example, forced power plant outages, demand and wind power availabilities. 
They are frequently applied to deterministically derive the expected operating 
costs and system reliability indices. Probabilistic production cost simulations 
usually do not require significant computational power and solve rather fast and 
accurately [90]. However, load and outages are assumed to be statistically 
independent, which may not be the case in reality. For example, some 
correlation between wind availabilities and load may occur [91]. Further, only a 
single region may be modelled as the transmission grid is basically not 
considered [89].  
 

4.3.2.3 Monte Carlo Simulation 

Monte Carlo simulations use random samples to analyse a mathematical 
problem [92]. Applied to production simulation models, these samples may 
constitute the outages of power plants or transmission lines throughout a year. 
Due to the randomness introduced, different model runs will results in different 
solutions. However, programs may enable the user to define a ‘random number 
seed’ to reproduce the exact same sequence of random numbers [93]. While a 
single solution may often be preferable, the results of Monte Carlo simulations 
may in many cases be closer to real-world situations. Commonly, multiple runs 
with different sequences of random numbers are performed to assess the 
properties of a system. Variance reduction techniques may be applied to 
decrease the number of iterations required for achieving a certain precision [89]. 

 

4.4 Optimisation Models 

Optimisation models endogenously calculate energy system attributes such as, 
amongst others, the required technology investments and dispatch. They are 
driven by an objective function subject to various physical, technical, 
environmental, economic and policy constraints. Frequently, they may be 
applied to minimise costs or to maximise total welfare, i.e., the sum of consumer 
and producer surplus. If demand for electricity is inelastic, i.e., price 
independent, these two formulations will derive the same results [94]. The 
sector-wide optimisation constitutes the main difference to simulation models. 
The objective function is commonly optimised using linear or mixed integer 
programming approaches. Optimisation models may however include aspects of 
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other bottom-up modelling tools. For example, they may use some of the 
techniques described in Section 4.3.2 of this introduction to simulate the power 
sector. 

Apart from minimising costs, a model might also optimise other objective 
functions, for example, to minimise environmental impact or to maximise access 
to electricity at a given cost. Multiple objectives may be considered. This might 
be achieved with an explicit multi-attribute objective function, where any form 
of weighting is assigned to each attribute [29]. Alternatively, this may be 
implicitly considered by associating costs to system attributes. For example, 
environmental objectives may be considered through emission taxes. Non-cost 
objectives may be implemented as a constraint, e.g., as a cap on emissions. 

If applied to the whole energy or power sector and when considering demand 
levels which vary as a function of cost, optimisation models may be categorised 
as partial-equilibrium models. The term ‘partial-equilibrium’ refers to the 
calculation of an economic equilibrium of supply and demand within these 
sectors, but without considering any interactions with the broader economy. In 
general, applying an optimisation model implicitly represents a market structure 
with the following characteristics [89]:  

 Perfect competition: All players in a market compete against each 
other and supply their electricity at their marginal production cost, 
i.e., they are assumed to be price takers. 

 Perfect information: All decisions by the market players are based 
on perfect information about parameters influencing their 
decisions. This includes perfect foresight into the future. 

 Economically rational consumer behaviour: Technologies with 
the cheapest life-cycle costs are invested in [38]. In reality, the lack 
of investments in energy efficient technologies demonstrates that 
consumer choices are not merely based on economic decision 
criteria. 

 

These characteristics results in an energy market representation where no 
distorting effects like misuse of market power occur. Optimisation models 
describe an ideal state which may guide the development of policies and 
regulations aiming to bring real-world energy systems closer to such an ideal 
state. While ideal, an array of constraints may be applied to help derive insights 
which better reflect real-world conditions. One of many such conditions is the 
market actors’ lack of perfect foresight. In reality, certainty of investment does 
not exist and risk needs to be priced in. A private investor may therefore prefer 
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less profitable technologies with a shorter pay-back period over more profitable 
long-term investments which are afflicted with a higher risk. A simple way to 
model this behaviour is by defining technology specific discount rates to be 
higher than the expected cost of capital. Aspects of limited foresight may as well 
be considered in optimisation models by setting the decision horizon to be 
shorter than the full modelling timeframe [95]. Sequential decision making may 
then be implemented by splitting a single optimisation model into sub-problems 
for each decision horizon. 

For each set of assumptions, optimisation models typically calculate one single 
solution with regard to future investments in energy system technologies and 
their operation. Sometimes it may therefore be useful to investigate the near-
optimal solution space to identify maximally different system configurations 
which still perform well with regard to the modelling objectives. This approach 
is further explained by DeCarolis and by Trutnevyte [96,97]. 

Further, uncertainty may be addressed by probabilistic analysis drawing on 
stochastic programming techniques [29]. For example, Monte Carlo simulations 
(refer to Section 4.3.2.3 of this introduction) may be applied to assess forced 
outages of power plants. Further, probabilities may be assigned to different 
future states of the world. For example, such states could represent the 
uncertainties regarding the scale of future emission reduction targets. An 
optimisation taking these probabilities into account may then derive a flexible 
energy system configuration which performs best considering this various 
potential future states [98]. As in all other modelling families, uncertainties can 
as well be addressed through scenario and sensitivity analysis. 

Examples of optimisation models include OSeMOSYS, MARKAL, TIMES and 
MESSAGE. Further, while not typically listed in this category, LEAP enables an 
optimisation which is limited to the electricity system. All of these tools are 
introduced in more detail in the following section. 
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5 Modelling Tools Used or Extensively Drawn from in 
this Work 

This thesis mainly draws on bottom-up models, as they enable detailed 
assessments of the future role of individual technologies. Numerous tools exist, 
from specialised proprietary models developed by institutes for their own use to 
wide-spread tools with a vast field of applications. Depending on the institutions 
developing the models, they may be open source, commercially available, 
proprietary, or not shared at all. In this section, selected tools which are 
frequently referred to in this thesis are described in more detail. The reader is 
referred to the literature for comparisons of numerous additional tools 
[22,36,38,81,99,100]. 

 

5.1 OSeMOSYS 

OSeMOSYS is an open source energy system optimisation model with a 
medium- to long-term time horizon. It is repeatedly enhanced in this thesis to 
test out new modelling approaches, as demonstrated in Section 2 of Part A and 
in Part B. As indicated in these sections, various ‘core versions’ of OSeMOSYS 
were used as starting points for these modifications. The applied core versions 
always constituted the latest publicly available versions at that time. Elements of 
the enhancements presented in this thesis were integrated into later core 
versions of OSeMOSYS, which then served as new starting points for 
succeeding modifications. As such, this thesis also documents important 
elements of the progress of OSeMOSYS over the period 2011 – 2013. 

OSeMOSYS was used for these enhancements as it conveniently enables 
modifications due to its rather short, well documented and clearly structured 
code. Functional ‘blocks’ as illustrated in Fig. 3 combine sets of equations, for 
example, to model storage. Multiple levels of abstraction are used to describe 
these blocks, ranging from a (1) conceptual description to the (2) mathematical, 
algebraic formulations, the (3) actual code implementation and its (4) application 
[101].  

OSeMOSYS is designed as a tool to inform the development of local, national 
and multi-regional energy strategies. It covers all or individual energy sectors, 
including heat, electricity and transport. It is a deterministic linear optimisation 
model and minimises the total discounted costs. Mixed integer programming 
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may be applied for certain functions, like the optimisation of discrete power 
plant capacity expansions.  
 

 
Fig. 3: OSeMOSYS ‘blocks’ and levels of abstraction; 

Adapted from Howells et al. [101] 

 

The model is driven by exogenously defined demands for energy services. These 
can be met through a range of technologies which draw on a set of resources, 
defined by their potentials and costs. On top of this, policy scenarios may 
impose certain technical constraints, economic realities or environmental 
targets. As in most long-term optimisation models, OSeMOSYS in its standard 
configuration assumes perfect foresight and perfect competition on energy 
markets. 

The model is characterised by a wide and flexible technology definition. A 
technology comprises any fuel use and conversion, from resource extraction and 
processing to generation, transmission and distribution, and appliances. It could 
therefore refer to, for example, an oil refinery, a hydropower plant or a heating 
system. A technology can be defined to consume and produce any combination 
of fuels. Each technology is characterised by numerous economic, technical and 
environmental parameters, for example, investment and operating costs, 
efficiencies, availabilities, and emission profiles. Outages are usually considered 
by derating capacities as described in Section 4.3.2.1 of this introduction.  

The OSeMOSYS model code is written in GNU MathProg, a high level 
mathematical programming language [102]. The open source solver GLPK may 
be used for the mathematical optimisation of the model [103,104]. Both the 
OSeMOSYS model and the GLPK solver do not require any upfront financial 
expenditure. GLPK can as well produce an MPS file for use with a more 
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powerful solver6. Diverging from commonly applied programming conventions, 
rather long parameter and variable names are used in OSeMOSYS. This ensures 
that formulas can be read in a rather self-explanatory manner and simplifies the 
familiarisation with the OSeMOSYS code for those new to this modelling tool. 
For consistency, all enhancements presented in this thesis comply with this 
naming convention. 

In its extended version, OSeMOSYS comprises just above 400 lines code. In 
2013, shortened versions of OSeMOSYS have been released. The merging of 
equations significantly improved the performance without affecting the model’s 
data requirements or results. However, it reduced the readability of the code. 
Therefore, only the extended versions were applied in this thesis. 

OSeMOSYS is developed in collaboration with a range of institutions, including 
the International Atomic Energy Agency (IAEA), the United Nations Industrial 
Development Organisation (UNIDO), KTH Royal Institute of Technology, 
Stanford University, University College London (UCL), University of Cape 
Town (UCT), Paul Scherrer Institute (PSI), Stockholm Environment Institute 
(SEI), and North Carolina State University.  

Several user interfaces are currently available or under development. For 
example, OSeMOSYS is well integrated into LEAP (refer to Section 5.4 of this 
introduction), which applies a limited set of OSeMOSYS’ optimisation features 
for power plant capacity expansion planning [105]. An alternative interface is 
currently being developed by Noble-Soft Systems. This ANSWER interface is 
similar to the one used for the frequently applied long-term models TIMES or 
MARKAL (refer to Section 5.2 of this introduction) [106]. As opposed to 
LEAP, ANSWER supports most of the functionality provided by OSeMOSYS 
and thus enables an optimisation across the entire energy system. If the full 
scope of OSeMOSYS is required, or if adjustments are necessary, OSeMOSYS 
can as well be set up as text files. 

While the development of OSeMOSYS initiated in 2008, its first detailed 
description was published by Howells et al. [101] in 2011. Some of the 
expansions presented in Section 2 of Part A of this thesis led to the current core 
version of the code as available at www.osemosys.org.  

                                                      
6  For example, GUROBI offers free academic licenses. 
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5.2 MARKAL & TIMES 

The Integrated MARKAL-EFOM System (TIMES) is an optimisation model 
similar to OSeMOSYS. It is driven by the same overall dynamics and minimises 
the total system costs, but builds on a longer history. 

TIMES is developed by the Energy Technology Systems Analysis Program 
(ETSAP), which is an Implementing Agreement of the IEA [107]. Originally, 
TIMES evolved from the Market Allocation (MARKAL) model, which was 
initiated in the end of the ‘70ies. Both models are still used in parallel and 
frequently referred to as the MARKAL/TIMES family of models [106].  

MARKAL and TIMES are frequently used in international research: according 
to Connolly et al. [81], they are applied in 70 countries by 250 institutions. Over 
350 publications based on these two models are reported over the period 2008 – 
2010 by ETSAP [108]. Several variants of both MARKAL and TIMES exist, for 
example MARKAL-MACRO, which couples MARKAL to a macroeconomic 
model [109]. Another prominent example includes the global TIMES Integrated 
Assessment Model for ETSAP contracting parties (ETSAP-TIAM), which 
covers 15 regions characterised by thousands of energy sector technologies.  

The TIMES code is complex and comprises around 20,000 lines of code. A 
thorough overview of the TIMES model was prepared by Remme [110]. Loulou 
and Labriet [73] compiled a detailed description of TIMES and Loulou [111] 
further published its mathematical formulations. While its code is freely 
available, upfront expenditures are due for acquiring (1) the General Algebraic 
Modeling System (GAMS), (2) a GAMS compatible solver such as MINOS, 
CPLEX, XPRESS, GUROBI, CONOPT and (3) either the ANSWER or the 
VEDA interface. The reader is referred to Börjesson and Ahlgren [112] and 
Fakhri et al. [113] for exemplary applications of MARKAL for assessing policies 
and expansion strategies for biogas and district heating distribution systems. 
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5.3 MESSAGE 

MESSAGE, the Model of Energy Supply Strategy Alternatives and their 
General Environmental Impacts, is a medium- to long-term modelling tool 
designed for energy system planning, policy analysis and scenario development 
[114]. It is an optimisation tool based on a mathematical paradigm comparable 
to the one of OSeMOSYS, MARKAL and TIMES. The model may optimise 
various objectives, including to minimise costs or environmental impact, or to 
maximise self-sufficiency [80]. Several standard solvers like CPLEX or GLPK 
may be chosen for this purpose [115]. Its time horizon is user-defined and 
results are calculated for each time slice and each year or group of years 
respectively. 

While MESSAGE is in general driven by exogenously defined demands for 
energy services, it may be combined with a non-linear macroeconomic top-
down module (MESSAGE-MACRO). This enables the endogenous calculation 
of price dependent energy demands based on the calculated total output of an 
economy. This output is calculated according to constant elasticity of 
substitution (CES) production functions with capital stock, growth rates of total 
labour and energy intensities as input values [116]. Refer to Annex A.2 for 
further information on production functions. 

Several additional variants of MESSAGE exist. For example MESSAGE-Access 
is applied to assess scenarios focusing on accelerated access to electricity and 
clean cooking fuels. It focuses on poor and rural communities and considers 
consumer preferences for fuels and technologies. 

The development of MESSAGE originally started at the International Institute 
for Applied Systems Analysis (IIASA) in 1976. The IAEA joint efforts with 
IIASA by developing a user-interface for MESSAGE and offering supportive 
capacity building for close to 3,000 people. The model is available for free for 
non-commercial use by IAEA Member States and 95 countries have signed a 
user agreement governing their use of MESSAGE [115]. MESSAGE and its 
variants have been used for various international assessments, including work 
for the IPCC, the World Energy Council (WEC) and the Global Energy 
Assessment (GEA) [114].  
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5.4 LEAP 

LEAP, the Long-range Energy Alternatives Planning System, is a widely used 
medium- to long-term modelling tool for integrated resource planning [75]. It is 
applied to assess climate change mitigation strategies and analyse energy policies 
by investigating yearly capacity expansions. The underlying dispatch of 
technologies is calculated for each user-define time slice within a year.  

LEAP is mostly used for comparing various future pathways to reference 
scenarios, from which other diverging scenarios inherit their main assumptions. 
Geographically, applications span across a wide range, from cities to national, 
regional and global models [117]. The model enables a consideration of various 
economic sectors, technologies, costs and emission profiles and comprises the 
entire energy supply chain, from resource extraction to processing, conversion, 
delivery and consumption. LEAP includes a Technology and Environmental 
Database (TED) which lists technology specific costs and performance data 
including emission factors [99]. As in the previously described models, 
technology outages are usually considered by derating capacities.  

While LEAP may calculate energy demands based on top-down macroeconomic 
assumptions, it also facilitates technologically detailed representations of energy 
systems. It may therefore rather be categorised as bottom-up energy model [71]. 
Previously, it has been described as an accounting framework with elements of a 
simulation model [118]. While this is largely still true, since the LEAP 2011 
version the user can choose to model the power sector drawing on the 
integrated optimisation features of OSeMOSYS. If this optimisation is not 
chosen, the order and scale of individual future capacity expansions has to be 
predefined by the analyst and LEAP will then decide in which year these 
expansions take place. In this case, all factors determining future development 
pathways are exogenously specified by the user. 

LEAP dates back to 1980 and is currently developed by SEI [119]. It is applied 
by over 5,000 users in more than 190 countries [75,81]. LEAP licences for non-
commercial use are freely available for modellers from developing countries. 
Over 200 publications are listed at its website which refer to LEAP or build on 
it for their analysis. The reader is referred to Rogan et al. [117] and Suganthi and 
Samuel [71] for exemplary applications of LEAP. 
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5.5 PLEXOS 

PLEXOS is a commercial power system modelling tool used for electricity 
market simulations and was first released in the year 2000 [120]. It is a 
deterministic mixed integer linear programming model applying a quadratic 
optimisation [36]. PLEXOS minimises the expected costs of investments and 
the electricity dispatch considering: operational costs, consisting of fuel and 
carbon costs; start-up costs; and penalty costs for unserved energy and for not 
meeting reserve requirements.  

The model is driven by a number of constraints, including energy balances, 
water balances for pumped storage hydropower, emissions constraints and 
constraints on unit operations. These include limits on the generation, reserve 
provision, up and down times and ramp rates. Several upward and downward 
reserve categories can be specified. Fuel consumption is calculated using 
piecewise linear functions as outlined in Drayton-Bright [121]. 

Forced outages and related security and contingency constraints are considered 
drawing on Monte Carlo simulation. The frequency and severity of forced 
outages are defined through forced outage rates and associated mean times to 
repair (MTTR) combined with Weibull distributions. Maintenance schedules 
may be optimised considering average maintenance rates and MTTR. 
Alternatively, power plant maintenance schedules can be specified exogenously.  

The temporal resolution can be defined flexibly. It may range from interval 
lengths of one minute to multiple hours in hourly, daily or weekly steps over the 
full modelling horizon. Typical modelling periods may span over one year or 
more. To avoid issues with intertemporal constraints, e.g., related to the unit 
commitment of large units and storage end levels, a ‘look-ahead’ period is used at 
the simulation step boundaries. The optimiser calculates the model variables for 
the simulation period and the look-ahead period, but only keeps results for the 
former. 

The optimisation problem is created using AMMO, a mathematical language 
written for PLEXOS7. The problem is then optimised drawing on either of the 
CPLEX, Gurobi, MOSEK, or Xpress-MP solvers. PLEXOS is freely available 
to academic institutions for non-commercial research, apart from any additional 
costs for the required solvers. 

                                                      
7  AMMO’s role is comparable to those of other mathematical languages such as AIMMS, 

AMPL, or GAMS. 
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Over 700 installations of PLEXOS are applied by 135 clients in 32 countries 
[122]. Apart from research institutions, its user base consists mainly of players in 
the power market such as utilities and system operators [44].  

6 Concluding Remarks 

It is noted that models are simply abstractions of reality that are useful to 
provide insights. They are subject to uncertainties, from the data that underpins 
them, to the appropriateness of the markets they represent, and the 
interpretation of drivers of energy system developments.  

In addition to the various assumptions regarding input data, the models 
themselves are characterised by many simplifications. For example, multi-
regional models with a long-term outlook often do not represent the dynamics 
of short-term national decision making processes in detail [28]8.  

Another potential limitation of energy models is their scope. For example, the 
bottom-up models applied in this thesis do not consider the linkages between 
the energy system and the wider economy.  

Energy system investments will lock us into a development pathway for many 
decades to come, given the long economic lifetime of energy infrastructure. 
Therefore energy system policies and direction need to be based on the best 
insights we can muster. Whatever their limitations are, energy models provide an 
essential tool to inform such insights. 

 

 

                                                      
8  Refer to Lahdelma et al. [123] for an analysis of multi-criteria decision making processes of an 

electricity retailer considering uncertainties. 



 

29 

Part A 
Integration Between Supply and Demand 

‘Smart Grids’ are expected to help facilitate better integration of the entire 
electricity supply chain, from generation, storage, or transmission to the 
consumption of electricity. While the focus on the topic is increasing, only little 
discussion has occurred to date on how developing countries may benefit from 
advances in Smart Grids. Yet, some of the established and emerging concepts, 
systems and technologies grouped under the term Smart Grids may enable 
developing countries to leapfrog elements of traditional power systems and 
accelerate electrification efforts. 

Correspondingly, a selection of Smart Grid options that could be implemented 
in sub-Saharan Africa is identified in Part A and a qualitative preliminary 
assessment of the potential of these options is made. The potential applicability 
of models as a tool for quantifying associated system benefits is one of the 
assessment criteria. Such quantification may provide valuable design and policy 
insights and help prioritise options. However, many existing energy system 
models rarely represent certain critical features associated with Smart Grids in a 
single comprehensive framework. Flexible and accessible tools like OSeMOSYS 
have the potential to fill this niche. Accordingly, the functionality of 
OSeMOSYS was enhanced to model elements of Smart Grids as part of this 
thesis research. 
 
Section 1 explores what benefits Smart Grids could offer for sub-Saharan Africa. The notion 

of ‘Just Grids’ is introduced to reflect the need for power systems to contribute towards equitable 

and inclusive economic and social development without marginalising the poor. Specific Smart 

Grid options are identified and a qualitative assessment of the potential of these options is 

made. Section 2 describes how ‘blocks of functionality’ can be added to OSeMOSYS to better 
represent certain attributes of Smart Grids. These include variability in electricity generation, a 

prioritisation of demand types, demand shifting, and storage options. Through these 

enhancements OSeMOSYS may serve as a useful tool to quantify the potential of selected 

Smart Grid attributes to accelerate electrification in developing countries. 
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1 Smart and Just Grids for sub-Saharan Africa 

1.1 Introduction 

1.1.1 Rationale and Scope 

According to the reference scenario in the World Energy Outlook [124], it is 
expected that Africa’s electricity consumption will double between 2007 and 
2030 from 505 to 1012 TWh. Over the same time period, the United Nations 
(UN) Secretary-General’s Advisory Group on Energy and Climate Change 
(AGECC) has proposed that the UN System and Member States commit to 
ensuring universal access to reliable, affordable and sustainable modern energy 
services [125]. 

Specific elements of current and emerging Smart Grid concepts, systems and 
technologies might make an important contribution to achieving this goal by 
accelerating equitable and socially just9 access to electricity services in sub-
Saharan Africa. While this might include elements that are currently the centre 
of attention in industrialised countries, some options which explicitly address 
developing country needs might also emerge. 

In this section, a concise description of the electricity sector in sub-Saharan 
Africa is provided. Further, a review of current Smart Grid concepts, 
technologies, benefits and initiatives is given. Section 1.2 of Part A of this thesis 
places the Smart Grids concept in the context of sub-Saharan Africa, 
highlighting the need to facilitate socially just access in order to avoid 
marginalising the poor. It then illustrates potential opportunities for 
leapfrogging elements of traditional power systems10, mentions some 

                                                      
9  According to Zajda, Majhanovich, and Rust [126], social justice generally refers to, “an 

egalitarian society that is based on the principles of equality and solidarity, that understands 
and values human rights, and that recognises the dignity of every human being”. 

10  The terms electricity infrastructure or power systems encompass the entirety of the system, from 
generation, transmission and distribution to customer services and associated operations. 
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implications for network regulations and markets, and briefly discusses ‘super 
grids’. Section 1.3 identifies selected Smart Grid options with a potential role in 
the near- to medium-term. Section 1.4 introduces and provides background on 
criteria by which these options might be assessed. The selected criteria include: 
consumers; operation & quality of supply; generation; environment; technical 
complexity; finance; human capacities; policy, regulation & standards; and the 
applicability of models. Based on these criteria, Section 1.5 provides an 
indicative assessment of the potential of the Smart Grid options. Section 1.6 
suggests areas for further work to inform international cooperation, 
complementary to regional and national initiatives in sub-Saharan Africa. The 
potential role of Smart Grids to power sub-Saharan’s grids is concisely 
summarised in Section 1.7. Explanatory remarks regarding the qualitative 
ranking are provided in Annex B. 
 

1.1.2 Electricity in sub-Saharan Africa 

In 2009, around 585 million people in sub-Saharan Africa (about 70% of the 
population) had no access to electricity services [127]. Unlike many other 
regions of the world, under current assumptions this figure is expected to rise 
significantly to about 652 million people by 2030. 85% of the people who lack 
access to electricity live in rural areas [128]. In addition to low energy access 
rates, the power sector is characterised by several other significant challenges 
including: electricity costs as high as USD 0.50/kWh, insufficient generation 
capacity to meet rapidly rising demand, and poor reliability of supply [129]. The 
estimated economic value of power outages in Africa amounts to as much as 
2% of GDP, and 6-16% in lost turnover for enterprises [130]. 

In 2008, sub-Saharan Africa generated 380 TWh of electricity, of which South 
Africa alone produced almost 70% [131]11. For a sense of scale, with 
68,000 MW, the entire generation capacity of sub-Saharan Africa is no more 
than that of Spain12. Sub-Saharan Africa’s average generation capacity was only 
about 100 MW per million inhabitants in 2009, ranging from less than 15 MW 
per million inhabitants in Guinea-Bissau and Togo, to 900 in South Africa, and 
up to 1,080 in the Seychelles [134]. By comparison, the generation capacity in 

                                                      
11  Refer to Niez [132] for more details on South Africa’s electricity sector and policies. 
12  Without South Africa, this capacity goes down to 28 GW, 25% of which is currently not 

available for generation due to, amongst others, ageing plants and lack of maintenance [133]. 
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the EU is about 1,680 MW per million inhabitants, and it is 3,340 MW per 
million inhabitants in the U.S. 
 

  
Fig. 4: Power pools in sub-Saharan Africa  

[NEPAD 2008, as published by the IEA [135]]13 

 

The significant need for accelerated electrification rates has been widely 
recognised by regional (economic) communities14 and is largely underpinned by 
national electrification policies. More than 75% of sub-Saharan countries have 
defined targets for electricity access [137]. In addition to regional economic 
communities and national governments, the main actors for implementing 

                                                      
13  The difficulties in accessing the original source of this figure are representative for the overall 

time and effort required to access regional data and information on the status of electricity 
infrastructure in Africa. Typical transmission voltages used in Africa’s grids are mentioned in 
ESMAP [136]. 

14  Such as: The Forum of Energy Ministers of Africa’s (FEMA) Position Paper on Energy and 
the MDGs [137]; The Southern African Development Community’s (SADC) Protocol on 
Energy [138] and its Regional Indicative Strategic Development Plan (RISDP) [139]; The 
Economic Community Of West African States’ (ECOWAS) Energy Protocol [140] and its 
White Paper for a Regional Policy [141]; The Common Market for Eastern and Southern 
Africa’s (COMESA) Energy Programme [142]; The East African Community’s (EAC) 
Regional Strategy on Scaling-up Access to Modern Energy Services [143] and its Power 
Master Plan Study [144]; The Treaty Establishing the Economic Community of Central 
African States [145]; The Economic and Monetary Community of Central Africa’s (CEMAC) 
Energy Action plan with energy and electricity access goals [137]; and the Africa-EU Energy 
Partnership [146,147]. 
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electrification plans are the regional power pools and utilities. The power pools 
were established under the auspices of Regional Economic Communities to 
create competitive markets and improve the delivery of electricity services to 
customers [148]. They comprise the Southern, West, East and Central African 
Power Pools (the SAPP, WAPP, EAPP and CAPP, respectively) [135]. 

Fig. 4 provides an overview of the current transmission grid and extensions 
foreseen by the regional power pools and utilities. It is clear that sub-Saharan 
Africa’s national grids are not well interconnected. While the importance of 
regional and national electrification initiatives is well understood at the policy 
level, the priority has to be to translate this understanding into provision of 
electricity services ‘on the ground’. 
 

1.1.3 A Smart Grid Approach 

1.1.3.1 Defining the Term 

The term ‘Smart Grid’ has come to encompass a range of innovative tools, 
technologies and practices envisioned to be supported by novel business models 
and regulatory frameworks. All of them ultimately should serve to help ensure a 
reliable, secure and economically efficient supply of electricity services. While 
there is consensus on this overall objective, the precise scope of the term Smart 
Grids is interpreted differently according to perspective and environment15, and 
continues to evolve. 

The Electric Power Research Institute (EPRI) [150] defines Smart Grid as, “a 
modernisation of the electricity delivery system so it monitors, protects and 
automatically optimises the operation of its interconnected elements – from the 
central and distributed generator through the high-voltage network and 
distribution system, to industrial users and building automation systems, to 
energy storage installations and to end-use consumers…and their devices”. 
Zibelman [151] describes Smart Grids as an evolution of conventional grids by:  

 Transitioning the grid from a mostly unidirectional radial 
distribution system to a multi-directional grid; 

                                                      
15  For example, according to J. Antonoff, the U.S. focuses on technologies while the EU 

prioritises policies and strategies, assuming that technologies will follow [149].  
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 Converting from an electro-mechanical system to a primarily digital 
one; and by 

 Moving to an interactive grid that actively involves end-users (or at 
least improves data availability and flexibility in meeting end-user 
demands)16. 

 

The European Technology Platform (ETP) outlined the notion of Smart Grids 
[153] through the following elements: optimising grid operation, use and 
infrastructure; integrating large-scale variable generation; information and 
communication technology; active distribution networks; and new market 
places, users and energy efficiency.  

Much of the literature focuses on how Smart Grids could help establish a two-
way flow of information between supplier and user to increase the efficiency of 
network operations [154–161]. Yet a common functional and technical 
definition has not emerged [162]. For our purposes, Smart Grids is a broad 
concept that covers the entire electricity supply chain and is characterised by the 
use of technologies to intelligently integrate the generation, transmission and 
consumption of electricity [163]. Thus, Smart Grids elements are part of a 
continuum of power sector tools and technologies. 
 

1.1.3.2 Technologies 

While Smart Grids are composed of complex and integrated systems, they often 
build on proven advanced technologies. Related technologies can generally be 
divided into those linked to physical power, data transport and control, and 
applications [157]. The National Energy Technology Laboratory (NETL) has 
identified and grouped many Smart Grid technology components [164,165]: 

 Integrated communications17, including Broadband over Power 
Line (BPL), digital wireless communications or hybrid fibre coax. 

 Sensing and measurement, including advanced protection systems, 
wireless, intelligent system sensors for condition information on 

                                                      
16  Conventional grids usually provide detailed control at transmission level and good control at 

distribution level, but mostly do not go beyond that to control elements such as distributed 
energy sources or user appliances [152]. 

17  Interoperability of equipment is a key requirement of Smart Grids. 
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grid assets and system status, and Advanced Metering Infrastructure 
(AMI). 

 Advanced components, based on fundamental research and 
development, including Unified Power Flow Controllers (UPFC), 
Plug-in Hybrid Electric Vehicles and Direct Current micro-grids.  

 Advanced control methods to ensure high quality supply, including 
advanced Supervisory Control and Data Acquisition (SCADA) 
systems, load and short-term weather forecasting, and distributed 
intelligent control systems for Smart Grids to become self-healing. 

 Improved interfaces and decision support to reduce significant 
amounts of data to actionable information, including online 
transmission optimisation software, enhanced GIS mapping 
software and tools to increase situational awareness. 

 

An alternative grouping of Smart Grid technology areas can be found in the 
2010 Energy Technology Perspectives report by the IEA [166]. 
 

1.1.3.3 Benefits 

Drawing on these groups of technologies, Smart Grids are expected to allow 
some level of dynamic balancing and optimisation of generation and delivery 
assets, and loads. Associated key technical benefits may include: improved 
reliability and resilience, cost-effective integration of variable resources and 
loads, increased efficiency of system operation, and optimised utilisation of both 
generation and grid infrastructure assets18. For example, through the facilitation 
of demand response measures, Smart Grids may allow shifting loads from peak 
to off-peak periods. This may help increase the utilisation of existing power 
plants and defer future investments in grid and generation capacities. Smart 
Grids may deliver these benefits at potentially lower overall cost than would be 
possible under business-as-usual assumptions. 

Many of these potential Smart Grid benefits would be valid for sub-Saharan 
Africa, yet the concept and associated policies require refinement. Detailed 
assessments of the cost implications for utilities, consumers and society will be 
needed to justify specific investments [161]. 

                                                      
18  Based largely on improved communication and increased interoperability at all grid levels 

[167].  
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1.1.3.4 Initiatives 

In this regard, many countries are engaged in programmes and pilot projects to 
test Smart Grid concepts, for example: in Yokohama, Japan [168]; and Boulder, 
Colorado, U.S. [156]; the Jeju Island project in South Korea [169–172]; China’s 
Strong and Smart Grid Roadmap [173], initiatives in Yangzhou, China [174]; the 
TWENTIES [175] and EcoGrid projects in the European Union [176,177]; and 
planned Smart Grid applications for Masdar City, United Arab Emirates [178]19. 
While not much precedence seems to exist in Africa, South Africa launched the 
South African Smart Grid Initiative (SASGI) [181] and the Smart Grid 
technology company BPL Global has signed a 5-year contract with the national 
utility of Ghana [182]. 

Building on existing and anticipated experiences from such initiatives will help 
assess sub-Saharan Africa’s potential to profit from Smart Grids. It will provide 
valuable input on how to refine existing concepts and associated policies to 
optimise their cost-benefit balance. 

 

1.2 The sub-Saharan African Context 

Employing a subset of envisioned Smart Grid advances may enable sub-Saharan 
African countries to leapfrog traditional power systems and ramp-up efforts to 
reach more effective solutions. This could accelerate national and regional 
electrification timeframes, while improving service and minimising costs and 
environmental impact. The term ‘Just Grids’ is introduced to reflect the 
importance for power systems to contribute towards equitable and inclusive 
global economic and social development. Given the specific needs of sub-
Saharan Africa, it is suggested that a Smart Grid approach for this region cannot 
simply be a copy of practices in industrialised countries – the starting point, 
challenges and opportunities are often too different. 
 

                                                      
19  For further information on pilot projects and policies refer to Doran et al. [160]. For a U.S. 

focus and information on dynamic pricing and pilot design principles refer to Faruqui et 
al. [179]. The consumer response to smart appliances combined with pricing signals was 
assessed in a project described by Chassin [180]. 
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1.2.1 A New Emphasis 

In this thesis, the concept of Smart and Just Grids for sub-Saharan Africa is broadly defined 

as one that embraces all measures in support of short-term and future integration of advanced 

two-way communication, automation and control technologies into local, national and regional 

electricity infrastructure. Accelerated access to electricity services may be facilitated through 

optimising grid systems, operations and technologies. This would allow for a potentially higher 

penetration of variable renewable energy sources and improvements to the reliability20 and 

economic efficiency of electricity supply. In addition to being smart, socially just power systems 

are required in sub-Saharan Africa in order to promote access to modern energy services 

without marginalising the poor21. 

In the future, Smart and Just Grids in sub-Saharan Africa could provide similar 
functionality to Smart Grids in industrialised countries at full deployment, even 
though they may follow a different development pathway and timeframe. The 
diversity of the electrification status in sub-Saharan Africa22 means that lessons 
learned from other regions may be directly applied in certain areas, while 
tailored solutions will be required for others. Constraints such as a lack of 
limited investment capital, largely inadequate institutional and physical 
infrastructure, and a gap in well-trained power sector personnel are likely stifling 
innovative practices that could already be occurring organically23.  

In order to realise the potential of Smart and Just Grids in sub-Saharan Africa, 
creating an enabling environment is therefore essential. Below some thoughts 
about elements of such an environment are presented, which may be addressed 
by policy makers, investors and other stakeholders.  
 

                                                      
20  Note that increases in variable renewable energy generation might require parallel investments 

in supportive infrastructure to maintain reliability requirements. Such investments could target 
storage options, the distribution and/or transmission grid, and generation and demand 
response options for the provision of reserve services [183]. 

21  Similarly, UNEP [184] calls for a just transition to a sustainable, low-carbon economy to 
ensure that social aspects are equitably integrated into economic and environmental 
considerations, and that emerging opportunities are adequately shared among stakeholders. 

22  This diversity is comparable to India, which may offer a significant potential to learn from its 
Smart Grid developments. Refer to Balijepalli, Khaparde, and Gupta [152] and Balijepalli et al. 
[185] for a focus on India’s related endeavours. 

23  For example, the electrification of New York started with Thomas Edison’s effort to develop 
a successful business, covering the complete system of electric generation, distribution and 
appliances (the light bulb) [186,187]. 
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Smart policies: Defining common ground rules for integrating technologies 
and business practices, identifying better ways to support effective demand-side 
management, and developing new policies to support the integration of 
distributed generation. All such policies would need to be underpinned by well-
defined performance goals and transparent metrics to ensure effective 
monitoring of anticipated benefits. 

Focus for sub-Saharan Africa: Leveraging international Smart Grid frameworks, 
legislation, regulation and standards, and adjusting them to the sub-Saharan 
African context24 will be essential. New policies may need to diverge from 
international precedent, in order to respond to rapid demand growth and 
urbanisation, reduce theft of electricity and utility assets, and prioritise access to 
affordable electricity services25 for the poor, supported by simplified 
requirements for rural electrification schemes. Such policies should enable 
access through flexible, no-regret electrification strategies that accommodate 
expansions of stand-alone systems, mini and national grids, and that support 
their integration. 
 

Smart planning: Adjusting the grid to local circumstances and developing 
design principles that ensure an effective interoperability of existing and new 
grids, leading to even smarter networks over time.  

Focus for sub-Saharan Africa: A balanced approach between regional grid 
integration, national grid enhancements and decentralised mini-grids is required. 
While smart mini-grids, such as those described by Katiraei and Iravani [189], 
may provide a short-term solution to rural electrification needs, their future 
integration into national and regional grids and vice-versa should be an integral 
consideration of power system planning26. 

                                                      
24  Refer to Schwartz [188] for further information on policy support required to deliver Smart 

Grid benefits. 
25  This may even include a differentiation between individual services, ranked based on local 

priorities. For example hot water heating may be more ‘interruptible’ than say vaccine cooling 
in a clinic.  

26  For example, in remote areas photovoltaic (PV) panels can provide a limited and thus at times 
limiting quantum of electricity for customers. At present, such customers are considered 
‘electrified’. In the case of mini- or national grid extensions with better power quality, such 
customers may either not be targeted or the photovoltaic system left unused, as current 
systems are often not designed to integrate such home circuits or local grids. A Smart Grid 
may help provide limited initial access followed by improved bulk service supplies as stand-
alone systems are integrated locally and nationally. 
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Smart systems: Guaranteeing the security and quality of supply through smart 
automation and control arrangements, building on load management and 
integration of distributed energy sources, for mini, national and regional grids, 
for example as shown by Ruiz et al. [190]27. 

Focus for sub-Saharan Africa: National and locally appropriate supply quality 
standards will need to be derived. These may initially be less stringent than 
current practices in industrialised countries and may vary by class of service. 
Increasing the grid’s load factor through demand side management may also 
significantly help reduce costs, especially for rural electrification schemes [191]. 
Ultimately, a strong high voltage (HV) grid may be developed as a backbone of 
the power system, especially to foster electricity intensive industrial growth. 
 

Smart technologies: Deploying proven smart technologies, optimising inter-
operability with emerging technologies, and developing future solutions to best 
address electrification needs [192,193]. 

Focus for sub-Saharan Africa: The technology deployment path will vary widely at 
regional and country levels due to diverse needs and goals of different societies 
and markets. Defining these technology pathways and markets and verifying 
them through pilot projects will be important first steps. 
 

Smart people28: Building stakeholder capacity29 to facilitate the transition to 
Smart Grids, to operate the grids, and to attract and actively engage the private 
sector and consumers to maximise the number of people who profit from the 
transition to Smart Grids. 

Focus for sub-Saharan Africa: Educating consumers in sub-Saharan Africa about 
efficient electricity use whilst moving towards Smart Grids will be essential, 
especially for those who previously had no access. Training tools and materials 

                                                      
27  This represents a shift from traditional preventive control philosophy to a corrective, ‘just in 

time’, control approach. Benefits include enhanced utilisation of grid assets and improved 
efficiency. Supportive new techniques and tools for system operation and design need to be 
developed and applied. For example, at industrial and institutional levels, under-frequency 
protective relays for heating, cooling and motor loads can provide significant support for grid 
operation. 

28  In this context, 'smart people' refers to energy-informed and hence empowered stakeholders. 
29  This includes policy makers, government agencies, regulators, electricity network and service 

companies, traders, generators, finance institutions, technology providers, researchers and 
users.  
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about state-of-the-art power systems will also need to be widely disseminated to 
analysts and technicians. Specific attention needs to be paid to the training of 
off-grid communities so they can manage and maintain mini-grid systems in a 
sustainable fashion. 
 

Responsibility for ensuring that grids as a public good are smart and just falls 
mainly on governments and utilities. The following Just Grid characteristics are 
especially relevant to sub-Saharan Africa: 
 

Just access: Ensuring universal access to electricity by: 

 Encouraging electricity to be tapped-off from larger grid extension 
projects to local customers en-route. Connections for large consumers 
are often the primary driver for grid extensions. Such extensions may 
offer a great opportunity to connect the under-served at the same 
time30; 

 Using grid technologies that can cope with fluctuating supply and 
demand in rural areas and thus increase quality of supply, for example 
by building on strategic load control and management instead of 
conventional load shedding; 

 Focusing on accelerated access to key electricity services rather than 
access to electricity in general. Doing this in a ‘smart’ way may help 
governments deliver on their development agendas more effectively 
and at lower cost, for example by prioritising electrical services 
required to specifically meet the Millennium Development Goals 
(MDGs) [195]; 

 Expanding service delivery under resource constraints by increasing 
the efficiency of electricity supply and use; 

 Creating additional revenues for utilities through higher payment 
discipline enabled by advanced metering infrastructure, which might 
encourage utilities to extend services to new customers. 

 

  

                                                      
30  Note that past electrification efforts in now highly developed countries followed a similar 

pattern [194]. 
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Smart and Just financing: Developing a commercially successful business 
model encompassing pricing, cost structure and sales. Creating flexible tariff 
structures and payment schemes to ensure affordable and sustainable access to 
electricity services, by:  

 Realising the potential of Smart Grids to help lower prices of 
electricity services by optimising the utilisation of grid assets, 
segmenting electricity markets according to reliability and quality 
requirements, minimising technical and non-technical losses by 
promoting smart and efficient appliances, and increasing cost-
effective integration of renewable energy in remote areas31; 

 Providing additional support programmes to identify and foster 
productive uses of electricity to help ensure that low-income 
consumers can pay for their required electricity services; 

 Allowing for targeted subsidies through integrated smart billing to 
support ‘basic’ services such as food refrigeration, as opposed to 
‘luxury’ services, like television. Ensure subsidy schemes that are 
targeted towards the poor and provide incentives for utilities to 
expand access [198]. 

 

There is clearly a vast array of Smart Grid elements available to support this 
redefined concept. They are not all immediately relevant, however, and some are 
either not developed enough or at present prohibitively expensive to be usefully 
deployed in the sub-Saharan African context in the short- to medium-term. 
Avoiding technology lock-in will be crucial, as the economic lifetime of electric 
power equipment can be up to 50 years and longer [136,199].  

 

                                                      
31  This may be especially beneficial when diesel power generators are used, as renewable energy 

may provide a cost-competitive alternative. This is because fuel transport costs to provide 
diesel to remote locations in developing countries may be significantly higher than in most 
industrialised countries [196]. For example, power prices in most Caribbean and Pacific 
Islands range from USD 0.06 – 0.60 per kWh [197]. 
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1.2.2 Opportunities for Leapfrogging 

The opportunity for Smart and Just Grids to leapfrog32 traditional power 
systems may mean that they can offer even more promising opportunities to 
developing than to industrialised countries. While some components of Smart 
Grids offer a good basis for leapfrogging in the short-term, for others it will be 
essential to set the preconditions today which are required for enabling a 
transition to smarter networks as the technologies mature in the future33. 

In the short term, leapfrogging is envisioned to occur mainly for the 
components based on information and communication technologies (ICT), 
which form an integral part of many Smart Grid systems. In certain cases, Africa 
already notably ‘leapfrogged’ to more efficient ICT solutions. Although not a 
perfect analogy, the information revolution34 of the mid-1990s in sub-Saharan 
Africa linked to the use of mobile phones offers some useful lessons. 

Africa became the world’s fastest growing cell phone market [203] with growth 
rates in the order of 300% per annum in countries like Kenya and Cameroon 
[204]. Within 10 years, the number of mobile phone subscriptions in sub-
Saharan Africa shot up from four per 100 people to 53 in 2011 [205]. The actual 
number of users is expected to be much higher still, due to people sharing their 
mobile phones, especially in poor communities35 [207,208]. 

One reason for the mobile sector’s great success was the failure of conventional 
telecommunication systems to meet consumer demand, both in terms of 
number of connections and quality [202]. This constitutes a parallel to the 
failure of current electricity networks in sub-Saharan Africa to meet the needs of 
millions of Africans. Another reason for the rapid diffusion of mobile phones 
was the lack of red-tape involved in registering for the pre-paid services that are 

                                                      
32  A definition of technology leapfrogging can be found in Davison et al. [200]. Examples of 

leapfrogging in developing countries in the field of energy are mentioned in Goldemberg 
[201]. 

33  For example, latest conductor technology and controls could be used for current greenfield 
developments to ensure long-term flexibility for integrating energy sources [166]. 

34  Wilson III and Wong [202] defined the information revolution as an institutional and policy 
revolution, highlighting the importance of private sector participation, foreign investment, 
competition and de-centralisation. 

35  Grameenphone has 6 million subscriptions in Bangladesh, 3% of which are for ‘village 
phones’, which are shared by a large number of users, and account for one-third of the traffic 
[206]. 
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used by 90% of mobile subscribers in sub-Saharan Africa [207]36. Pre-paid 
subscriptions address especially the needs of people with lower or irregular 
incomes, as no bank account, mail address, or fixed monthly fee are 
required [209]. Smart and Just Grids could take advantage of ICT infrastructure 
to implement similar payment schemes.  

In addition to technological reasons for leapfrogging, market models that 
accompanied the mobile phone revolution such as sharing phones may serve as 
a precedent for Smart Grids. Other success factors, which may not translate as 
seamlessly to Smart Grids, were the relatively low initial investments and the 
quick installation of re-deployable assets, making related initiatives less 
dependent on institutional frameworks and investor protection [210].  

Mobile phones also offered large benefits at low costs to consumers which were 
already connected to conventional telephone networks, both in terms of flexible 
payment schemes and increased availability. Overall, there was a strong drive by 
consumers to make the mobile phone revolution happen and telecom 
companies found themselves in a profitable space.  

This constitutes a major flaw in the analogy with Smart Grids. There, mainly 
utilities and governments are expected to be the driving force and effective 
market places still need to be developed. Further, apart from increased reliability 
in supply for existing consumers, especially those might benefit who gain 
accelerated access to electricity. This could be due to their connection to smart 
mini-grids or due to grid expansions facilitated by more efficient power systems. 
 

1.2.3 Implications on Network Regulations and Markets 

Present regulation often rewards utilities for delivering network primary assets 
rather than improving performance through more sophisticated management 
and advanced network technologies. Thus, regulation can hinder Smart Grid 
developments that do not focus on investments in network assets. 

Most current network design and operation practices centre on the historic 
deterministic N-1 approach that was developed in the late 1950s [211]. A system 
which adheres to the N-1 rule maintains reliable operation even if a major 

                                                      
36  Access rates are much higher than subscription rates, reaching almost 100% for some 

countries. This potential access is not directly beneficial for the large majority of the African 
people, who still cannot afford to pay for the services [207]. 
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element fails, e.g., a transmission line. This rule exists in several variations 
depending on reliability requirements. It has broadly helped deliver secure and 
reliable electricity services, alongside various other traditionally applied 
redundancy measures.  

These approaches can, however, impose major barriers for innovation in 
network operation and for the implementation of technically effective and 
economically efficient solutions that enhance the utilisation of grid assets37. For 
example, Divan and Johal [212] demonstrate significantly higher network 
capacity while meeting N-1 contingency constraints using distributed power 
flow control devices. Even higher utilisation is realised if the N-1 constraint is 
dropped. Yet, the existing network and its standards are commonly taken as 
granted in research work, thus constraining the applicability of diverging 
approaches [213]. Reforms seem overdue: in sub-Saharan Africa laws governing 
the power sector and at times over-sophisticated standards sometimes originate 
back from colonial times [191]. 

A relaxation of power quality and reliability standards based on the advances of 
Smart Grids may enable sub-Saharan Africa to profit from the associated 
significant cost savings potential38. Such a relaxation will help balancing asset- 
and performance-based options, particularly those that involve responsive 
demand and advanced network management techniques. In sub-Saharan Africa, 
novel regulatory regimes will also need to incentivise innovative ways of 
enhancing access to the grid. 

Innovation is not only required in technologies and regulation, but also in 
designing power markets. Information systems infrastructure will help facilitate 
a shift to distributed control, with demand response becoming a key resource 
for delivering network flexibility and control. This will require significant 
changes in electricity market design principles, with a move away from 
traditional single-sided competition in large-scale generation.  

Ultimately, a cost-effective system requires all market players to interact 
competitively to optimise demand and supply [214]. While markets based on 
these principles are still mostly conceptual, in time, it will be important to 

                                                      
37  An overview of how standards can support or hamper Smart Grids developments is provided 

in EPRI [150]. 
38  Such an approach could be supported by a range of advanced technologies such as dynamic 

line rating, coordinated special protection schemes, coordinated corrective power flow and 
voltage control techniques (potentially supported by wide area monitoring, protection and 
control technologies), and application of advanced decision making tools. 
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develop more user-centric market models for sub-Saharan Africa. This approach 
will be critical for enhancing access to electricity services, especially given the 
benefits of a closer integration of consumers, such as enhanced asset utilisation 
and improved operational efficiency. 
 

1.2.4 Smart Grids vs. Super Grids 

Crucial benefits of electricity grids result from a diversification of both demand 
and supply. National distribution networks of several thousand households are 
usually large enough to profit from demand diversity and associated significant 
savings in supply capacity requirements [215]39. Larger transmission networks 
are required to profit from diversification of supply by exploiting regional 
energy resources and infrastructure40. Transmission expansions can further 
significantly enhance the ability of the system to minimise fluctuations in 
demand and supply, increase the availability of back-up capacity [217], and 
minimise the required operating reserve. This is especially important when 
accommodating increased levels of variable renewable generation. 

Critical voices like Sebitosi & Okou [204] however regard grand infrastructure 
plans to link up the African continent’s power grids as obsolete in the age of 
Smart Grids. Some aspects of this view are mirrored in the U.S. by Cavanagh 
[218] and Fox-Penner [219], who emphasise the importance of focusing on 
regional and sub-regional grids41. 

Sebitosi & Okou [204] further suspect that super grids would “largely serve to 
extract untapped natural resources from the less developed to the more 

                                                      
39  The capacity of an electricity system supplying several thousand households is only about 10% 

of the total capacity that would be required if each individual household were to be self-
sufficient and provide its own generation capacity. A further increase in the number of 
households however only results in minimal savings. 

40  For the Southern African region, Graeber [216] identified savings of USD 2 - 4 billion over 20 
years, equalling 5% of total system costs, when optimising generation and transmission 
investments at a regional level. 60% of this savings potential can be attributed to lower 
operational costs. 

41  Cavanagh recommends that establishing a single interconnected ‘national’ grid in the U.S. 
should be less of a goal then upgrading the current three giant regional grids. Fox-Penner 
suggests subdividing regional grids into smaller grids building on direct-current lines to avoid 
cascading failures. However, the U.S. Department of Energy (DOE) [199] still expects high-
capacity transmission corridors to form the backbone of the U.S. grid in 2030. 
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industrialised members”. An example they cite comprises high voltage direct 
current (HVDC) lines to integrate renewable energy from North African 
countries into the European power system [156,220]. Such plans seem to be the 
main focus of current discussions on modern grid investments in Africa. It 
remains to be seen to what extent the underserved in Africa will profit from 
such initiatives. 

 

1.3 Identifying Specific Options 

In line with findings from the ETP SmartGrids [154], the implementation of 
Smart Grids for sub-Saharan Africa will, inter alia, require: a toolbox of proven 
technical solutions, harmonised regulatory and commercial frameworks, shared 
technical standards and protocols, and supportive ICT systems. It will be 
especially important to future-proof current grid infrastructure projects in a 
cost-effective way to ensure their compatibility with future plans to upgrade 
them to Smart Grids. 

Particular elements of Smart and Just Grids could help offer tangible and direct 
benefits in the short- to medium-term, some of which are mentioned below. 
They comprise both elements which are currently focused on in industrialised 
countries as well as elements which might be of particular interest for 
developing countries. The options cover varying degrees of complexity and 
detail, from technical options like load control switches to rather conceptual 
suggestions like low-cost access tariffs. Options which are qualitatively assessed 
in the next section are shown in italic and underlined. 

 

Transmission and substation design: Especially for longer transmission lines, 
the scale of technical losses can become considerable42. Smart Grids could help 
reduce such losses, for example with improved power lines and transformers, as well as 
by facilitating maintenance schemes [132]. Existing substation transformers can 
be a significant source of total grid losses, being responsible for up to 
40% [221]. For example, superconducting fault current limiting transformers 
can help improve system performance and efficiency [222]. Deploying low-sag, 

                                                      
42  For a sense of scale, Sebitosi and Okou [204] note that “the estimated amount of power that 

is lost during the delivery of 2000 MW from Cahora Bassa through the 1500 km line to South 
Africa is nearly equal to the entire consumption capacity of Mozambique, the host generating 
country”. 
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high-temperature conductors and dynamic line rating can significantly increase 
the electric current carrying capacity.  

Wide-area monitoring and control43 could support the accurate information required 
for real-time decision making to respond better to disturbances within the 
system [221]. This will enhance utilisation of primary grid infrastructure and 
contribute to a more efficient system operation. Some of the required advanced 
transmission technologies44 may target the more developed existing grids in sub-
Saharan Africa, and may be disproportionate in areas with limited grid coverage. 
This is especially true since advanced monitoring and control requires 
integration throughout the transmission system, facilitated by sophisticated grid 
design techniques. 
 

Distribution system design: While its benefits might be considerable, 
smartening the distribution system is significantly more challenging than 
improving the transmission networks [161]. Distribution automation technologies 
could help improve power systems by extending intelligent control [221]. For 
example, smart sensors and flexible and intelligent switches and interrupters at 
critical points on distribution circuits could minimise the extent of outages and 
increase the speed of restoration [224], while keeping cost increases at a 
minimum. Smart distribution technologies allowing for increased levels of 
distributed generation will be especially important for addressing rural 
electrification needs and minimise connection costs. The planning and design of 
these networks will require full horizon planning, i.e., a 20 year plus period. The 
development of these grids will be atypical, but existing work on distribution 
planning may provide a useful starting point [225]. 

Power theft often contributes significantly to overall system losses in developing 
countries45, reducing the economic performance of utilities. High-voltage 
distribution lines can help prevent illegal connections and improve power 

                                                      
43  This represents a shift from the application of traditional local-based control in existing power 

systems. 
44  In addition to synchrophasors, wide-area monitoring and control could build on intelligent 

electronic devices such as protective relays, programmable controllers and stand-alone digital 
fault recorders. Examples of applications include coordinated Volt-Ampere Reactive (VAR) 
control solutions [223] and adaptive system islanding and resynchronisation [221]. 

45  For example, only around 33% of all electricity in India is billed, which is mainly attributed to 
theft and inefficient billing practices [226]. In addition to pure electricity theft, cable theft may 
constitute a significant problem. In various municipalities in South Africa, all-day street 
lighting is used as an early warning system, despite generation constraints [132]. 
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quality and reliability [132]. Smart metering infrastructure can help reduce theft 
further, e.g., through remote meter reading [227] combined with an independent 
transformer-loading based validation process. 
 

Smart mini- and micro-grids: Mini-, and especially micro-, grids with high 
shares of renewable energy are generally complex to implement, primarily 
because of fluctuating generation and a low load factor46. The task of 
maintaining adequate power quality becomes a challenge, for example due to 
spikes associated with the starting current of motor loads [229] or the need to 
provide some form of back-up power. Smart components could help cushion 
such effects and better balance the overall system, e.g., through integrating new 
demand side management options.  

Costs of such systems may be further cut through the implementation of DC 

micro-grids, especially when combined with photovoltaic generation. While losses 
can be reduced through saving layers of DC/AC and AC/DC power 
conversion, the more expensive protective devices required for fault 
management and control, such as coordinated power converters, add complexity 
and outweigh some of the potential savings. Further, a potential future 
integration into AC grids requires consideration. 

The smart integration of grids, from the micro- into the mini-grid and ultimately 
the national grid, will allow bringing together decentralised electrification with 
national electrification plans. As a result, there might be scope to reconsider 
future (grid-based) plant mixes. For example, cheap base load could be provided 
by the national grid, while the integrated decentralised grids could rather be 
geared towards contributing to the more expensive peak load, ultimately 
reducing the overall electricity price.  

At the mini-grid level, this may include the integration of existing distributed 

generators, e.g., a diesel generator from a hospital, which is especially worth 
considering when expanding the grid to previously un-electrified areas. Such 
generators are characterised by being close and well-adjusted to their consumer 
loads, which are supposedly often much higher than average household demand 
in sub-Saharan Africa.  

When applied for offsetting peak demand, they may allow owners to profit from 
cost reductions if combined with according pricing schemes. Utilities and 

                                                      
46  Casillas and Kammen [228] present energy conservation supply curves for measures regarding 

generation, metering and energy efficiency measures for a mini-grid in Nicaragua. 
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society will profit from the capacity increases, especially during peak demand; 
improved quality of supply through increased flexibility; increased system 
efficiency with improved load factors; potentially lower emissions due to the 
reduced need for spinning reserves; and enhanced network security and 
resilience to price spikes, supply shortages and outages [230]. The economics of 
such integration has shown potential. Portland General Electric (PGE) 
estimates that integrating the installed distributed generation base in Portland, 
Oregon, U.S., to offset peak power purchases could reduce the price per kWh 
by around 30% up to over 60% of the wholesale peak price47 [230,231]. 
 

Demand side management: Demand side management options for large48 
consumer loads, like load control switches at industrial or institutional facilities, can 
contribute significantly to optimising the quality of energy supply and reducing 
load-shedding through allowing to cut off peak-demand. Load-shedding usually 
affects the poorest electricity consumers the most, as they have limited 
possibilities to compensate outages49. Radio-controlled interruptible institutional 
water heaters or water pumping systems constitute just two examples for such 
load control. The associated reduction of service quality if electricity is not 
available instantly requires some form of compensation by utilities, most likely 
in the form of special tariffs.  

The available mature technologies and market approaches constitute advantages 
of targeting a limited number of large industrial consumer loads, as opposed to a 
large number of residential consumers [161]. Yet, the latter can have an 
important role in contributing to realising the benefits of Smart Grids, e.g., 
through smart appliances. For example, smart refrigerators that hold enough 
thermal storage to withstand interruptions or avoid power use during peak loads 
could be deployed. Again, the reduction of service quality, even if minor, 
requires some form of compensation by utilities. Supportive policies will need to 
ensure that consumers profit from the additional costs they might have to bear. 
Minimum efficiency standards could help reduce the electricity use by such 

                                                      
47  In the U.S., 22% of the peak demand equalling 170 GW is available in the form of consumer 

backup generators. This includes generators of up to 60 MW, but 98% of them are smaller 
than 100 kW [230]. 

48  Large compared with the total capacity of the grid. 
49  Those who can afford it might, e.g., use back-up generators when load-shedding occurs, and 

this is just in case the districts where they are living in are affected at all. 
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appliances. But first, a solid business case will have to be demonstrated before 
smart appliances become an attractive option for sub-Saharan Africa. 

Smart Grids would further allow for a prioritisation of loads according to public 
importance, guaranteeing a higher security of supply for buildings such as 
hospitals rather than for enterprises or households. Its system-wide 
implementation requires utility control down to individual consumers facilitated 
by remotely controlled switches. A system-wide roll-out of such switches might 
not be justifiable. Selective load control could be an option which is easier to 
implement. A higher priority could be given to some selected loads while all 
remaining loads could have the same, but lower, priority. A simple 
implementation might be to install separate distribution lines for those few high-
priority loads. Additional control devices would therefore only be required at 
selected sub-stations. This might help maximise the benefits while minimising 
costs.  
 

Local charging stations: While rural electrification is a priority in many 
countries, it cannot be entirely equated with electricity access for the poor, as 
millions of people live near the grid but cannot afford a connection [232,233]. 
For these people, local charging stations ensure a minimum level of access to 
electricity services, for example, for charging lanterns or batteries. Especially 
when used for lighting, they may replace more expensive and environmentally 
harmful energy sources like paraffin50. Elaborating a successful business model51 
at these stations could further spawn local businesses and jobs, both directly 
related to the charging services as well as possibly through public on-site access 
to electric tools and equipment, e.g., grain mills or ICT facilities. Local charging 
stations usually generate their demand on-site. While experiences exist 
internationally (e.g., by UNIDO [234]), such stations were often implemented as 
stand-alone systems, without using their potential to help balance the system. If 
smartly integrated into local mini-grids, the storage capacity additions through 
batteries may further help contribute to increased power quality and reliability, 
by compensating short-term power flow and voltage fluctuations. The modular 
nature of local charging stations would allow targeted investments to test the 

                                                      
50  Even more so when generation is based on renewable energy. According to UNIDO [234], 10 

of their renewable energy based “Community Power Centres” would replace 1.5 million litres 
of diesel generation annually, offsetting some 5,000 tons of greenhouse gas emissions each 
year. 

51  This model would need to cover the logistics of battery ownership, management and charging. 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

52 

integration in mini-grids before larger roll-outs. Another possibility would be the 
introduction of electric bicycles for taxi services. These could be charged at 
stations during off-peak hours, combining income generation with demand side 
management52. 
 

Billing schemes: As many Smart Grid components build on ICT, they might 
profit from ‘piggybacking’ on future telecom service expansions, such as the 
provision of electricity consumption information via mobile phone services [237]. 
Charging prepaid consumption credits via mobile phones using scratch cards or 
comparable devices may help address the specific needs of the poor53. The 
required installation of at least a very basic form of smart meter will enable 
remote meter readings, which may reduce administrative costs related to meter 
readings and billing, and might help reduce theft54. Further, remote meter 
readings will help increase energy efficiency by reducing the vehicle usage 
associated with manual readings [224]. The current experience with mobile 
phone services in sub-Saharan Africa, e.g., for agricultural market information or 
financial transactions, suggests a solid business case for mobile phone 
companies, which have shown to possess the capacity to implement and manage 
such services55.  

Meter-based tariffs incentivise an efficient use of electricity, which could result 
in considerable load reduction56. A basic time-of-use pricing scheme at household 
level may easily be introduced in sub-Saharan Africa to help balance demand. 

                                                      
52  Due to strong policy support, China has 120 million electric bicycles on its roads [235], with 

21 million bicycles being bought in 2008 alone, at prices typically below USD 300 [236]. By 
controlling their charging time they could become one element of a Smart Grid.  

53  Botswana and other countries were already using pre-paid meters in the 1980s [238]. Refer to 
Niez [132] for information on the introduction of prepaid electricity meters under South 
Africa’s Integrated National Electrification Programme. 

54  This was reported as one of the reasons for Italy’s initiative to fit smart meters in 85% of 
Italian homes [239]. The Italian utility Enel S.p.A. reports annual cost savings of EUR 500 
million from their investments in the smart meter technologies, which were characterised by a 
very low payback period, allowing it to recoup the infrastructure investment in just four years 
[161].  

55  Since its introduction in 2007, the Kenyan M-Pesa mobile phone banking service was used by 
40% of all Kenyans to transfer over USD 3.7 billion all together [240]. It is worth noting that 
the average customer is not rural and poor, as some might assume. 

56  In a mini-grid in Nicaragua, the abandonment of a flat-rate tariff after the installation of 
meters helped reduce the overall electricity load by 28% by encouraging a more conscious use 
of electricity, thus enabling the mini-grid to operate for longer [228].  
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For energy-intensive industries, real-time pricing may be considered. These billing 
schemes will incentivise consumers to shift their more expensive peak demand 
to off-peak hours, resulting in a higher system load factor and operation closer 
to the system optimum. Further, they will help remove hidden subsidies that 
sometimes burden smaller customers, who are charged more than their fair 
share [161]. 

In addition, on-bill financing of energy-efficient and potentially smart appliances57 
may be an important tool to help consumers overcome high upfront costs and 
ultimately reduce their energy bill. On-bill financing enables utility customers to 
pay for specific investments through their electricity bill. For example, the utility 
could distribute energy efficient compact fluorescent lamps and refinance them 
via a small surcharge on its monthly bills. This would enable the utility to 
recover its initial costs over the expected lifetime of the lamps58. Implementing 
this measure will require some policy support to incentivise the efficiency 
improvements and associated generation and income reductions for utilities.  

Enabled by the introduction of smart meters, a Just Grid could further address 
the needs of the poor by ensuring reliable low-cost access during off-peak hours. 
Curtailed access would be provided during times of higher demand59. Loads 
requiring higher reliability throughout the day would need to pay a higher tariff 
for this privilege60. First illustrative energy system model runs for a rural supply 
scheme indicate that the potential for low-cost tariffs is significant, as a large 
share of off-peak demand might be delivered at half the price of the average 
generation cost [243]. Providing low-cost access might increase the interest of 
utilities to connect the poor, as this might become less costly or even profitable. 
Utilities would also profit from the increases in system flexibility and a more 
efficient system operation due to a higher off-peak demand, and consequently a 
higher system load factor. Further, this could also encourage people to adopt 
energy-efficient practices for peak times, either because of higher tariffs or 
dependency on batteries61. Through increasing electricity access, such tariffs 

                                                      
57  In a mini-grid in Nicaragua, the introduction of compact fluorescent lights helped to cut 

demand by 17% [228]. 
58  Refer to Bell et al. [241] for further information on on-bill financing. 
59  Such demand would come from loads that require higher reliability, such as industrial and 

commercial usage. 
60  In the Indian context, it has been proposed to ensure a higher quality of electricity supply for 

customers who regularly pay their bills and lower quality for those who do not [242]. 
61  This has been observed with water supply schemes, where communities adjust their behaviour 

to access a critical but economical resource. People carry out water-intensive activities such as 
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might replace environmentally more harmfully produced energy services, e.g., 
firewood for water-heating.  

Conceivably, the introduction of smart meters in combination with smart 
appliances would even allow delineating tariffs by service. Targeted subsidies for 
basic energy services, potentially combined with minimum energy efficiency 
requirements, could ensure that consumers can afford meeting some of their 
most pressing demands with cleaner energy sources. Higher subsidies could be 
applied up to a certain consumption threshold and could be linked to tariffs 
with lower requirements for the reliability of supply. As the consumer is being 
charged for the service rather than the electricity, on-bill financing could easily 
be used to add the life-cycle costs of the appliance to the electricity price in 
order to derive the actual service cost. This may enable a more economically 
rational basis for choosing appliances. While the technical requirements for the 
implementation of tariffs by service might be prohibitive in the near-term, this 
option might increase in attractiveness as the overall power system advances. 
 

Information systems architecture: Once a smart power system with two-way 
flow of information and intelligent control is set up, data management tools could 
help utilities distil relevant information in a manageable and understandable 
format. Diagnostic software may further help monitor the health of grid assets, 
predict problems in power distribution, and initiate corrective action. The 
required architecture must ensure interoperability and enable a smooth 
transition from existing to future power systems [221]. Special attention to 
security issues will be required in countries with limited robust governance 
regimes. User-friendly interfaces, such as cell-phone billing and transparent 
metering, will be equally important to engage customers successfully. 

 
  

                                                                                                                              
cleaning clothes during hours of supply, and shift activities that need less water such as 
cooking to times with limited supply. 
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1.4 Selected Assessment Criteria 

The potential of the options shown in italic and underlined before were further 
qualitatively assessed against various criteria. These include their impact, their 
requirements, and the applicability of models as a basis for quantitative future 
assessments. Their largely positive impacts were assessed across the entire 
power system, sub-divided into the categories: “Consumers”, “Quality of 
Supply”, “Generation” and “Environment”. The requirements of an option, 
which to some extent reflects the costs to society, were sub-divided into: 
“Technical Complexity”, the scope of required “Investments” and “Human 
Capacities”, and the need for enabling support through “Policy, Regulation & 
Standards”. These categories are briefly introduced with reference to broadly 
anticipated Smart Grid benefits and challenges. A preliminary assessment of the 
selected options of Smart and Just Grids is then provided in the following 
section. 
 

Consumers: A user-centric approach, often requiring active participation of 
educated end-users, is key to the uptake of many Smart Grid options [153]. 
Consumers are largely expected to profit from the suggested initiatives. It is 
anticipated that Smart Grids may potentially play an important role in extending 
access to electricity and addressing the specific needs of the poor62. Further, 
Smart Grids may help create new jobs63. However, some increases in system 
flexibility may also mean reductions in service quality, e.g., when electricity for 
an appliance is not instantly available due to remote “smart” scheduling. 
 

Operation & Quality of Supply: Smart Grids may significantly contribute to 
reducing costs of grid congestion, power outages and power quality 
disturbances64 through increasingly efficient automated operations [246]. 
Building on advances in equipment monitoring and diagnostics as well as 
supportive standards allows for more sophisticated asset management and 
operation, especially when combined with active management of consumer 

                                                      
62  Not least because of the positive effects of electrification in general on children’s education 

and women’s empowerment, as demonstrated for Indian villages by Millinger et al. [244]. 
63  McNamara [245] estimates that Smart Grid incentives worth USD 16 billion in the U.S. could 

trigger associated projects amounting to USD 64 billion. This would result in the direct 
creation of approximately 280,000 positions and the indirect creation of a substantially larger 
number of jobs. 

64  In the U.S., these costs are estimated to be in the range of USD 25– 80 billion annually [159]. 
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demand. Examples include weather-related operational security standards or 
improved system flexibility through increasing the reliability and quality of 
supply for consumers with high requirements, while providing less reliable and 
lower quality power at reduced costs for consumers with lower requirements 
[166]65. This may enable the release of latent network capacity [161,247] and 
reduce the need for spinning reserve [199]. Additionally, technologies such as 
power flow control could have a significant impact on the effective utilisation of 
network capacity under normal and contingency conditions, especially once 
grids advance towards increased interconnection. 
 

Generation: This category comprises the direct implications of utility-focused 
Smart Grids initiatives on overall generation and capacity requirements. Africa’s 
average transmission and distribution losses of 11% are close to the global 
average of approximately 9%66 [166,248]. However, including non-technical 
losses, many countries in sub-Saharan Africa are characterised by much higher 
system losses of up to 41% [249]. Higher technical losses are due to less 
efficient and poorly managed and maintained equipment [250]; higher non-
technical losses can often be attributed to uncollected debt, tampered meters 
and inconsistencies in billing due to corrupt meter readers or illegal connections 
[132,152,227,242].  

Smart Grid technologies could help minimise technical losses in transmission, 
for example by facilitating more effective reactive power compensation67 and 
improved voltage control [224]. They could address distribution losses68 through 
adaptive voltage control at substations and line drop compensation to maintain 
feeder voltages based on load [251]. Non-technical losses such as power theft 
could be partially addressed with the help of smart metering infrastructure 

                                                      
65  This would require utilities to prioritise the reliability of services dependent upon target group, 

such as emergency services, financial institutions, industries, consumers, and industry [160]. 
66  Ranges vary from, for example, 5% in Japan [248] and 6% in the U.S. [134] to 26% in India 

[166]. 
67  For example, DC-to-AC current-controlled inverters can both supply and absorb reactive 

power only and do not participate in resonances, as capacitors do [160]. 
68  Distribution losses usually account for the largest share of total power delivery losses [136]. In 

Europe, increasing the efficiency of distribution transformers by 0.33% would have reduced 
losses by more than 100 TWh in 2000 and would result in savings of 200 TWh in 2030 [250]. 
For a sense of scale, the electricity generation of Australia in 2009 was 232 TWh [134]. 
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[239]69. Active demand-side management by utilities could further help minimise 
the need for expensive electricity supply to satisfy peak demand [246]. The 
IEA [9,161] estimates that Smart Grids potentially enable a 13% to 24% 
reduction of projected peak demand increases between 2010 and 205070. 
 

Environment: A transition towards Smart Grids on its own may not be the 
primary strategy for achieving ambitious energy and carbon targets. However, it 
may provide a significant contribution to related electricity sector targets [253]. 
On a global scale, it is estimated that direct and indirect benefits of Smart Grids 
offer the potential for yearly emission reductions of 0.9–2.2 Gt CO2 per year by 
2050 [166]71. Expected direct benefits include reduced losses, accelerated 
deployment of energy efficiency programmes and direct feedback on energy 
usage. Indirect benefits include facilitation of electric vehicles72 and greater 
integration of renewable energy. This is because Smart Grids provide risk 
mitigation mechanisms which potentially allow relaxing current reliability 
requirements without comprising the overall system reliability. Current grid 
requirements often constitute a strong disincentive to less predictable, but 
cleaner, electricity sources [224].  
 

Technical Complexity: While Smart Grids are likely to be composed of 
complex and integrated systems, they often build on proven advanced 
technologies. Additionally, several promising technologies on the horizon may 
also form part of future grids, e.g., high temperature superconducting materials, 
advanced electric storage systems such as flow batteries or flywheels, and power 
electronics devices for AC-DC conversion [183,199]. In addition to the 
complexities associated with the technologies themselves, the requirements 

                                                      
69  Monitoring of transformer loading and third party assessments of potential misuse will help 

tackle such power theft, which is often difficult to determine in developing countries as it can 
involve collusion with linesmen and meter readers. For example, in Rio de Janeiro the local 
utility Ampla was able to reduce its revenue losses from 53% to 1.6% of the electricity 
supplied. This was mainly due to remote monitoring and disconnections [252]. 

70  Doran et al. [160] mentions a study which estimates that a 1% reduction in peak demand 
would translate to cost reductions of 4%, equalling billions of dollars at system level. 

71  According to EPRI [251], Smart Grids in the U.S. could potentially reduce 60 – 211 Mt CO2 
per year by 2030. This is equivalent to converting 14 - 50 million cars each year into zero-
emission vehicles under a “business as usual” scenario. 

72  Shifting demand, for example through electric vehicles, may in fact increase CO2 emissions in 
systems where base load is met with more CO2 intensive generation than peak load [160]. 
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regarding their integration into, and management within, the system need to be 
considered. 
 

Financing: The scale of investment required to enhance today’s grids to meet 
the demands of future power systems is considerable. However, the detailed 
monetary implications are not yet fully understood [166]. Based on the IEA’s 
New Policies Scenario, total investment in transmission and distribution is 
expected to reach USD 278 billion for Africa over the period 2011 – 
2035 [127]73,74. 2.1% of these investments will be required for the integration of 
renewable energy sources. In addition to the investments in the New Policies 
Scenario, USD 390 billion (in year-2010 dollars) would be needed over the 
period 2010 – 2030 to achieve universal access to electricity by 2030. Almost all 
of this additional amount would be required in sub-Saharan Africa75 and only 
one third of it is expected to target on-grid solutions. 

While the additional costs for massively upgrading existing grids to Smart Grids 
might not be justifiable, the business case when investing in new infrastructure 
is considerably better. This offers significant opportunities for sub-Saharan 
Africa (refer to Fig. 4 in Section 1.1.2 of Part A for an indication of the grid 
infrastructure requirements). Yet, the capital and operating costs associated with 
communication networks of Smart Grids are high, especially as suppliers lack 
economies of scale and price-in delivery risk [252]. The benefits are more 
difficult to monetise than the costs and issue of on-going debate. In general, 
utilities are characterised as risk-averse and may be conservative in assessing 
their benefits76. Free-riding strategies might result in strategically delayed 
investments [256]. The situation gets further complicated as cost might occur in 
one, but benefits throughout many sectors of the power system77. This is not 
only an issue for utilities. It will as well need to be ensured that customers profit 

                                                      
73  Barriers to Smart Grid investments are listed in MEF [163]. 
74  According to the Brattle Group [254], the U.S. electric utility industry is expected to invest 

USD 1.5 - 2.0 trillion in infrastructure within the next 20 years. For comparison, the total asset 
value of the electricity sector in the U.S. is estimated to exceed USD 800 billion, with 30% in 
distribution and 10% in transmission facilities [199]. 

75  In East Africa alone, billions of dollars will be required for supply and transmission 
infrastructure over the next two decades [19]. 

76  Resulting decision making may be assessed drawing on prospect theory combined with multi-
criteria acceptability analysis [255].  

77  For example, in many cases the benefits of reduced line losses are considered as customer 
benefits [252]. 
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from the costs they have to bear. Supportive financing schemes might be 
required to enable them to cover upfront investments. While the overall benefits 
of Smart Grid investments outweigh the costs according to the IEA [183], 
developing a business case becomes a challenge. 
 

Human Capacities: Smart Grids redefine the roles of power sector 
stakeholders, from those at policy and institutional levels to power equipment 
manufacturers, ICT providers, generators and consumers. Developing the 
required human and institutional capacities to best respond to stakeholder needs 
and responsibilities78 will be essential for their successful implementation, 
especially given the major role of institutions to ensure social justice [257]. 
According to the IEA [166], technical capacity has to be developed from a 
relatively low level in developing countries, lending further prioritisation to 
capacity-building initiatives. For some larger and individual interventions, e.g., at 
the transmission level, it might be most efficient to ‘import’ expertise at the 
design stage. This will however not be sustainable for on-going efforts like the 
daily grid operation or continuing grid extensions at the distribution level. 
Ensuring technical expertise at the utility level will therefore be key. 
 

Policy, Regulation & Standards: Policy support will be essential to trigger the 
required investments in developing countries. They need to facilitate a balanced 
approach towards the sharing of costs, benefits and risks between key 
stakeholders [161]. They are as well required to protect consumers against the 
negative impacts associated with the collection of consumer data and remote 
disconnection [258]. For developing countries, they are essentially important to 
ensure the justness of electrification plans. This includes as well the just 
distribution of costs across consumer groups, as energy expenditures have been 
shown to have a disproportionately high impact on those with a lower income 
level [259]. 

Novel regulatory regimes will be needed, not least to incentivise innovative ways 
of enhancing access to the grid, but also to reward improved performance as 
opposed to only focusing on network infrastructure. The future grids required 
in sub-Saharan Africa may offer fertile ground for a radical departure from 
traditional regulation and grid design practices. A relaxation of power quality 
and reliability standards based on the advances of Smart Grids may enable sub-

                                                      
78  A description of these needs and responsibilities can be found in ETP Smart Grids [154]. 
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Saharan Africa to balance asset- and performance-based options79 and profit 
from the associated significant cost savings potential. Standards are further 
required for equipment, data transport, interoperability and cyber security80. 
They could help promote supplier competition, accelerate innovation, expand 
the range of technological choices, facilitate interconnections and ultimately 
lower costs for consumers [161]. Their enforcement, notably regarding stringent 
logical (computer) security requirements, presents obstacles to all countries. It 
will however be even more challenging for countries without strong governance 
systems in place.  
 

Modelling: Given the increase in complexity of energy planning through Smart 
and Just Grids, power system modelling increases in importance to inform 
multi-criteria decision making. The required expansion and adaptation of 
traditional approaches to energy planning and modelling needs to include a 
more active role for demand, linkages with storage, and the integration of mini-
grids into plans for grid expansion. In addition to optimising electricity systems 
from a technical perspective, Just Grids need to be optimised from a 
development perspective. Ensuring services for marginalised and rural 
communities will often not be the most cost-effective solution. New constraints 
(or different objective functions) need to be added to expand traditional least-
cost optimisation models accordingly (for applications refer to, e.g., Hiremath et 
al., Herran and Nakata, Pachauri, or Welsch [243,261–263]). Further, limited 
access to finance might require reflection in the models, e.g., by considering 
capital cost curves as implemented by Ekholm et al. [264]. 

Modelling the flexibility of demand is often only possible to a limited degree in 
current energy system models. It may require in-depth knowledge and 
modification of the source code, which in many cases limits such applications to 
a confined circle of experts. OSeMOSYS may provide analysts with a new route 
to inform energy planning in developing countries. 

 

                                                      
79  However, the long-term goal to guarantee a strong and reliable HV grid in Africa as a 

backbone to the power systems should be kept in mind. 
80  Balijepalli, Khaparde, and Gupta [152] underline the need for open, performance-based 

standards to ensure modularity and interoperability. Basso and DeBlasio [260] present the 
status of IEEE standards on interoperability and interconnection. 
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1.5 Indicative Assessment 

Based on the criteria of the previous section, Table 1 provides an indicative 
assessment. In a single framework, it compares selected Smart and Just Grids 
options which are currently focused on in industrialised countries as well as 
options explicitly targeting developing countries. A brief outline of these options 
can be found in Section 1.3 of Part A of this thesis, where they are highlighted 
in italic and underlined.  

The assessment criteria are grouped according to the main categories, i.e., 
impact, requirements, and the applicability of models as a basis for quantitative 
future assessments. The qualitative ranking is provided by using “++”, “+”, 
“o”, “-“, and “--“, with “++” referring to strong potential drivers for the 
deployment of specific options, “--“ to very persuasive arguments against 
specific options, and “o” to categories which are neither drivers nor barriers81. 
As such, “++” in the category “Generation” may refer to significant reductions 
in peak demand and losses (as opposed to an increase in generation), or “--“ in 
“Technical Complexity” to significant requirements regarding the complexity of 
the technologies with little existing experience in their implementation. Annex B 
provides a brief explanation of the rankings for each assessment criterion. 

It is important to note that this qualitative assessment does not intend to, and 
cannot have, the character of a rough cost-benefit analysis. The individual 
circumstances essentially influence the impact of and requirements for the 
integration of specific elements of Smart and Just Grids. 
 
  

                                                      
81  Barriers for developing Smart Grids in South Africa can be found in Bipath [265]. Challenges, 

drivers and priorities in developing countries are mentioned in Bhargava [266]. 
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Table 1 

Qualitative categorisation of selected Smart and Just Grid options 

  

 

Table 2 describes the main characteristics of each selected Smart and Just Grids 
option in an individual box. Each box provides a concise statement for each 
assessment criteria, grouped according to the main categories, i.e., impact 
(Consumers/Operation & Quality of Supply/Generation/Environment), 
requirements (Technical Complexity/Investments/Human Capacities/Policy, 
Regulation & Standards), and the applicability of models as a basis for 
quantitative future assessments. 
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Local charging stations ++ + o + + + + + o

On-bill financing + o + + ++ ++ o - -

Mobile phone services ++ + o o o - + + -

Load control switches - + + o + + o o o

Integration of existing 

distributed generators
o ++ + o - + -- o o

Prioritisation of loads o + o o o o o - +

Improved power lines 

and transformers
o + ++ ++ - -- - - o

DC micro grids o o + + - + -- - o

Time-of-use/Real time pricing + + + o - - -- - o

Low cost access during 

off-peak hours
++ + o + - - -- - +

Data management tools and 

diagnostic software
o ++ o o - - - - --

Smart appliances o ++ + + -- -- - -- o

Wide-area monitoring 

and control
o ++ o o - -- - - --

Tariffs by service ++ o o o -- -- -- -- -

Distribution automation o ++ o o -- -- -- - --

Impact Requirements
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Table 2 

Characteristics of selected Smart and Just Grid options 

 

 

 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

64 

 

 
 
 

The categorisation in this section is guided by literature and largely based on its 
interpretation by the author of this thesis and the co-authors of the underlying 
journal paper [40]. The intention is to provide suggested direction for future 
initiatives, which would clearly vary to some extent when reassessed under 
specific on-the-ground conditions. A detailed and holistic assessment of the 
power sector will be a prerequisite in order to identify deployment pathways, 
which might ultimately turn out to contain a subset of the suggested options. 
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1.6 Further Work 

Regardless of which specific aspects of the Smart and Just Grid concept for sub-
Saharan Africa are pursued, international cooperation will be essential to 
realising its potential82. South–South cooperation could form an integral element 
of the required international action as many sub-Saharan African countries face 
challenges similar to those of developing and emerging economies such as 
India83. 

More specifically, Smart and Just Grids for sub-Saharan Africa can profit from 
coordinated efforts in the following selected areas: 

Analysis of potential and roadmaps: Identify sub-Saharan Africa’s potential 
to profit from Smart and Just Grids, including an assessment of associated costs 
and benefits. Based on electrification models, develop road maps for conditions 
which are common to many African countries, e.g., rural electrification, and 
support related efforts, for example by the IEA [161] or the scenarios developed 
for Africa by IRENA [267]. This includes the identification of technology 
solutions that could be rapidly and cost-effectively deployed in the short-term 
and would act as precursors towards long-term deployment pathways. 

Country assessments: Provide international support for a preliminary 
assessment of the power sectors and as well the specific needs of individual 
consumer groups like households or industry. Based on this assessment, develop 
country-specific business and development cases for Smart and Just Grids. 
Prioritise investments in specific smart elements with clearly defined 
mechanisms for return on investment84. 

Power system design: Develop and deploy internationally supported open 
source or widely available modelling tools and capacities for power system 
design and operation, adjusted to the specific context. It is critically important 

                                                      
82  According to Bipath [265], international cooperation for Smart Grids is expected to focus on 

standardisation, cybersecurity and interoperability. 
83  Balijepalli, Khaparde, and Gupta [152] report the detailed requirements and needs for Smart 

Grids in India. 
84  While the importance of business case development is emphasised, it needs to be recognised 

that many historical infrastructure projects were based on home-grown ‘nation-building’ 
initiatives. 
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that the system architecture developed enables future system upgrades without 
adding significant costs during early implementation stages. 

Pilot projects: Implement joint pilot projects based on identified fast-track 
solutions. These pilot projects will help understand stakeholder behaviour 
within their redefined roles and allow testing the markets before engaging in 
massive rollouts. Remote rural electrification schemes with higher penetration 
rates of renewable energy sources might serve as a particularly good starting 
point.  

Enabling environments: Help promote supportive policy, regulatory, 
institutional, legal and commercial frameworks. Sub-Saharan Africa could 
especially profit from ongoing efforts in industrialised countries to adjust related 
network standards. Additionally, legislation precedents could be employed to 
help reduce electricity theft85. Further, international design competitions could 
help highlighting challenges and develop innovative solutions.  

Capacity-building initiatives: Train key stakeholders based on skills assess-
ments. Developing the asset management capacities of African utilities and 
energy entrepreneurs to maintain technical systems and equipment will be vital 
for ensuring the sustainable deployment of Smart and Just Grids. 

Financing: Identify a range of financing sources, from donor grants to private 
sector loans, and map their potential role in supporting different Smart Grids 
options. These financing sources should target interventions covering both, 
power system upgrades and expansions, including mini- and micro-grid 
solutions. Appropriate support instruments should be developed which address 
the financing needs of different stakeholder groups. Reliable investment 
environments will be required which enable a fair way of sharing risks, costs and 
especially benefits.  

For a successful transition towards smart and just energy systems, international 
cooperation will need to be complemented by close engagement with regional 
and national stakeholders. While Smart and Just Grids require strong public 
commitment, including funding, the private sector as the main engine of 

                                                      
85  China’s major reform of the rural power management system in 1988, combined with rural 

grid enhancements, helped reduce losses in low-voltage grids by 30 - 45% and consequently 
lowered electricity prices. Refer to Niez [132] for further information. For another example, 
refer to India’s 2003 Electricity Act, which heavily penalises electricity theft [132].  
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economic growth has an essential role in supporting related initiatives in sub-
Saharan Africa. A close integration of the private sector in related efforts will be 
key. 

 

1.7 Conclusion 

Sub-Saharan Africa is characterised by significant electricity-related challenges in 
terms of resources, infrastructure, cost and sustainability. Finding ways of 
enhancing future power systems represents a key task for governments, regional 
power pool authorities and national utilities. Some Smart Grid approaches may 
enable sub-Saharan Africa to leapfrog traditional power systems practices in the 
short term. Others will require preconditions to be established today in order to 
avoid technology lock-in and ensure compatibility with future concepts and 
technologies. Further research will be essential in narrowing down these 
preconditions to ensure the successful implementation of elements of Smart and 
Just Grids. 

From an economic perspective, reliable energy supply through Smart and Just 
Grids will help foster economic growth. From an environmental perspective, 
Smart Grids will allow for a more efficient use of resources with lower 
associated greenhouse gas emissions. Most importantly, from a societal 
perspective, electrification is closely linked to many aspects of the development 
agenda. Therefore, accelerating electricity access by taking advantage of the 
opportunities offered by Smart Grid may speed up development efforts. 

The significant electricity infrastructure requirements in sub-Saharan Africa 
offer a unique opportunity to learn from the most developed power systems and 
move forward without necessarily repeating all of their previous development 
stages. We should take advantage of this significant opportunity to ensure that 
sub-Saharan Africa’s future grid is designed in a way that is both smart and just. 
Modelling elements of Smart Grids to identify their potential contribution may 
be a useful first step before piloting their implementation.  



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

68 

2 Modelling Elements of Smart Grids 

2.1 Introduction 

2.1.1 Rationale and Scope 

Smart Grids may be composed of a suite of approaches, tools and technologies. 
Selecting the most appropriate options requires informed choices based on 
multi-criteria decision making. Energy modelling has a long history of providing 
support for such decision making by helping to characterise related energy 
policies and strategies (refer to, for example, Huntington et al. [20], Rath-Nagel 
and Stocks [21], Jebaraj and Iniyan [22], the IAEA [86], Meier [268], Häfele et al. 
[269], and Baker et al. [270]). 

Commercially available analytical tools have developed organically over decades, 
gaining in maturity along with complexity. With the emergence of some popular 
families of modelling tools86 and supportive capacity building (e.g., by the 
IAEA, ETSAP, IEA, or IIASA [274–278]), an increasingly wide audience has 
learned to apply such tools. Only a small subset of energy modellers is required 
to understand the details of the underlying code and adapt it to meet their 
modelling needs. This is, however, a prerequisite when aiming to test novel 
concepts before they are integrated into off-the-shelf software. 

While many aspects of modern energy systems have been modelled using a 
range of existing tools, a comprehensive87 and openly available modelling 
framework to assess Smart Grid solutions at an energy systems level has not yet 
emerged. Examples of related efforts include the modelling of high penetration 
of renewable energy [81,279] enabled by Smart Grids [35], storage options to 
balance variable electricity generation [280], market assessments of Smart Grid 
approaches with the Electricity Market Complex Adaptive System (EMCAS) 
[36], the impacts of smart appliances on household demand [37], and the 
modelling of demand side management (DSM) policies based on assumptions 
regarding future technology efficiencies and their market penetration rates [38]. 

                                                      
86  For example, tools such as MESSAGE, TIMES and MARKAL are derived from the Häfele-

Manne approach [271] and often used for ‘multi-regional’ models. WASP, amongst others, 
constitutes a model that is frequently applied in Africa [272,273]. 

87  Including the ability to model high penetrations of variable electricity generation and its 
implications on grid stability and reliability; storage; demand side management and load 
control; spinning, supplementary and standby reserve; etc. 
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In addition, stability and reliability analysis may help address the increasingly 
complex dynamic management of voltage and frequency control, especially in 
view of the growing integration of variable renewable electricity [281–283]. 
Smart Grids may offer significant opportunities for expanding access to modern 
energy services in developing countries. Yet marginalised and rural communities 
might not be prioritised, often due to the lack of a solid business case for 
utilities or limited public finance. In order to simultaneously characterise the 
potential of Smart Grids to electrify poor communities and quantify the 
associated system-wide effects, extended least-cost optimisation models may 
provide valuable support to the development of an improved business case. 
They may further help to gain insights on more targeted public finance to 
accelerate electrification efforts. Yet, broadly applied medium- to long-term 
optimisation models like MESSAGE, TIMES and LEAP only provide limited 
functionality with regard to Smart Grids. 

For example, they do not enable a representation of the interactions of smart 
power system components with different electricity markets88 and associated 
operational strategies as described for simulation models with a shorter time 
horizon by Lund et al. [284] and Andersen and Lund [285]. This is because the 
different prices within different electricity markets at the same time cannot be 
exogenously defined. Rather, these models endogenously derive one single price, 
based on exogenously defined resource prices and energy service demands, 
assuming an economically optimised dispatch at the system level89. Further, 
related grid stabilisation requirements as presented by Lund [287] and Hong et 
al. [288] are traditionally not considered in medium- to long-term energy system 
models, even though generic methods for their simple representation exist90.  

While short-term models are best suited to analyse the interrelations of Smart 
Grids with electricity markets, medium- to long-term models help assess their 
impacts on capacity expansions plans. Enhancing the representation of the 
relevant key dynamics for such expansion planning in the model code requires 
in-depth experience, which is usually only available to a limited group of experts. 

                                                      
88  For example, day-ahead, intra-day or reserve markets.  
89  However, market splitting due to bottlenecks in transmission systems as considered in work 

by Lund [286] can usually be modelled by setting up multi-region models with transmission 
capacity constraints. The actual market prices within the regions then drives the regional 
capacity investments as well as investments in the transmission system between the regions.   

90  A generic way to model this in most medium- to long-term models would be to define a 
‘dummy fuel’ for the reserve services and assign power plants to produce this fuel in parallel 
to electricity [289]. Elements of Part B of this thesis build on this approach. 
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Flexible, transparent and open tools may therefore be increasingly useful to test 
out new hypotheses and approaches. 

Accordingly, an OSeMOSYS model is extended to be able to assess the 
potential implications of selected Smart Grid options on power systems. 
Specifically, Section 2 of Part A of this thesis focuses on modelling the ability of 
Smart Grids to enable increased demand response and help facilitate the 
integration of non-dispatchable generation combined with storage options [161]. 
First, it is briefly described how OSeMOSYS is extended. Section 2.2 provides a 
conceptual description of the individual code additions. This is followed by the 
algebraic formulation in Section 2.3. An application is presented in Section 2.4 
and concluding remarks in Section 2.5. The modified code itself is provided in 
Annex C. 
 

2.1.2 Extending OSeMOSYS 

OSeMOSYS serves as a useful and transparent tool to inform energy planning, 
as it easily allows the testing of new applications and formulations. First, it 
builds on an open source programming language and solver and therefore 
requires no upfront financial expenditures. Further, the code is relatively 
straightforward and well documented. The addition of new elements therefore 
only requires a relatively modest time commitment. Refer to Section 5.1 of the 
introduction of this thesis for further background on OSeMOSYS. 

In Section 2 of Part A of this thesis, the existing OSeMOSYS code is extended 
to represent specific Smart Grid options. These include variable electricity 
generation, a prioritisation of demand types, shifting demand, and storage 
devices. These ‘functional blocks’ are sorted by increasing complexity. This 
familiarises the reader with simple code additions before proceeding to more 
complex modifications. 

Given the multiple levels of abstraction used to describe these code additions, 
they can also be added into other models using a mathematical programming 
language such as GAMS (General Algebraic Modelling System) [290]. This 
requires the mathematical formulation to be translated into the specific 
programme language, and additional modifications to integrate it into the fabric 
of such models and ultimately into their objective functions. However, the 
descriptions of these code additions may also be useful for those using models 
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where changes to the underlying code are complex to implement91. For example, 
the description of the storage block provides a conceptual understanding of a 
model element, which might otherwise be applied as a black box if embedded in 
a more complex model. 

 

2.2 Conceptual description 

This section outlines the main principles of the code additions and provides a 
‘higher-level guide’ to the detailed algebraic formulation presented and explained 
in Section 2.3 of Part A of this thesis. In this section, cross references are 
employed which are indicated by bracketed labels. These refer to the detailed 
algebraic formulations. They further help identify the corresponding lines of the 
final code as presented in Annex C, where they appear at the beginning of each 
constraint. 

The temporal resolution in OSeMOSYS is defined by consecutive years 
modelled, which are themselves split up into so-called ‘time slices’. Each of 
them combines a fraction of the year with specific load and supply 
characteristics. One time slice could, for example, represent all the weekend 
evenings in summer, another one the weekday evenings in winter. As such, the 
time slices have no inherent chronology. This is a main difference to a short-
term model like EnergyPLAN, which is run chronologically at a higher time 
resolution of hourly intervals [84]. While some information is lost through the 
definition of time slices, for the core code of OSeMOSYS such a temporal 
aggregation is preferable: the computational requirements can be significantly 
reduced and data entry simplified, especially considering the focus on long-term 
capacity planning. However, chronological information is required when 
modelling storage levels or when shifting flexible demand. 

Apart from the modelling of ‘Variability in Generation’ as described in the next 
chapter, conversion factors are therefore used in the subsequent additions to 
attribute each time slice to a specific season, day-type and ‘daily time bracket’. 
Seasons occur within a year, and day-types within a week, e.g., weekdays and 

                                                      
91  Examples may include the popular MESSAGE [80,114], TIMES [73] or MARKAL [106] 

models. 
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weekends. Daily time brackets refer to a defined timespan within one day, e.g., 
one hour, or mornings, afternoons and evenings92. 
 

2.2.1 Variability in Generation 

The integration of variable renewable energy is a strong driver for the 
deployment of Smart Grids [154]. OSeMOSYS in its version as of 8 November 
2011 did not allow for the analysis of variable, non-dispatchable electricity 
generation. Expanding the model to do so required minor modifications. One 
way to do this is to alter the capacity factor93 parameter by increasing its 
temporal resolution from years to time slices. This provides the modeller with 
the flexibility to specify which technology is available and at what level 
throughout the year, for example, to constrain the night time output of solar 
panels as opposed to entering one average load factor for the entire year94. In 
this case, enhancing the functionality of OSeMOSYS is as simple as adjusting 
the two equations of the core code in which the capacity factor parameter 
appears (CAa4 & CAb1)95.  
 

2.2.2 Prioritising Demand Types 

Smart Grids may contribute towards optimised system operation, for example, 
by ensuring near perfect reliability and quality of supply for high priority 
demand types, while reducing the requirements for demand types which are less 
sensitive to these needs [166]. This is especially relevant with regard to the 
management of power outages, or load shedding [291]. Loads may be prioritised 
according to demand types such as emergency services, financial institutions, 
industries, and consumers [160]. 

In order to enable a prioritisation of demand types, the model is extended to 
allow for leaving some demand unmet should the cost of supplying this demand 
exceed a predefined cost. This cost is commonly referred to as value of lost load 

                                                      
92  For consistency, this new time resolution is also applied for the ‘Prioritising Demand Types’ 

addition, even though not explicitly required. 
93  The ratio of maximum available capacity to design capacity. 
94  Note that this functionality is already included in tools such as MESSAGE and TIMES. 
95  Denominations as in the core code. 
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(VoLL) [292,293], or the cost of unserved energy (CUE) [294]. It could be 
interpreted as a measure of the resulting economic loss incurred by the 
customers, or indicate the cost below which it would be cheaper either not to 
meet demand, or meet it by other means such as with private backup generators 
or different fuel sources.  

Several demand types can be entered with different degrees of flexibility and 
priority, i.e., shares of the loads which may remain unmet and prices per unit of 
energy demand which is not met. A demand type is entered as an overall daily 
demand with a specific demand profile, defined for each day-type, season and 
year. First, the rate of a demand is calculated for each time slice (D3). Within 
the core code of OSeMOSYS, a rate refers to an amount of electricity per 

timespan. The unit of a rate of a demand might therefore conveniently be chosen 
as kilo-, mega- or gigawatt. The rate of the unmet demand is then constrained 
to be smaller than a predefined share of the rate of demand (UD1). Next, the 
unmet demand within each time slice (UD2) and throughout the year (UD3) is 
derived. The yearly costs for not meeting a demand are calculated (UD4) and 
discounted to the beginning of the first year of the modelling period (UD5). 

In order to integrate this prioritisation into the core code of OSeMOSYS, the 
rate of demand is split up into an inflexible ‘standard demand’ which has to be 
met whenever it occurs and flexible demand types which may be prioritised 
(D1a). The standard demand is calculated analogously to the flexible demand 
(EQ-rev = D2). Next, the costs for not meeting a demand need to be integrated 
into the objective function, which minimises the total discounted costs. In the 
core code, these total discounted costs were limited to technology related costs. 
The reference to technologies is removed from the total discounted costs 
(OBJ_rev, Acc4_rev) in order to be able to include costs related to not meeting 
a demand (TDC2a). The discounted costs which relate specifically to 
technologies are now renamed to differentiate them from costs related to not 
meeting a demand (TDC1_rev). With this final step, the prioritisation is an 
integral part of the OSeMOSYS code. 
 

2.2.3 Demand Shifting 

Smart Grids may further enable more efficient asset utilisation by decoupling 
growth in generation from peak load growth by shifting peak load to off-peak 
times [9]. About half of private household demand is estimated to provide this 
flexibility [295], such as dishwashing, washing of clothes, air conditioning and 
heating. In the transport sector, electric vehicles may provide this flexibility 
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[296]. In industry, related examples include electric boilers or process heat 
requirements. At a municipal level, pumps linked to water supply reservoirs can 
be called on. 

While heat pumps or hydrogen production for vehicles96 serve as flexible 
demand types, a demand within OSeMOSYS generally refers to a final 
consumer demand, e.g., electricity or vehicle-kilometres. A system with a heat 
pump would therefore not be modelled as a flexible demand, but as a 
technology with electricity as an input fuel and heat and cold as two output 
fuels to meet some potentially flexible demand. Similarly, hydrogen fuel cell cars 
could be modelled as one technology consuming electricity and producing 
hydrogen, and another technology representing the fuel cell car, which 
consumes hydrogen to meet a demand for vehicle-kilometres. Both 
technologies would be linked to the same storage device. Several vehicle types 
consuming different fuel types like hydrogen, ethanol or electricity could then 
‘compete’ for one demand for vehicle-kilometres. Some flexibility could then be 
added to this final demand, if required by the analyst. 

The main value added of the expansion of OSeMOSYS presented in this 
chapter is its user friendliness, as it allows modelling flexible demand in a 
straightforward manner with a couple of input parameters rather than through 
additional equations, as is the case in some other medium- to long-term energy 
system models [298]. The analyst can define the maximum timespan within 
which a final demand can be met earlier or later within a day. Further, a cost can 
be defined for each timespan that a demand is shifted. Such a cost could 
represent an ‘inconvenience cost’ a utility might offer to pay their customers in 
order to compensate their flexibility. Alternatively, such a cost could relate to 
‘storage’ losses, for example when heating up a building earlier as needed. 
Additional investments might be required to facilitate this flexibility while 
minimising a reduction in quality of service for customers. Such investments 
may be due to required smart switches and appliances and can easily be added 
in the technology definition within OSeMOSYS. 

In order to simulate demand shifting, the model is extended to allow demand to 
be met in advance or delayed within a given day. A ‘storage’ ability of an 
appliance is assumed, which can ‘store’ demand97 for some time. The storage is 

                                                      
96  Refer to Hake et al. [297] for an elaboration of the role hydrogen might play in future energy 

systems.  
97  As opposed to energy. 
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charged when the original demand is reduced98. The storage is discharged when 
this shifted demand is met, leading to an increase over the original demand at 
that time. Several flexible demand types can be entered with different degrees of 
flexibility, i.e., shares which may be shifted and timespans within which they 
have to be met, both for advanced and delayed loads. For each flexible demand, 
a cost per amount of energy and timespan shifted needs to be defined. If 
invoked, this cost also ensures that demand is only shifted as little as necessary 
for the purpose of reducing overall system costs. 

Similar to the prioritisation of demand types, a rate of a flexible demand is 
calculated (D3), i.e., an amount of energy per timespan which is characterised by 
some degree of flexibility. The actual shifted demand is then constrained to be 
smaller than the predefined share of the flexible demand (DS4). The charging of 
the storage for the shifted demand is calculated separately for loads which are 
delayed (DS2) and loads which are met earlier (DS3). Both are added to obtain 
the overall charge (DS1).  

The delayed loads are then constrained in several ways: (DS5) ensures that all 
delayed loads are ultimately met within a day; (DS6) ensures that within a day 
loads are first reduced before these reduced loads are then met at a later stage; 
and (DS7) ensures that they are met within the predefined delay. Loads which 
are met earlier are calculated analogously through the equations (DS8 – DS10). 

Next, each shifted load is multiplied by the time it is shifted (DS11 & DS12). 
The costs of shifting demand are then obtained through multiplication with the 
cost for shifting a demand by one hour (DS13). These costs are then discounted 
to the start year of the modelling period (DS14). 

Demand shifting is integrated into the core code in a very similar fashion as the 
prioritisation of demand types through the equations (D1b, EQ_rev = D2, 
OBJ_rev, Acc4_rev, TDC1_rev & TDC2b). They ensure that the overall 
demand is adjusted to include flexible demand types and that the costs for 
shifting a demand are minimised as part of the objective function. 
 

                                                      
98  Consider as an example a refrigerator which stops cooling when power is expensive, drawing 

on its ‘cold storage inertia’ to meet its cooling needs at a later or earlier stage, but at a lower 
cost. 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

76 

2.2.4 Storage 

As renewable electricity portfolios expand in many countries, the importance of 
gaining a better understanding of storage options is increasing [299]. System 
planners not only need to optimise the overall storage capacity, but also the mix 
of different technologies, from bulk to distributed storage, and from electricity 
to fuel and heat storage [300]. 

The methodology to model storage is straightforward. The model allows either 
storing or discharging energy during a time slice as long as storage levels remain 
within their prescribed minimum and maximum values. If these storage 
boundaries don’t suffice, the model will investigate if new storage capacities 
should be added at a given cost of investment per unit of storage capacity. 

In contrast to an hourly model like EnergyPLAN [301], storage calculations in 
medium- to long-term models are strongly characterised by the time slices the 
analyst chooses. Time slices represent fractions of the year with a specific load 
characteristic, for example, morning hours of weekdays in autumn. All model 
input parameters are defined as being constant within each time slice. Therefore, 
during each day within a specific day-type and each week within a season, 
exactly the same conditions for all generation and demand prevail. Charging and 
discharging patterns are consequently identical during such periods and repeat 
themselves until a new day-type or a new season starts. 

As illustrated with dashed circles and capital letters in Fig. 5, extreme values can 
therefore only occur during the first and last week of a specific season, and 
during the first and last occurrence of a specific day-type. In order to avoid 
having to analyse if storage levels are within their boundaries at every instant 
throughout the year, only these times where extreme values may occur are 
assessed. This is done by adding up all energy charged and discharged 
throughout the modelling period up to this point. 

For example, in Fig. 5, weekdays and weekends are the only two day-types 
defined within a season. The storage content is lower on Monday evening than 
on Monday morning of the first week in this season. Therefore, the storage 
levels have to be even lower on the Friday of this first week, as storage patterns 
are repeated during one day-type. Weekdays in-between do consequently not 
require any consideration with regard to their storage levels. Further, the storage 
levels are lower on Sunday evening than on Monday evening of the first week. 
Considering that also the overall weekly patterns are repeated within one season, 
they have to be even lower on the last Sunday in this season. Consequently, the 
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storage levels of the last Sunday within the first week do not need to be 
assessed, and neither do the storage levels in the weeks in-between. 
 

 
 

Fig. 5: Storage levels in the first and last week of a season 

The capital letters [A] – [P], equations (S10 – S14), constraints (SC1 – SC4)  
and vertically aligned variables are cross referenced to text within this section  

and the algebraic formulation (refer as well to the online supplement). The storage  
boundaries are assessed for those levels which are referred to by capital letters. 

 

The accuracy of the storage calculations – and the model in general – is strongly 
dependent on the careful definition of time slices by the analyst. In general, an 
increased number of time slices will lead to an increased accuracy, but at the 
cost of a more complex model, both with regard to data handling and 
computational performance requirements. Should more detailed insights into 
yearly storage operations and strategies be required, an hourly model as 
described and applied by Connolly et al. [302] might be preferable to a medium- 
to long-term investment optimisation model like OSeMOSYS. 

Storage is implemented in OSeMOSYS in a similar fashion as in other models 
such as MESSAGE, TIMES or MARKAL. For simplicity, several potential 
characteristics of storage options are not taken into account. For example, when 
considering a hydropower plant connected to a reservoir, such characteristics 
could include evaporation and a dependency of the electrical output on the 
reservoir water level.  

When considering battery storage systems, such characteristics could include a 
dependency of the battery lifetime on the depth of discharge, or of the storage 
capacity on the rate of discharge, i.e., the amount of energy which is withdrawn 
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within a certain timespan. This is for example considered in other modelling 
tools such as HOMER [303]. When ‘vehicle-to-grid’ (V2G) storage should be 
modelled, such characteristics would include the availability of the maximum 
storage capacity as a function of the day time. When modelling heat storage, 
such characteristics include heat transfer, for example as modelled by Fitzgerald 
et al. [304]. Most of the outlined characteristics can easily be added to the model 
as needed, as long as the algebraic formulation complies with the requirements 
of linear optimisation. 

A storage facility can be charged during the operation of one or more 
technologies in a specified mode of operation and discharged in another mode99. 
Allowing to link more than one technology to a storage option enables the 
modelling of a variety of technical options and management practices. For 
example, a simplified representation of compressed air energy storage (CAES) 
with constant isentropic efficiencies could be modelled by defining a technology 
which uses electricity to store air, while another technology produces electricity 
by withdrawing air and consuming natural gas. This would also allow modelling 
a simultaneous operation of compressor and expander when electricity prices 
are high [305].  

Further, a pumped storage hydropower plant could be modelled as a technology 
linked to a reservoir. This technology would store energy with associated 
pumping efficiencies in one mode of operation, while withdrawing energy with 
associated turbine efficiencies in another mode of operation. A second 
technology could be added to represent water withdrawals for irrigation 
purposes, reducing the stored energy available for electricity generation. As 
such, at least a basic representation of the water, energy and food security nexus 
as described in Part C can easily be implemented in OSeMOSYS. In the 
following, the storage calculations are explained in more detail. 

The storage charges are constrained to be within a predefined minimum and 
maximum rate (SC5 & SC6). Multiplying the rate of activity of a technology with 
the efficiencies of storing or discharging energy with this technology will give 
the actual charge or discharge rate100 (S1 & S2). The parameters to describe 

                                                      
99  Consider for example a pumped storage hydropower plant. When the power plant is 

operating in discharge mode, the rate at which the storage level drops is a function of the 
generated electricity. If there is more than one turbine discharging water the cumulative effect 
of all turbines is used to calculate the storage discharge. 

100  Note that the rate of storage charge or discharge is a function of the technologies linked to 
the storage and their parameters, as opposed to storage parameters. Again, considering the 
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these efficiencies are referred to as ‘TechnologyToStorage’ and ‘Technology-
FromStorage’. These parameters also serve to define which technologies are 
linked to which storage facilities. The net charge within a time slice is obtained 
through multiplication of the charging minus the discharging rate with the 
duration of that time slice (S3 & S4). 

The storage levels at the beginning and end of each year, season and day-type 
are calculated by summing up the net charges over all preceding time slices (S5 – 
S15), starting from a specified level at the beginning of the first year of the 
modelling period. This allows calculating the storage levels indicated as [A, F, K, 
P] in Fig. 5. The net charge is added to these levels during one daily time bracket 
after another throughout the following day to verify if the storage levels are 
within their minimum and maximum (SC1 & SC4) [A, B, C, F, G, H, K, L, M]. 
Similarly, the net charge is subtracted to assess storage levels in the previous day 
(SC2 & SC3) [F, E, D, K, J, I, P, O, N]. 

The maximum capacity (SI1) is composed of the accumulated storage additions 
minus retirements based on the lifetime of the storage (SI3), plus all 
exogenously given capacities. Exogenous capacities may be composed of 
residual capacities from before the modelling period, or capacity additions 
which are scheduled to happen within the modelling period101. The minimum 
capacity is defined as a fraction of the maximum capacity (SI2). It serves to 
ensure that the storage unit is never emptied completely, e.g., to increase the 
lifetime of batteries.  

Next, the investments in storage are calculated in order to be able to integrate 
the storage equations into the objective function and ensure overall system costs 
are minimised102. The required investments are assumed to be directly 
proportional to the additional storage capacities, which are measured in terms of 
stored energy (SI4). Further, the salvage value of a storage facility at the end of 
the modelling period is calculated (SI6 – SI8). Both, the investments in storage 

                                                                                                                              
pumped storage example, the capacity of the turbine (e.g., in MW) limits the rate at which 
electricity may be generated, while the upper minus the minimum level of the dam constrains 
the storage capacity (e.g., in MWh). 

101  For example, the construction of a reservoir of a pumped storage hydropower plant is decided 
years before its actual implementation. If such an investment is defined exogenously, it will 
not be part of the optimisation and its costs will not be accounted for in the model. 

102  This is only required if the model should have the capability to optimise storage capacity 
additions. Alternatively, all storage capacities and their lower and upper limits could be 
defined exogenously as parameters. 
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and the salvage values are discounted to the beginning of the first year of the 
modelling period (SI5 & SI9). The total discounted storage cost is obtained by 
subtracting the salvage values from the capital investments (SI10). 

Storage is integrated into the core code similarly to the prioritisation of demand 
types and demand shifting through the equations (OBJ_rev, Acc4_rev, 
TDC1_rev & TDC2c)103. They ensure that storage related costs are minimised 
as part of the objective function. 
 

2.2.5 Bringing It All Together 

Some modifications are required in order to integrate all code additions into the 
core code of OSeMOSYS104. In the individual code blocks for prioritising 
demand types and demand shifting, only up to a predefined fraction is allowed 
to remain unmet (UD1) or to be shifted (DS4). It needs to be specified how the 
model reacts when both occur at the same time. For this purpose it is simply 
assumed that whatever is greater, the maximum share of the demand which may 
be shifted or the maximum share of the unmet demand, determines the 
minimum amount which has to be met instantly For example, if 10% are 
allowed to remain unmet and 30% may be shifted, then 70% have to be 
supplied at exactly the time when the demand occurs (D4 & D5). 

The remaining modifications of the core code are similar to the previous 
additions: the rate of demand of the core code is adjusted to include flexible 
demand types (D1, EQ_rev = D2) and the new cost components are integrated 
to allow for their minimisation as part of the objective function (OBJ_rev, 
Acc4_rev, TDC1_rev & TDC2). As equation (D3) defines flexible demand for 
both, prioritisation of demand and demand shifting, it only needs to be added 
once. With these final steps, OSeMOSYS will be able to model variable 
electricity generation and find the optimal mix between storing energy and 
shifting certain demand types while considering their different priorities. 

 

                                                      
103  However, in this case there is no need to modify any demand related calculations of the core 

code. 
104  Adding all the combined blocks to the original code does not require each of them to be used 

in a model run. The blocks that actually have to be used are defined by the data file. 
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2.3 Algebraic Formulation 

2.3.1 General 

Section 2.3 of Part A of this thesis explains the mathematical formulations used 
to model the enhanced functionality outlined in Section 2.2 of Part A of this 
thesis105. Refer to Section 2.4 for an application.  

All code additions presented in Section 2.3 refer to the core model code106 in its 
version of 8 November 2011, as downloadable via the OSeMOSYS website 
(www.osemosys.org). However, the previous basic storage equations (denoted in 
the OSeMOSYS code as S1 – S6) have been removed since they were replaced 
by a more elaborate storage model107. 

Box 1 provides a brief explanation of all indices used in the algebraic 
formulations. 
 

Box 1: Indices Used in Equations to Model Elements of Smart Grids 

Squared brackets indicate the values these indices might have. Note that they are sequential, 
i.e., season 4 follows season 3, day-type 2 follows day-type 1, etc. 

y … Year [sy = start year, sy+1, sy+2, …, fy = final year] 

yy … Same as year; used in equations if two independent indices for years are 
required (e.g., equation SI3 mentioned in the online supplement, chapter 
1.2: Storage) 

l … Time slice: i.e., a fraction of the year with specific load characteristics. 

ls … Season [1, 2, …, fls = final season]: e.g., winter and summer 

ld … Day-type [1, 2, …, fld = final day-type]: e.g., weekdays and weekends. 

lh … Daily time bracket [1, 2, …, flh = final time bracket]: i.e., a timespan within 
one specific day 

lhlh … Same as daily time bracket; used in equations if two independent indices for 

                                                      
105  This section strongly relates to the nomenclature used in the core code of OSeMOSYS. 

Howells et al. [101] provide a more conceptual understanding for how the core code is set up. 
106  For an explanation of elements of the core model code refer to Howells et al. [101]. 
107  The storage equations S1 – S6 of the core code required the user to exactly know at what 

times extremes in the storage levels will occur. Further, they did not allow for an accurate 
calculation of storage costs and an optimisation of the overall available storage capacity. 
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daily time brackets are required, e.g., to describe a summation over daily 
time brackets lhlh up to a specific lh (e.g., equation DS11 mentioned in the 
online supplement, chapter 1.1: Demand Shifting) 

r … Region 

f … Fuel 

fdt … Flexible demand type, each with a different demand profile and degrees of 
flexibility 

t … Technology: e.g., a group of hydropower plants or a PV panel or an 
inverter 

s … Storage technology: e.g., one specific dam or a bank of batteries 

m …  Mode of operation: A storage facility should be charged during the 
operation of one or more technologies in one specified mode of operation 
and discharged in another. 

 
 

Whenever the following text refers to a rate (e.g., the rate of charging a storage 
facility, the rate of activity of a technology), it is measured in units of power 
rather than units of energy. All parameters which need to be entered by the 
analyst are described in Box 2 for all code blocks combined. They are indicated 
in bold within the equations below to differentiate them from model variables. 
Complying with the OSeMOSYS naming convention, rather long parameter and 
variable names were chosen to increase readability. 
 

Box 2: Parameters used to Model Elements of Smart Grids  

AvailabilityFactory,t,r – One minus the fraction of the year during which planned 
maintenance takes place. 

CapacityFactory,t,r – The ratio of available maximum capacity to the design capacity. 

CapacityToActivityUnitt,r – Relates the unit that capacity is measured in to the unit of 
activity. 

CapitalCostStorages,y,r – Investment costs of storage additions, defined per unit of storage 
capacity. 

Conversionls,l/ld,l/lh,l – Conversion factors to relate a time slice to a season, day-type and 
daily time bracket. 

CostFactorShiftedDemandfdt – Cost of shifting a load by one hour. 
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DaysInDayTypey,ls,ld – Number of days for each day-type within a week, i.e., out of seven. 

DaySplity,lh – Defines the length of one daily time bracket in one specific day as a fraction of 
the year108. 

DiscountRateDemand – Discount rate applied to demand related costs, e.g., due to 
demand which is not met or shifted. 

DiscountRateStorages,r – Discount rate applied to storage related investment costs. 

MaxAdvancefdt – Maximum number of time brackets a load may be met earlier within a day. 

MaxDelayfdt – Maximum number of time brackets a load may be delayed within a day. 

MaxShareShiftedDemandy,fdt,f,r – Fraction of flexible demand which can be shifted during 
a day. 

MaxShareUnmetDemandy,fdt,f,r – Fraction of flexible demand which can remain unmet 
within each daily time bracket. 

MinStorageCharges,y,r – Minimum storage capacity as a fraction of the maximum capacity. 

OperationalLifeStorages,r – Lifetime of storage options added by OSeMOSYS. This 
parameter does not affect exogenously defined 'residual storage capacities'. 

PriceOfUnmetDemandy,fdt,f,r – Penalty per unit of energy for not meeting a demand. 

ResidualStorageCapacitys,y,r – Exogenously defined storage capacities. 

SpecifiedAnnualStandardDemandy,f,r – Requirement for each output fuel throughout a 
year which has to be met instantly when it occurs. 

SpecifiedAnnualStandardDemandProfiley,l,f,r – Indicates the proportion of energy 
demand in each time slice. For each year, the sum must be equal to one. 

SpecifiedDailyFlexibleDemandy,fdt,ls,ld,f,r – Requirement for each output fuel throughout 
one day of a specific day-type, season and year which can be met flexibly throughout the 
day. 

SpecifiedDailyFlexibleDemandProfiley,fdt,ls,ld,lh,f,r – Indicates the proportion of flexible 
energy demand in each daily time bracket. For each day, the sum must be equal to one. 

StorageLevelStarts,r – Available storage capacity at beginning of the modelling period. 

StorageMaxChargeRates,r – Maximum rate at which a storage option may be charged. 

StorageMaxDischargeRates,r – Maximum rate at which a storage option may be 
discharged. 

TechnologyFromStoraget,m,s,r – Links technologies to a storage option in one mode of 
operation, and defines their discharging efficiency. A value of one equals an efficiency of 
100%. 

TechnologyToStoraget,m,s,r – Links technologies to a storage option in another mode of 
operation, and defines their charging efficiency. A value of one equals an efficiency of 
100%. 

TechWithCapacityNeededToMeetPeakTSt,r – Set equal to one for technologies which 

                                                      
108  Analogue to the YearSplit parameter. 
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have to satisfy a demand instantly (e.g., power plants) and zero for technologies which 
only need to be designed to meet a yearly demand (e.g., oil refineries). 

YearSplity,l – The length of each time slice as a fraction of the year. Its sum over a year 
should equal one. 

 

2.3.2 Variability in Electricity Generation 

In order to better model variable electricity generation, the dimensions of the 
capacity factor are extended to include time slices in addition to years. In the 
core code of OSeMOSYS, the capacity factor appears in the equations (CAa4) 
and (CAb1).  

(CAb1) ensures that all technologies have enough capacity available to satisfy an 
overall yearly demand. Their annual production, i.e., the sum of their production 
in each time slice, has to be less than their total available capacity multiplied by 
the fraction of the year for which the technology is available, and further de-
rated by the capacity factor. 

(CAa4) differentiates additionally between technologies which have to have 
enough capacity to satisfy a demand instantly throughout the year109. Their 
capacity de-rated by the capacity factor has to be larger than their rate of activity 
during any time slice. 

In the core code of OSeMOSYS, any rate is measured in units of energy per 
time, e.g., petajoule/year. Capacities might be measured in a different unit, e.g., 
gigawatt. The CapacityToActivityUnit is therefore required to ensure that the 
same units apply on both sides of the equation110. In both equations, the 

                                                      
109  E.g., while a power plant is generating electricity to meet demand instantly, an oil refinery 

might only need to be designed to meet the yearly demand for oil. This would require enough 
storage capacities to balance yearly fluctuations as a precondition. 

110  The CapacityToActivityUnit is equal to the number of units of energy which could be 
produced at a constant power output of one unit of capacity. However, if GWa was chosen as 
the unit for energy and GW for capacities, any rate would as well be measured in GW 
(=GWa/a). The CapacityToActivityUnit would then equal one. 1 GWa is the amount of 
energy a technology with a capacity of 1GW could generate throughout a year at maximum 
operation, i.e., 1 GWa = 365*24 GWh. 
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‘CapacityToActivityUnit’ parameter allows converting capacity units to activity 
units111.          ∑                                                                                                                                         

 (CAb1)                                                                                                                                                             (CAa4) 

The time slice dimension is added by simply adding a ‘l’ to the indices of the 
‘CapacityFactor’ parameter in equation (CAa4-rev). In equation (CAb1-rev) the 
capacity factor during each time slice additionally needs to be multiplied with 
the length of each time slice and summed up over the year to calculate the yearly 
average.         ∑                                          ∑                                                                                                                     (CAb1-rev)                                                                                                                                                               (CAa4-rev) 

With these changes, variable electricity generation can be modelled as an integral 
part of OSeMOSYS. 
 

2.3.3 Prioritising Demand Types 

2.3.3.1 Derived Variables and Constraints 

First, the rate of a flexible demand is calculated for each season, day-type and 
daily time bracket in a year. The overall daily demand is multiplied with the 
proportion of this demand within each daily time bracket, divided by its 
length (D3). 

                                                      
111  E.g., to relate MW of capacity to GWh of production. 
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                                                                                                                                                                                (D3) 

Within each daily time bracket, only up to a predefined fraction of the demand 
is allowed to remain unmet (UD1).                                                                                                                                  

 (UD1) 

In order to calculate the unmet demand, its rate is converted back from seasons, 
day-types and daily time brackets to time slices (UD2).                                     ∑                                                                                                         (UD2) 

The unmet demand is summed up over all time slices to get the annual unmet 
demand (UD3).                                       ∑                               (UD3) 

Its cost is calculated (UD4) and discounted back to the first year, assuming they 
would be incurred at approximately the middle of each year (UD5).                                   ∑                                                         (UD4)                                                                                                         (UD5) 

 

2.3.3.2 Integrating the Prioritisation of Demand Types 

 

Integrating Unmet Demand into the Overall Demand 

The rate of demand of the core code of OSeMOSYS needs to be modified, as 
demand is now composed of a standard demand as used in the core model, plus 
flexible demand types. Flexible demand may be reduced by not meeting parts of 
it in a given time slice. Conversion factors are used to convert a flexible demand 
back from seasons, day-types and daily time brackets to time slices, as used in 
the core model (D1a). 
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                                                           ∑ (                                                                                            )                                                (D1a) 

The terms in the demand equation of the core code (EQ) have to be renamed to 
differentiate the overall demand, which includes flexible demand, from the 
demand as defined in the core code. This demand as defined previously is now 
called standard demand (EQ_rev = D2).                                                                                                         (EQ)                                                                                                                                  ⁄  (EQ_rev = D2) 

 
 

Integrating the Costs of not Meeting Demand 

The original objective function of the core model (OBJ) is limited to costs of 
technologies. It therefore needs to be modified by removing its reference to 
technologies (OBJ_rev). This increases its applicability and allows including the 
cost of not meeting a demand as part of the total discounted costs.         ∑                               (OBJ)         ∑                           (OBJ_rev) 

This change directly affects equation (Acc4), which does not need to be 
summed up over each technology any longer (Acc4_rev).                               ∑                             (Acc4)                               ∑                         (Acc4_rev) 

As total discounted costs of the core model just relate to costs of technologies 
(TDC1), they are renamed accordingly (TDC1_rev).                                                                                                                                                                            (TDC1) 
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                                                                           +                                                                                                          (TDC1_rev) 

This allows for a modified calculation of the total discounted costs, where the 
overall costs of not meeting a demand are included and added to the overall 
technology related costs (TDC2a).                                ∑                                       ∑                                       (TDC2a) 

With this final step, the cost for not meeting any demand will be minimised as 
part of the objective function. 

 

2.3.4 Demand Shifting 

2.3.4.1 Derived Variables 

Several demand types that can be shifted may be entered. These demand types 
are characterised by entering an overall daily demand with a specific demand 
profile. The rate of such a flexible demand is then calculated for each season, 
day-type and daily time bracket (D3). As all relevant equations are valid 
individually for each flexible load type, it can be assumed that each flexible 
demand is stored in a different ‘storage’.                                                                                                                                                                                 (D3) 

The net charge of these storages is split up between the net charge of loads 
which are met in advance and those which are postponed. As with the flexible 
demand types, the storage to meet delayed loads can be seen as independent 
from the storage to meet demand in advance (DS1)112. 

                                                      
112  However, only up to a predefined fraction of a flexible demand may be shifted at any given 

time. This fraction is shared between demand which is postponed and demand which has to 
be met earlier. 
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                                                                                                                                           (DS1) 

The net charge is then calculated for both, delayed loads (DS2) and those which 
are met in advance (DS3), as the charge minus the discharge.                                                                                                                                                (DS2)                                                                                                                                                    (DS3) 

 

2.3.4.2 Constraints 

Within each daily time bracket, only up to a predefined fraction of the demand 
can be either postponed or met earlier (DS4).                                                                                                                                                                              (DS4) 

Next, constraints are described separately for loads which are met later and 
those which are shifted to earlier times. However, these constraints do not set a 
limit on the maximum share an exogenously defined demand may be increased 
through demand shifting. This means that theoretically a large demand which 
was supposed to be met at a specific time could be moved to another time 
where hardly any original demand occurred. In cases where this is not 
considered realistic, a simple new constraint similar to (DS4) would need to be 
formulated, just for the rate of discharging instead of the rate of charging. 
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Calculation of Delayed Loads 

For each day, the overall charge has to equal the overall discharge, i.e., the 
storage is empty again after each day113.                   ∑                                                      ∑                                                         (DS5) 

Up to every time bracket within a day, at maximum the amount can be 
discharged which was charged beforehand, i.e., the storage can’t be discharged 
below zero (DS6).                                     ∑                                                         ∑                                                            (DS6) 

To ensure that each load is met within a specified delay, the charge up to every 
time bracket within a day has to be lower than114, or equal to, what will be 
discharged up to this time bracket plus the maximum delay (DS7)115.                                (              )  ∑                                                         ∑                                                                        (DS7) 

 

  

                                                      
113  Not using the equal sign may support the mathematical solver in finding a solution. The actual 

rate of the delayed discharge will not be higher as the rate of charge, as this would involve a 
higher demand and ultimately higher costs. The rates are multiplied with the duration of each 
daily time bracket to allow for time brackets with individually varying durations. 

114  Note that charging is not necessarily required to be equal to the discharging, as a charging 
occurring after the assessed time bracket could as well still be discharged within the maximum 
delay. 

115  Due to the integration of the charge up to the final time bracket minus the maximum delay, 
this equation does not control what is happening in the last time period within a day-type. 
However, (DS5) ensures that this does not lead to charges being delayed without being met 
within this last period. 
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Calculation of Loads Met Earlier (‘Advanced Loads’) 

The following equations follow the same logic as the equations for the delayed 
loads. For every day the overall charge has to equal the overall discharge, except 
that in this case the assumed storage is required to be full again after each day 
(DS8). This means that the storage first has to be discharged before it can be 
charged, i.e., the storage can be used from the very beginning of a day-type to 
meet loads in advance which would actually occur later.                   ∑                                                       ∑                                                          (DS8) 

Up to every time bracket within a day, only at maximum the amount can be 
charged which was discharged beforehand (DS9). This means that the storage 
cannot be charged above its capacity, given that it is assumed to be full in the 
very morning.                                      ∑                                                            ∑                                                              (DS9) 

To ensure that each load is met within a specified time in advance, the discharge 
up to every time bracket minus the maximum time that loads can be advanced 
has to be lower than116, or equal to, the charge up to this time bracket (DS10). 

                                (                 )   ∑                                                                        ∑                                                             (DS10) 

 

  

                                                      
116  Note that it is not necessarily required to be equal to the charge, as a discharge occurring after 

the assessed time bracket could as well still be charged within the maximum time that loads 
can be delayed. 
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2.3.4.3 Minimising the Use of Flexibility 

The following equations sum up the all demand met later (DS11) and earlier 
(DS12), multiplied with the duration of every daily time bracket in which they 
are not met. For example, a capacity of 100 kW is assumed to be required for 
two hours. If this demand is shifted by 4 hours, (DS11) and (DS12) would 
return a value of 800 (100 kW x 2 hours x 4 hours). As the duration of a daily 
time bracket is entered as a fraction of the year, it needs to be multiplied with 
the hours within a year to receive values related to hours. Note that these 
equations refer to the loads shifted within one specific day.                                                              ∑                       ∑                                                                                                                       (DS11)                                                              ∑                                ∑                                                                                                                (DS12) 

The weeks within a season can be calculated by summing up the length of all 
time slices which relate to this season, multiplied by the number of weeks per 
year. Conversion factors have to be used to assign the length of time slices to a 
season, daily time bracket and day-type.  ∑                                                                     (-) 

The costs for shifting loads are then calculated by adding the equations (DS11) 
and (DS12), multiplying them with the number of weekdays within a day-type 
and summing them up for each day-type and fuel. This is then multiplied by all 
weeks within a season as described above and summed up over all seasons. The 
result is then multiplied by a cost factor which represents the cost of shifting 
demand by one hour.                                                                 ∑ {∑                                                                                                                     ∑                                                                      } (DS13) 
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The costs are then discounted back to the first year, assuming they would be 
incurred at approximately the middle of each year (UD5).                                                                                                             (DS14) 

 

2.3.4.4 Integrating Demand Shifting 

 

Integrating Demand Shifting into the Overall Demand 

Similarly as with the prioritisation of demand, the overall demand is defined as a 
standard demand as used in the core model, plus flexible demand types. The net 
charge of the assumed storage is subtracted from the flexible demand. 
Conversion factors are used to convert a flexible demand back from seasons, 
day-types and daily time brackets to time slices (D1b).                                                           ∑ (                                                                                         )                                               (D1b) 

The demand as defined in the core code of OSeMOSYS (EQ) is renamed to 
standard demand to differentiate it from flexible demand (EQ_rev = D2).                                                                                                                                 ⁄  (EQ_rev = D2) 

 
 

Integrating the Costs of Demand Shifting 

As with the prioritisation of demand, the original objective function of the core 
model (OBJ) needs to be modified to allow for the inclusion of other than 
technology related costs (OBJ_rev). Equation (Acc4) does not need to be 
summed up over each technology any longer (Acc4_rev) and the total 
discounted costs (TDC1) are renamed to indicate that they just relate to costs of 
technologies (TDC1_rev). 
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        ∑                           (OBJ_rev)                               ∑                         (Acc4_rev)                                                                                                                                                                                      (TDC1_rev) 

This allows for a modified calculation of the total discounted costs, which adds 
the overall costs of shifting demand to the overall technology related costs 
(TDC2a).                                ∑                                       ∑                                         (TDC2b) 

With this final step, the cost for not meeting any demand will be minimised as 
part of the objective function. 
 

2.3.5 Storage 

2.3.5.1 General Storage Equations 

Within this section, a letter within squared brackets, e.g., [A], indicates that the 
following equation is required to calculate the storage level for this point as 
shown in Fig. 5. The figure supports the explanations of the following storage 
equations. It illustrates the very first and last week of Season 3. Overall, 4 
seasons, 2 day-types (weekdays from Monday until Friday and weekends) and 3 
daily time brackets are assumed for these explanations. 
 
 

Charging and Discharging 

The rate of activity of a technology is multiplied with the efficiency of storing 
energy to a storage facility to calculate the rate of charge. OSeMOSYS calculates 
the rate of activity of a technology for each time slice. To relate it to seasons, 
day-types and daily time brackets, conversion factors are required (S1).                                                                                        ∑                                                                                                      (S1) 
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Similarly, the rate of activity of a technology is multiplied with the efficiency of 
retrieving energy from the storage facility to calculate the rate of discharge (S2).                                                                                         ∑                                                                                                        (S2) 

The net charge over the entire year in a given daily time bracket, day-type and 
season is calculated as the difference between the rate of charging minus the rate 
of discharging, multiplied by the length of the corresponding time slice (S3).                                                                                                                                                                                       (S3) 

Similarly, the net charge in a given time bracket within one specific day of a 
given day-type and season is calculated as the difference between the rate of 
charging minus the rate of discharging, multiplied by the length of the daily time 
bracket (S4).                                                                                                                                         (S4) 

 
 

Storage Levels at the Beginning and End of each Year 

For the start of the very first year, the storage level is given by the analyst (S5).                                                                    (S5) 

For subsequent years, the start level of the previous year is augmented by the 
net charge over all daily time brackets, day-types and seasons of that previous 
year (S6).                                                                           ∑                                             (S6) 
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The final conditions at the end of each year are equal to the start levels of the 
following year (S7). The only exception is the very last year, as in this case there 
is no year to follow.                                                                              (S7) 

For the last year, the final conditions at the very end of that year are calculated 
as the start level of the final year plus the net charge over all daily time brackets, 
day-types and seasons of the final year (S8)117.                                                                          ∑                                           (S8) 

 
 

Storage Levels at the Beginning of each Season 

The start conditions at the beginning of the very first season in each year are 
equal to the start levels in each year (S9).                                                                                  (S9) 

For subsequent seasons, the start conditions of the previous season are 
augmented by the net charge over all daily time brackets and day-types of that 
previous season [A] (S10).                                                                                        ∑                                          (S10) 

 

  

                                                      
117  This equation could theoretically be avoided, if the final levels of each year were simply 

calculated by adding the integration of the net charge over a year to the start conditions, 
similarly as for (S6). (S6) could then be replaced by setting the start conditions of a year to be 
equal to the final conditions of the previous year. However, this would require iterating 
between these two equations over the years, as the start conditions are required to calculate 
the finish conditions and vice-versa. This would be more challenging for a solver and, e.g., in 
one instance GLPK had problems finding a feasible solution. 
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Storage Levels at the Beginning and End of each Day-type 

The start conditions at the beginning of the very first day-type in each season 
are equal to the start levels in each season [A] (S11).                                                                                                            (S11) 

For subsequent day-types, the start conditions of the previous day-type are 
augmented by the net charge over all daily time brackets of one day of that 
previous day-type, multiplied by the number of week days in this day-type [F] 
(S12).                                                                                                  ∑                                                             (S12) 

The final conditions at the last day of the last season of a year have to be equal 
to the final conditions at the end of that year (S13).                                                                                                      (S13) 

For all previous seasons, the final conditions of the last day in a season are equal 
to the start conditions of the following season [P] (S14).                                                                                                             (S14) 

The final conditions at the end of the previous day-type in a season are equal to 
the final conditions of the following day-type minus the net charge over all daily 
time brackets within one day of that following day-type, multiplied by the 
number of week days in that day-type [K] (S15).                                                                                                                  ∑                                                             (S15) 
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2.3.5.2 Storage Constraints 

As mentioned in the previous section, it is sufficient to calculate only specific 
storage levels during the first and last week of a season in order to find extreme 
values. 
 
 

Assessing the First Week of a Season 

The storage level has to be within the minimum and maximum storage levels at 
the beginning of all daily time brackets of the first day of each day-type in the 
first week of a given season. This may approximate, for example, the operation 
during the first Monday of each season. It is calculated by adding the net charge 
during one time bracket after another, starting from the storage level at the 
beginning of the first day of the day-type [A, B, C, F, G, H] (SC1). However, 
this does not need to be calculated for the end of the last time bracket at the 
first day of a season (e.g., the first Monday in autumn, 24:00). The end of the 
last time bracket just has to be tested during the last day of this day-type in the 
first week (e.g., the first Friday in autumn, 24:00). This is because the daily 
storage pattern is repeated over and over again until the end of a day-type. If, 
e.g., a first Monday at 24:00 had an extreme storage value, it would even be 
more extreme at the first Friday.                                                                            ∑                                                                             (SC1) 

The storage level has to be within the minimum and maximum storage levels at 
the end of each daily time bracket at the last day of a given day-type in the first 
week of a given season. This may approximate for example the operation during 
the first Friday in autumn for all of its time brackets. This is calculated by 
subtracting the net charge backwards during one time bracket after another, 
starting from the start value of following day-type [F, E, D] (SC2)118,119.  

                                                      
118  Note that [F] was already tested in (SC1). This redundancy was taken into account for 

simplicity of the algebraic formulation. 
119  This does not need to be calculated for the last day of the last day-type in the first week (e.g., 

the first Sunday in autumn), as in this case it only has to be tested during the last week (e.g., 
the last Sunday in autumn). This is because the weekly storage pattern is repeated until the end 
of a season. If, for example, a first Sunday in autumn had an extreme storage value, it would 
even be more extreme at the end of the season. Also, it does not need to be calculated for the 
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                                                                                        ∑                                                                                 (SC2) 

 
 

Assessing the Last Week of a Season 

Similarly, the storage levels of the last week in a given season have to be tested 
to be within the minimum and maximum storage levels. At first, the levels at the 
end of all daily time brackets of the last day of each day-type in the last week of 
each season are calculated. This may approximate for example the operation 
during the last Friday in autumn. This is calculated by subtracting the net charge 
backwards during one time bracket after another, starting from the final 
conditions at the end of the last day of a day-type [K, J, I, P, O, N] (SC3)120.                                                                             ∑                                                                             (SC3) 

The storage level has to be within its bounds at the beginning of each daily time 
bracket for the first day of a given day-type in the last week of a given season 
(e.g., the last Saturday). This is calculated by adding the net charge during one 
time bracket after another, starting from the final conditions at the end of the 
previous day-type [K, L, M] (SC4)121.                                                                                           ∑                                                                             (SC4) 

 

  

                                                                                                                              
beginning of the first daily time bracket of the last day (e.g., Friday at 0:00), as this particular 
time of a day-type could only have an extreme value on the very first day within a season (e.g., 
the first Monday at 00:00). 

120  Again, this does not need to be calculated for the beginning of the first time bracket (e.g., the 
last Friday in autumn at 00:00). 

121  Similarly, this does not need to be calculated for the first day of the first day-type in the last 
week (e.g., the last Monday in autumn), as in this case it only has to be tested during the first 
week (e.g., the first Monday in autumn). Also, it does not need to be calculated for the end of 
the last daily time bracket of the first day (e.g., Saturday at 24:00). 
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Rate of Charge and Discharge 

The actual charge of the storage within a daily time bracket can be limited to a 
predefined maximum value (SC5).                                                                            (SC5) 

The same is true for the discharge within a daily time bracket (SC6).                                                                                   (SC6) 

 
 

Minimum and Maximum Storage Levels and Investments in New 

Storage Capacities 

The upper storage limit is calculated by adding exogenously defined capacities 
and accumulated storage additions, minus retirements based on the lifetime of 
the storage (SI1).                                                                                                  (SI1) 

A lower limit is calculated as a fraction of the upper limit (SI2).                                                                              (SI2) 

The accumulated storage additions are calculated by summing up all newly 
installed storage capacities until the year their operational life expires (SI3)122.                                                                                           ∑                            (SI3) 

                                                      
122  Consider a current year y with a storage addition some years earlier in year yy. The equation 

tests for all capacity additions previous to y if the operational life is larger than the current 
year y minus yy. Only if this is the case the storage is still considered in year y. Otherwise it is 
assumed to be retired. 
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These new storage capacities require capital investments, which are directly 
proportional to the new capacities (SI4). The investments are then discounted to 
the start year (SI5).                                                                                        (SI4)                                                                                                               (SI5) 

However, at the end of the modelling period capacity investments may still have 
a salvage value in case the storage facilities are still in operation. In all other 
cases, the salvage value is zero (SI6)123.                                                                              (SI6) 

If they are still operational and if the discount rate is zero, the salvage value is 
simply calculated by using a linear straight-line depreciation. This means the loss 
in value is spread equally over the lifetime (SI7).                                                                                                                                                                              (SI7) 

If the discount rate is larger than zero, the salvage value is calculated by using 
sinking-fund depreciation, as recommended by the IAEA [86]. This method can 
be interpreted as setting up a fund with constant end-of-year deposits 
throughout the lifetime of the storage facility. The deposits are assumed to earn 
interest and ultimately pay for the overall investment. The salvage value is then 
equal to the capital investment minus the accumulated value of the fund (SI8). It 
needs to be highlighted that this method leads to a lower depreciation in the 
first and a higher one in final years, inducing the model to increasingly invest 
towards the end of the modelling period. If this is not deemed appropriate by 
the modeller, this calculation can easily be replaced by any other depreciation 
method. 

                                                      
123  Note that an investment or capacity addition is always assumed to take place at the beginning 

of a year, while the salvage value is calculated for the end of the final year. If the final year fy 
would be 2020 and the lifetime one year, a storage addition in y = 2020 would have no salvage 
value, as 2020 + 1 − 1 ≤ 2020. 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

102 

                                               &                                                                                      

                                       (                                                    )  (SI8) 

The salvage value in the final year is then discounted back to the start year (SI9) 
and subtracted from the discounted investment costs to calculate the actual 
discounted storage cost (SI10).                                                                                                         (SI9)                                                                                                                        (SI10) 

 

2.3.5.3 Integrating the Storage Additions into OSeMOSYS 

As with the prioritisation of demand and demand shifting, the original objective 
function of the core model (OBJ) needs to be modified to allow for the 
inclusion of other than technology related costs (OBJ_rev). Equation (Acc4) 
does not need to be summed up over each technology any longer (Acc4_rev) 
and the total discounted costs (TDC1) are renamed to indicate that they just 
relate to costs of technologies (TDC1_rev).         ∑                           (OBJ_rev)                               ∑                         (Acc4_rev)                                                                                                                                                                                      (TDC1_rev) 

This allows for a modified calculation of the total discounted costs, which adds 
the overall storage costs to the overall technology related costs (TDC2c).                                ∑                                       ∑                                  (TDC2c) 

With this final step, the cost for every storage capacity increase will be 
minimised as part of the objective function. 
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2.3.6 Bringing It All Together 

2.3.6.1 Integrating the Additional Demand Types 

Equation (D3) defines the flexible demand for both, prioritisation of demand 
and demand shifting. Therefore, it only needs to be added once. The overall 
demand is defined as a standard demand as used in the core model, plus flexible 
demand types. The net charge of the assumed storage of the demand which may 
be shifted as well as the unmet demand are subtracted from the flexible demand. 
Conversion factors are used to convert the flexible demand back from seasons, 
day-types and daily time brackets to time slices (D1).                                                           ∑ (                                                                                                                             )                                                (D1) 

The demand as defined in the core code of OSeMOSYS (EQ) is renamed to 
standard demand to differentiate it from flexible demand (EQ_rev = D2).                                                                                                                                 ⁄  (EQ_rev = D2) 

 

2.3.6.2 Prioritisation vs. Demand Shifting 

It is assumed that whatever is greater, the maximum share of the demand which 
may be shifted or the maximum share of the unmet demand, determines the 
minimum amount which has to be met instantly. Consequently, if the maximum 
share of unmet demand is larger than the share of demand which may be 
shifted, than the unmet plus the shifted demand has to be smaller than or equal 
to the maximum demand which could remain unmet (D4). 
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                                                                                                                                                                                                                                  (D4) 

The other way round, if the maximum share of demand which may be shifted is 
larger than the maximum share of unmet demand, than the unmet plus the 
shifted demand has to be smaller than the maximum demand which may be 
shifted (D5).                                                                                                                                                                                                                                    (D5) 

 

2.3.6.3 Integrating the Additional Costs 

The original objective function of the core model (OBJ) needs to be modified to 
allow for the inclusion of other than technology related costs (OBJ_rev). 
Equation (Acc4) does not need to be summed up over each technology any 
longer (Acc4_rev), and the total discounted costs (TDC1) are renamed to 
indicate that they just relate to costs of technologies (TDC1_rev).         ∑                           (OBJ_rev)                               ∑                         (Acc4_rev)                                                                                                                                                                                      (TDC1_rev) 

This allows for a modified calculation of the total discounted costs, which adds 
the additional costs of not meeting demand, shifting demand and storing energy 
to the overall technology related costs (TDC2).                              ∑                                       ∑                                       ∑                                           ∑                                   (TDC2) 
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With this final step, all these costs will be minimised as part of the objective 
function. 

 

2.4 Application 

The following application serves to showcase the dynamics and enhanced 
functionality introduced through the code additions. 

For the purpose of illustration, the electricity system of a fictitious town with 
the following characteristics is assessed. The local utility is assumed to purchase 
most of its electricity from the larger national grid at different prices for base 
and peak load supply. A small share of the supply is provided by the town’s own 
PV installations. The town is assumed to have a constant overall demand, with 
the same daily load profile being applied throughout the modelling period (Fig. 
6). The highest demand occurs during the morning and evening hours, with a 
lower demand during night time. The local utility would like to explore options 
to reduce its dependence on the national grid in a cost-effective manner by 
minimising expensive imports of peak generation. 

 
Fig. 6: Demand profile of standard day 

 

The demand profile is assumed to remain constant over the modelling period 
2011 to 2030 with a peak of 100 MW124. The town purchases up to 75 MW of 
base load at a levelised cost of 62.0 USD/MWh and whatever peak load is 

                                                      
124  Demand was assumed to remain constant, as the optimisation of the overall generation 

capacity was chosen to be outside of the scope of this application. While being part of this 
enhanced version, optimising capacity additions is not new to OSeMOSYS and has already 
been described with the core code [101]. 
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required at 85.8 USD/MWh125. Additionally, 20 MW of PV are available 
constantly from 8:00 to 20:00 at running costs of 30.0 USD/MWh126 and with a 
yearly capacity factor of 20%. In this simplified model, seasonal fluctuations of 
PV availability have not been considered. A global discount rate of 5% was 
applied to all investments. Costs are based on values provided by the IEA [306]. 
While these values are derived from data from existing plants, it must be noted 
that the model was not set up to provide recommendations on specific Smart 
Grid options on a cost basis. It rather serves to demonstrate how such options 
can be modelled. 

Based on these common assumptions, the subsequent scenarios describe 
resulting dynamics for each code addition. The final scenario then combines all 
code additions. Refer to Section 2.4.6 of Part A of this thesis for details with 
regard to the computational requirements of the individual model runs. 
 

2.4.1 Variability in Generation 

This code addition allows modelling capacity factors to be time dependent 
within a year. When modelling the fictitious town, this addition is required to 
ensure PV is only dispatched to generate electricity during the daytime127. All of 
the following examples include PV generation and build on this code addition. 
This example can therefore be considered as the reference scenario. 
 

                                                      
125  Levelised costs are basically calculated as the sum of all discounted power plant related costs, 

including construction costs, divided by the total production during the lifetime of a power 
plant. Note that this does not include transmission and distribution costs. Base load was 
assumed to be generated by coal-fired power plants and peak load by gas-fired combined cycle 
turbines. For a more detailed definition of levelised costs and associated values refer to IEA et 
al. [306]. 

126  As all PV generation is assumed to be utility owned and investments happened in the past, it 
is dispatched by running costs. Peak and base load have to be bought from the national grid. 
Their price includes construction costs, as these costs have to be refinanced by the electricity 
provider. 

127  Note that storage is not yet included at this stage. 
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Fig. 7: Variability in Generation - Daily production in 2020 

 

When adding this code block to the core code, OSeMOSYS calculates an overall 
discounted yearly system cost in 2020 of USD 26.5 million. Fig. 7 shows the 
generation mix throughout a day in that year. During the morning, afternoon 
and late evening hours, base load supply from the grid is not used to its 
theoretical maximum of 75 MW, as indicated by the dark green bars in Fig. 7. 
PV generation as shown in light green is always used when available. Expensive 
peak supply from the national grid as indicated in red is required during the 
morning and evening peak hours. Cumulatively over one day, it amounts to 
109 MWh. 
 

2.4.2 Prioritising Demand Types 

In order to enable a prioritisation of demand types, a ‘flexible demand’ was 
introduced to the model. It was assumed that up to 10 MW of this demand may 
remain unmet throughout the day at an associated penalty to the local utility of 
70 USD/MWh128. All other demand is considered to be of higher value and thus 
priority, and has to be met at the time it is demanded throughout the day. 

Fig. 8 shows the results calculated by OSeMOSYS when adding this code block. 
The demand which may remain unmet is shown in light blue in Fig. 8a, with the 
continuous line indicating which demand is actually met by the model. The 
dashed line shows the original demand that was entered in the model. In Fig. 8b, 
the provision of expensive peak electricity as indicated in red is significantly 

                                                      
128  The VoLL can actually be significantly higher if calculated by dividing Gross Value Added by 

electricity consumed in a sector. For the Republic of Ireland, it was 4 EUR/kWh for the 
industrial sector, 14 EUR/kWh for the commercial sector, and 24.6 EUR/kWh for 
households [293]. 
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reduced between the hours 10:00 to 13:00 and 17:00 to 22:00. The base load 
grid supply as illustrated in dark green is dispatched as in the reference scenario. 
Overall, 96% of all demand is met, while the need for peak supply is reduced by 
72% compared to the reference scenario. 

Fig. 8a+b: Prioritising Demand Types - Results for 2020 

(a) Demand; (b) Production 

 

2.4.3 Demand Shifting 

In this scenario, a new flexible demand category was introduced. Up to 5 MW 
of this flexible demand category can be shifted +/- 1 hour at a cost of 
10 USD/MWh/hour-shifted, with all flexible demand having to be met 
ultimately. All other demand was considered fixed and has to be met at the time 
it is demanded throughout the day. Note that unlike in the previous case, no 
demand may be left unmet. 

The demand for electricity which may be shifted is shown in green in Fig. 9a. 
The continuous blue line on the top indicates the new demand profile after 
OSeMOSYS shifted some of the loads, while the dashed line shows again the 
original demand as entered into the model (blue plus green bars). The lines close 
to the x-axis indicate which loads have been met in advance (black line) or 
delayed (orange line), compared to the original profile. Negative values indicate 
periods when loads were reduced, i.e., the initial demand was ‘shifted’ away 
from these periods. Positive values indicate when loads were increased, i.e., 
these are the periods in which additional electricity was provided to meet shifted 
demand.  
 



 Part A – Integration Between Supply and Demand | Modelling Elements of Smart Grids 

109 

Fig. 9a+b: Demand Shifting - Results for 2020 

(a) Demand; (b) Production 

 

By way of illustration, some of the flexible demand is not met during hour 
13:00, as the blue line cuts into the green bars during that hour. The orange line 
has an associated negative value during this time, indicating that the demand will 
not be met then, but shifted to a later period. Similarly, demand is shifted from 
hour 22:00 to 23:00. Equivalently, demand is shifted at hour 10:00 as well as 
17:00 to be met earlier. This is indicated by the black line. 

Fig. 9b shows that this flexibility allows using almost all available base load from 
hour 09:00 to 23:00 (dark green bars), while drawing on PV whenever it is 
available (light green bars). This helps reduce the need for peak supply (shown 
in red) by 16% as compared to the reference scenario129. 
 

  

                                                      
129  Note that the available peak capacity is not reduced, as peak electricity is simply bought from 

the larger national grid without any capacity constraints. In this model there is a cost reduction 
associated with reducing peak generation (i.e., the cumulative length of the red bars in Fig. 
9b), but not peak capacity. If the local utility would have had to invest in new local capacity 
additions, peak capacity would have been a cost factor and the model would have used the 
available flexibility to minimise such capacity additions. 
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2.4.4 Storage 

In order to demonstrate the functionality provided by the storage code addition, 
all PV generation was assumed to be connected to batteries with an efficiency of 
90% and a capacity of 10 MWh.  
 

 
Fig. 10: Storage - Daily demand in 2020 

 

Fig. 10 indicates the base and peak load supply from the national grid, as well as 
battery use and PV generation by the local utility. PV is used to its maximum 
capacity throughout the day (dashed line) and so is base load from hour 9:00 to 
22:00. As indicated by comparing the dashed line to the light green bars, not all 
of the PV electricity generated during the hours 8:00, 11:00, 14:00, 15:00, 16:00 
and 18:00 is used immediately. Such electricity is stored in batteries to be 
discharged during the morning and evening peak. This reduces the need for 
peak supply from the national grid (red bars)130 by 9% as compared to the 
reference scenario. 
 

2.4.5 Bringing It All Together 

Finally, in this last application all code additions are brought together 
simultaneously. The bars in the graph on the left of Fig. 11 indicate how 
demand is split up: 10 MW of demand may remain unmet (light blue), up to 5 
MW may be shifted +/- 1 h (green) and the remaining demand has to be met 

                                                      
130  Note that the model does not take into account at what time peak generation is reduced, as 

this does not affect overall costs. This leads to, e.g., high peak generation at hour 18:00 and 
reduced peak generation in the following hour. However, the other way round would be an 
equally valid solution for the model. 
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instantaneously (dark blue). As in the previous code addition, all PV is 
connected to 10 MWh of storage. 
 

Fig. 11a+b: Bringing It All Together - Results for 2020 

(a) Demand; (b) Production 
 

The continuous blue line in Fig. 11 indicates how electricity is supplied by 
OSeMOSYS after utilizing all the flexibility the system provides. The light blue 
bars in Fig. 11a show the demand which may remain unmet. The hatched 
fraction of these bars is demand which the model decided not to meet. For 
example, during the hours 18:00 to 21:00 none of the light blue demand is met 
(all light blue bars are hatched). At the hour 20:00 no demand is shifted, as the 
dark blue line is identical with the dark blue plus the green bar, and both the 
orange and the black line are zero. At the hour 21:00, however, some of the 
green demand is shifted (the dark blue line is below the green bar) to be met 
later (orange line has an associated negative value).  

Fig. 11b shows that PV is used to its maximum capacity (dashed green line). Not 
all PV generation is used immediately. For example, at hour 8:00 all electricity 
from PV is used to charge the batteries, which are then discharged later (light 
green bars). During the hours 8:00 to 23:00 as much base load generation (dark 
green bars) as available is used. Almost no peak load supply from the national 
grid (red bars) is required. It was reduced by 92% as compared to the reference 
scenario, while 96% of the overall demand (dashed blue line) is still met. 
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2.4.6 Computational Requirements 

Table 3 provides an overview of the computational requirements of the 
individual model runs. In the underlying core version as of 8 November 2011, 
the core code of OSeMOSYS was characterised by the creation of rather large 
matrices. This was due to the structure of the code and its flexible use of the 
element ‘technology’. A technology allows the combination of any input fuels to 
produce any combination of output fuels. Therefore, equations were set up 
when running the model to exclude input and output fuels which are unrelated 
to a specific technology. This was required to define, for example, that a wind 
power plant in OSeMOSYS does not consume coal and does not produce heat. 
The advantage of this flexible use of the element ‘technology’ is the simplified 
code formulation with easier readability.  

However, as the model size increases, the open source solver GLPK may 
require more memory than available. GLPK is known to be less efficient in 
handling memory than commercial solvers like CPLEX. Therefore, currently 
two versions of OSeMOSYS are being maintained. One extended version which 
focuses on easy readability and another version which was developed with the 
aim to improve performance. The applications presented in this thesis all draw 
on the extended version of OSeMOSYS due to its easier readability. 

All models were run under Windows 7 Enterprise, 64-bit, on a machine with 
8 GB of RAM and a 2.5 GHz Intel Core i5-2520M CPU. 
 
 

Table 3 

Computational Requirements of Individual Model Runs 

 
*The total running time includes the matrix generation, pre-processing,  
optimisation and writing of the output file. 
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2.5 Conclusion 

A standard energy modelling methodology based on cost minimisation was 
extended by capturing selected attributes associated with Smart Grid advances. 
Specifically, the utility and ease-of-use of OSeMOSYS was demonstrated by 
modifying the code to improve its functionality. Methods to integrate selected 
features of Smart Grids in energy system models were presented and key 
dynamics based on a simple application were showcased.  

The flexible technology definition of the core code of OSeMOSYS allows the 
analyst to go far beyond this specific set up. A range of additional Smart Grid 
options and practices can be modelled, which all may compete against each 
other to minimise the cost for society under various constraints and realities.  

For example, an electric or gas boiler may compete against a heat pump and co-
generation to meet a district heating demand131. At the same time, the model 
might be set up to investigate if increased variability in generation is best 
balanced by an investment in a future hydropower reservoir or by hydrogen 
storage to power fuel cell cars. Peak demand may be reduced by shifting certain 
demand types within predefined intervals at costs increasing with the delay of 
meeting this demand. Further, high electricity prices may force some consumers 
to reduce their electricity consumption. Overall, the model will choose among 
all competing options and, assuming ‘perfect competition’ between all 
technologies, will invest only in those which are most economically efficient. 

However, the expansions presented in Part A of this thesis cover but a subset of 
issues related to Smart Grids and have been modelled using well-known linear 
programming methods. They do not attempt to address a full suite of other 
important modelling tasks, which may be the focus of future work. For 
example, these could include assessments of the role of Smart Grids in 
frequency and voltage control [281,308], or tackling ‘perfect foresight’ 
limitations [95]. 

Further work will include a detailed appraisal of an array of Smart Grid 
technology options based both on the presented energy modelling methodology 
as well as potential future code improvements. Case studies may also help assess 
the value of the increased system flexibility Smart Grids could provide over the 
next decades. 

                                                      
131  Refer to Haichao et al. [307] for a spatial modelling approach of a district heating systems’ 

atmospheric environmental impacts. 
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A specific area of interest is to model how Smart Grid advances may contribute 
to the accelerated provision of key energy services to the poor. Examples 
include assessing the social efficacy of subsidies targeting specific services, rather 
than electricity, or modelling trade-offs associated with low-cost tariffs versus 
reduced reliability. Other focus areas of broad interest would include integrating 
variable and inflexible base load generation options in longer term energy 
system expansion plans [309]. 

Future applications and comparative assessments will help determine the value 
of the incremental OSeMOSYS enhancements presented in Part A of this thesis. 
In any case, OSeMOSYS has proven to be a useful tool to quickly test out new 
code additions enhancing integration between supply and demand. Therefore, it 
may be useful as a test-bed for new functionality in tools with wide-spread use 
and larger applications, such as MESSAGE, TIMES, MARKAL or LEAP. 

Like the applied core code in its version as of 8 November 2011, the functional 
blocks described in this section are available in the public domain and in 
Annex C. The modelling of storage was first integrated into a beta version of 
OSeMOSYS dated 1 June 2012. As of 14 March 2013, it is integrated into the 
core code of OSeMOSYS in the exact same form as presented in this 
thesis [310].  
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Part B 
Integration Between Timeframes 

In 2012, renewable energy sources contributed 70% of total capacity additions 
in the European Union. As the shares of variable renewable generation in power 
systems increase, so does the need for, inter alia, flexible balancing mechanisms. 
These mechanisms help ensure the reliable operation of the electricity system by 
compensating fluctuations in supply or demand. Operational power system 
models are frequently applied to assess the implications of short-term variability 
of supply and demand. However, this level of analytical granularity is commonly 
omitted in the long-term energy models used to investigate future capacity 
investments.  

Part B assesses OSeMOSYS’ ability to partially bridge the gap between these 
two families of models and the timeframes they cover. Specifically, it presents an 
approach to consider the contribution of wind power installations to the system 
adequacy. Further, OSeMOSYS was extended to model operating reserve 
capacities required for balancing services. The dynamics introduced through 
these model enhancements are presented in a test case application, which serves 
as a proof-of-concept. Dispatch improvements and implications on capacity 
expansions were further quantified using an Irish case study. 
 
Section 1 provides the rationale for the need for integration between timeframes, specifies the 

scope, defines the term flexibility and assesses the resulting key implications for energy system 

models. Section 2 presents metrics to derive the capacity credit of wind and short-term balancing 

requirements, and outlines their implementation within OSeMOSYS. Section 3 details this 

implementation by providing conceptual descriptions linked to the algebraic formulations. 

Section 4 presents a test case application of the model enhancements. Section 5 describes the 

Ireland case study and discusses the achieved improvements before Part B concludes in 

Section 6. Annex D provides the code of the model enhancements. Annex E presents detailed 

assumptions applied in the test case and Annex F code adjustments to model Ireland’s pumped 
storage hydropower plant. 
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1 Short-term Variability and Long-term Outlooks 

1.1 Rationale 

Ensuring a cleaner supply of energy drawing on locally available renewable 
energy resources has become a key policy objective for many countries. 
According to the IEA’s New Policies Scenario, renewable electricity generation 
will almost triple in the period to 2035, and contribute over 30% to total power 
generation [1]. Many announced national and regional policy goals promote 
even higher shares [311,312]. Related modelling demonstrates the feasibility and 
benefits of integrating large shares of renewable supply into power systems 
[45,313,314]. 

In Europe, related ambitions are largely driven by the commitment to comply 
with EU legislation and its 20% renewable energy target up until 2020 [315]. In 
the year 2000, renewable sources in the EU accounted for 21% of all new 
capacity additions [316]. This value increased to 70% in 2012. It is likely to 
remain high in the coming decades as the EU intends to reduce greenhouse gas 
emissions until 2050 by 80% – 95% below 1990 levels [311].  

The growing reliance on renewable power sources may result in significant 
instantaneous shares of the generation from such sources. As an example,  in 
order to meet the Republic of Ireland’s 16% renewable energy target, and due to 
a heavy reliance on the decarbonisation of the power sector, the grid may need 
to be adapted to accommodate maximum wind penetration rates of 60 – 80% of 
the load [317].  

Balancing the variable output of such levels of renewable electricity generation 
requires a high degree of flexibility in the power system132. Increasingly, power 

                                                      
132  The term flexibility is applied in this thesis as “… the extent to which a power system can 

modify electricity production or consumption in response to variability, expected or 
otherwise. In other words, it expresses the capability of a power system to maintain reliable 
supply in the face of rapid and large imbalances, whatever the cause. It is measured in terms 
of megawatts (MW) available for ramping up and down, over time.” [318]. 
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plants or demand-side options have to be available as ‘operating reserve’, i.e., 
they have to be able to quickly adjust their generation or demand if 
needed133 [319]. This is required to limit and counterbalance any mismatches 
between demand and supply and curb deviations from the power system’s 
design frequency to guarantee system security [281]. System security refers to the 
ability of a power system to dynamically respond to disturbances from within 
the system [320]. Further, rising shares of variable generation are generally 
associated with a diminished contribution to the power system’s adequacy per unit 
of variable generation capacity [90,321]. System adequacy refers to the 
availability of infrastructure to meet demand throughout the year under steady 
state conditions [320]. 

Power system issues associated with variable renewable generation are well 
documented (e.g., in Hand et al. [45], IEA [318,322] and UKERC [323]). 
Flexibility requirements are nothing new to power systems, yet, their importance 
in this new context is providing an impetus for their prioritisation in market 
design and expansion [324]. Several supportive families of modelling tools exist 
which serve to gain insights on how this can best be done. They can be 
distinguished by their scope and the timeframe they cover. 

When assessing how future energy systems might look like several decades 
ahead, long-term energy system models such as LEAP, TIMES or MESSAGE 
have proven their value. Connolly et al. [81] and Ludig et al. [325] present 
further tools with a focus on the integration of renewables. However, given 
their long-term focus, commonly applied modelling approaches usually do not 
focus on the short time scales associated with system security issues. According 
to Deane et al. [49] and as confirmed by the applications presented in Part B of 
this thesis, they may therefore inadequately represent the need for increased 
power system flexibility. This results in sub-optimal power plant dispatch and 
investment decisions. 

The reason why short-time operational issues are often omitted is that long-term 
models usually do not provide a high temporal resolution. Further, the 
penetration-rate dependent contribution of renewable electricity generation to 
system adequacy is commonly not implicitly considered within the model. 
Subsequently, medium- to long-term energy models may misrepresent the 
investment implications of ensuring system adequacy and security. 

                                                      
133  Refer to Section 1.3 in Part B of this thesis for further definitions of operating reserve and 

metrics to capture their scale. 
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A separate suite of electricity market simulation models and operational power 
system tools is specifically designed to investigate these issues. Tools like 
GTMax [43], PLEXOS [44] and Grid View [45] entail a much higher temporal 
resolution and cover numerous operational constraints related to unit 
commitment and dispatch. Therefore, they enable the most accurate 
consideration of flexibility requirements within the electricity sector, although 
each has a specific temporal focus and system boundary. Further examples of 
such tools are presented in Foley et al. [36]. However, these tools commonly 
exclude non-electricity sectors like heat or transport, or tend to focus on 
operational aspects of existing power systems [83,87,326]. They might therefore 
only provide limited insights on the design of future energy systems. 

Related improvements of energy system models134 need to try to match their 
long time horizon and holistic energy systems focus with sufficient detail on the 
power sector. Those operational aspects which influence longer term 
investments need to be considered. The increasing flexibility that power systems 
will need to provide requires a better representation in the applied energy 
models. Flexible and open source models may constitute useful tools to test out 
such refinements [31]. 

 

1.2 Scope 

Part B of this thesis demonstrates the need for increased flexibility 
considerations in long-term energy system models in order to more adequately 
assess future capacity expansions. Its main focus is to highlight this need and to 
show how this can be implemented, as opposed to detailed investigations into 
effective market designs in support of increasing shares of renewable electricity 
generation. 

OSeMOSYS was extended by incorporating an approach to model the 
contribution of wind power towards system adequacy as penetration rates 
rise [51]. Further, the model was extended to assess upward and downward 
reserve requirements across two timeframes, based on minimum stable 
operation levels, ramping capabilities and cycling characteristics. Upward reserve 
refers to the ability to increase generation to compensate outages or unexpected 

                                                      
134  For the sake of simplicity, the term ‘energy system models’ is used to refer to models covering 

a medium- to long-term timeframe, if not stated otherwise. 
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demand increases. Downward reserve is the ability to reduce generation to 
compensate unexpected reductions in demand or increases in (renewable) power 
output [327].  

A key focus of the enhancements was to ensure their general applicability to 
various countries or regions. Care was taken to limit the amount of additional 
input data required, with the option to enhance the model accordingly if such 
data is available. 

The model extensions are first applied drawing on a test case application. 
Various OSeMOSYS models with various levels of detail were compared to 
each other to identify how results are affected by the extensions. After this 
proof-of-concept, OSeMOSYS models were set up for Ireland and compared to 
preceding work by the University College Cork (UCC) [49]. In that work, a 
long-term energy system model (TIMES) was soft-linked with a unit-
commitment and dispatch model of the Irish power system (PLEXOS). Given 
the more detailed temporal resolution and representation of technical 
characteristics in the soft-linked TIMES-PLEXOS approach, its modelling 
results provide for an improved dispatch. Therefore, they serve as a benchmark 
for the OSeMOSYS models. 

 

1.3 The Need for Flexibility 

Depending on the timeframe of focus, the term flexibility in energy systems has 
different implications on system operation and investments. According to the 
IEA [183], flexibility in electricity systems is categorised as: stability services, 
covering a timeframe of seconds; adequacy services to ensure demand is met 
over the course of several months to years; and balancing services for the 
timeframe in between. 

In contrast, according to the European Network of Transmission System 
Operators for Electricity (ENTSO-E) [328] the term ‘balancing’ includes 
everything after ‘gate closure’135, i.e., market closure, which requires actions by 
the system operator (SO). Balancing includes ancillary services to guarantee 
system security such as the provision of black start capability and reactive power 
as well as demand response measures [328]. The term balancing is however 
defined differently in the Nordic electricity market, which differentiates between 

                                                      
135  As opposed to ‘scheduling’. 
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balance planning on the day-ahead and intra-day market by balance responsible 
market players, and balance regulation, which is performed by the transmission 
system operator during the hour of operation [329]. 

Especially for short-term balancing services, various additional denominations 
exist and the same term might entail different technical requirements in different 
countries. Often used market-specific terms include: frequency response, fast 
reserve, spinning reserve, regulating reserve, contingency reserve, disturbance 
reserve, replacement reserve, etc. [323,327,328,330–332]. The terminology used 
in a given context is largely influenced by national market structures, grid codes 
and the perspective of the author. Commonly, three types of operating reserves 
are distinguished [332]:  

 Grid stability services are provided by what is called the primary 

reserve or response. This type of reserve is locally automated and reacts 
to deviations to the nominal system frequency.  

 Secondary reserve is usually automated centrally and serves to release 
the primary reserve for future operation and restore the system’s 
frequency.  

 Finally, the tertiary reserve is activated manually and has an activation 
time of up to one hour136.  

 

While the timeframes associated with these reserves vary, primary control 
reserve can commonly be activated within 30 seconds while secondary and 
tertiary control reserves have to be fully available within 5 – 15 minutes [332]. 

Primary reserve may be provided by pumped storage and part-loaded thermal 
power plants, like nuclear power [334]. Some of these plants may, for example, 
operate close to the mid-point of their operating range in order to maximise the 
reserve services they provide [330]. This allows them to ramp up or down 
quickly over their available operating capacity range. However, it typically comes 
with associated efficiency losses of 10% – 20% and beyond for thermal power 
plants [335]. Sometimes, primary reserve may as well be provided by wind parks, 
even though with less demanding requirements. 

In addition to part-loaded plants, secondary and tertiary reserves may draw on 
plants which can quickly synchronise with the grid. This may including 

                                                      
136  As mentioned, these categorisations differ between countries. For example, tertiary reserve is 

not referred to in the Nordic system [333]. 
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hydropower connected to reservoirs, open cycle gas turbines and to a lesser 
extent diesel generators as well as potentially future improved technologies like 
direct injected coal engines [330,334,335].  

Apart from power plants, reserve services may as well be provided by demand 
response measures facilitated through Smart Grids, and load shedding. 
Responsive load can be automated and faster than supply-side options, as 
usually no ramping rates apply [336]. Further options include the curtailment of 
power output, enhanced balancing areas (e.g., through cross-border trade, 
virtual power plants, or the integration of distributed thermal generation), 
storage (e.g., electric vehicles or compressed air storage), or conversion to other 
energy sources (hydrogen generation, heat pumps) [40,190,335,337]. Ancillary 
markets for the trading of reserve services may help ensure that these options 
compete against each other to provide reserve at the lowest marginal cost. 

The extent of short-term balancing services is expected to increase significantly 
over time, especially if more stringent climate change goals should be 
realised [183]. Ensuring adequacy requires a ‘system reserve margin’ on top of 
this, i.e., capacities in addition to those needed for meeting peak demand. This 
reserve margin accounts for (scheduled) outages of grid infrastructure and 
power plants.  

 

1.4 Key Implications for Energy Systems Models 

1.4.1 Temporal Resolution 

Long-term energy system models mostly focus on system adequacy. Commonly, 
they do not attempt to consecutively model all days or hours within a year [49]. 
This is to a large extent due to their long-term time horizon and the 
computational power, time and data required for increasing temporal resolution. 
Assessing the daily dispatch in detail might also create a false precision 
compared to the overall uncertainties associated with long-term projections.  

Long-term energy system models are commonly set up using time slices, i.e., 
representative time periods within a year (refer to Section 2.2 in Part A for 
further explanations). While such models might be based on as little as one 
single yearly time slice [338], more commonly six to twelve time slices are 
applied [26,339]. An example for the latter is the model used to inform the 
IEA’s Energy Technology Perspectives report [183].  
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Several models provide a more detailed temporal resolution. For example, 
Howells et al. [340] based their model on 24 time slices per year. Nelson 
et al. [50] further increased the temporal resolution to 144 time slices per four-
year investment period. Pina et al. [341] and Kannan and Turton [342] all used 
288 time slices per year.  

This increased number of time slices can enable a more accurate representation 
of variable renewable energy resources. However, it is still not sufficient to 
adequately consider issues such as unit commitment, start-up costs, minimum 
down times or forced outages. Instead from a technical point of view, the 
dispatch is only constrained by an exogenously defined maximum availability of 
the technology and its fuel supply within each time slice [342]. 

Historically, the obtained results with a lower temporal resolution were often 
deemed sufficient for informing policy development and, in some cases, 
capacity expansion planning. An appropriate depiction of the daily dispatch was 
not – and still is not – a focus of such models137. Further, lower variable 
generation levels required less short-term balancing. Systems with certain types 
of power plants, e.g., dispatchable hydropower, might have inherently been able 
to meet most reserve requirements, despite the lack of explicit flexibility 
considerations within the models. 
  

1.4.2 Reliability Considerations 

With increasing rates of variable electricity generation there is a need to revisit 
these simplifications. An exhaustive review of international studies indicates that 
additional operating reserve capacities of 2% – 9% of the installed generation 
capacity of variable sources are required at penetration levels between 10% – 
20% [323]. A more recent comparison by Holttinen et al. [343] provides a 
similar picture. Further, the range of capacity credits attributed to variable 
generation reduces significantly as penetration levels increase [343]. The capacity 
credit is one measure of the contribution of a technology to the reliability of the 
power system [344]. Several definitions and calculation methods exist 
[90,330,345,346]. Commonly, but not exclusively, the capacity credit relates to 
the impact of a new power plant on the LOLP. 

                                                      
137  However, sometimes they were combined with short-term models to allow for a more robust 

output. Refer to Section 1.4.3 in Part B for an example. 
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Given these implications for operating reserve requirements and the capacity 
credit, maintaining system reliability becomes a key concern as renewable energy 
generation rates increase. However, medium- to long-term models mostly do 
not enable sophisticated reliability assessments. Rather, a simple metric is 
applied by allowing to enter a ‘system reserve margin’ as an input parameter. 
This system margin ensures that the capacity credit of all power plants within 
the system always exceeds the load by a certain percentage. The value of this 
margin depends on reliability requirements, which may be affected by market 
design and operations. Further, the capacity credit is commonly defined as an 
input value and not calculated within the model as a function of renewable 
generation penetration rates. Subsequently, such medium- to long-term energy 
models may misrepresent the investment implications of maintaining system 
reliability. 

In some modelling applications, the dependence of the capacity credit on 
penetration rates is well reflected. For example, in the UK MARKAL model, 
different capacity credits are assigned to different ranges of variable generation 
capacities. These are based on external calculations with the Wien Automatic 
System Planning programme (WASP) [80,347]. In the U.S.-focused Regional 
Energy Deployment System (ReEDS), the capacity credit of renewable energy 
generation is calculated for each of the 17 yearly time periods considered within 
the model [321]. This draws on exogenously defined Pearson correlations 
between outputs of pairs of plant sites.  

However, the required extensive time-series data or results from reliability 
assessments might not always be available. In such cases, the capacity credit 
might be derived from approximations based on the capacity factor, i.e., the 
ratio of the average output to the total output over a specified time period [91]. 
But even in this case at least some time-series data might be required to capture 
its seasonal and diurnal variations [348], for example if the capacity credit is 
calculated as the capacity factor over peak periods. Such approximations do not 
capture several aspects of detailed reliability assessments, including the sizes of 
the various plants in the power system and their reliability. The system adequacy 
might therefore not be insured. 

Also, unpredictable variations are rarely depicted in medium- to long-term 
models. Yet, they are a key driver for system costs associated with balancing. 
Thus, system security cannot be guaranteed when using such models. Taking 
related short-term operational issues into account usually requires the use of 
separate electricity dispatch models. However, these short-term, operational 
power system models provide limited insights for capacity expansion planning. 
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1.4.3 Linking Long-term with Short-term Models 

The gap between the suites of long-term energy systems and operational power 
system models is well recognised [341]. Sometimes, it is addressed by 
interlinking two modelling tools: a long-term model is used to derive future 
power plant capacity mixes and a power system model for the load dispatch 
[29,45–50]. For example, Chaudry et al. [25] covered short-term fluctuations by 
interlinking an energy system model of the UK with a power system model 
based on probabilistic production cost simulations, and with a geographical 
infrastructure investment model. This approach allowed the consideration of 
some aspects of system reliability. However, it did not take specific ramping 
characteristics of various generation technologies into account.  

While long-term capacity investments can easily be fed into short-term models, 
the information flow back to the long-term model appears to be more 
challenging and is sometimes ignored. In any case, the operational detail as 
captured by the power system model is not part of the optimisation of the long-
term capacity expansions when using two separate tools. The consequence may 
be long-term investment strategies which are economically sub-optimal. Further, 
setting up two independent models requires expertise in two different modelling 
tools and may involve collaboration between different research groups. The 
level of effort to set up independent models might be a deterrent to a more 
frequent application. In addition, due to overlapping but different sets of input 
parameters of each of these tools, an inherent risk of hidden input data 
inconsistencies arises. 

An approach may therefore be useful which allows drawing on the advantages 
of long-term models with a lower temporal resolution, but without ignoring the 
main dynamics introduced by variable generation. For example, Ludig et 
al. [325] considered short-term fluctuations in a generic way. This was done by 
specifying technologies which have to be available to cover the largest observed 
drop in renewable energy output over a short time horizon.  

Sullivan et al. [338] extended a MESSAGE model based on a single time slice by 
introducing flexibility coefficients, which specify the share of flexible generation 
provided or required when dispatching a technology or meeting a load. The 
flexibility coefficients were determined through a parallel analysis based on an 
NREL unit-commitment model with an hourly resolution.  

In the ReEDS long-term energy model, upward reserve requirements across one 
timeframe are considered within a single power system model of the U.S. [45]. 
In this multi-regional modelling tool, designated power plants were allowed to 
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operate in between their minimum operating level and their maximum seasonal 
output to meet reserve requirements. As in the models developed by Chaudry 
et al. [25], ramping characteristics of various generation technologies were not 
explicitly considered. In NREL’s Renewable Electricity Futures Study, the 
ReEDS model was therefore interlinked with a separate, hourly electricity 
dispatch model to analyse one year in more detail [45].  

2 Extending OSeMOSYS 

OSeMOSYS was chosen as a useful tool to consider flexibility in energy systems 
within one single model, both given its open source nature and its clear and 
concise code [39,101]. OSeMOSYS was extended in a generic fashion to ensure 
its wide applicability with limited additional input data requirements. Refer to 
Section 5.1 of the introduction of this thesis for further background on 
OSeMOSYS. 

Sections 2.1 and 2.2 of Part B of this thesis outline how the capacity credit of 
wind power generation and operating reserve requirements were considered in 
OSeMOSYS. Each section starts with a general introduction to the approach 
and provides a concise outline of the implementation in OSeMOSYS. Both 
sections end with a discussion of the limitations of the chosen approach. The 
conceptual description and algebraic formulations of the implementation is 
provided in Section 3 and the final code implementation in Annex D. 

 

2.1 Capacity Credit of Wind 

2.1.1 An Approximation Based on Penetration Levels 

Voorspools and D’haeseleer [51] derived an analytical formula which provides a 
first estimate of the capacity credit of wind power. While this formula might not 
match the accuracy of more detailed wind integration analysis, it provides a 
useful tool in view of a lack of extensive time-series data or external reliability 
assessments. Its implementation within OSeMOSYS is therefore exemplary and 
can easily be replaced by more detailed, country-specific assessments if available. 

In the analytical formula, the capacity credit is calculated as a function of 
penetration levels, the annual capacity factor, the reliability of conventional 
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plants and the dispersion coefficient. This coefficient serves to represent the 
geographic smoothing effect of the variability of wind [343]. Note that in these 
equations the wind penetration rate is defined as the installed wind power per 
peak load. This leads to a much higher rate than a comparison of electricity 
from wind power to the total generation.  

The formula was empirically fitted to represent probabilistic capacity credit 
calculations performed for the Dutch territory by Van Wijk [349]. They were 
then extended to cover a range of different dispersions of wind power plants, 
drawing on capacity credit calculations by the Irish TSO and by Martin and 
Carlin [350] for Western Australia [351] (Fig. 12). The approach was verified by 
a comparison with results from a further literature survey. The derived formulas 
(Eq1 & Eq2) use a capacity credit definition based on a comparison with a 
conventional system excluding wind (Eq3). It will therefore lead to a higher 
capacity credit as opposed to definitions based on 100% reliable units [90]. 

                                             (                               )          (Eq1)                                                (Eq2)                                         (Eq3) 

 

Note that (Eq2) was reformulated to ensure it result in the same value as (Eq1) for a 
penetration rate of 1%, in line with the description of the formula by Voorspools and 
D’haeseleer. 

 

CapacityCredit: Capacity credit in % of installed rated wind power 

x: Penetration level; installed wind power as % of peak load 

CFwind: Annual capacity factor of wind project in % 

Rsystem: Reliability of conventional plants in % 

: Dispersion coefficient; equals 0 for perfect spread and 1 for no spread 

Pwind: Additional wind power capacity 

Pwith: Total power system capacity including Pwind 

Pwithout: Total capacity of a power system excluding Pwind, but with the same 
LOLE as the system including Pwind 

LOLE Time period during which the load exceeds the supplied power [352] 
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Fig. 12: Comparison of analytical formula with results from the literature,  

as adapted from Voorspools and D’haeseleer [51] 

 

According to Voorspools and D’haeseleer [51], a typical values for the reliability 
of conventional plants is 85%, while dispersion coefficients range from 0.30 for 
wind parks spread across Europe to 0.33 for Ireland, 0.56 for Denmark, 0.60 for 
the Tri-State territory in Nebraska, USA, and up until 0.90 to 0.96 for single 
units. The capacity factor of wind power plants roughly ranges from 20% to 
40% with a median value of 26% according to the IEA [306]. This corresponds 
to the average value for the U.S. according to Boccard [353], who mentions an 
average value of 21% for the first 15 countries who joined the EU. 

In OSeMOSYS, the formulas (Eq1) and (Eq2) have been implemented for each 
modelling region as a piece-wise linear approximation. Refer to Section 3.2 of 
Part B of this thesis for further details. Note that penetration rate dependent 
capacity credits for other variable technologies such as solar power follow a 
similar curve [354]. Given the availability of external assessments, they could 
therefore be implemented in OSeMOSYS drawing on a similar piece-wise linear 
approximation. 

 

2.1.2 Limitations 

The implemented capacity credit calculations present a significant improvement 
as compared to its approximation as a constant. However, the main limitation of 
the analytical formula by Voorspools and D’haeseleer [51] is the required 
selection of a dispersion coefficient, which strongly influences the results. This 
is as well visible in the shape of the curves in Fig. 12: no spread ( = 0.96) 
results in a very steep curve. An improved spread decreases the slope. A perfect 
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spread with no correlation between individual wind power plants ( = 0) would 
result in a horizontal line. 

When comparing the practical values of wind parks as mentioned in the 
previous section with each other, dispersion coefficients for wind parks vary 
between 0.30 – 0.60. These differences may not seem obvious and were 
apparently adjusted to match the values derived from the literature review (Fig. 
12). Therefore, the impact of these variations in the dispersion coefficients were 
assessed for a system with a wind power capacity factor of 30%, a penetration 
rate of 20% and an overall reliability of 85%. Varying the coefficient from  = 
0.3 – 0.6 led to an 8% higher capacity credit for the lower coefficient. If an 
average value of  = 0.45 is chosen, the error may therefore be estimated to be 
within +- 4%.  

The assessed variations in the dispersion coefficient just serve as an indication 
of its impact on the results. Voorspools and D’haeseleer compared results from 
the analytical formula with individual capacity credit values mentioned in the 
literature. However, assessing the accuracy of the analytical formula would 
require a comparison with various detailed reliability assessments across a range 
of penetration rates. 

Apart from the choice of the dispersion coefficient, another limitation of the 
formula is that it does not cover any country specific correlation between peak 
demand and wind generation. For example, in the UK, the capacity factor of 
wind power during peak demand periods was found to be around 30% higher 
than the annual average [355]. For such a positive correlation, a higher capacity 
credit of wind power can be expected. 

Further, penetration rates up to 30% were considered when designing this 
formula. Higher penetration rates may therefore be beyond its range of validity. 
In addition to the penetration rate, the Loss of Load Expectation (LOLE) of a 
power system has a strong influence on the capacity credit, which tends to be 
higher in more unreliable power systems [90]. As this formula was derived from 
calculations focusing on countries with very reliable electricity systems, special 
attention is required when applying it to, for example, developing countries.  

Given these limitations, this formula might benefit from calibrations with more 
detailed reliability assessments based on empirical and probabilistic methods. 
But even without these, it constitutes a convenient tool for preliminary 
assessments of dynamics which may have been neglected otherwise. Further, the 
limited input data required enables quick sensitivity analysis, e.g., with different 
penetration rates. 
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2.2 Balancing 

2.2.1 Capturing Reserve Requirements 

Reserve requirements for short-term balancing are country specific and depend 
on the market design [332]. For example, a gate closure shortly before the actual 
dispatch will result in lower reserve requirements due to an increased forecasting 
accuracy [87]. While the calculations applied by system operators to determine 
their amount could be directly integrated into an energy model, this might not 
be the best approach. First, they are largely based on experiences with present 
power systems and markets. Therefore, they might not depict future 
requirements appropriately. Second, these calculations only define system 
operator requirements and do not include any balancing within a utilities own 
portfolio. As such, if implemented in an energy system model, they may result in 
insufficient provision of reserve. Detailed reliability assessments would provide 
a solid basis for forecasting balancing requirements. However, they go beyond 
the scope of commonly used long-term models.  

Some generic key metrics regarding the composition and scale of reserve 
requirements can be derived from the literature. A frequently applied approach 

is the use of the standard deviation  of unpredictable variations of supply and 

demand. Often, between +-2and, commonly, +-3 is applied to estimate 
reserve requirements [323,330,356]. If a normal distribution of unpredictable 
supply and demand variations is assumed, +-3 would cover 99.7% of all of 
possible system states [357]. The total reserve requirements may be calculated as 
three times the sum of the root-mean-square of the standard deviations of 
demand and generation, i.e.,   √       . Note that this formula assumes no 
statistical correlation between the different errors, which might not always be 
the case in reality [358]. Further, the loss of the single largest unit (N-1 
approach, refer to Section 1.2.3 of Part A) may be considered, as it is done in 
the UK or France [323,332]. A more appropriate, but also more complex 
probabilistic approach to consider outages is described by Doherty and 
O’Malley [359,360].  

ILEX in association with Strbac [361] suggest a simplified approach to assess 
reserve requirements: Fluctuations above four hours are expected to be met by 
bringing any available power plant type online. Until these plants are online, all 
variations have to be covered by secondary (and tertiary) operating reserves. 
Primary reserve covers any variations within a half-hour time horizon. This 
ensures that there is more than sufficient time for activating (which is done 
manually in the U.K.) and ramping up the secondary reserve in order to release 
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the primary reserve. Milligan et al. [327] and Holttinen et al. [343] provide 
overviews of further reserve considerations as applied in North America and 
Europe. 

The main sources of unpredictable variations in demand and generation are load 
forecast errors, forced power plant and transmission outages and wind forecast 
deviations. Weber [333] cites Hufendiek [362] and Maupas [363], which quantify 
the day-ahead load forecast error with 2% for Germany and 1% for France. 
This is in line with work by Freris and Infield [364], who mention an average 
error of 1.3% for the UK, with rarely any deviations above 3%. Over the period 
2001 – 2010, forced power plant outages in Germany amounted to an average 
value of 6.0% for fossil fuel-fired and 4.8% for nuclear power plants [365]138. 
According to UKERC the chance that an individual plant is not available 
amounts to 10%, including transmission failures [323]139.  

Wind forecast deviations depend on the weather conditions and increase 
significantly with the forecasting period. In Germany, the root mean square 
error amounts to 3.1% for intra-day, 4.4% for day-ahead, and 5.8% for forecasts 
2 days ahead of time, measured as shares of the total wind capacity [333]. 
Measured as share of the expected production, the day-ahead forecast error can 
increase to 20%. This is because of the low load factor of wind power. Over a 
half an hour and a four hour time horizons, the standard variations of the change 
in wind output in the UK are 1.4% and 9.3% of the installed wind capacity 
respectively [361]. The standard deviation of the uncertainty of wind generation is 
however lower, with Milborrow [366] citing a value of around 6% over a four 
hour horizon. For a detailed assessment of wind power variations in Nordic 
countries refer to Holttinen [358]. 

The reserve provision of power plants to balance such variations depends on 
their costs and operational constraints. These include their availability, ramping 
rates and minimum stable generation levels. The level of detail with regard to 
modelling such dynamics has to be carefully chosen. It will be important to 
capture the key implications for energy system investments, but without 
unnecessarily adding layers of complexity to the model. 
 

                                                      
138  Note that forced outages with ‘no scope for scheduling’ as defined by VGB Power Tech and 

Eurelectric refer to outages which can be delayed by less than 12 hours [365]. Only a fraction 
of these outages will therefore require short-term balancing. 

139  However, an unpredictable variation which draws on the system’s operating reserve only 
occurs during the time immediately after the plant outage occurs. 
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2.2.2 Implementation in OSeMOSYS 

In order to integrate balancing and the related operating reserve requirements 
into OSeMOSYS, two different time horizons with associated forecast errors 
are assessed for each modelling region. These are referred to as ‘primary reserve’ 
for the shorter time horizon and ‘secondary reserve’ for the longer one. Given 
the numerous existing definitions as outlined in Section 1.3 of Part B of this 
thesis, it is left up to the analyst to decide on the actual timeframes assigned to 
these reserves140. For example, what is defined as secondary and tertiary reserve 
requirements in some countries may be combined in the model within one 
reserve class called secondary reserve. Both upward and downward reserve 
requirements can be modelled. Given the variety of applied approaches to 
determine the scale of operating reserve requirements, their exogenous 
definition is left to the analyst. This is intended to ensure the models generic 
applicability. 

Based on ramping characteristics, the maximum upward and downward primary 
and secondary reserve contributions of each technology have to be entered. 
Minimum stable generation levels have to be defined for each technology. Some 
offline plants might be able to ramp up fast enough to provide upward reserve if 
needed. Theoretically, all upward reserve could be met by such ‘quick-start’ 
units. While this might technically be possible, it might not be economic due to 
start-up costs. A minimum share of the upward reserve can therefore be 
specified which has to be provided by plants which are online and generate 
electricity. Further, cycling characteristics can be defined by confining the 
maximum change of online capacity and generation of a technology from one 
time slice to another. This enables an indirect consideration of start-up costs. In 
the model, the term online capacity was introduced to refer to the design 
capacity of all power plants which form part of the same technology category 
and are currently generating electricity. 

The technology definition in OSeMOSYS is wide and flexible. It comprises any 
fuel use and conversion, from resource extraction to appliances. Therefore, the 
provision of operating reserve is not limited to power plants. For example, the 
use of electric heat-pumps or electric vehicles for short-term balancing could be 
considered. Naturally, the minimum stable generation level for demand-side 

                                                      
140  For future applications, OSeMOSYS could be configured to represent additional intermediate 

classes of reserves. 
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technologies could be set to zero. They would then be considered as quick-start 
units which could be brought online whenever needed. 

Based on the defined technology characteristics, OSeMOSYS will ensure 
optimised technology investments over the modelling period. For all time slices, 
it will decide which plants to operate, both for electricity generation and the 
provision of reserve services. Refer to Section 3.3 of Part B of this thesis for 
further information on the implementation in OSeMOSYS. 
 

2.2.3 Limitations 

While multi-regional modelling is supported by the code enhancements, the 
trading of operating reserve between different regions cannot yet be fully 
considered: upward reserve may be traded as it is modelled as a ‘dummy fuel’ 
(refer to Section 3.3 of Part B). Modelling the trading of downward reserve will 
however require some additional constraints to ensure it can be shared between 
various modelling regions. Once fully implemented, the facilitated spatial 
disaggregation may provide valuable insights with regard to the role of 
transmission for the provision of operating reserve and might help identify 
bottlenecks. 

In the presented model enhancements, several cost implications of balancing 
requirements are considered. These include investments in flexible generation 
options and their electricity generation costs. Further, the provision of upward 
reserve requires an increased operation at part-load. To compensate this, 
investments in additional system capacities are required, which are considered 
within OSeMOSYS. Also, an indirect consideration of start-up costs is included.  

However, a ‘steady-state’ is modelled. In this state plants are ready to provide 
reserve. It does not consider the actual provision of reserve, but rather the 
implications of having sufficient reserve at hand. Obviously, the actual 
activation of a reserve would cause a deviation of the electricity generation in 
this steady-state with associated costs, e.g., to compensate an outage. Further, 
costs associated with the cycling of a technology were ignored. Cycling is 
allowed at constant efficiencies in-between their minimum stable generation 
levels and their maximum outputs. 

While there are ways to integrate the varying efficiencies associated with 
operation at part load and the cost implications of the actual reserve provision, 
this would add layers of complexity to the model. Due to the associated 
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increases in data and performance requirements, these effects were therefore 
not considered.  

Also, the additional input data required to model varying efficiencies is afflicted 
with uncertainties about future technology performance. The common 
modelling time horizon for power plant expansion studies necessarily spans 
several decades given the long economic lives of power plant investments. It is 
therefore difficult to forecast if and to what extent, for example, increasing wind 
penetration levels might result in changes in the design of nuclear power plants. 
If power plants are designed from the outset to provide reserve services, this 
might as well go along with higher efficiencies in the lower part of their 
operating range. Due to the uncertainties involved in estimating such future 
technology improvements, adding this level of detail in the model might 
therefore not necessarily improve its accuracy. 

3 Conceptual Description and Algebraic Formulation 

This section provides detailed mathematical descriptions of the code 
enhancements. For applications of these enhancements refer to Sections 4 and 5 
of Part B of this thesis. 

 

3.1 Key Elements of the Code Expansions 

All code enhancements presented in Section 3 refer to OSeMOSYS in its beta 
version as of 2012.06.01, as downloadable via the OSeMOSYS website 
(www.osemosys.org). This version is referred to as the core code of the model. 
Box 3 provides a brief explanation of all indices used in the following algebraic 
formulations.  
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Box 3: Indices Used to Enhance Integration Between Timeframes 

y … Year 

l … Time slice: i.e., a fraction of the year with specific demand or supply 
characteristics. 

ll … Same as time slice; used if independent indices are required . 

t … Technology: i.e., any system component consuming or generating a fuel. 

f … Fuel, e.g., electricity or coal. 

ff, fff … Same as fuel; used if independent indices are required to differentiate 
electricity from primary and secondary reserve, which are all modelled as 
fuels. 

r … Region 

 
 

All parameters which need to be entered by the analyst for the calculation of the 
following enhancements are described in Box 4141. Parameters are indicated in 
bold within the algebraic formulations to differentiate them from model 
variables. As in Section 2.3 of Part A of this thesis and complying with the 
OSeMOSYS naming convention, rather long parameter and variable names 
were chosen to increase readability. 
 

Box 4: Parameters Used to Enhance Integration Between Timeframes  

CapacityFactory,t,r – The ratio of available maximum capacity to the design capacity. Entered 
as a fraction. 

CapacityToActivityUnitt,r – Relates the unit that capacity is measured in to the unit of 
production. 

ElectricityForTransmissionTagf,r – Lets the model know the fuel name chosen for electricity 
generated by power plants. Equals 1 for electricity and 0 for all other fuels. 

MaxOnlineCapacityReductiony,t,r – Maximum reduction of the online capacity of a 
technology from one time slice to another. Entered as percentages of the online capacity. 

MaxGenerationReductiony,t,r – Maximum generation reduction from one time slice to 
another. Entered as percentages of the online capacity. 

MaxPrimReserveDowny,t,r – Shares of the available capacity of a technology which may 

                                                      
141  Refer to Howells et al. [101] for further parameters of the core code. 
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MaxPrimReserveUpy,t,r 

MaxSecReserveDowny,t,r 

MaxSecReserveUpy,t,r 

contribute to meet a demand for primary or secondary 
downward or upward reserve. Entered as fractions. 

MinStableOperationy,t,r – Minimum share of the online capacity at which a power plant may 
be operated to generate electricity. 

MinPrimReserveUpOnliney,r – Minimum shares of upward reserve demands which have 
to be met by plants which are online. MinSecReserveUpOnliney,r 

PeakElectricityDemandEnteredy,r – Has to be set equal to the model variable 
PeakElectricityDemandCalculatedy,r. Has to be entered manually in a second model run to 
ensure the linearity of the model. 

PrimReserveDownCapacityDemandy,l,r – Demand for primary downward and upward 
reserves, measured in the unit of power, e.g., 
GW. 

PrimReserveUpCapacityDemandy,l,r 

ReliabilityConventionalPlantsy,r – Reliability of power system without wind. Entered as a 
fraction. 

ReserveMarginTagTechnologyy,t,r – Defines each technology’s contribution to the overall 
system’s reserve margin. Entered as a fraction. 

SecReserveDownCapacityDemandy,l,r – Demands for secondary downward and upward 
reserves, measured in the unit of power, e.g., GW. SecReserveUpCapacityDemandy,l,r 

SpecifiedDemandProfiley,l,f,r – Indicates the proportion of the yearly energy demand in each 
time slice. For each year its sum must equal 1. 

TimeSliceLinkTagl,ll,r – Links time slices with each other to limit generation and online 
capacity reductions. Can as well be used to link future to past time slices to limit the 
capacity reduction in one time slice based on a future online capacity. 

WindCapacityCreditSwitch – If equal to one, the wind capacity credit will be calculated using 
mixed integer programming. 

WindDispersionCoefficienty,r – Should equal 0.96 for a single plant and zero for a wind park 
with no output correlation between individual plants. Realistic values for wind parks are 
between 0.3 – 0.6.   

WindTechnologyTagt,r – Lets the model know the technology name chosen for wind power. 
Equals 1 for wind power and 0 for all other technologies. 

YearSplity,l – The length of each time slice as a fraction of the year. Entered as fractions. Their 
sum over a year should equal one. 

 
 

The following conceptual descriptions employ cross references indicated by 
bracketed labels. These refer to the algebraic formulations of the OSeMOSYS 
implementation presented in Section 3 of Part B of this thesis. Further, they 
help identify the corresponding lines of the final code as presented in Annex D, 
where they appear at the beginning of each constraint. 
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3.2 Capacity Credit of Wind Power 

3.2.1 Conceptual Description 

This section outlines the main principles of the OSeMOSYS implementation of 
the capacity credit formula as presented by Voorspools and D’haeseleer [51]. 
These principles are revisited and explained in more detail when presenting the 
algebraic formulations immediately after this conceptual description. 

The capacity credit of wind power is modelled for each modelling region. The 
formulas (Eq1) and (Eq2) presented in Section 2.1.1 of Part B were 
implemented as a piece-wise linear approximations separated into six segments. 
Penetration rates within the first and last segments were assumed to result in a 
constant wind capacity credit. The error introduced by the linear approximation 
was found to be negligibly small, especially taking into account the limitations of 
the capacity credit formula as mentioned in Section 2.1.2 of Part B. 

First, some key variables are calculated: The peak electricity demand is derived 
by summing up the exogenously defined final electricity demand and any 
electricity consumption of the modelled technologies (WCC1). The wind power 
penetration is calculated by dividing the total wind power plant capacity by the 
peak electricity demand (WCC2). This constitutes a division of two variables, 
which is not supported by a linear programming solver like GLPK, which 
OSeMOSYS currently draws on. Therefore, the peak electricity demand has to 
be exogenously defined in a first model run and updated, if required, by the 
calculated value (WCC1).  

While not necessarily required, MATLAB was used to run these iterative model 
runs and cross-check that the calculated and the entered peak demand equal142. 
Then, the annual, average wind capacity factor is derived from the capacity 
factors which need to be entered by the analyst for each time slice in a year 
(WCC3). In the core code of OSeMOSYS, a parameter has to be specified 
which comprises the capacity credits of all technologies. The initially entered 
capacity credit of wind is extracted from this parameter in (WCC4).  

                                                      
142  Note that if no technologies with varying activity levels use electricity as an input fuel, or if 

any own consumption is implicitly considered by a reduced output, only one model run is 
required to determine the peak demand. The final results can then be derived from the second 
model run. 
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The calculated penetration rate of wind is assigned to one of the six segments of 
the linear approximation (WCC5 – WCC7). Then, the capacity credit is 
calculated in (WCC8) based on (Eq1). Mixed integer programming has to be 
introduced for this purpose. The analyst may however switch all mixed integer 
programming equations off (and thus also the calculation of the capacity credit) 
in case no capacity credit calculations are required, or if previous calculations are 
not expected to change. This may be done to speed up the model runs. 

In the core code of OSeMOSYS it is ensured that the total capacity of the 
contributions of all technologies to the system reserve has to be larger than the 
peak electricity demand plus a reserve margin (RM1 - RM3 in the core code). 
This additional margin is required to ensure system adequacy, even if some 
plants are unavailable. The calculation of the expected contribution of wind 
power to the system reserve would require a multiplication of two variables, the 
capacity credit of wind power and its total capacity. Multiplying two variables is 
not allowed when using linear programming. Therefore, the capacity credit has 
to be exogenously defined in a first model run and updated, if required, by the 
calculated value143. Again, MATLAB was used to run these iterative model runs 
and ensure that the calculated capacity credit (WCC8) equals the entered 
contribution to the reserve margin (WCC4). 

The required capacity investments to ensure adequacy are minimised as part of 
the objective function of OSeMOSYS. Based on these code expansions, the 
reduced contribution of wind power to the capacity credit as penetration rates 
increase will therefore be compensated by optimised additional technology 
investments. 
 

3.2.2 Key Variables 

First, the input variables to (Eq1 & Eq2) are calculated (refer to Section 2.1.1 of 
Part B). 

The peak electricity demand is derived from the sum of the rate of final 
electricity demand and the rate of electricity used by technologies during the 
peak demand time slice (WCC1). Equation (WCC1) is only calculated when 
several conditions apply. First, it is only calculated for the peak demand time 

                                                      
143  As long as wind penetration rates don’t change, no further iteration is required if a constant 

dispersion coefficient and a constant conventional power plant reliability are assumed. 
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slice. The peak demand time slice is identified by calculating the maximum 
demand per time span, i.e., the maximum value of the division of the demand 
share in a time slice by its duration. Further, it is only applied for the fuel 
electricity. The ElectricityForTransmissionTag lets the model know the name of 
this fuel, as chosen by the analyst. It equals one for the fuel produced by power 
plants and zero for all other fuels144. Similarly, the WindTechnologyTag lets the 
model know the technology name chosen for wind power. The condition 
in (WCC1) that this tag has to equal one ensures through the CapacityTo-
ActivityUnit that the peak demand is calculated in the capacity units assigned to 
wind power145.                                                                                                                                                                                                                                   (WCC1) 

The wind power penetration is calculated by dividing the total wind power plant 
capacity by the peak electricity demand entered by the analyst (WCC2). The 
peak electricity demand calculated in (WCC1) should obviously have the same 
value as the peak electricity demand entered in (WCC2). However, it cannot 
directly be used as an input value for equation (WCC2). This would result in a 
division of two variables, and therefore a non-linear problem formulation. It 
therefore has to be cross-checked externally that the calculated peak demand 
equals the entered demand.                                                                                                            (WCC2) 

The average capacity factor of wind power is calculated by multiplying its 
entered capacity factors for each time slice with their duration share within a 
year. These multiplications are summed up for each year.                                ∑                                                                  (WCC3) 

                                                      
144  Several fuel types and names may be defined to represent electricity at different levels within 

the energy system, e.g., at transmission, distribution or end-use level. 
145  The units used for wind may differ from those for, e.g., a coal mine. Refer to footnote 110 for 

further explanations regarding the CapacityToActivityUnit. 
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The capacity credit for all technologies is entered within the parameter 
ReserveMarginTagTechnology. This parameter of the core code of OSeMOSYS 
defines each technology’s contribution to the system’s reserve margin. Its value 
should equal to one for power plants which are fully available to meet peak 
demand (assuming no outage occurs). Note that the reserve margin is unrelated 
to the operating reserve as presented in Section 3.3 of Part B of this thesis. It is 
simply a reliability indicator and calculated as the total capacity contribution 
towards the reserve margin divided by the peak demand. The initially entered 
capacity credit of wind is extracted from the ReserveMarginTagTechnology 
parameter in (WCC4).                                                                                              (WCC4) 

 

3.2.3 Capacity Credit Formula 

The capacity credit formulas (Eq1) and (Eq2) were implemented as piece-wise 
linear functions separated into 6 segments based on the following wind 
penetration levels: 0% - 1%, 1% - 5%, 5% - 10%, 10% - 20%, 20% - 35%, and 
> 35%. The implementation of piecewise linear functions in GLPK has been 
modelled following the conceptual description provided by Morrison and 
Makhorin [367]. 

First, a tag is assigned to each segment. This tag is defined to be either one or 
zero. Thus, mixed integer programming is applied. A value of one is assigned if 
the penetration rate falls within a specific segment, and zero otherwise. 
Therefore, for every year and region, only one of the tags may be equal to one 
(WCC5).  

The parameter WindCapacityCreditSwitch was introduced to allow the analyst 
to switch all mixed integer programming equations (and thus the calculation of 
the capacity credit) on or off. (WCC5) and the following equations will only be 
calculated if its value equals one. This was done to speed up the model runs in 
case no capacity credit calculations are required, or if previous calculations are 
not expected to change.                                                                                                                                 (WCC5) 
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The segment fraction which represents the wind power penetration rate within a 
segment is defined to be smaller or equal than the tag of the segment (refer to 
WCC6a for segment 1)146. For example, for a penetration rate of 7.5%, the 
fraction value would be 50% for the third segment (5% - 10%) and zero for all 
others.                                                                            (WCC6a) 

Therefore, the actual penetration can be calculated by multiplying this segment 
fraction with the width of the segment in per cent, and adding the penetration 
rate at the beginning of the segment. For example, for a penetration rate of 
7.5% this would result in 50% x (10% - 5%) + 5% = 7.5%. This logic is applied 
to all segments. The penetration rate at the beginning of a segment is multiplied 
by the segment tag to ensure that only the penetration rate of one segment is 
added in (WCC7).                                                                                                                                                                                                                                                                                                  (WCC7) 

Equations (WCC5 – WCC7) are required to calculate which segment contains 
the penetration rate and which fraction of the segment represents this rate. The 
capacity credit calculation in (Eq1) was translated into (WCC8initial,a) when 
applying OSeMOSYS’ naming conventions. It is used to calculate the capacity 
credit at the end of each segment.                                                                                                                  (                                  )  ⁄                                                                                                                (                                  ) (                    )   (WCC8initial,a) 

                                                      
146  The same logic applies for all other segments. The corresponding formulas are referred to as 

(WCC6a) – (WCC6f) in the actual code implementation. 
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In line with (Eq2), its value for a penetration rate of one per cent applies for the 
whole first segment from 0% - 1%. Further, its value for a rate of 35% is 
applied for the whole sixth segment. This was done due to the small changes in 
the calculated wind capacity credit for higher penetration levels. Similarly to 
(WCC7), all other linearly approximated values were calculated as the difference 
of the capacity credit at the end of two subsequent segments, multiplied with the 
segment fraction representing the penetration rate. Further, the capacity credit at 
the end of the segment preceding the one containing the penetration rate is 
addedinitial,b) 

A multiplication of variables is not allowed in OSeMOSYS, as the solver GLPK 
cannot solve non-linear equation systems. However, in (WCC8initial,a) the average 
capacity factor is multiplied with e to the power of the wind penetration, and in 
(WCC8initial,b) the capacity credit at the end of a segment is multiplied with the 
segment fraction. All of those variables can directly be calculated from the 
parameters entered by the analyst. Therefore, in the implementation of the 
OSeMOSYS code, equations (WCC3), (WCC8initial,a) and (WCC8initial,b) are 
combined in one single bulky equation (WCC8). (WCC3) is however maintained 
in the code for reporting purposes. 

In the core code of OSeMOSYS, the contribution of a technology to the reserve 
margin is determined by multiplying the ReserveMarginTagTechnology with the 
calculated total capacity of a technology. The ReserveMarginTagTechnology 
parameter represents the capacity credits of the available technologies. While the 
capacity credit is calculated in (WCC8), it cannot be directly integrated into the 
ReserveMarginTagTechnology, as a multiplication of two variables is not 
allowed. Therefore, a first model run is required to calculate the capacity credit 
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of wind, which then has to be entered manually in the ReserveMarginTag-
Technology in a second model run147, i.e., (WCC4) has to equal (WCC8). 

 

3.3 Balancing 

3.3.1 Conceptual Description 

This section outlines the main principles of the code additions and provides a 
‘higher-level guide’ to the algebraic formulation. The same principles are 
revisited and explained in more detail when presenting the algebraic 
formulations immediately after this conceptual description. 

Throughout every year, all technologies have to provide at least the amount of 
reserves as specified by the analyst (R1 – R4). The upward reserve demands are 
represented in OSeMOSYS as a ‘dummy’ fuel. The minimum available capacity 
of a technology within OSeMOSYS is determined by the maximum sum of the 
electricity generation and reserve provision in all modes of operation within a 
year. This ensures the availability of sufficient capacities on top of those 
required for electricity generation in order to be able to provide upward reserve. 
Downward reserves are implemented as constraints on the minimum electricity 
generation requirements.  

Within OSeMOSYS, a technology is assumed to comprise an indefinite number 
of power plants148. The online capacity of the power plants associated with a 
technology has to be smaller or equal than the total available capacity of this 
technology (R5). Based on ramping characteristics, maximum shares of the 
online capacity can be defined which a technology can contribute to meeting 
downward reserves (R6 & R7). The provision of upward reserve may not be 
dependent on the online capacities. Some technologies might be able to start up 
fast enough to provide upward reserve without the need for any plants to be 
online. A differentiation based on ramping rates and minimum stable generation 
levels is required. 

                                                      
147  As long as wind penetration rates don’t change, no further iteration is required if a constant 

dispersion coefficient and a constant conventional power plant reliability are assumed. 
148  In order to avoid mixed-integer programming, no concrete power plant block sizes are 

considered when modelling reserve requirements. OSeMOSYS can decide freely how to split 
those up in online and offline power plants. 
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First, technologies are assessed whose entered maximum capacity contribution 
to primary and secondary reserve is larger or equal than their minimum stable 
operation level. For example, ramping rates could allow a technology to bring 
120 MW online within the specified reserve timeframe. If its minimum 
operation is at 100 MW, it is therefore assumed to be able to ramp up from zero 
output above its operating level (or back down to zero output) fast enough to 
contribute fully to meeting reserve demands149. In this case, the upward reserve 
provided is constrained by the total available capacity times the maximum 
possible reserve contribution of a technology (R8 & R9initial). It can provide as 
much downward reserve as it is generating electricity (R10initial). Its online 
capacity has to be at least as large as the capacity required for electricity 
generation (R11). Further, keeping capacity online requires an electricity 
generation at or above the minimum stable generation level (R12initial). This 
ensures as well that there is a cost associated with keeping capacity online. 

Second, technologies are investigated whose maximum contribution to primary 
and secondary reserve is smaller than the minimum stable operation level. The 
minimum operation level could for example be 100 MW and the reserve 
contribution only 20 MW. Such technologies can therefore not be ramped down 
to zero output or back up to their operating level within the reserve timeframe. 
They have to operate at some point above their minimum stable operation level 
and in-between their operating range in order to provide reserve services.  

The difference between the electricity generation and the minimum stable 
operation level limits the maximum downward reserve which the online plants 
can provide. Similarly, the difference between the potential maximum 
generation of a plant and its electricity generation limits the maximum upward 
reserve of these plants.  

The upward reserve provided is now constrained by the ramping characteristics 
of the online capacity150 (R13initial & R14). The minimum electricity generation 
can be calculated be adding the provided primary and secondary downward 
reserve to the minimum stable generation of the online capacity (continuous 
arrows in Fig. 13) (R15). Further, it has to be ensured that at least as much 
capacity is online as the provided power output plus all provided upward reserve 
services (dashed arrows in Fig. 13) (R16). 

                                                      
149  This might be unrealistic for a very short time horizon for primary reserve. However, it is up 

to the analyst to decide which time horizon to associate with primary and secondary reserve. 
150  The maximum downward reserve is derived from the online capacity in (R6 & R7). 
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Fig. 13: Calculation of minimum electricity production  

and online capacity in (R15 & R16) 

 

Finally, technologies are assessed whose maximum contribution to primary 
reserve is smaller than the minimum stable operation level, while the 
contribution to secondary reserve is larger. In this case all secondary reserve can 
be met by ramping up from zero output to above the minimum operating level 
(or down back to zero output). The provision of primary reserve however 
requires an operation below the online capacity in order to be able to ramp up 
the generation if needed (R17). The primary upward reserve provided is again 
constrained by the ramping characteristics of the online capacities (R13)151. 

Secondary upward reserve can be provided by offline plants and is therefore 
independent of the online capacity. It only has to be constrained based on the 
ramping characteristics of the total available capacity of a technology (R9). The 
required minimum electricity generation has to be at least as high as the 
secondary downward reserve provided. Any additional primary downward 
reserve requires an operation above the minimum stable generation level (R18 & 
R10). All online plants forming part of a technology have to generate electricity 
at or above their minimum stable generation level (R12). 

The analyst is given the option to enter a minimum share of upward reserve 
which has to be provided by online plants (R19 & R20). The calculations of the 
upward reserves from online plants are differentiated based on ramping 
characteristics in (R21 – R27). It might not be desirable or realistic to allow the 
model to freely vary the online capacity of a technology from one time slice to 
another. Therefore, the analyst can define a maximum reduction of the online 
capacity from one time slice to another (R28). This enables an indirect 
consideration of start-up costs. It might as well be desirable to constrain the 

                                                      
151  The maximum downward reserve is derived from the online capacity in (R6 & R7) 
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electricity output based on ramping characteristics, especially if time slices 
represent a rather short period of time within a specific day-type. Therefore, the 
analyst can as well define a maximum reduction of the generation from one time 
slice to another (R29).  
 

3.3.2 Meeting Reserve Demands 

Equations (R1 – R4) ensure that within every year and time slice, all 
technologies provide at least the amount of primary and secondary reserve that 
has been specified by the analyst. The CapacityToActivityUnit is required to 
ensure that the same units are used on both sides of the inequality.  

The upward reserve demands are modelled as a ‘dummy’ fuel named 
“PrimReserveUp” and “SecReserveUp”152 (R1 & R2). In the core code of 
OSeMOSYS, each technology may consume and produce different fuels in 
different modes of operation [101]. When modelling reserve, the analyst has to 
ensure that electricity is generated in one mode of operation while the dummy 
reserve fuels are provided in two other modes of generation.  

The total capacity of a technology within OSeMOSYS is determined by the 
maximum sum of the electricity generation and reserve provision in all modes of 
operation within a year. This ensures the availability of sufficient capacities on 
top of those required for electricity generation in order to be able to provide 
upward reserve. Note that no input fuel should be defined for the modes of 
operation associated with the provision of reserve. This is because the provision 
of reserve is not assumed to consume any input fuels (as opposed to the actual 
activation of a reserve).                         ∑                                                                                                   (R1)                        ∑                                                                                                  (R2) 

                                                      
152  This is a convenient deviation from the normal naming convention of OSeMOSYS, which 

gives the analyst the freedom to choose any names. Given that only fuel demands for these 
two specific reserve fuel types can be modelled, this simplification does not comprise the 
model’s overall flexibility. 
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In the core code of OSeMOSYS, the rate of activity is a driving key variable, 
e.g., for the calculation of the capacity of a technology. The fuel production of a 
technology is calculated by multiplying the ‘rate of activity’ with the output 
activity ratio. Using the rate of production in equations (R1 & R2) requires the 
output activity ratios to be set equal to one. The rate of production will 
therefore equal the rate of activity of a technology. Accordingly, the efficiencies 
for electricity generation have to be defined by using input activity ratios larger 
than one (i.e., by entering heat rates or the reciprocal of the efficiencies). While 
this is the standard approach for modelling power plants in OSeMOSYS, it is 
strictly speaking not a requirement. Refer to Howells et al. [101] for more 
information about the definition and use of the rate of activity and input and 
output activity ratios.  

Similarly as in (R1 & R2), the total contribution of all technologies to downward 
reserve has to be equal or larger than the downward reserve requirements (R3 & 
R4).         ∑                                                                                                  (R3)         ∑                                                                                                (R4) 

 

3.3.3 Considering Ramping Characteristics 

If power plants are used to provide operating reserves, this may have 
implications for their minimum electricity generation requirements. For 
example, a share of the upward reserve requirements may have to be provided 
by power plants which are online and operate at least at their minimum stable 
generation level. Further, plants may need to operate above their minimum 
stable generation in order to be able to provide downward reserve. Different 
minimum electricity generation requirements apply depending on the ramping 
rates and minimum stable operation levels of the individual technologies. 

In order to avoid mixed-integer programming, no concrete power plant block 
sizes are used when calculating reserve requirements. For example, one 
technology may represent 8000 MW of thermal power plants with a minimum 
stable operation at 45% of its capacity. It is then assumed that this technology 
represents an indefinite number of power plants. As such, it is able to generate, 
e.g., at 2000 MW. This could be interpreted as plants with 2000 MW capacity 
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being online and generating at their maximum output, while plants with a 
combined capacity of 6000 MW are currently shut down. This notion of 
separating a technology in online and offline plants is maintained in the 
following formulations. 

The following inequalities all serve to constrain the online capacities, the 
provision of reserve, and electricity generation requirements for each 
technology. 

The online capacity of a technology has to be smaller or equal than the total 
available capacity. The available capacity in each time slice is calculated as the 
total capacity that is available within a year, de-rated by the capacity factor (R5).                                                                                (R5) 

 

3.3.3.1 Contributing to Downward Reserve up to the Technical Maximum 

The analyst can define maximum shares of the online capacity which a 
technology can contribute to meet primary or secondary downward reserves. 
These shares are multiplied with the online capacity to limit the provision of 
downward reserve of each technology (R6 & R7).                                                                                                                       (R6)                                                                                                                      (R7) 

Similarly, the analyst can define maximum shares for the upward reserve 
contribution. However, the provision of upward reserve might not be 
dependent on the online capacities. Some technologies might be able to start up 
fast enough to provide upward reserve without the need for any plants to be 
online. A differentiation based on ramping rates and minimum stable generation 
levels is required. 
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3.3.3.2 Ramping Down to and Back up from Zero Output 

If both the maximum contribution to primary and secondary reserve is larger or 
equal than the minimum stable operation, a plant can be ramped down to zero 
output or back up to its operating level fast enough to meet all downward and 
upward reserve demands153.  

The upward reserve provided is only constrained by the total available capacity 
times the maximum possible reserve contribution of a technology. The available 
capacity in each time slice is calculated as the total capacity that is available 
within a year, de-rated by the capacity factor (R8 & R9initialinitial) 

A technology which falls into this category can provide as much primary and 
secondary downward reserve as it is generating electricity. As the name for the 
fuel ‘electricity’ can be freely chosen, a tag is required to let the model know this 
name. This is done by setting the tag equal to one for the fuel name associated 
with the electricity generated by power plants for transmission (R10initial). 

  

                                                      
153  This might be unrealistic for a very short time horizon for primary reserve. However, it is up 

to the analyst to decide which time horizon to associate with primary and secondary reserve. 
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                                                                                                                                                                                                                                                                                             (R10initial) 

The technology can be ramped up quickly enough from zero output to meet all 
upward reserve demands. It is therefore not required that more capacity is 
online than what is needed for electricity generation (R11).                                                                                                                                                                                                                                                                       (R11) 

The online plants of such a technology have to generate electricity at or above 
their minimum stable generation level (R12initial).                                                                                                                                                                                                                                                                                              (R12initial) 

 

3.3.3.3 Operating Above the Minimum Stable Generation 

If both the maximum contribution to primary and secondary reserve is smaller 
than the minimum stable operation, the plant cannot be ramped down to zero 
output and back up to its operating level any longer. It therefore has to be 
generating at some point above the minimum stable operation level and in-
between its operating range in order to provide reserve services. The difference 
between the electricity generation and the minimum stable operation level limits 
the maximum downward reserve which the online plants can provide. Similarly, 
the difference between the potential maximum generation of a plant and its 
electricity generation limits the maximum upward reserve of these plants. 
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Unlike in the previous case with high ramping rates, the upward reserve 
provided is now constrained by the online capacity154 (R13 initial & R14).                            (                                                )                                                                                                                                                                                                                      (R13initial)                           (                                                )                                                                                                                                                                                                                      (R14) 

The minimum electricity generation can be calculated be adding the provided 
primary and secondary downward reserve to its minimum stable generation 
(continuous arrows in Fig. 14). The minimum stable generation is obtained by 
multiplying the online capacity of a technology by its minimum stable operation 
level in per cent (R15). 

 

Fig. 14: Calculation of minimum electricity production and  

online capacity in (R15 & R16) 

  

                                                      
154  The maximum downward reserve which can be provided has already been considered in (R6 

& R7) 
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                                                                                                                                                                                                                                                                                                                                                                                                 (R15) 

Further, it has to be ensured that at least as much capacity is online as the 
provided power output plus all provided upward reserve services (dashed arrows 
in Fig. 14) (R16).                                                                                                                                                                                                                                                                                  +                                                                                                                                (R16) 

 

3.3.3.4 Ramping Down to and Back up from Zero Output for Secondary & Operating 

Above the Minimum Stable Generation for Primary Reserve 

If the maximum contribution to primary reserve is smaller and to secondary 
reserve larger than the minimum stable operation, only the provision of primary 
reserve requires an operation above the minimum stable operation. All 
secondary downward reserve can be met by ramping down to zero output. 
Similarly, all secondary upward reserve can be met by ramping up from zero 
output to above the minimum operating level. Given these characteristics, it 
may be assumed that there are some dedicated plants which provide all the 
primary reserve by a specific technology. Other plants which form part of the 
same technology provide all the secondary reserve. 

The upward primary reserve provided cannot be larger than the online capacity 
times the maximum possible reserve contribution of a technology. The validity 
of (R13initial) is therefore extended to cover these cases as well. This is done by 
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removing the restriction that it only applies if the maximum contribution to 
secondary reserve is smaller than the minimum stable operation.  

As opposed to the primary reserve, the upward secondary reserve provided is 
not dependent on the online capacity. It only has to be smaller than the available 
capacity times the maximum possible reserve contribution of a technology. The 
validity of (R9initial) is therefore extended to cover these cases as well. This is 
done by removing the restriction that it is only valid if the primary reserve is 
larger than the minimum stable operation. The modified equations are referred 
to as (R9 & R13) in the code implementation. 

Those plants which provide the primary reserve have to operate, i.e., generate 
electricity, below their online capacity if they should be able to ramp up their 
generation. The plants providing secondary reserve do not require any capacity 
to be online in order to provide secondary upward reserve. Therefore, only the 
primary reserve provision needs to be considered when calculating the 
minimum online capacity in inequality (R17).                                                                                                                                                  (                                             )                                                                                                                                                         (R17) 

Those plants which are assumed to provide only primary reserve have to 
generate electricity at least at their minimum stable generation in order to be 
able to ramp up if required. In case they also provide primary downward 
reserve, they have to generate additional electricity allowing them to ramp down 
to their minimum stable generation level if required. Those plants providing 
secondary reserve only have to generate electricity in case they are required to 
provide downward reserve.  

The minimum electricity generation for the provision of primary downward 
reserve can be calculated by assuming that all online plants are contributing to 
the primary downward reserve up to their technical maximum. In this case it can 
be calculated how much larger the minimum electricity generation of each 
technology has to be than its maximum contribution to the primary downward 
reserve. This is done by dividing the sum of the minimum stable operation and 
the maximum contribution to primary downward reserve (‘a’ in Fig. 15) by the 
latter (‘b’ in Fig. 15). The actual primary downward reserve provided is therefore 
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multiplied by this factor to calculate the minimum electricity production for 
meeting primary downward reserve requirements (R18). If secondary reserve is 
provided as well, it simply needs to be added (‘c’ in Fig. 15) to calculate the 
minimum electricity production. 
 

 
Fig. 15: Calculation of minimum electricity production in (R18) 

                                                                                                                                                                                                                                                                                                                                                     +                                                                           (R18) 

In order to avoid a division by zero, (R18) does not cover cases where a 
technology is not capable of contributing to primary reserve. In this case, the 
technology would only be required to provide a power output equal to its 
secondary downward reserve provision. This is because the technology can be 
ramped down to zero output and back up to its operating level fast enough to 
meet all downward reserve demands. Inequality (R10initial) is extended to cover 
this case as well. This is done by removing the restriction that it only applies if 
the maximum contribution to primary reserve is larger or equal than the 
minimum stable operation. This modified equation is referred to as (R10) in the 
code implementation. In case a technology also provides primary downward 
reserve, (R18) will always enforce a higher electricity generation than (R10). 

Further, all online plants forming part of one technology have to generate 
electricity at or above their minimum stable generation level. Similarly to 
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(R10initial), (R12initial) is extended to cover this case as well and referred to as 
(R12) in the code implementation. 
 

3.3.4 Operational Constraints 

3.3.4.1 Minimum Online Upward Reserve 

The previous constraints ensure sufficient electricity generation for the 
provision of reserve, based on ramping characteristics and minimum stable 
generation levels. However, potentially all upward reserve requirements could be 
met by technologies which do not produce any electricity. This could be the 
case if these technologies are able to ramp up fast enough if needed. The model 
might prefer such offline technologies as keeping them online requires an 
operation above the minimum stable generation level with associated generation 
costs (R12 & R15).  

While a provision of reserve by offline technologies might technically be 
possible, it might not be realistic. Given the energy required to start-up a power 
plant from a cooled down state, it might be preferable to ensure at least some of 
the upward reserve is provided by online plants. This might entail that they 
generate electricity at a potentially higher cost than other technologies, but these 
costs might be outweighed by the avoided start-up costs. The accurate 
modelling of the number of start-ups and the associated costs is considered 
outside of the scope of this energy model. This is due to its coarse temporal 
resolution and the medium- to long-term timeframe it covers.  

Alternatively, the analyst is given the option to enter a minimum share of 
upward reserve which has to be provided by online plants. These online plants 
are required to generate electricity at least at their minimum stable operation 
level. This option is especially important for secondary reserve. Technologies 
providing primary reserve will most likely have to operate above their minimum 
stable generation anyway, given their ramping characteristics (as enforced 
through R10 & R13). However, all of the following constraints are set up for 
both, primary and secondary reserve. This ensures the model’s flexibility with 
regard to the technology choices and timeframes associated with the two reserve 
types. These can be freely chosen by the analyst. 
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The reserve provided by online technologies has to be larger than the demand 
for upward reserve times the minimum share of this demand which has to be 
met by online technologies (R19 & R20).                                                                     ∑                             (R19)                                                                    ∑                             (R20) 

In case a technology cannot be ramped up fast enough from zero output, all 
reserve will have to be provided by online plants. Therefore, in this case the 
upward reserve provided by online plants equals the production of the fuel 
‘reserve’ (R21 & R22).                                                                                                                                                                                                     (R21)                                                                                                                                                                                                 (R22) 

In case a technology can be ramped up fast enough, the total upward reserve 
contribution of a technology may include both, online and offline reserves. The 
online upward reserve provided by such a technology could therefore be smaller 
than its total upward reserve contribution (R23 & R24).                                                                                                                                                                                                       

 (R23) 
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                                                                                                                                                                                                 (R24) 

Further, the upward reserve provided by online plants is limited by their online 
capacity minus their power output (R25).                                                                                                                                                                                                                                                                                                                                                           (R25) 

Finally, the upward reserve provided by online plants is limited by their defined 
maximum contribution to the upward reserve (R26 & R27).                                                                                                                                                                 (R26) 

                                                                                                                                                              (R27) 

 

3.3.4.2 Maximum Changes in Online Capacities and Generation 

It might not be desirable or realistic to allow the model to freely vary the online 
capacity of a technology from one time slice to another. Therefore, the analyst 
can define a maximum reduction of the online capacity from one time slice to 
another. Time slices which are linked to each other are defined by a tag. This tag 
equals one if a link exists and zero otherwise.  

Note that a maximum reduction could be associated with any time slice 
combination. As such, it could be defined that the online capacity in a summer 
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week day morning can only be reduced by ten per cent until lunch time. Further, 
it can as well be defined that the same holds true the other way round, i.e., that 
the online capacity during the morning is only allowed to be ten per cent lower 
than the online capacity during lunch time. A value of 0.1 for the maximum 
online capacity reduction would therefore limit the change of capacity from 
currently 100% down to 90%, or from currently 90% up to 100%.  

In (R28), the online capacity in a time slice which is linked to another time slice 
is reduced up to its defined maximum. The online capacity of the other time 
slice has to be larger than this reduced capacity.                                                                                                                                                                                    (R28) 

In case the online capacity of a technology is kept constant from one time slice 
to another, the electricity output may still vary between the minimum stable 
generation and the maximum output. It might as well be desirable to constrain 
the change in electricity output based on ramping characteristics, especially if 
time slices represent a rather short period of time within a specific day-type. 
Therefore, the analyst can as well define a maximum reduction of the 
generation. This reduction is entered as a percentage of the online capacity.  

The electricity generation in one time slice which is linked to another time slice 
is reduced up to its defined maximum. The electricity generation in the other 
time slice has to be larger than this reduced generation (R29).                                                                                                                                                                                                                                                                  (R29) 

Note that if the maximum reduction is set to one (or larger) in (R28) and (R29), 
the left side of the inequalities would be negative. As the online capacity and the 
electricity generation on the right side are always equal or larger to zero, both 
inequalities would not be binding in this case. 
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4 Test Case 

This section presents an application of the proposed code enhancements. All 
data applied is realistic and derived from the literature [49,306,368–377]. Further 
information on the input data is provided in Annex E.  

However, the application is purely exemplary and the presented results just 
serve to showcase how investment dynamics are influenced by the consideration 
of flexibility requirements. This indicates the value of the code enhancements 
for later applications to real-world situations. 

To emphasise its illustrative character, the application was deliberately designed 
not to represent a specific country or energy policy, but rather to investigate a 
simple system which serves to demonstrate the model enhancements. The 
system was set up to enable the model to choose between a limited set of pairs 
of technologies, which fulfil different required functions: (a) two based-load 
generation technologies (nuclear and coal); (b) two technologies which are, at 
least initially, used for peak-load generation (open-cycle and closed-cycle gas 
turbines) and (c) two ‘carbon-free’ technologies, one of which introduces 
increased variability into the power system (nuclear and wind). 

 

4.1 Main Assumptions 

The power system of the illustrative case study was assessed for a single region 
over the period from 2010 to 2040. Complying with current practice in long-
term modelling, a limited number of time slices was chosen (refer to Section 
1.4.1 of Part B). Each year was represented by one representative day for each 
season, split up in a day- and night-time period. Valuable insights might be 
gained from a more detailed analysis of the choice of time slices and scenarios. 
As this is rather a proof-of concept than a real-world case study, it was therefore 
considered to be outside of the scope of this application. 

As suggested in Section 2.2.1 of Part B of this thesis, a half an hour time 
horizon was chosen to estimate primary reserve requirements and a four hour 
time horizon for secondary reserve. Reserve requirements were considered 
based on some of the metrics provided in that section and as outlined in more 
detail in Annex E. Electricity generation was modelled drawing on nuclear-, 
coal- and gas-fired power plants as well as wind power.  
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For combined and open cycle gas turbines (CCGT and OCGT), two sub-
technologies each were entered. These sub-technologies represent power plants 
that will operate in one of two distinct states. One represents an operation close 
to the maximum capacity where only primary reserve can be provided. The 
other represents an operation at part-load with a reduced efficiency, allowing the 
provision of both primary and secondary reserve. During any year, the model 
can chose an optimal combination of these two system states. This allows 
modelling the varying efficiencies and fuel consumptions of gas turbines in 
more detail, given the large contribution of their fuel costs to the total costs 
[370]. Further, it enables a quick assessment of the type of reserve for which a 
gas turbine is primarily used for. In the following tables and graphs, the two 
sub-technologies are differentiated by the suffix ‘-fl’ for full load, and ‘-pl’ for 
part load. 

A minimum renewable energy generation target of 20% in 2030 was imposed. It 
was assumed that the minimum generation would increase by 1% each year up 
until this target value. Further, the maximum CO2 emissions of the power sector 
were limited to 225 million tonnes per year. 

Four models were set up to assess this illustrative case study (Table 4). They 
serve to demonstrate the dynamics introduced through the added functionality. 
All draw on the same input data. However, each of these cases builds on, and 
adds functionality to, the previous model. 

As further explained in Annex E, the sinking fund depreciation used in the core 
code of OSeMOSYS was replaced by a straight-line depreciation. Building on 
this adjustment, the option to choose between sinking-fund and straight-line 
depreciation was later integrated into the core version of OSeMOSYS as of 14 
March 2013 [310]. 
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Table 4 

Model descriptions 

Case Name Description 

1. Conventional Model Based on the core code of OSeMOSYS without any 
increased functionality. A constant capacity credit of 
wind power was assumed. 

2. Calculated Capacity Credit The capacity credit of wind power was calculated 
within OSeMOSYS. 

3. Secondary Reserve Additionally, secondary reserve requirements were 
considered. Throughout a day-type, the online 
capacity of nuclear and coal-fired power plants has to 
remain constant. Cycling of technologies was 
constrained between the minimum stable generation 
and the maximum online capacity. 

4. Primary and Secondary Reserve Primary reserve was considered as well. 

a) Limited Cycling of 

Nuclear 

Within one day-type, nuclear power was only allowed 
to cycle in between 80% and 100% of its online 
capacity. 

b) Increased Cycling of 

Nuclear 

Nuclear power was allowed to cycle in between its 
minimum stable generation level and its online 
capacity. 

 
  

 

4.2 Results 

The following sections provide the main findings for each of these cases. 
 

4.2.1 Conventional Model 

In this model case, no reliability assessment was performed and the capacity 
credit of wind was entered as a constant. In a first estimate, it was set equal to 
the capacity factor of wind, which is 0.26. This simplistic assumption was made 
for comparison with the calculated capacity credit as presented in the following 
modelling set-up (refer to Section 4.2.2 of Part B). No reserve requirements 
were taken into account. 
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In the conventional model, some of the total wind and nuclear power capacities 
that are retired in 2015 and 2020 are not replaced by the same technology. 
Instead, the model chooses to invest in the cheaper coal-fired power plants (Fig. 
16). Due to their higher capacity factor compared to wind power, a slight 
reduction of the total capacity can be observed in 2015. The renewable energy 
generation target enforces an increase in wind generation from 2016 onwards.  

  
  

 C
a

p
a

ci
ty

 [
G

W
] 

 

Fig. 16: Capacity mix in conventional model 

 

The target generation share of 20% is reached in 2030 and maintained from 
thereon. Once this target is reached, most new capacity investments focus on 
nuclear energy, the only alternative to wind power with ‘zero’ CO2 emissions. 
While the capital costs of nuclear power are higher, so is as well its availability 
(refer to Table 17 in Annex E). This makes it a more attractive investment to 
comply with the emissions target than wind power. Part-loaded gas turbines are 
not invested in. This is due to their lower efficiencies. Also their contribution to 
reserve services is not rewarded in this model case. This implies that when gas 
turbines produce electricity, all of it is assumed to be generated at full load with 
maximum efficiency. The total installed capacity amounts to 105 GW in 2010 
and 207 GW in 2040.  

The emission target of 225 million tonnes of CO2 emissions per year is reached 
in 2023. It results in a basically constant annual electricity generation from coal-
fired power plants in the remaining modelling period. However, coal generation 
varies significantly and unrealistically throughout one day (Fig. 17). For example, 
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during every day in spring in 2010, coal-fired power plants are used to generate 
electricity during day-time, shut down during night time and again ramped up 
for the next day. Throughout the modelling period, both wind power and 
nuclear energy are dispatched up to their maximum availability. Only a share of 
the available gas turbines are used to generate electricity during times of peak-
demand. They are mainly invested in to meet the required system reserve margin 
of 20%. 
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Fig. 17: Dispatch in conventional model 

 

4.2.2 Calculated Wind Capacity Credit 

As opposed to the conventional model, in this case the capacity credit of wind 
was calculated within OSeMOSYS based on penetration levels. This results in a 
maximum capacity credit of wind of 0.16, which decreases down to 0.12 over 
the modelling period. As expected, this demonstrates that aligning the capacity 
credit with the yearly capacity factor of 0.26 as done in the conventional model 
case would significantly overestimate the contribution of wind power to the 
system’s reliability. Note that the reduction of the capacity credit just entails a 
lower contribution of wind towards the system reliability, and not a reduced 
annual generation per unit of capacity. Operating reserve requirements were 
again not considered. 

The reductions in the capacity credit do not translate into reductions in 
investments in wind power. This is because wind power has to be invested in to 
comply with the renewable energy target. The decreased contribution of wind 
power to the overall system reliability is compensated by increased investments 
in open cycle gas turbines that, when called on, operate at full load. Compared 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

164 

to the conventional model, additionally 2 GW of fully loaded open cycle gas 
turbines are invested in 2010, which increases to 10 GW in 2040. All other 
capacities as well as the dispatch remain the same as in the conventional model 
case. Overall, this leads to a 5% increase in the total installed capacity (107 GW 
in 2010 and 217 GW in 2040). Open cycle gas turbines are chosen due to their 
cheap investment costs. Their high fuel costs are not an issue as they are rarely 
dispatched since they are just built as a system reserve. 
 

4.2.3 Secondary Reserve 

In this model case, secondary operating reserve requirements are considered. 
This and the following case draw on the enhanced model as described in Section 
2.2.2 of Part B of this thesis. The wind capacity credit is again calculated within 
OSeMOSYS. Throughout a day-type, the online capacities of nuclear and coal-
fired power plants were assumed to remain constant. This constrains any cycling 
to occur in between the minimum stable generation level and the online 
capacity. This was done to avoid that the model would potentially shut these 
plants down during night time and ramp them up again at day time during every 
day within one season.  

In a more detailed power system model, considering additional technical detail 
like start-up costs and minimum down and up times would limit such cycling. 
Such detail is however commonly neglected in long-term energy system models. 
This is done to avoid mixed integer programming with on and off decision 
variables and due to their coarse temporal resolution. Limiting the change in the 
online capacity during one day-type is therefore an alternative which improves 
the accuracy of the modelled dispatch. 

In this and the following model cases, the demand for operating reserve results 
in a system reserve margin155 which is higher than its predefined minimum of 
20% (in this case: 25% in 2010, 23% by 2040). Therefore, the total capacity is 
higher than in the previous cases. It amounts to 111 GW in 2010 and 221 GW 
in 2040. Simply implementing this higher reserve margin in the conventional 
model would result in the same total capacities. However, all additional 
capacities required to meet the reserve margin would come from open cycle gas 
turbines, i.e., the technology with the lowest investment costs. No other system 

                                                      
155  Capacity credit of all power plants divided by load, minus one. 
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wide implications of providing these reserve services would be taken into 
account. 
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Fig. 18: Changes in capacity when secondary reserve is considered  

Compared to case with calculated wind capacity credit 

Positive y-axis values: capacity additions 
Negative y-axis values: capacity reductions 

 

The most significant change as compared to the model case with the calculated 
capacity credit is the investment in gas turbines that, when running, operate at 
part-load, as shown in Fig. 18. In this figure, capacities in addition to the 
previous case (Calculated Wind Capacity Credit) are shown with positive and 
reduced capacities with negative y-axis values. Combined cycle gas turbines are 
mostly built to meet peak electricity demand and as well to provide some 
secondary upward reserve. Open cycle gas turbines are mainly invested in for 
the provision of secondary upward reserve. They are only dispatched for 
electricity generation during the time slice when peak demand occurs (Fig. 19). 
During all years, there is always more downward reserve available then required. 
Therefore, downward reserve requirements do not influence any investment 
decisions. 

There are minor reductions in investments in coal-fired power plants from 2016 
onwards (Fig. 18). These reductions become more significant once the emission 
target of 225 million tonnes of CO2 emissions per year is reached in 2020. From 
2020 onwards, coal-fired electricity generation decreases constantly. However, 
coal retirements in 2025 and 2030 are still almost completely replaced by new 
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coal installations. This situation changes in 2035. Then, they are partly 
substituted by investments in combined cycle power plants operating at full load 
with maximum efficiency. These combined cycle power plants are dispatched up 
to their maximum available capacity during the peak demand time slices (right 
graph in Fig. 19). Overall, in 2040, this results in 15 MW equalling 26% less 
coal-fired power plants as compared to the case with the calculated capacity 
credit. 
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Fig. 19: Dispatch when secondary reserve is considered 

 

As opposed to the previous case, nuclear is not constantly dispatched at its 
maximum available capacity any longer. This is because the introduced cycling 
constraints reduce the flexibility in dispatching coal-fired power plants. For 
example, the online capacities of coal during Spring Day limit the required 
minimum generation during Spring Night when lower demand occurs. This 
decreased flexibility of coal is compensated by the increased cycling of nuclear. 
The most extreme cycling of nuclear power occurs in 2034, when its output 
during Spring Night is reduced to 71%. 
 

4.2.4 Primary and Secondary Reserve 

Limited Cycling of Nuclear 

In this model case, primary operating reserve requirements were included in 
addition to the secondary reserve demands. Further, it was assumed that within 
one day-type nuclear power would only be capable of cycling between 80% and 
100% of its online capacity. In the model definition, this was implemented by 
setting the minimum (stable) generation to 80%.  
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Fig. 20: Changes in capacity when considering primary and secondary reserve;  

Cycling of nuclear is limited 

Compared to case with secondary reserve only 

Positive y-axis values: capacity additions 
Negative y-axis values: capacity reductions 

 

Additional power plants are required to meet the demand for primary reserve. 
Compared to the previous case, the total capacity therefore increases to 117 GW 
in 2010 and 228 GW in 2040. 

In the first decade of the modelling period, more coal-fired power plants are 
invested in (Fig. 20). Yet, it is not economically efficient to dispatch all of the 
available capacity up until 2014. The reason for this ‘overinvestment’ in coal 
during the first years is its initially important role in providing primary reserve. 
Coal power plants always contribute to the primary upward reserve up to their 
technical maximum. In the first ten years during the periods of lower demands, 
coal and nuclear power plants are able to provide all of the primary reserve.  

Up until 2014, coal power plants also provide secondary reserve. In the five 
years after the emission target is reached in 2020, coal investments are very 
similar to the previous case without primary reserve considerations (Fig. 20). 
Especially towards the later years, both coal and nuclear power plants cannot 
contribute significantly to meeting the increasing primary reserve requirements 
any longer. This results in lower investments in these technologies in the second 
half of the modelling period. 
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Throughout the modelling period, combined cycle power plants operating at 
maximum efficiency gain in importance in providing primary reserve. This is 
because of their rather high ramping rates. While open cycle gas turbine provide 
even better ramping rates, their associated greenhouse gas emissions and fuel 
costs are higher. Therefore, combined cycle power plants are dispatched 
throughout the year from 2020 onwards. The increasing role of combined cycle 
gas turbines constitutes the most significant change compared to the case with 
secondary reserve only. While investments in part-loaded open gas turbines 
decrease, they still have an important role to play in providing secondary upward 
reserve. 

Within one day-type, most demand variations are compensated by the cycling of 
coal and combined cycle power plants (Fig. 21). Coal-fired power plants are 
using their full cycling capabilities for this purpose. While nuclear does not draw 
on its full cycling range for electricity generation, it uses its full range for the 
provision of reserve. Especially during periods of low demand, the power 
system provides just as much primary downward reserve as required. After 2016 
the total secondary downward reserve exceeds the system’s requirements. 
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Fig. 21: Dispatch when primary and secondary reserve is considered; 

Cycling of nuclear is limited 
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Increased Cycling of Nuclear 

In this model case, again primary and secondary reserve requirements were 
considered. Further, nuclear power plants were allowed to cycle between their 
minimum stable generation level of 50% up to their online capacity within a 
day-type. This corresponds to an advanced nuclear power plant design. 

Changes to the case with limited cycling of nuclear are marginal during the first 
ten years (Fig. 22). Once the emissions target is reached in 2020, the increased 
cycling ability of nuclear power plants makes them more attractive. As their 
generation can be reduced during times of lower demand, coal-fired power 
plants may increase their output during such times. Given the higher 
contribution of coal towards the primary reserve, less combined cycle power 
plants are therefore required during such periods. In 2040, this results in 14% 
higher nuclear and 16% higher coal power capacities, and 20% lower capacities 
of combined cycle power plants operating at full load. 
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Fig. 22: Changes in capacity when considering primary and secondary reserve; 

 Increased cycling of nuclear 

Compared to case with limited cycling of nuclear 

Positive y-axis values: capacity additions 
Negative y-axis values: capacity reductions 
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4.3 Discussion 

Fig. 23 provides an overview of the capacity mixes in some of the model cases 
for the year 2040. In the conventional model case, gas-fired power plants 
contribute only 10% to the total capacity despite the high share of wind power. 
Almost all of the variability in demand is compensated by the unrealistically 
extreme cycling of coal-fired power plants. This situation does not change 
significantly once the capacity credit of wind is calculated by OSeMOSYS. This 
only results in a 4% higher capacity share of open cycle gas turbines to meet the 
system reserve margin. 

Considering system security through the modelling of balancing requirements 
significantly improves the results. Coal is not cycled unrealistically any longer. 
Further, gas-fired power plants gain in importance in compensating the 
variability introduced by wind power. In the model case in which secondary 
reserve requirements were introduced, gas-fired power plants now provide 23% 
of the total capacity.  
 

 Conventional model       Secondary reserve 

  

Primary & secondary reserve: Limited 

cycling of nuclear 

 Primary & secondary reserve:  

 Increased cycling of nuclear 

  

Fig. 23: Capacity mix in 2040 for selected model cases 
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Including primary reserve and limiting the cycling of nuclear power plants 
between 80% and 100% of their online capacity considerably limits investments 
in nuclear. Interestingly, the decreased flexibility of nuclear also affects coal-
fired power plants: Nuclear power is the preferred option for the dispatch, given 
its low fuel costs. As it can only be cycled down to a limited extent within one 
day, less coal-fired power plants can come online during off-peak periods. The 
online nuclear and coal-fired power plants are not sufficient to provide all the 
primary reserve. This results in higher investments in combined cycle power 
plants.  

Increasing the cycling ability of nuclear therefore results in increased 
investments in both, nuclear power and coal-fired power plants, and reduced 
capacities of gas-fired power plants. This increased flexibility comes at the cost 
of a reduced annual utilisation of nuclear power plants, which decreases from 
78% to 72% over the modelling period. Power markets would need to value this 
increased flexibility to trigger the required increased investments in nuclear 
power despite the reductions in the capacity factor. 

Due to the coarse temporal resolution, wind power is always dispatched 
whenever it is available. However, during some time slices wind power is as well 
used as a primary downward reserve. This is an indication that it would be 
curtailed if the temporal resolution was increased. Refer to Deane et al. [49] for 
a demonstration of the effects of increased temporal resolution on wind 
curtailment. 

In addition to providing an unrealistic capacity mix, the conventional model 
underestimates the total power system costs (Fig. 24). Calculating the capacity 
credit of wind power with OSeMOSYS results in only 1% higher overall costs. 
This is because the cheapest technology is invested in to maintain the system 
reserve, regardless of its potential fuel consumption and its technical and 
environmental characteristics. Considering secondary reserve results in 3% 
higher costs than in the conventional model. The highest cost increase of +11% 
occurs when considering both primary and secondary reserve with a limited 
cycling capability of nuclear power. This is mainly due to the higher fuel costs of 
natural gas. 
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Fig. 24: Discounted power system costs 2010 – 2040 

 

If applied to a real-world case, the model enhancements may provide valuable 
insights regarding the value of an increased flexibility of a technology. This 
could be achieved by comparing the total power system cost for two model runs 
with different technology parameters. For example, in this application the two 
cases with primary and secondary reserve could be compared to investigate the 
value of improved cycling characteristics of nuclear power generation. 

The presented application just served as a proof-of-concept and did not 
represent a specific country. However, the comparison of the model cases 
demonstrated that the detail added through the enhancements significantly 
influences results. This indicates that national or regional models may 
underestimate the importance of flexibility within the power system if short-
term variability is not considered. Policies informed by such models might 
therefore promote energy systems which do not ensure that expected reliability 
standards are met. Next, a real-world case study is presented. 
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5 An Irish Case Study 

In preceding work by UCC [49], an operational power system model of Ireland 
(PLEXOS) was soft-linked with a long-term energy system model (TIMES) to 
assess the year 2020. This served to model the power system implications of the 
Republic of Ireland’s 40% renewable electricity generation target [378]. The 
penetration rate of 40% was set in support of Ireland’s 16% renewable energy 
target [315]. Given the detailed temporal resolution and representation of 
technical characteristics, soft-linking these models provides for improved 
dispatch results, thereby serving as a benchmark for the OSeMOSYS 
enhancements presented in this part of the thesis.  

The Irish power plant capacities up until 2020 were largely determined by 
currently existing installations and planned extensions. Comparisons for 2020 
therefore focused on the generation mix. The analysis was therefore extended 
until 2050 to investigate differences in the capacity mixes between various 
OSeMOSYS models. This gives an indication of how investment strategies and 
supportive policies might differ. 

Table 5 provides an overview of the key parameters applied in these three 
modelling tools. Further background on the individual modelling tools is 
provided in Section 5 of the introduction of this thesis. 
 
 

Table 5 

Key parameters applied in the three modelling tools. Adapted from Deane et al. [49] 

 
* Considered indirectly through cycling characteristics (see Section 2.2.2 of Part B) 

Plexos 
OSeMOSYS 

Enhanced
TIMES

Technical Installed capacity   

Input/output fuels   

Heat rates/efficiencies   

Min. stable generation  

Up/down ramp rates/reserves  

Min. up and down times  *

Maintenance rates/availabilities   

Repair time 

Economic Fuel costs   

Emission costs   

Variable O&M costs   

Fixed O&M costs  

Start-up costs  *

Environmental Emissions   

Parameters



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

174 

First, Ireland’s power system is briefly introduced and the soft-linking approach 
is explained in Section 5.2 of Part B of this thesis. Then, various increasingly 
detailed versions of OSeMOSYS models are presented, which are applied for 
comparison with TIMES-PLEXOS. The calculation of the capacity credit of 
wind is explained in Section 5.4 and some further code adjustments are 
introduced in Section 5.5. These are required to model Ireland’s pumped storage 
hydropower plant and its varying contributions to the operating reserve in 
pumping and in generation mode. This is followed by an outline of the main 
driving assumptions of these models. Results are then presented in Section 5.7 
for the year 2020 and in Section 5.8 for the analysis to 2050. These are then 
discussed in Section 5.9 of Part B. 

 

5.1 Ireland and its Power System 

Ireland’s power system is characterised by a recent decrease in electricity 
consumption due to the recession. In 2008, a total of 30,190 GWh were 
generated, which reduced to 27,440 GWh in 2011 [369,379]156. 80% of the 
generated electricity stemmed from fossil sources with negative implications for 
Irelands energy import dependence157. The most important renewable power 
source is wind, which contributes with 16% to the total generation. The 
remaining 4 % are met by hydropower, landfill gas, other biogas and biomass. 
Recent growth rates of renewables provide an indication of their expected 
importance in Ireland’s future power mix: generation from renewable electricity 
sources increased by 30% from 4,108 GWh in 2009 to 5,429 GWh in 2011. 

Ireland is connected to Wales via the East-West interconnector with a capacity 
value of 440 MW and to Northern Ireland. It relies on 100 MW from Northern 
Ireland. An additional North-South tie line is expected to come into operation 
in 2017. Northern Ireland itself is connected to Scotland via the Moyle 
Interconnector with an import capacity of between 410 – 450 MW. Due to a 
fault in one of the two cables, only 250 MW are currently available [381]. 

                                                      
156  Almost 40% of all final electricity consumption occurs in industry. One third of the 

consumption is due to residential and about one forth due to commercial and public demand. 
The remainder comprises agricultural demand and, to a very limited extent, transport [380]. 

157  Electricity generation contributes with one third to the total primary energy demand, 90% of 
which are met by energy imports [380]. 
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5.2 Soft-linking a Long-term Energy Model with an Operational 

Power System Model 

Soft-linking TIMES with PLEXOS required a reconciliation of the temporal 
resolution between the two models. In TIMES, day, night and peak times of a 
single characteristic day were modelled in each of the four seasons over the 
period 2005 – 2020. This results in 12 time slices. PLEXOS on the other hand 
was set up as a chronological, hourly model. The lowest common denominator 
was therefore one year. Soft-linking was implemented by feeding the power 
plant capacity mixes for 2020 as derived from the TIMES model into PLEXOS. 
PLEXOS then assessed the overall operational reliability and technical 
appropriateness of this particular capacity mix. 

All models were subject to a common constraint which reflects Ireland’s 40% 
renewable electricity generation target. In line with EirGrid and SONI [317], the 
technically acceptable instantaneous maximum wind share in the generation mix 
was limited to 70% of the load. Technical data such as efficiencies and emission 
factors as well as economic data such as fuel and carbon prices were consistently 
defined in both models. Additional data such as ramping rates and start-up costs 
was required for the power system model. 

In this thesis, the soft-linked models are referred to as the TIMES-PLEXOS 
model. Several model runs were performed to demonstrate the effects of 
variations in wind availability, temporal resolution and technical detail. The 
applied methodology is described in detail in Deane et al. [49] and graphically 
represented in Fig. 25. 

In this work, the most basic and most advanced TIMES-PLEXOS 
configurations were compared with OSeMOSYS:  

1. TIMES-PLEXOS Simple: This model investigates the effects of 
increased temporal resolution. It runs at hourly intervals, but 
without any additional operational constraints. Outage calculations 
are based on Monte Carlo simulations. It is referred to as “Simple” 
in Deane et al. [49]. 

2. TIMES-PLEXOS Enhanced: This model additionally investigates 
the effects of increased operational detail. It builds on the simple set 
up, but considers start-up costs, minimum stable generation levels, 
ramping rates, and operating reserve requirements. It is referred to 
as “Reserve” in Deane et al. [49]. 
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Fig. 25: Flow chart of soft-linking methodology [49] 

 

Comparing OSeMOSYS to these two model configurations enabled a 
differentiation of the accuracy gains due to the hourly resolution in the simple 
TIMES-PLEXOS model from those due to additional operational detail as 
considered in the enhanced TIMES-PLEXOS model. 

Input data and results from the stand-alone TIMES model [26] were used to 
configure the initial OSeMOSYS model. 
 

5.3 Enhancing a Long-term Model 

Several increasingly detailed OSeMOSYS models were set up for comparison 
with the soft-linked TIMES-PLEXOS models. As opposed to the soft-linked 
models, all OSeMOSYS models (like the stand-alone TIMES model) only 
consider 12 time slices and are based on less operational detail: 
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1. OSeMOSYS Simple: In a first model run, the core code of 
OSeMOSYS158 was applied. It was slightly adjusted to better model 
Ireland’s pumped storage hydropower plant. This set up is similar 
to the stand-alone TIMES model. As such, it is representative of 
conventional long-term energy system models without operational 
detail. 

2. OSeMOSYS 70% Wind: This model run draws on the simple 
model, but uses a detailed wind availability assessment based on 
hourly data as additional input. This enabled a more accurate 
consideration of the 70% wind generation limit despite the low 
temporal resolution (refer to Section 5.6.1 of Part B). The results 
for 2020 were compared with those of the simple TIMES-PLEXOS 
model. This comparison serves to investigate the implications of the 
increased temporal resolution as applied with TIMES-PLEXOS 
versus the external data analysis as performed in the OSeMOSYS 
model. 

3. OSeMOSYS Enhanced: This set-up considers the effects of 
increased operational detail. It builds on OSeMOSYS 70% Wind, 
but additionally includes some of the constraints of ‘TIMES-
PLEXOS Enhanced’, i.e., operating reserve requirements, 
maximum contribution of individual power plants to meeting these 
reserve requirements and minimum stable generation levels. 

 

Given the vintage structure of existing Irish power plants, new capacities already 
in the pipeline and projected low electricity demand growth, all models showed 
identical capacity mixes by 2020. Comparing results for 2020 between the 
various TIMES-PLEXOS and OSeMOSYS models therefore served to assess 
variations in their dispatch.  

Investigating the implications on new capacity investment decisions required an 
extension of the modelling horizon. OSeMOSYS model runs were therefore set 
up until 2050, when most of the current power plants will be retired. The 
models could therefore freely invest in the most economic technologies while 
complying with the greenhouse gas emission reduction targets. 

A succinct summary of the TIMES-PLEXOS and OSeMOSYS model runs is 
provided in Table 6. 
 
 
 

                                                      
158 In its version of 2013-04-30 as available at www.osemosys.org. 

http://www.osemosys.org/
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Table 6 

Summary of the main characteristics considered in the model set-ups 

OSeMOSYS 

Simple 

OSeMOSYS  

70% Wind 

TIMES-

PLEXOS 

Simple 

OSeMOSYS 

Enhanced 

TIMES-

PLEXOS 

Enhanced 

 Uses the core 
code of 
OSeMOSYS, 
as available at 
osemosys.org 

 External 
wind data 
analysis to 
ensure a max. 
wind 
penetration 
of 70% 

 Comparable 
input data to 
‘OSeMOSYS 
70% Wind’ 

 Hourly, 
chronological 
simulation 

 External 
wind data 
analysis 

 Min. stable 
generation 

 Reserve 
contribution 

 Operating 
reserve 

 Hourly (wind 
power) 
simulation 

 Start-up costs 

 Min. stable 
generation 

 Ramp rates 

 Operating 
reserve  

 

5.4 Capacity Credit Calculations 

Section 2.1 of Part B of this thesis describes the OSeMOSYS implementation of 
an analytical formula by Voorspools and D’haeseleer [51] to estimate the 
capacity credit of wind power. As mentioned, this formula was integrated into 
OSeMOSYS to provide a first-order estimate in case of a lack of more detailed 
external reliability assessment. When developing the formula, data from the Irish 
Transmission System Operator was used for its calibration. Therefore 
reapplying it to Ireland was expected to provide rather accurate results, at least 
up until a penetration level of 30%, which constituted the upper end of the 
calibration range of the formula.  

The Transmission System Operators (TSOs) of Ireland and Northern Ireland 
[381] provide an updated assessment of the capacity credit of wind in Ireland 
based on the half-hourly wind profile of 2009. This assessment was compared to 
calculations based on the analytical formula, using the following input data: a 
dispersion coefficient for Ireland of 0.33 as suggested by Voorspools and 
D’haeseleer [51]; a wind capacity factor of 31.7%; a reliability of conventional 
generation of 87%; and the 2009 peak load of 4,850 MW, which was aligned 
with data by the Irish TSOs [381].  

The dependency of the capacity credit on the penetration rate is presented in 
Fig. 27 based on the assessment by the Irish TSOs and as calculated by the 
analytical formula. The two corresponding curves (solid and dashed line) show a 
similar slope up until a penetration rate of about 30%. However, the capacity 
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credit is constantly about 6% higher when applying the analytical formula. This 
difference increases with penetration levels above 30%. When trying to adjust 
the input parameters of the formula to match the data provided by the Irish 
TSOs, a good fit up until a penetration level of 30% is achieved by reducing the 
capacity factor by 5% points (dotted line). There is however no justification for 
such a reduced capacity factor apart from trying to match the two curves. 
 

 
Fig. 26: Capacity credit of wind power 

 

While no assessment of the quality of the results of the two approaches was 
made by the author, it can be assumed that the more detailed and country-
specific reliability assessment provided by the Irish TSOs is also more accurate. 
As suggested in Section 2.1.1 in Part B of this thesis, the analytical formula was 
therefore not applied in this case study, but aligned with the capacity credit 
values derived from the data by the Irish TSOs. 

 

5.5 Modelling Ireland’s Pumped Storage Hydropower Plant 

The modelling of storage within OSeMOSYS has been explained in detail in 
Section 2 of Part A of this thesis. The storage formulations described therein 
enable a consideration of various day-types and seasons and ensure continuity of 
storage levels across the year. Further, storage capacity expansions can be 
optimised. The broad applicability of these storage formulations comes at the 
expense of extended calculation times. It was however possible to simplify parts 
of the storage equations by adjusting them to the Irish case study. 



Enhancing the Treatment of Systems Integration in Long-term Energy Models 

180 

Ireland’s only pumped storage hydropower plant has capacity for about 1.24 
GWh, or 4.2 hours of operation at full load. It is therefore operated in a daily 
cycle, i.e., the storage volumes are refilled every day. Therefore, only one specific 
day-type in a season had to be considered. Further, no storage capacity 
expansions had to be investigated.  

Additional modifications were required to more accurately model the power 
plant’s contribution to operating reserves. Within PLEXOS, pumped storage is 
modelled in detail distinguishing between pumping mode, spinning mode and 
generation mode. In OSeMOSYS, a simplified consideration of the storage 
behaviour was implemented:  

1. Any pumping activities were considered as spinning upward reserve. 

2. Up until 50 MW of spinning reserve can be provided in spinning 
mode by two out of the four turbines. This comes with a low 
minimum stable generation of 5 MW per plant. 

3. Up until 120 MW of spinning reserve can be provided by at least 
two turbines in generation mode at a minimum stable generation 
level of 40 MW per plant. The other two turbines were assumed to 
be in spinning mode without providing any reserve. 

 

2) and 3) were calculated in separate model runs with different input data, 
starting with mode 2) due to its favourable lower minimum stable generation 
level. If the power generation and reserve provision reached the limits of mode 
2), the model would be reassessed in mode 3). Results are then presented for the 
mode which results in the lower total discounted costs, i.e., with the lower value 
of the objective function.  

Refer to Table 7  in Section 5.6.1 of Part B for further technical characteristics 
of Ireland’s pumped storage hydropower plant. 
 
 

Algebraic Formulation 

All code enhancements refer to OSeMOSYS in its beta version as of 2013.04.30, 
as downloadable via the OSeMOSYS website (www.osemosys.org). For a brief 
explanation of all indices used in the following algebraic formulations refer to 
Box 3 in Section 3.1. of Part B of this thesis. Additional indices are provided in 
Box 5. The model code corresponding to the following algebraic formulations is 
provided in Annex F. 
 



 Part B – Integration Between Timeframes | An Irish Case Study 

181 

Box 5: Additional Indices for Pumped Storage Hydropower 

ls … Season, e.g., spring or winter  

m …  Mode of operation: Several input and output fuel combinations can be combined 
for a single technology by defining several modes of operation. 

 
 

Box 6 introduces the additional input parameters for the calculation of the 
following enhancements. 
 

Box 6: Parameters Used to Model Pumped Storage Hydropower  

DaysWithinSeasonls,r – Number of days within a season. 

StorageEfficiencyt,r – Round trip efficiency, e.g., amount of energy available for discharge 
after charging one unit of energy. 

StorageLimitt,r – Amount of energy which can be stored or discharged within a day. 

StorageTagt,f,r – Equals 1 for the fuel stored by storage technologies and 0 for all other fuels 
and technologies.   

TimeslicesInSeasonls,l,r – Set equal to 1 to assign a particular time slice to a single 
characteristic day within a season. 

 
 

As mentioned, Ireland’s pumped storage hydropower plant is operated in a daily 
cycle. This implies that at the end of every day the amount of water stored and 
discharged must equal. The right side of equation (SD1) calculates the amount 
of fuel which is stored within a day: Within one season, which is represented by 
one characteristic day, all the fuel stored (i.e., charged) by a storage technology is 
summed up over all time slices within that season. This has to equal the amount 
of fuel ‘produced’ (i.e., discharged) by the storage technology, divided by the 
round-trip storage efficiency. The storage tag ensures that only storage 
technologies and their related fuel are considered.               ∑                                                                                                ∑                                                    (DS1) 
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The maximum amount of fuel which can be produced by the storage technology 
is reached if the storage capacity is used up to its limit in every single day within 
a season. The actual production within one season has to be smaller than this 
maximum (SD2).                                 ∑                                                                                                (DS2) 

These two equations have to be linked to the core code of OSeMOSYS. 
Equation (EBa4) calculates all fuel used by a technology, which is ultimately 
used in the core code to balance fuel use and production159. The amount of fuel 
used to charge the storage needs to be added to equation (EBa4). The 
corresponding change to the original equation is shown in red in (EBa4rev). This 
modification ultimately ensures that all energy charged by a storage technology 
is as well produced by any of the other technologies. The parameter YearSplit 
defines the length of each time slice as a fraction of the year. The division by 
YearSplit is required to ensure the same units (i.e., energy per time) are used on 
both sides of the equation.                                                                                                                                                                                                     (EBa4rev) 

In the core code of OSeMOSYS, equation (CAa4) ensures that all technologies 
operate below their maximum available capacity throughout the year. The 
charging of a storage device needs to be added to this constraint, as shown in 
red in (CAa4rev).                                                                               ∑                                                                                                                  (CAa4rev) 

With these adjustments a daily electricity storage cycle can be modelled, 
assuming each season is represented by one characteristic day-type and storage 

                                                      
159 In (EBa11) of the core code. 
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capacities remain constant. If the contribution of storage devices to operating 
reserve should be considered, some more adjustments are required. 

A particularity of pumped storage hydropower is that it is not only able to 
provide primary operating upward reserve by increasing its electricity generation, 
but also by reducing any pumping and associated electricity consumption. 
Equation (EBa1) of the core code calculates the production of a fuel by a 
technology. For this application it is modified to exclude the production of 
primary upward reserve by storage devices and renamed to (EBa1rev,a). Instead, 
for such devices (EBa1rev,b) ensures that in addition to any conventional 
provision of the fuel primary upward reserve through a potential increase in the 
electricity generation, also any pumping activities are considered as operating 
reserve. Note that in the model both electricity generation and pumping is very 
unlikely to occur within the same time slice due to the low roundtrip 
efficiencies.                                                     ∑                                                                                                                                                  (EBa1rev,a)                                                                                                                                                                                              (EBa1rev,b) 

When modelling reserve requirements, the analysts can define a share of the 
reserve which has to be provided by spinning (i.e., online) plants. In (R25) as 
further described in Section 3.3.4 of Part B, the upward reserve provided by 
online plants is, amongst others, limited by their online capacity minus their 
power output. This constraint has to be revised to include any pumping for 
storage charging (R25rev). 
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                                                                                                                                                                                                                                                                                                                                                                                                (R25rev) 

The primary upward reserve provided by online plants is further limited by their 
defined maximum contribution to the upward reserve (R26). Any storage 
charging is added to this limit to ensure pumping is not affected by this limit 
and may fully contribute to primary upward reserve provided by online plants. 

Note that this might potentially imply that the reduction of pumping may 
happen in parallel to an increased generation of the turbines, i.e., that ramping 
rates of the turbines are unaffected by any pumping which might occur in a 
given moment. If the same waterways are used for pumping and generation, in 
reality a delay of a few minutes might occur until electricity generation may be 
ramped up due to the inertia of the water in the waterways when switching from 
pumping to generation.  

While a similar constraint exists for secondary upward reserve, it was not 
modified as it was assumed that secondary upward reserve requirements will not 
substantially influence results. Modelling results confirmed this assumption, as 
there was always more secondary upward reserve available then required.                                                                                                                                     ∑                                                                                                (R26rev) 

With this last modification, OSeMOSYS will be able to consider the 
contribution of Ireland’s pumped hydropower plant to spinning reserve. 
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5.6 Assumptions 

5.6.1 Analysis to 2020 

Special attention was paid to ensure that the assumptions in OSeMOSYS match 
those of the TIMES-PLEXOS models. This was required to ensure the 
comparability of the results between the different models. The OSeMOSYS 
models were therefore set up using the same data as specified in Deane et al. 
[49] for the year 2020. If more detail was needed, OSeMOSYS was aligned with 
the input data used in PLEXOS. TIMES data was only used to fill the remaining 
gaps. These included existing power plant capacities and their scheduled 
extensions during the years 2009 – 2019 as well as investment costs. A 5% 
discount rate was applied in all model runs. 

The demand profile in OSeMOSYS was derived from the half-hourly 
chronological demand profile applied in PLEXOS. In PLEXOS, the 2020 
profile was aligned with historical data from 2007. The profile of that year was 
expected to be representative of 2020. This is because 2007 was not yet affected 
by the economic recession, whose effects on the demand profile of 2020 were 
assumed to be negligible. In line with the TIMES demand, the PLEXOS 
demand was scaled to represent the generation requirement of 29.8 TWh and 
the peak generation of 4.9 GW. The exact same 12 time slices defined in TIMES 
were used to calculate the demand in each time slice in OSeMOSYS. As the 
demand in each time slice is based on hourly averages, this results in a lower 
peak demand of 4.3 GW in OSeMOSYS.  

As compensation, a rather high system reserve margin of 27% was applied. This 
reserve margin ensured that at least a 10% capacity reserve is available on top of 
the ‘actual’ TIMES-PLEXOS peak demand. In parallel, upward spinning and 
replacement reserve requirements of 440 MW each were applied in set-ups 
considering operating reserve (OSeMOSYS Enhanced). Apart from pumped 
storage hydropower, spinning reserve was defined as reserve provided by power 
plants which are online and generate electricity. In contrast, replacement reserve 
was defined as an additional reserve provided by all online and offline thermal 
and hydropower plants up to their available capacity.  

Table 7 provides an overview of the power plant data used for the optimisation 
of the dispatch in 2020. 
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Table 7 

Power plant data used for the dispatch optimisation in 2020 

 
 
 

The wind availability in each time slice was derived from the hourly wind profile 
of 2008, which was applied in PLEXOS to model the year 2020. With its 
average capacity factor of 31.7% it is close to the annual average of the period 
2002 – 2009, which varied between 29.1% – 34.7% [382]. A recent analysis of 
the integration of renewables in Ireland identified a maximum ‘inertialess 
penetration’ of 60% – 80% of the net load [317]. The analysis considered issues 
such as frequency, reactive power, voltage as well as transient stability. In line 
with its recommendation, the maximum share of wind was limited to 70%.  
 

  
Fig. 27: Load duration curve with wind availabilities in 2020 

 

While higher wind peaks can be observed around the evening electricity peak 
hours of fall and winter, in general significant peaks occur at any load level (Fig. 
27). The average available wind was calculated for each of the 12 time slices 

Power Plant Type Capacity 

[MW]

Efficiency

[%]

Maximum 

availability 

factors [%]

O&M 

cost

[€/MWh]

Fuel 

costs

[€/GJ]

Number 

of plants 

[-]

Min. stable 

generation 

[MW/plant]

Min. stable 

generation 

[% of cap.]

Max. spin. 

reserve 

[MW/plant]

Max. spin. 

reserve 

[% of cap.]

CC 1,422 47.5 87.0 0.04 4.40 56.1 4 150 42.2 60.0 16.9

CC - new 1,664 55.1 90.0 1.53 4.40 56.1 4 220 52.9 50.0 12.0

Gas 200 40.0 87.0 2.05 4.40 56.1 1 110 55.0 20.0 10.0

Coal 840 39.5 87.0 0.04 2.90 95.0 3 180 64.3 50.0 17.9

Peat 347 41.5 87.0 0.04 1.10 110.6 3 80 69.2 40.0 34.6

Distillate oil 496 38.0 87.0 2.05 4.00 77.4 5 10 10.1 10.0 10.1

Biogas 22 33.5 87.0 0.04 4.70 56.1 1 5 22.7 0.0 0.0

Waste 21 25.0 87.0 2.56 0.30 85.9 1 5 23.8 0.0 0.0

Wind onshore 4,305 100.0 31.7 0.00 0.00 0.0 1 0 0.0 0.0 0.0

Hydro power 234 100.0 25.5 0.00 0.00 0.0 16 2 13.7 1.9 12.8

Pumped storage 292 70.0 89.0 0.00 0.00 0.0 4 5 3.4 25.0 17.1

CO2 

factor 

[kg/GJ]
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considered in the stand-alone TIMES model and the simple OSeMOSYS set up. 
Mathematically, wind peaks were therefore levelled out and the maximum wind 
contribution limit of 70% was unrealistically easy to fulfil. However, when 
analysing the hourly wind and half-hourly demand data, wind penetration rates 
above the 70% limit occur in 1799.5 hours of the year. In the ‘OSeMOSYS 70% 
Wind’ and ‘OSeMOSYS Enhanced’ set-ups, the hourly wind profile was 
consequently reassessed. The wind availabilities were reduced if required to 
comply with this constraint before calculating the average wind availabilities for 
each time slice. Curtailment of wind power was therefore implicitly considered 
through this data analysis. 
 

5.6.2 Analysis to 2050 

When extending the analysis to 2050, the electricity demand growth rates and 
CO2 emission constraints were aligned with those of the scenario ‘CO2-80’ as 
described in Chiodi et al. [26]. Complying with EU greenhouse gas emission 
targets, this scenario includes emission reductions of 80% as compared to 1990 
levels. Other technical data was aligned with the Irish TIMES model. The first 
year of operation of existing power plants were aligned with Platts [383] and 
power plant lifetimes with IEA et al. [306]. The models were allowed to reinvest 
in all existing power plant types as well as new designs to compensate 
retirements and meet demand growth. Table 8 and Table 9 show the relevant 
capacity related techno-economic data. 
 
 

Table 8 

Power plant data for reinvestments in existing power plant types 

 
*  Aligned with estimations by the IEA [183], CC-new built 

from 2030 onwards was assumed to have an efficiency of 63%. 

**  In line with the long-term Irish TIMES model [26],  

new coal capacity additions operate with a lower minimum stable  

operation level of 48% of the installed capacity. 
 
 

Power Plant Type Investment 

Costs 

[EUR/kW]

O&M 

cost

[€/kW/a]

Life-

time

[a]

CC 800 10.0 30

CC - new* 669 27.4 30

Gas 900 20.0 30

Coal** 1,642 42.6 40

Peat 1,420 40.0 40

Distillate oil 400 30.0 30

Biogas 800 20.0 30

Waste 800 80.0 40

Wind onshore 1,200 10.0 25

Hydro power 2,500 10.0 80

Pumped storage 4,000 10.0 80
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Investments in biogas, waste and peat were only allowed to compensate 
retirements. Total capacity additions for coal, onshore wind and hydropower 
were limited to 2,850 MW, 2,500 MW and 5 MW respectively. Yearly capacity 
additions for solar, onshore and offshore wind were limited to 300 MW each. 
 

Table 9 

Power plant data for investments in new power plant types 

 
 
 

As outlined in the previous section, considering the 70% wind constraint 
required an external analysis of the input data. Due to the change in wind power 
capacities over the years, an iterative process had to be applied when extending 
the analysis until 2050. First, the yearly capacity investments in onshore and 
offshore wind were calculated with OSeMOSYS. Then, an external analysis of 
the yearly wind and load profiles was performed to comply with the 70% wind 
constraint. For every year, the hourly wind profiles of onshore and offshore 
wind were reduced if needed and the average wind availability in each time slice 
was recalculated and updated in OSeMOSYS. A new OSeMOSYS run was then 
performed and the new wind capacity expansions were compared with the 
previous ones, which were updated if needed until convergence was achieved. 

 

5.7 Results for 2020 

Results of the simple OSeMOSYS model were first compared with those of the 
stand-alone TIMES model. The annual electricity generation by fuel type for 
2020 proved to be very similar in the two models. This showed that the Irish 
power system was consistently represented in the two models. Due to the low 
temporal resolution, the wind penetration limit of 70% is never reached in the 
simple OSeMOSYS model. This is despite an installed wind capacity of 4.3 GW 
and a lowest load of 2.7 GW during the summer night time slice. Compared to 
the most accurate enhanced TIMES-PLEXOS model, over 20% of the yearly 
generation is not attributed to the correct power plant types in the simple 

Power Plant Type Max. Cap.

Additions 

[MW]

Efficiency

[%]

Maximum 

availability 

factors [%]

Investment 

Costs 

[EUR/kW]

Life-

time

[a]

O&M 

cost

[€/kW/a]

O&M 

cost

[€/MWh]

Fuel 

costs

[€/GJ]

Min. stable 

generation 

[MW/plant]

Min. stable 

generation 

[% of cap.]

Max. spin. 

reserve 

[% of cap.]

Solar 5,000 100.0 9.6 2,200 25 10.0 0.00 0.0 0.0 0 0.0 0.0

Wind offshore 5,000 100.0 35.0 2,100 25 15.0 0.00 0.0 0.0 0 0.0 0.0

Coal with CCS 1,200 51.4 87.0 2,000 40 38.4 0.04 2.9 9.5 200 33.3 17.9

Gas with CCS 872 63.0 87.0 1,313 30 38.4 1.53 4.4 5.6 223 51.0 12.0

IGCC 2,850 38.1 87.0 2,366 30 59.8 1.53 2.9 74.5 136 47.7 12.0

OCGT 1,760 33.3 87.0 598 30 18.0 0.04 4.4 56.1 15 17.0 16.9

Biomass 360 40.3 87.0 900 40 80.0 2.56 2.9 0.0 41 34.2 0.0

CO2 

factor 

[kg/GJ]
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OSeMOSYS model. The dispatch of the main power plant types in the various 
OSeMOSYS and TIMES-PLEXOS model runs is illustrated in Fig. 28. 

 
Fig. 28: Annual generation of the modelled power plant types in 2020 

OSeMOSYS results in shades of green, TIMES-PLEXOS results in shades of blue. 
 

The lower wind generation in the OSeMOSYS 70% Wind set up comes very 
close to the enhanced TIMES-PLEXOS model. It is largely compensated by an 
increased generation by new combined cycle gas turbines (CC-new). This 
overestimates their contribution compared to the TIMES-PLEXOS model runs. 
The less efficient combined cycle gas turbines (CC) are still barely dispatched. 
Otherwise, the results of the 70% Wind model are very close to the simple 
TIMES-PLEXOS model. However, in both of them too much coal is 
dispatched compared to the most complex model set up (TIMES-PLEXOS 
Enhanced). 

Applying the enhanced OSeMOSYS model which considers operating 
requirements significantly improves the results. Coal is now an important source 
of spinning reserve at the price of a reduced electricity output. Also gas-fired 
power plants contribute to the operating reserve. Compared to the 70% Wind 
set up, the provision of reserve in the enhanced OSeMOSYS model reduces the 
dispatch of new combined cycle turbines. On the other hand the provision of 
spinning reserve forces less-efficient older combined cycle turbines to operate 
above their minimum stable generation level. This increases their electricity 
output.  

While much less than in the enhanced TIMES-PLEXOS model, the previously 
unused pumped storage hydropower plant gets dispatched in the enhanced 
OSeMOSYS set-up. The enhanced TIMES-PLEXOS model was able to reflect 
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the important peaking ability of distillate fuel-fired power plants. This 
operational detail did not show up in the enhanced OSeMOSYS model.  Most 
likely this is due to the omitted start-up costs and its limited temporal resolution: 
as mentioned earlier, using average loads for the 12 time slices results in a lower 
peak demand in the OSeMOSYS models.  

Overall, the results of the enhanced OSeMOSYS model are very close to the 
more complex enhanced TIMES-PLEXOS model. The sum of the absolute 
differences in the dispatch of all power plants types amounts to 1.5 TWh, or 5% 
of the total generation (Table 10). This constitutes a 77% reduction of the 
difference identified when comparing the simple OSeMOSYS with the 
enhanced TIMES-PLEXOS model. 
 
 

Table 10 

Sum of absolute differences of the dispatch of all power plant types in 2020  

as compared to the enhanced TIMES-PLEXOS model 

 
 
 

The total yearly CO2 emissions of the enhanced TIMES-PLEXOS model 
amount to 11.29 Mt. Coincidentally this is almost the same value as calculated 
by the simple OSeMOSYS model. Total emissions are also very similar in the 
remaining model set-ups, varying at maximum by 5%. However, large 
differences occur when looking at the emissions from individual power plant 
types (Table 11). These are especially large for the less efficient combined cycle 
power plants (CC) and for the coal-fired power plants, due to the changes in the 
dispatch as outlined before. The enhanced OSeMOSYS model comes closest to 
the results of the enhanced PLEXOS model when looking at the sum of the 
absolute differences. 
  

Absolute Difference
OSeMOSYS 

Simple

OSeMOSYS 

70% Wind

TIMES-PLEXOS 

Simple

OSeMOSYS 

Enhanced

[TWh/a] 6.4 5.3 2.9 1.5

[% of Yearly Generation] 21.4 17.6 9.7 5.0
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Table 11 

Differences in CO2 emissions in 2020 [Mt] as compared to the enhanced PLEXOS model 

 

 

5.8 Results until 2050 

When extending the OSeMOSYS analysis until 2050, the actual generation of 
electricity is rather similar between the individual OSeMOSYS set-ups (Fig. 29). 
This is not surprising: the year 2020 was characterised by existing power plant 
types and the model did not have much freedom to invest in new capacities. In 
2050, all of the power plants existing in 2020 are retired, apart from around 
100 MW of hydropower. The model could therefore freely invest in expanding 
capacities to ensure the most economic dispatch based on the level of detail 
provided in each model set-up.  

 
Fig. 29: Annual generation of the modelled power plant types in 2050 

 

Power Plant Type
OSeMOSYS 

Simple

OSeMOSYS 

70% Wind

TIMES-PLEXOS

Simple

OSeMOSYS 

Enhanced

CC -1.05 -1.03 -0.27 -0.15 

CC-new -0.18 0.35 -0.24 -0.01 

Gas -0.01 -0.01 0.00 -0.01 

Distillate -0.38 -0.38 -0.32 -0.29 

Coal 1.19 1.19 1.01 0.24

Peat 0.34 0.34 0.34 0.27

Waste 0.06 0.06 0.00 0.06

Sum of Absolute 

Values
3.20 3.35 2.18 1.03
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The biggest differences occur in wind power generation, which remains an 
attractive option to comply with the CO2 emission reduction targets. When the 
70% wind constraint is taken into account, the reductions in wind power 
generation during wind peaks cannot be compensated by additional capacity 
investments in onshore wind to increase the generation during periods of low 
wind. This is due to limitations in the allowed yearly capacity additions. The 
reductions are therefore largely compensated by investments in offshore wind 
power. Further, less coal-fired power plants with carbon capture and storage are 
dispatched in the enhanced model. This is because some of it is held back for 
the provision of spinning reserve. 

Capacity investments vary considerably between the different OSeMOSYS set-
ups. The capacity mix of the enhanced OSeMOSYS model throughout the 
modelling period is provided in Fig. 30. Towards the end of the modelling 
period, the emissions constraint triggers capacity investments which focus 
especially on low greenhouse gas emitting generation options: combined cycle 
gas turbines, wind power, and gas- and coal-fired power plants with carbon 
capture and storage. Also distillate oil-fired power plants are invested in and 
provide an important source of spinning reserve during many years. 
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Fig. 30: Optimised capacities based on enhanced OSeMOSYS model 

 

Several differences can be noticed when comparing the capacities illustrated in 
Fig. 30 to the other OSeMOSYS set-ups (Table 12). In the simple model, 
investments in combined cycle gas turbines are significantly underestimated, as 
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their contribution to the operating reserve is not valued in this set-up160. Instead, 
more distillate oil is invested in, mostly to comply with the reserve margin of 
27%. Overall, much less wind is invested in. Due to its higher availability when 
not considering the 70% wind constraint in the simple OSeMOSYS model, less 
wind capacities are required to comply with the emission targets. 
 

Table 12 

Deviation of power plant capacities from enhanced OSeMOSYS model 

 

 
 
 

When considering the 70% wind constraint, combined cycle power plants are 
again less important than in the enhanced model and associated investments are 
lower. Despite the consideration of the 70% wind constraint in both models, in 

                                                      
160 However, as mentioned their generation in the different model set-ups is similar. 

OSeMOSYS Simple

Power Plant Types Unit 2020 2025 2030 2035 2040 2045 2050

Biomass MW 0 0 0 0 0 -111 -84

CC-new MW 0 0 -698 -971 -502 -502 -502

Coal with CCS MW 0 0 0 0 45 0 0

Distillate oil MW 0 0 667 779 564 564 564

Gas with CCS MW 0 0 0 0 -295 -100 0

Hydro power MW 0 0 0 0 0 0 -140

Peat MW 0 0 0 161 161 161 161

Solar MW 0 0 0 0 0 0 -300

Wind onshore MW 0 376 533 479 479 479 103

Wind offshore MW 0 0 0 0 0 -782 -2,282

S  |Plant Capacity Deviations| MW 0 376 1,897 2,390 2,046 2,699 4,137

OSeMOSYS 70% Wind

Power Plant Types Unit 2020 2025 2030 2035 2040 2045 2050

Biomass MW 0 0 0 0 0 81 0

CC-new MW 0 0 -307 -664 -479 -479 -479

Coal with CCS MW 0 0 0 0 105 0 0

Distillate oil MW 0 0 320 633 410 410 410

Gas with CCS MW 0 0 0 0 -68 0 0

Hydro power MW 0 0 0 0 0 0 0

Peat MW 0 0 0 42 42 42 42

Solar MW 0 0 0 0 0 0 -300

Wind onshore MW 0 0 -170 -170 -170 -170 -170

Wind offshore MW 0 0 0 0 0 -782 -883

S  |Plant Capacity Deviations| MW 0 0 797 1,510 1,274 1,964 2,284
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the OSeMOSYS 70% Wind set-up less wind is invested in than in the enhanced 
OSeMOSYS model.  

It may seem counter-intuitive that considering operating reserve requirements in 
the enhanced model results in more wind power installations. However, the 
provision of operating reserve forces coal-fired power plants with carbon 
capture and storage to operate below their maximum available capacity. To 
comply with carbon reduction targets, this reduced generation is mostly 
compensated by new wind power installations in the enhanced model. Some of 
the capacity reductions of combined cycle power plants in the OSeMOSYS 70% 
Wind model are compensated by increased investments in distillate oil-fired 
power plants, mostly to comply with the reserve margin. 
 

Table 13  

Total capacities, discounted costs and emissions based on enhanced OSeMOSYS model 

 
 
 

The key results of the enhanced model are summarised in Table 13 and 
comparisons with the other models are provided in Table 14. In the enhanced 
model the emission limit only becomes binding in the last decade of the 
modelling period. In earlier years, the total CO2 emissions vary significantly 
between the individual set-ups in some years. In 2030, their deviation to the 
enhanced set-up amounts to 14.4% in the OSeMOSYS 70% wind set-up. 

The total capacities in 2050 are 14.1% lower in the simple model and 7.8% 
lower in the set-up considering the 70% wind constraint. The deviations 
increase significantly when relating the sum of the absolute capacity difference 
within each power plant type to the total installed capacity: In the simple model, 
23.5% of the total capacity in 2050 is attributed to other power plant types than 
in the enhanced model. This value still amounts to 13.0% when considering the 
70% wind constraint. The OSeMOSYS Simple and OSeMOSYS 70% Wind set-
up calculate lower overall discounted costs of 6.2% and 2.2% respectively. 
Looking at yearly costs, higher variations occur. They amount to up to 40.5% in 
the simple set-up and 15.2 % in the OSeMOSYS 70% wind set-up.  
 

OSeMOSYS Enhanced Unit 2020 2025 2030 2035 2040 2045 2050

Total capacity GW 9.84 9.40 10.89 11.79 13.57 13.96 17.60

Discounted costs 10
6
 USD 390.4 318.2 467.8 347.6 375.3 243.9 150.6

Emissions kt of CO2 11,416 11,059 9,390 9,078 7,467 5,333 3,200

Emission limit kt of CO2 16,000 13,867 11,733 9,600 7,467 5,333 3,200
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Table 14 

Deviation of capacities, discounted costs and emissions from enhanced OSeMOSYS 

model 

 

 

 

5.9 Discussion 

The Irish case study has demonstrated that results of conventional long-term 
energy system model might show a significantly different dispatch to those 
being soft-linked to operational power system models. This is due to different 
temporal resolution and technical detail with regard to short-term variability of 
supply and demand. While soft-linking will ensure the most accurate results 
regarding the generation mix, this requires setting up and maintaining two 
separate models: a long-term model which focuses mainly on optimising the 
capacity expansion and an operational model which assesses the dispatch. As 
there is no overall optimisation across the two models, the identified capacity 
investments may not present the most economically efficient future technology 
mixes. 

Some of the limitations of long-term models can be addressed through a more 
thorough external analysis of available data as well as by adjusting model input 
parameters accordingly. Others may be addressed by integrating operational 
aspects into the long-term capacity expansion optimisation. For example, 95.0% 
of the dispatch results of the enhanced OSeMOSYS model matched those of 
soft-linked models with a 700 times higher temporal resolution. This constitutes 
a significant improvement to a conventional long-term model set-up, where only 
78.6% of the dispatch results matched. Ignoring short-term variability of supply 
and demand was shown to underestimate the overall investments required, and 
resulted in a sub-optimal investment in individual generation technologies: In 

OSeMOSYS Simple Unit 2020 2025 2030 2035 2040 2045 2050

Total capacity % 0.0 4.0 4.6 3.8 3.3 -2.1 -14.1

S  |Plant capacity deviations|

Capacity OSeMOSYS Enhanced

Discounted costs % -9.0 40.5 -11.3 -4.0 -5.8 -21.5 -14.3

Emissions % -1.3 -7.6 -14.4 -5.4 0.0 0.0 0.0

% 0.0 4.0 17.4 20.3 15.1 19.3 23.5

OSeMOSYS 70% Wind Unit 2020 2025 2030 2035 2040 2045 2050

Total capacity % 0.0 0.0 -1.4 -1.3 -1.2 -6.4 -7.8

S  |Plant capacity deviations|

Capacity OSeMOSYS Enhanced

Discounted costs % -2.3 -1.9 -0.2 -3.0 -9.1 -15.2 -3.9

Emissions % 3.5 0.3 -1.3 2.5 0.0 0.0 0.0

14.1 13.0% 0.0 0.0 7.3 12.8 9.4
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the simple OSeMOSYS model, up to 23.5% of the total capacity was assigned to 
different power plant types as compare to the enhanced model. 

As a next step, this analysis may be taken further by assessing the economic 
implications of market design. In particular it may be of interest to investigate 
the potential benefits of interlinking national markets to enable the trading of 
primary and secondary reserve services. 

6 Conclusion 

OSeMOSYS was extended and improved to consider the implications of 
variability in demand and generation on system adequacy and security. If 
omitted, long-term energy models may clearly underestimate the importance of 
flexibility within the power system, as demonstrated by both a test case and the 
Irish case study. If policies were derived from such long-term models, they 
might therefore promote energy systems which do not ensure that expected 
reliability standards are met. 

An underestimation of flexibility requirements may as well be observed in 
reality: especially in ‘energy-only’ electricity markets, dispatchable technologies 
will face more volatile and on average lower electricity prices and capacity 
factors. This is due to the increasing shares of renewable electricity generation 
[384]. The profitability of investments in such dispatchable technologies will 
therefore decrease and retired capacities may not be replaced. Further, especially 
capital intensive investments will face increased difficulties to secure financing in 
the more volatile environments. However, the applications provided in Part B 
of this thesis have shown that dispatchable power plants have an important role 
to ensure the system’s adequacy and security. Markets may face a gap between 
the need for flexibility and the incentives to invest in flexible technologies [83]. 
The economic and technical evaluation of this gap demands better modelling 
tools.  

Through its system-wide focus, OSeMOSYS may help to highlight this gap. It 
may help derive corrective energy targets and investment strategies valuing all 
sources of flexibility within the energy system. The proposed model extensions 
are not limited to the power sector or to specific regions. For example, flexibility 
in the transportation sector through electric vehicles could be considered. In the 
heat sector combined heat and power plants or shiftable electric heating 
demands could be modelled. Further, OSeMOSYS does not necessarily rely on 



 Part B – Integration Between Timeframes | Conclusion 

197 

extensive time-series data or linkages with dispatch models. Yet, if available, it 
provides the flexibility to enable easy incorporation of such additional levels of 
detail. While the enhancements were presented for OSeMOSYS, their potential 
implementation in other long-term models such as TIMES or MESSAGE are 
expected to provide comparable improvements. 

While such long-term models provide an optimal mix of technologies, a separate 
suite of models may assess how to best design markets and regulatory 
frameworks which trigger these optimal investments. The optimised technology 
mix as derived from OSeMOSYS may serve as an input to these shorter-term 
electricity market simulation and dispatch models. These models may help to 
identify an efficient mix of policy instruments such as carbon taxes or capacity 
payments to ensure that investments come closer to an optimum as derived 
from models like OSeMOSYS. 
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Part C 
Integration Between Resource Systems 

Climate, Energy, Water and Land-use Systems (CLEWS) are highly interlinked. 
Effective resource management requires a consideration of these linkages, 
especially when assessing climate change mitigation and adaptation measures. 
Yet, most related decision making occurs in separate institutional entities, 
informed by relatively disconnected assessments of the individual resource 
systems.  

Part C presents and demonstrates the added value of an integrated analytical 
assessment approach. It considers various interdependencies and interactions 
between CLEWS with a focus on the energy system. Given its exposure to 
climate change and its integrated agricultural and energy policies, the small 
island developing state of Mauritius was identified as a useful case study. Several 
scenarios to 2030 were defined and analysed to demonstrate the tensions around 
the CLEWS nexus. Results from an assessment of the energy system with no 
modelled linkages to land-use and water systems are first presented. These are 
then compared to corresponding results from an integrated CLEWS assessment. 
This comparison helps to highlight important dynamics that would have been 
overlooked without such a systems approach. As an example, the added value of 
this approach is clearly demonstrated when rainfall reductions are taken into 
account, and where future land-use changes might occur. 

 
Section 1 explains the importance of considering resource linkages before presenting a brief 

background on Mauritius and key findings of the CLEWS study. The methodology applied to 

assess the relevance of considering resource linkages is presented in Section 2. Scenarios are 

described in Section 3 and results are presented in Section 4. The added value of the CLEWS 

approach is synthesised at the end of that section. Part C concludes in Section 5 by highlighting 

conditions under which the benefits of an integrated CLEWS approach are likely to justify the 

additional effort required. An overview of key power plant input data is provided in Annex G. 
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1 Resource Integration and Mauritius  

1.1 Rationale for Considering Resource Integration 

Globally, the most basic human needs rely on the availability of few key 
resources. These include: water for drinking; water and land for food 
production; and energy for services like lighting, cooking and heating. An aspect 
all of these resources have in common is that they are – depending on the 
context – constrained in some way:  

 In the last century, water use has increased more than twice as 
much as the global population growth rate, and water scarce areas 
keep expanding [385]. Currently, 780 million people lack access to 
drinking water sources which are protected from contamina-
tion [386] and 1.2 billion people are affected by physical and 1.6 
billion by economic water shortage [387].  

 Further, close to 870 million people are undernourished and 2.5 
million children die each year from malnutrition [388]. At the same 
time, the food price crises in 2007 – 2008 caused a ‘global rush for 
land’ by capital-rich countries to secure agricultural imports [389]. 

 1.3 billion people lack access to electricity and 2.6 billion people do 
not have clean cooking facilities at their disposal [1]. Further, 
current energy use is not in line with efforts to curb climate change 
within a 2 C increase.  

 

Therefore, an efficient management of these resources is a matter of urgent 
priority. As the pressure on these resources tends to increase globally, so do 
efforts to access and secure them, often leading to tensions in areas where they 
are scarce. Such tensions may be due to diverging priorities on how resources 
should be used. At a national level, they may be due to a dependency on 
resource imports. The prospects of climate change may exacerbate related 
stresses. This is due to the potential changes in rainfall and in the availability of 
arable land, which may be accompanied by increases in energy demand, e.g., for 
cooling. Examples for political stresses which are related to resources include 
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tensions regarding the use of the river Nile [390,391], deforestation of the 
Amazon rain forest and its implications for climate change [392], or gas exports 
from Russia to Europe via the Ukraine in 2009 [16,393]. 

Any single one of these resources might cause stresses to secure their 
accessibility. Even more complex situations may evolve when they are 
interrelated. For example, future rainfall reductions in Mauritius would affect 
the water availability on this water stressed island, e.g., for hydropower 
generation and agriculture. Maintaining agricultural production requires an 
increased electricity generation for groundwater pumping for irrigation. Meeting 
this increased electricity demand and compensating the lower hydropower 
production requires additional generation by other power plants. Increasing the 
generation of fossil fuel-fired power plants increases the country’s import 
dependency and greenhouse gas emissions. The interrelations observed locally 
in Mauritius are exemplary of those observed at a global scale.   

70% of all water use is due to agricultural practices. But also electricity 
generation may require water. For example, up to 450,000 litres of cooling water 
may be required to produce one megawatt hour from nuclear power [1]. Energy 
is required for the withdrawal, distribution and treatment of water, including its 
desalination, which requires up to 5.0 kWh per cubic meter of water [394]. 
Currently, 24 billion cubic meters are desalinated per year globally. Further, 
biofuel targets may require 27 million hectare of additional agricultural land for 
their production in 2020 and may cause agricultural prices to increase by 30% 
[395]. Agriculture requires energy for cultivating, harvesting and processing 
crops. For further examples of such linkages between resource systems refer to 
work by Bazilian et al. [396].  

Government structures and the associated division of responsibilities and 
priorities do not favour the integrated approach required to capture these 
linkages. Historically, related decision-making is often based on fragmented 
assessments of CLEWS resources and interactions between all resource systems 
are rarely taken into account [64]. Pollitt et al. [54] thoroughly maps tools used 
for integrated assessments. From an energy modelling perspective, integration 
hardly ever goes beyond a consideration of greenhouse gas emissions or 
biomass as a fuel for energy generation (e.g., as considered by Føyn et al. [55], 
Kannan and Strachan [56], Zhu et al. [57], Li et al. [58], Chen et al. [59], Möller 
and Lund [60], and Silva Herran and Nakata [61]). Campana et al. [62] went one 
step further by interlinking a water demand model with models representing a 
PV pumping system and Dubreuil et al. [63] incorporated elements of a water 
system model into an energy model.  
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A more holistic assessment was provided by Hermann et al. [64], which focused 
on the intensification of agriculture in Burkina Faso to help ensure future food 
production. The study indicated the importance of an integrated CLEWS 
approach when designing strategies in support of sustainable development.  

Recognising the importance of capturing resource linkages, a CLEWS study on 
Mauritius is presented in Part C of this thesis to assess the added value of the 
CLEWS approach. Mauritius was identified as an ideal case study given its 
diverse climate, its growing water stresses, and its focus on reshaping 
agricultural land-use and decreasing fossil fuel imports. Further, Mauritius has a 
robust data set on the use of its resources, e.g., via the website of the Central 
Statistics Office [397]. As a small island, it also has conveniently defined system 
boundaries. The choice of Mauritius allowed building on previous work, which 
identified important CLEWS dynamics for Mauritius [398].  

 

1.2 A Brief Background on Mauritius 

The Republic of Mauritius is an archipelago of volcanic origin. It is situated in 
the Indian Ocean, 950 km east of Madagascar161. Its population amounts to 1.2 
million inhabitants. With a population density of 668 people per km2, it is the 
most densely populated country in Africa [399–401].  
 

1.2.1 Economy 

Mauritius is classified as an upper-middle-income country by the World Bank 
and as a small island developing state by the UN. Its economy is primarily based 
on services, which contribute 69% to the GDP. 27% of GDP are generated in 
industry including sugar processing. About 90% of the sugar produced is 
exported to the EU. Sugar represented 11% of total domestic exports in 
2009 [402–405]. 

The country’s economic and social progress is potentially under threat from 
external shocks. In 2009, an EU decision came into effect which cut the 

                                                      
161  If not indicated otherwise, all data mentioned in Part C refers to the main island of Mauritius. 

Small surrounding islets as well as the neighbouring island of Rodrigues have not been 
included in the analysis. Their total area constitutes less than 10% of the total area of 
Mauritius (in total: 2,040 km2) [399]. 
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guaranteed sugar import price by 36% compared to 2006 price levels. Further, 
Mauritius imports coal and liquid fuels to meet 83% of its energy needs. It is 
therefore very vulnerable to rising and volatile global energy prices. Increased 
energy security and diversifying income from exports are key policy 
concerns [406–410]. 

In the wake of the reform of the EU sugar import regime162, the government 
has formulated several measures to refocus agriculture. This is reflected by a 
shift from the farming of sugar cane to food crops. Further, since 2004, several 
sugar cane mills have started to produce ethanol. The target production of 
30 million litres from molasses, either for domestic blending with gasoline or 
export, is therefore well in reach [400,412–417]. 
 

1.2.2 Climate, Agricultural Land-Use and Water 

Mauritius has a sub-tropical maritime climate with an average annual 
temperature between 22 – 33 °C. Although it is relatively small with an area of 
186,500 ha, its rainfall patterns are diverse and characterised by its topography. 
They are strongly dependent on elevation, proximity to the coast, and position 
relative to the prevailing winds and mountain ranges. Yearly averages may vary 
from as low as 750 mm in the western areas up to over 4,000 mm on the central 
plateau. Summer, lasting from November to April, receives two-thirds of the 
yearly rain [399,418,419].  

These rainfall patterns are reflected in diverse agricultural conditions and result 
in extensive water transportation needs for irrigation. Full control irrigation 
increased from 12,000 ha in 1970 to 19,900 ha in 2010. More than 90% of this 
irrigated area is used for sugar cane production. Sugar cane is currently 
processed by six sugar producing factories, each with its dedicated cropland. 
Overall, 34% of the total area of Mauritius is cultivated [400,420]. 

Water demand per capita amounts to 221 l/capita/day. 63% of all water 
consumption can be attributed to agriculture163. While the agricultural sector 
currently meets its water demand mainly with surface water, over half of all 

                                                      
162  The EU decision to reduce its guaranteed sugar import prices was taken to comply with its 

commitments within the World Trade Organization (WTO). Mauritius was considered as one 
of the countries suffering most from this reform [411].  

163  Utilisation of water for hydropower is not taken into account. 
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other water demand is met through extraction from boreholes164. Increasing this 
ground water use would be problematic: abstractions have reached saturation 
levels in large parts of the country with aquifers being at risk of sea water 
intrusion. This can especially be an issue in the northern and eastern coastal 
areas and during dry spells. While Mauritius is increasingly becoming water 
stressed, water conservation measures, wastewater treatment and desalination 
are becoming popular. For example, hotels are obliged to provide related 
provisions since 2005 [400,408,421–423].  
 

1.2.3 The Energy System 

Mauritius imports all of its petroleum products as well as coal. It uses only 
limited amounts of domestic renewable energy resources. These include fuel 
wood, wind power, hydropower and biomass – especially bagasse, a by-product 
of sugarcane processing. Bagasse accounts for 93% of the energy content of all 
domestic energy resources and is used for co-generation of heat and electricity 
at sugar factories [408,424,425].  

Over the past decade, Mauritius’ dependence on energy imports has grown from 
approximately 1,100 ktoe in 2000 to about 1,500 ktoe in 2010. The 
corresponding share of energy imports has increased from 11% of the total 
import bill in 2000 to 18% in 2010. During the period of peak oil prices in 2008 
it rose to even 21% [408,419,426–428]. 

Electricity generation utilises 96% of all coal imports. The remainder is used by 
the manufacturing industries. Gasoline, diesel and aviation fuel are the three 
main transportation fuels. Overall, the transport sector accounts for 54% of all 
demand for petroleum products, while 26% are used for electricity 
generation [408]. 

In 2010, 2,689 GWh of electricity were generated. Thermal power plants, 
including the incineration of bagasse, contributed with 96% to the total 
electricity generation. Hydro and wind power provided the remaining 4%. The 
peak demand in 2010 was 404.1 MW. The generation fuel mix has been evolving 
over time with a major shift from fuel oil to coal. Of the 778 ktoe of fuel inputs 
used for power generation in 2010, coal comprised 51%, oil products 25% and 
bagasse 23% [408,426]. 

                                                      
164  Again, hydropower is excluded. 
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1.2.4  ‘Medine’ and ‘F.U.E.L.’ 

In the Mauritius case study, special attention was paid to the sugar cane 
processing plants ‘Medine’ and ‘F.U.E.L’, where ethanol production was 
introduced in some scenarios. Medine is situated in the more water stressed 
western part of Mauritius, some 15 km south-west of the capital Port Louis. In 
2010, it processed the sugar cane of 4,600 ha of land. This corresponds to 8% of 
the total area in Mauritius where sugar cane is harvested. The by-product 
bagasse is currently used to generate heat and electricity for its own use and for 
export to the national grid. Its current electricity generation capacity is 6 MW 
[420,429]. 

F.U.E.L. is located about 20 km to the east of Port Louis. In 2010, it processed 
the sugar cane of 13,800 ha, corresponding to 24% of the total area harvested. It 
currently produces electricity from both, bagasse and coal, at a maximum 
capacity of 27 MW. Like at Medine, waste heat from bagasse is used for sugar 
cane processing. With 1.4 million tonnes, the sugar cane production of both 
Medine and F.U.E.L. amounts to 30% of the total production of Mauritius. The 
combined electricity generation of 167 GWh provides 7% to the total 
generation [420,429]. 

 

1.3 Contextual Work 

In line with the long-term energy strategy of Mauritius [406], a CLEWS study 
was undertaken to investigate increases in local bio-ethanol production and the 
implication for land-use, energy and water systems, taking climate change into 
consideration. This section presents a concise summary of the key findings of 
this overall CLEWS study165, before demonstrating the added value of the 
CLEWS approach in the following sections. Results were compared to a 
reference scenario, where current agricultural practices are maintained and no 
ethanol is produced locally. 

The study showed that transforming the two sugar-processing plants Medine 
and F.U.E.L. to produce second generation ethanol will decrease the countries 
import dependence (left graph in Fig. 31). When introducing this type of 

                                                      
165  The author of this thesis contributed to this CLEWS study through an assessment of the 

energy system and its linkages with other resource systems as outlined in the Chapter 
Publications at the beginning of this thesis.  
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ethanol production, both sugar and bagasse are converted to ethanol. 
Previously, this bagasse was used to generate electricity. Coal-fired power plants 
make up for the short-fall, thus increasing coal imports. Regarding the energy 
balance, this increase in coal imports is by far compensated by the reductions in 
petroleum imports due to the locally produced ethanol. 
 

 
Fig. 31: Second generation ethanol production in Mauritius compared to business as usual 

– Selected dynamics for 2030 

Positive values indicate increases compared to business as usual  
and negative values indicate decreases. 

 

Despite this increased reliance on coal for electricity generation, overall tailpipe 
and upstream greenhouse gas emissions are reduced due to the introduction of 
carbon neutral ethanol generation (graph in the middle of Fig. 31). The reduced 
income from sugar exports and the costs for ethanol production and electricity 
generation are outweighed by reduced expenses for sugar refining and, most 
importantly, petroleum imports (right graph in Fig. 31). Overall, total 
expenditures can be slightly reduced when introducing second generation 
ethanol production. 
 

 
Fig. 32: Water withdrawals and energy demand  

 

Reference 
scenario 
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When considering climate change, the presented dynamics get more 
pronounced. The implications for water withdrawals and energy demand over 
the modelling period are presented in Fig. 32. While water reservoir levels are 
able to recover from extractions in the reference scenario, considering climate 
change results in their depletion, especially in the worst case scenario (left graph 
in Fig. 33). This is due to additional water demands for desalination, irrigation 
and ethanol processing. Their implications for electricity demand are presented 
in the middle of Fig. 33. Overall, greenhouse gas emissions increase significantly 
(right graph in Fig. 33) as compared to the ethanol production scenario without 
climate change (graph in the middle of Fig. 31). 
 

 
Fig. 33: Implications of considering climate change 

 

Conceptually, the four main finding of the work on this CLEWS case study 
were that:  

i. Such integrated assessments do not require the development of any 
new modelling tools. Existing resource models based on cost, mass 
and thermodynamic energy balances have proven their adaptability 
to enable a consideration of the linkages between the resource 
systems they represent. 

ii. The effort involved in setting up such interlinked models is 
considerable. Most likely not one single entity will be able to deliver 
such an assessment due to the various fields of expertise required. 

iii. Consequently, the time involved from initiating such a model to 
presenting an interpretation of its results may not match the 
timeframe of some policy making processes. 

iv. Considering resource interdependencies with a CLEWS analysis will 
enable valuable insights into a range of topics. Conflicting 
objectives of resource policies, trade-offs and synergies may be 
difficult to identify and potentially impossible to quantify without 
such an integrated approach. 
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1.4 Transitioning from Energy to Multi-resource Modelling 

While the presented results indicate the relevance of the CLEWS approach, the 
question was raised to what extent findings would have looked differently if no 
resource integration was taken into account. In the following sections, the 
CLEWS case study on Mauritius is therefore reassessed to quantitatively 
demonstrate the added value of such an integrated CLEWS approach. This is 
done by comparing conclusions derived from an energy model with those of an 
integrated CLEWS approach.  

2 Methodology 

Most decision and policy making related to land-use, energy and water systems 
occur in disconnected institutional entities with little, if at all, coordination or 
communication [52]. Therefore several scenarios were first analysed with a focus 
on the energy system and without taking explicit linkages between land-use, 
energy and water systems into account. Rainfall reductions based on publicly 
available climate model data were considered as an external input value to 
estimate hydropower availability for scenarios considering the effects of climate 
change [430,431]. This initial set up is outlined in Fig. 34 of Section 2.2 of 
Part C of this thesis and referred to as the ‘Current Practice’ approach.  

Next, the same scenarios were re-assessed considering these linkages by using 
the integrated ‘CLEWS approach’ as shown in Fig. 35 in Section 2.3 of Part C. 
This approach draws on the following individual well-tested and specialised 
resource models. 

 

2.1 Modelling Tools 

Climate: External climate models were not set up as an integral part of this 
assessment. Instead, selected General Circulation Models (GCM)166 and their 
corresponding climate projections were used to derive temperature and rainfall 

                                                      
166  Including the following models: CGCM2 (C2A2, C2B2), CSIRO (CSA2, CSB1, CSB2), 

ECHAM (EHA2, EHB2) and HadCM3 (H3B1, H3B2, H3A1). 
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assumptions, which were applied to the other resource models [430,431]. 
Greenhouse gas emissions were accounted for in the energy model, but not fed 
back into the climate models as they on their own were not assumed to affect 
the local climate conditions.  

Land-use: The modelling of the land-use system draws on the raster-based 
Agro-Ecological Zones land production planning model (AEZ) [431]. A 
resolution of approximately 250 meter time 250 meter was used to derive the 
production potential of the farmland used for ethanol production. Further, 
AEZ served to calculate irrigation requirements under different climate 
scenarios and fertiliser input required by various crops under different 
conditions like crop cycles per year. 

Water: The water system was modelled using the Water Evaluation and 
Planning System (WEAP) [432] tool. WEAP is a tool for water resource 
planning, which was applied to assess the implications of local municipal and 
agricultural water requirements on national water supply schemes. Within 
WEAP, Mauritius’ rivers were modelled as about 60 catchment areas. Each of 
them was characterised by specific hydrological and climatic profiles and land-
cover classes, interlinked with its reservoirs and the five main aquifers of the 
island.  

Further information about the linkages between WEAP and AEZ as well as 
background on the structure and set up of these models will be presented in a 
forthcoming publication [433].  

Energy: The energy system was assessed with LEAP, which was set up to 
model the extraction and conversion of energy to meet demand. More detail on 
LEAP is provided in Section 5.4 of the introduction to the thesis. 

 

2.2 ‘Current Practice Approach’ 

In the Current Practice approach, the LEAP tool was used to calculate: 

 Average167 power plant dispatching and future capacity require-
ments. 

                                                      
167  The temporal information within LEAP is based on time slices. The accuracy of the 

dispatching modelled with LEAP therefore relates to the chosen number and definition of 
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 Ethanol production from sugar cane based on data regarding 
historic sugar cane harvests. 

 Changes in fuel imports to the island due to the substitution of 
gasoline with ethanol. 

 The effects of changes in rainfall patterns on generation. 

 Greenhouse gas emissions, both on the island, as well as associated 
external emissions due to fuel processing and fertiliser supply to the 
island. This includes emissions associated with oil refining, coal 
processing and fertiliser production. 

 

Note that in scenarios where sugar cane is used for ethanol instead of sugar 
production, external economic effects outside of Mauritius were not considered. 
Those could be significant, yet are difficult to assess. For example, the loss of 
area for sugar cane farming could be compensated by increases in farm land in 
other sugar producing countries. This could potentially lead to deforestation and 
associated greenhouse gas emissions. 
 

 
Fig. 34: Schematic of Current Practice approach 

 

The energy system was set up based on historical demand data from the period 
2005 to 2009 and generation data from 2005 to 2008 [426,428,434–439]. 

                                                                                                                              
time slices as opposed to the detailed temporal resolution required for the daily dispatching by 
a system operator. Refer to Kannan [339] for a view on the value of increased temporal 
resolution. 
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Aligned with historical growth rates, an electricity demand growth of 3.5% was 
assumed. Any additional electricity requirements for pumping for irrigation and 
desalination were explicitly entered in the model. Economic considerations are 
based on an assumed oil price of 80 USD per barrel, a coal price of 60 USD per 
ton168 and a sugar export price of 420 USD per ton. 

At these prices the losses associated with reduced sugar exports are lower than 
the gains from the reduced imports of gasoline. Prices vary and are likely to be 
volatile in global markets. The positive cost-benefit balance is therefore not 
guaranteed. For an oil price of 100 USD per barrel and sugar prices higher than 
700 USD per ton, ethanol production would not be profitable any longer [52]. 
Part C focuses on a comparison of differences in key energy dynamics with and 
without an integrated CLEWS approach. A detailed sensitivity analysis of the 
costs is outside of its scope 

To model the electricity generation, all power plants and co-generating 
processing plants that export electricity to the national grid were modelled 
individually. Future power expansions plans were taken into account [406,440]. 
Any additional future capacity needs were assumed to be met by investments in 
coal-fired power plants to meet the base load and oil-fired power plants to meet 
balancing requirements169. Efficiencies and capacity factors of power plants 
were calibrated from historical data. Power plants were dispatched giving 
priority to those with the lowest short run marginal generating costs. Capital, 
operating and fuel costs were chosen according to data based on assessments of 
comparable international plants [306,441]. Annex G contains an overview of key 
power plant input data. 

While hydropower generates less than 5% of the total electricity, it is strongly 
affected by the rainfall reductions in scenarios considering climate change. This 
is due to reduced inflows, potentially increased reservoir outflows and 
diversions to meet other water demands in times of shortage. A hydropower 
plant connected to a reservoir is assumed to be able to generate electricity in all 
months where the storage volume is more than an assumed ‘dead storage’ 
capacity of 5% of the total.  

                                                      
168  Whenever ton is used as a unit in this thesis, it refers to metric tons. 
169  Coal-fired power plants were assumed to contribute 70% of future capacity requirements for 

meeting peak demand. Oil-fired power plants were assumed to provide the remaining 30%, 
plus requirements to meet the system’s reserve margin of 21%. For balancing requirements, 
the minimum share of oil based generation in the total mix was set to 15%. This compares to 
a national target to reduce the share of oil to 20% in 2025 [406]. 
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A yearly ‘hydro factor’ was calculated. This factor de-rates the hydropower 
generation should the times with low storage volumes increase in the future. 
This could be due to the future impact of climate change or increases in 
reservoir outflows. Smaller hydropower plants which are not connected to 
reservoirs are assumed to reduce their generation by the same share that the 
average river flow is reduced. The monthly storage volumes and river flows 
were calculated by assuming river flow reductions to equal the expected rainfall 
reductions in per cent. No increases in competing water uses were considered in 
the ‘Current Practice approach’, e.g., for agricultural, municipal or industrial 
water demands. 

 

2.3 ‘CLEWS Approach’ 

When reassessing the energy system considering the CLEWS approach, 
additional linkages between the energy model and the land-use and water model 
were taken into account. The required steps for this assessment were as follows: 

1. Identify the interactions between the climate, land-use, energy and 
water resource systems. This first step can be considered as the 
most important step, and might require some form of collaboration 
with experts on the various resource systems. 

2. Quantify these interactions. Such quantification focused, for 
example, on the groundwater demand for irrigation and the 
associated energy requirements for pumping. 

3. Represent the interactions within the modelling framework. 

4. Clearly define the required exchange of data between the resource 
models and its format. This is referred to as ‘soft-linking’ the 
individual models and is only required if separate modelling tools 
are applied. 

5. Calibrate the modelling tool(s) based on historical data. 
Conveniently, this is first done through separated model runs, 
without considering any linkages between the models. 

6. Develop scenarios to compare the implications of various key 
assumptions on future development pathways.  

7. Represent the scenarios in the modelling tool(s).  
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8. As some outputs from one model might serve as input data for 
another, iterations may be required before a convergent solution 
emerges. 

9. Interpret results and the differences between the Current Practice 
and the CLEWS approach. 

 

Fig. 35 provides an overview of the interactions between these tools. 
 

 
Fig. 35: Schematic of CLEWS approach 

 

While an energy model on its own can be developed relatively straightforward 
based on data published in literature, pursuing the CLEWS approach comes 
with a considerable level of effort. Agreeing on a clear timeline, resolution and 
format of the inputs and outputs of the various modelling tools is therefore a 
necessity for a successful CLEWS assessment. Further, common assumptions 
and scenarios have to be well thought through and agreed on upfront. Any later 
change is a potential cause of errors if not implemented correctly in all models 
and scenarios, and might cause significant delays if not scheduled for. 
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The basic structure of the LEAP model was kept exactly the same as in the 
Current Practice approach. However, the following linkages to the other 
resource models were taken into account:  

 The bioenergy production potential and fertiliser requirements for 
growing an alternative crop were derived from the land-use model.  

 Additional170 water pumping demands were incorporated as input 
values to the energy model. Those demands include pumping for 
urban water supply and sugarcane processing as derived from the 
water model, and pumping for agricultural irrigation as derived 
from the land-use model. 

 Desalination demand for urban water supply was included as 
another input value to the energy model. 

 Monthly storage volumes and river flows were derived from the 
water model. This enabled a consideration of competing water 
demands like agricultural or municipal demands. The hydropower 
generation was calculated based on these storage volumes and river 
flows following the same logic as in the Current Practice approach.  

 Water demands for ethanol production and power plant cooling 
requirements were derived as output data from the energy model 
and fed into the water model. 

 

More detail on the overall CLEWS approach and its application on Mauritius 
will be provided in a forthcoming publication by Hermann et al. [433]. This 
related effort presents further background on the applied climate, land-use and 
water models. It maps the interactions between the individual resources models 
and shows overall results including greenhouse gas emissions, water supply 
dynamics and crop productivities. 

  

                                                      
170  Additional to the demand in the business as usual scenario of the Current Practice approach. 
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3 Scenarios 

In line with the long-term energy strategy of Mauritius, the effects of increases 
in local ethanol production were investigated up until 2030. Ethanol was 
assumed to be added to the fuel mix of the local car fleet, or exported if deemed 
beneficial171. Changing weather patterns and decreasing rainfall are of concern 
to the Government of Mauritius as the island is prone to drought [443]. 
Therefore, the effects of climate change were considered. 

In addition to a “business as usual” case based on historical trends and current 
government targets for renewable electricity generation, the scenarios to model 
these developments were grouped as follows: 

 Scenarios without Climate Change Considerations: The 
sugar cane processing plants ‘Medine’ and ’F.U.E.L’ are 
converted to produce ethanol instead of sugar from 2015 
onwards.  

 Scenarios with Climate Change Considerations: Additionally, 
the effects of climate change are simulated by decreasing rainfall 
linearly to 20.4% during the period from 2010 to 2030. This is 
based on a worst case scenario derived from the selected General 
Circulation Models [430,431].  

 

The following section outlines the scenarios established based on these 
considerations. If possible, the exact same scenarios were set up for both, the 
Current Practice and the CLEWS approach. However, one scenario explicitly 
relies on an integration of resource systems (2NC+CCCLEWS). It was therefore only 
possible to assess this scenario pursuing the CLEWS approach.  

Table 15 provides an overview of all of the scenarios assessed and their 
abbreviations. Note that the superscript ‘CLEWS‘ refers to the assessment of a 
scenario based on the CLEWS approach. Scenarios without this superscript 

                                                      
171  This may occur if the car fleet is not able to absorb all of the ethanol produced. In this case, it 

was assumed that there is an external market for ethanol from Mauritius and that import 
prices of gasoline per energy content equal export prices for ethanol. Therefore, it has no 
economic implications if the ethanol is consumed on Mauritius or exported. Amigun and von 
Blottnitz [442] report that such exports are already taking place, with an ethanol producer 
aiming at increasing its exports to 30 million litres per year. 
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were assessed based on the Current Practice approach. The extension ‘+CC’ 
refers to scenarios considering climate change. 

 

3.1 Current Practice Approach 

3.1.1 Scenarios without Climate Change Considerations 

3.1.1.1 BAU: Business as Usual 

In this scenario, electricity and gasoline demand growth follow historical trends. 
Electricity and heat generation from bagasse continues at current levels, but no 
ethanol is produced. Future renewable electricity generation shares reflect the 
targets outlined in the long-term energy strategy of Mauritius. Rainfall patterns, 
reservoir levels and thus hydropower availability were expected to reflect 
historical levels. The results of the following scenarios assessed with the Current 
Practice approach are illustrated as changes to this baseline scenario. 

3.1.1.2 1GEN: Ethanol – First Generation 

Sugar production is changed to so-called ‘first generation’ ethanol production172. 
Ethanol is blended with gasoline to meet domestic transportation fuel demand 
or used for export. The by-product bagasse is used to produce electricity at the 
sugar cane processing plants. Excess electricity is sold to the national grid. 

3.1.1.3 2GEN: Ethanol – Second Generation 

Sugar cane is again used to produce ethanol. However, excess bagasse is no 
longer used to produce electricity for the national grid. Instead, it is also 
converted to ethanol via hydrolysis, using so-called ‘second generation’ 
technologies173. 
 

  

                                                      
172  ‘First generation’ refers to ethanol production from sugar and starch crops [444]. 
173  ‘Second generation’ refers to ethanol production from lignocellulosic biomass. This extends 

the potential feed stock sources, e.g., to bagasse from sugar cane, waste products from 
agriculture and forestry, or municipal waste [444]. 
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3.1.2 Scenarios with Climate Change Considerations 

3.1.2.1 BAU+CC: Business as Usual, Water Stress 

This scenario builds on the business as usual (BAU) scenario, but with rainfall 
reductions due to climate change. No ethanol is produced. 

3.1.2.2 1GEN+CC: Ethanol – First Generation, Water Stress 

This scenario builds on the first generation ethanol production scenario 
(1GEN), but considers rainfall reductions due to climate change174. 
 

Table 15: Overview of Abbreviations for all Scenarios 

 Business as usual 
Ethanol – 

First generation 

Ethanol – 

Second generation 

Current Practice 

approach 
BAU 

BAU+CC 

1GEN 
1GEN+CC 

2GEN 
- 

CLEWS approach 
BAUCLEWS 

BAU+CCCLEWS 
1GENCLEWS 

1GEN+CCCLEWS 
2GENCLEWS 

2NC+CCCLEWS 
 

 

3.2 CLEWS Approach 

All scenarios assessed with the Current Practice approach were reassessed with 
the CLEWS approach, i.e., taking the linkages with the water and land-use 
models into account. The results are presented as changes to the respective 
baseline scenario (BAUCLEWS). Further, an additional scenario was investigated, 
which could not have been assessed pursuing the Current Practice approach: 
 

                                                      
174  The second generation scenario (2GEN) was not reassessed taking climate change into 

consideration. This is because results showed that the first generation scenario (1GEN) is 
economically more attractive. This would not change when considering climate change.  
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3.2.1 2NC+CCCLEWS: Ethanol – Second Generation, New Crop, Water 
Stress, CLEWS Approach 

This scenario builds on the second generation ethanol production scenario 
(2GENCLEWS). It explores the potential of growing an alternative crop as ethanol 
feedstock for processing at the two selected processing plants. The 
characteristics of this alternative crop were aligned with those of corn. It allows 
for two harvest cycles and is more drought resistant than sugar cane. All other 
processing plants continue to rely on sugar cane for sugar production. As for all 
climate change scenarios, rainfall is reduced based on the outlined climate 
change assumptions. 
 

3.3 Assumptions Related to Agriculture and Water Supply 

If not stated otherwise, sugar cane production is maintained at historical levels 
in all scenarios175. When applying the CLEWS approach, the water supply and 
land-use models were set up accordingly to support this level of production: 
When precipitation is insufficient, irrigation is used to meet any additional water 
requirements for feed stock. The irrigation water demand is covered by surface 
runoff. Should this not suffice, groundwater pumping is considered. Urban 
water demand is met through rivers and reservoirs, groundwater pumping or 
with supplementary desalination176. Desalination is considered for meeting 
urban demand if additional pumping would reduce the available groundwater by 
more than 15% below the historical minimum. Groundwater is already currently 
at risk of saline intrusions. Therefore, this appears as a rather conservative 
assumption with regard to demand increases for desalination. 

  

                                                      
175  The scenario 2NC+CCCLEWS explicitly considers the introduction of a new crop instead of 

growing sugar cane at Medine and F.U.E.L. 
176  Recall that hotels are already obliged to provide provisions for desalination plants since 

2005 [423]. 
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4 Results 

Based on the outlined methodology, this section presents the results for the 
business as usual, and the first and the second generation scenarios. Each of 
them is first assessed applying the Current Practice approach with and without 
climate change considerations, followed by a reassessment pursuing the CLEWS 
approach. Changes in the results between different scenarios and the business as 
usual case are presented for the year 2030. This serves to assess what level of 
detail is gained and to what extent the derived potential conclusions vary when 
considering the more integrated CLEWS approach. 

 

4.1 Business as Usual 

4.1.1 Current Practice Approach 

Based on the calibration with historical values and future expansion plans, Fig. 
36 shows the generation mix over the modelling period (BAU). Electricity 
generation increases from 2,240 GWh in 2005 to 5,260 GWh in 2030. Most 
future demand is met by coal-fired power plants (grey areas), with a significant 
reduction of the share of oil-fired power generation (red areas). This shift from 
petroleum products to coal is in line with the government’s energy strategy. 
Reducing the dependence on oil serves to minimise the associated higher 
geopolitical risks and avoid the more volatile prices. 
 
 

 

 

 
 

 

 

Fig. 36: Generation mix by power plant for the business as usual (BAU) 

Red areas are assigned to power plants which are fired with petroleum products, grey areas  
to coal-fired power plants and green areas to renewable energy, including plants running  

on both bagasse and coal. This colour coding is maintained throughout Part C. 
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The BAU scenario was reassessed taking the effects of climate change into 
account (BAU+CC). Its impact was found to be insignificant when looking at 
overall generation levels. However, this changes when focusing specifically on 
hydropower: reductions of 40% from 97,500 MWh to 58,900 MWh occur in 
2030 (BAU vs. BAU+CC). These reductions are mainly compensated through 
increases in coal, followed by oil-fired power plants. This results in an increase 
of greenhouse gas emissions by 42,000 tons of CO2-eq in 2030 compared to the 
BAU. This increase constitutes just over one per cent of Mauritius’ total net 
emissions [421]. 
 

4.1.2 CLEWS Approach 

The dynamics of the BAU scenario without climate change remain very similar 
once reassessed with the holistic CLEWS approach (BAUCLEWS). There are only 
some minor changes in hydropower generation towards the end of the 
modelling period due to increases in urban consumption. However, when 
reassessing the BAU taking climate change into consideration (BAU+CCCLEWS), 
several dynamics would have been overlooked: through the CLEWS approach 
an additional electricity demand for water supply is identified, which amounts to 
67,000 MWh in 2030. This is due to sea water desalination and pumping to meet 
urban water demand and as well groundwater pumping for irrigation (left graph 
of Fig. 37).  

Changes in electricity demand related to 

water requirements in 2030 
Changes in generation in 2030 

 

Fig. 37: Changes in electricity demand and generation for  

BAU+CCCLEWS compared to BAUCLEWS 
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Further, due to the consideration of climate change, the hydropower generation 
is reduced from 83,200 MWh to 16,200 MWh in 2030 (BAUCLEWS vs. 
BAU+CCCLEWS). This 81% reduction is much more significant than the 40% 
reduction as observed in the corresponding scenarios of the Current Practice 
approach (BAU vs. BAU+CC). The Current Practice approach would therefore 
lead to an over 260% higher hydropower generation in 2030. This may not 
considerably affect the total electricity generation given the limited role of 
hydropower for Mauritius. However, for countries with higher hydropower 
shares such dynamics should not be overlooked.  

Fig. 38 depicts the reasons for this overestimation. As identified by the water 
model, withdrawals from reservoirs for urban and agricultural water demand 
increase when considering climate change. This accelerates the drawdown of the 
reservoirs, leaving little water to be used for hydropower generation (graph on 
the left of Fig. 38). Without the CLEWS approach, these increasing withdrawals 
were overlooked and all reservoirs are able to recover once they have been 
emptied in summer, as shown on the right of Fig. 38. 

Reservoir levels with  

CLEWS approach 
Reservoir levels with  

Current Practice approach 

 

Fig. 38: Projected reservoir levels in thousand m³ 

 

The additional demand and lower hydropower generation when considering 
climate change result in changes in generation as illustrated for 2030 in the 
graph on the right of Fig. 37. The bars with negative y-axis values show power 
plants which decrease their generation in the BAU+CCCLEWS scenario compared 
to the corresponding business as usual scenario (BAUCLEWS). Similarly, the bars 
with positive y-axis values represent power plants which are expected to increase 
their output: these are oil and coal-fired power plants, which leads to an increase 
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in greenhouse gas emissions of 154,000 tons of CO2-eq compared to the 
corresponding business as usual case without climate change. 

 

4.2 Ethanol – First Generation 

4.2.1 Current Practice Approach 

In this scenario it was assumed that the sugar cane processing plants Medine 
and F.U.E.L. is converted to produce first generation ethanol from sugar cane 
(1GEN). The ethanol would be used to replace some of the gasoline required 
for the car fleet. 1,950 TJ of ethanol per year could be produced by the two 
plants. This could be used to reduce gasoline imports or for export. It compares 
to a total demand for gasoline of 5,350 TJ in 2010 [408]. Due to the higher 
electricity requirements for producing ethanol as compared to sugar, the two 
sugar cane processing plants would export 3,400 MWh less electricity to the 
national grid. This would be compensated by increased generation from coal 
and oil-fired power plants, as illustrated for 2030 in the left graph of Fig. 39. 

Changes in generation in 2030 Changes in costs in 2030 

  
 

Fig. 39: Changes in selected energy dynamics for 1GEN compared to BAU 

 

However, the resulting greenhouse gas balance is very much in favour of the 
ethanol production. 148,000 tons of CO2-eq could be avoided in 2030. This is 
due to the use of ethanol as a substitute for gasoline in the transport sector and 
the reduced external emissions of associated oil refining. Also from an 
economic perspective, when focusing solely on the energy system, this measure 
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would be very favourable. The reduced gasoline imports outweigh the cost 
increases for the ethanol production at Medine and F.U.E.L. by far, as shown 
on the right of Fig. 39. The total net benefit of 43.5 million USD in 2030 is 
derived by subtracting the benefit due to the reduced imports from the 
additional costs at Medine and F.U.E.L. 

Next, the first generation scenario is reassessed taking climate change into 
consideration (1GEN+CC). The corresponding changes in generation are due 
to reductions in hydropower (as observed in BAU+CC). This is compensated by 
additional generation from coal and oil-fired power plants. The ethanol 
production of 1,950 TJ remains the same as in the 1GEN scenario. Greenhouse 
gas reductions of 106,000 tons of CO2-eq occur in 2030. Given the lower 
hydropower generation, these reductions are less significant than in the case 
without climate change (1GEN). From an economic perspective, the dynamics 
do not change significantly due to climate change (i.e., compared with the right 
graph of Fig. 39). The additional costs for coal and oil imports to compensate 
the reduced hydropower generation are negligible compared to the other cost 
factors. Ethanol generation therefore remains attractive. 
 

4.2.2 CLEWS Approach 

Next, first generation ethanol production is reassessed with the CLEWS 
approach. Without taking climate change into account (1GENCLEWS), very little 
interaction with the actual land-use or water system occurs. 

However, from an economic perspective, there is an important linkage with the 
agricultural sector: the use of sugar cane for ethanol production reduces the 
income from sugar exports by 48.0 million USD. Some of this is compensated 
by the reduced expenses for sugar production of 20.6 million USD (Fig. 40). 
Thus, the total economic benefit of ethanol production is significantly reduced 
by 27.4 million USD177. This type of economic links to another sector might be 
simple in this case. However, it can easily become more complex if several 
feedstocks compete for various uses like electricity generation, biofuel 
production or food processing. 

  

                                                      
177  However, the benefits of increasing Mauritius’ energy security by reducing its import 

dependence on gasoline remain. 
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Changes in costs in 2030 for 

1GENCLEWS 
Changes in costs in 2030 

for 2GENCLEWS 

  

Fig. 40: Changes in costs for 1GENCLEWS and 2GENCLEWS, both compared to BAUCLEWS 

 

When adding climate change considerations (1GEN+CCCLEWS), the additional 
water demand for producing first generation ethanol from sugar cane has an 
insignificant impact on the additional energy demand. The related dynamics 
presented in the right graph of Fig. 37 therefore remain. From an economic 
point of view, the overall changes in costs remain similar to those of the 
corresponding CLEWS scenario without climate change (1GENCLEWS) as shown 
in the left graph of Fig. 40. However, additional costs of 8.2 million USD are 
incurred to compensate for the reduced hydropower generation. There are no 
greenhouse gas emission reductions relative to the BAUCLEWS any longer. 
Rather, an increase of 10,000 tons of CO2-eq occurs. This is due to the lower 
hydropower generation and the higher total electricity demand, which is met by 
coal and oil-fired power plants. 

 

4.3 Ethanol – Second Generation 

4.3.1 Current Practice Approach 

If the excess bagasse is also converted to ethanol (2GEN), both processing 
plants are no longer able to export any electricity to the grid. Instead the ethanol 
plants have to buy electricity from the grid, resulting in a higher total electricity 
demand. Therefore, as illustrated by the graph on the left of Fig. 41, the 
increases in generation by coal and oil-fired power plants outweigh the decreases 
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in generation at Medine and F.U.E.L. The overall ethanol production increases 
to 2,660 GJ at the price of slightly higher overall costs compared to the first 
generation scenario (1GEN): while costs for gasoline imports decrease, this is 
outweighed by the higher costs of producing second generation ethanol (graph 
on the right of Fig. 41, compared with graph on the right of Fig. 39). 

Changes in generation in 2030 Changes in costs in 2030 

  

Fig. 41: Changes in selected energy dynamics for 2GEN compared to BAU 

 

The economic benefit of producing second generation ethanol amounts to 
37.2 million USD in 2030, and is therefore significantly lower than for 
first generation ethanol production. The greenhouse gas reductions of 123,000 
tons of CO2-eq in 2030 are as well lower than in the first generation scenario. 
Overall, apart from the opportunity to increase Mauritius’ energy security by 
reducing its import dependency on gasoline (or to diversify export earnings 
through additional ethanol exports), the first generation scenario therefore 
seems favourable. When pursuing the Current Practice approach, taking climate 
change into consideration would only affect the hydropower generation, but not 
the profitability of the ethanol generation. Second generation ethanol 
production would therefore remain less attractive. 
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4.3.2 CLEWS Approach 

As in the 1GENCLEWS scenario, very little interaction with the actual land-use or 
water system occurs in the 2GENCLEWS scenario. However, income from sugar 
exports and the expenditures for sugar production are reduced (left graph of 
Fig. 40). Thus, as in 1GENCLEWS, the total economic benefit of ethanol 
production is significantly reduced by 27.4 million USD when pursuing the 
CLEWS approach.  

When considering climate change, applying the CLEWS approach does not 
change the fact that second generation ethanol production would remain less 
attractive then first generation ethanol production. The CLEWS approach was 
therefore applied in order to investigate the profitability of growing an 
alternative crop178 as ethanol feedstock for the processing plants Medine and 
F.U.E.L. (2NC+CCCLEWS).  

Changes in electricity demand related to 

water requirements in 2030 
Changes in generation in 2030 

 

 

Fig. 42: Changes in electricity demand and generation  

for 2NC+CCCLEWS compared to BAUCLEWS 

 

Despite its two crop cycles and even as climate change is considered, the 
alternative crop has a lower overall energy yield and requires less electricity for 
pumping and irrigation than sugar cane does without taking climate change into 
account. The electricity demand at the two selected processing plants is 
therefore lower than in the business as usual case without climate change 

                                                      
178  Its characteristics were aligned with those of corn. 
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(negative bars in graph on the left of Fig. 42). This reduced water demand also 
translates into a lower demand for desalination compared to the other climate 
change scenarios (compare to right graph of Fig. 37). As sugar cane is 
abandoned at Medine and F.U.E.L., no bagasse is available for electricity 
generation and both processing plants need to buy electricity from the grid. This 
additional electricity demand is met by coal and oil-fired power generation. The 
overall changes in generation when introducing a new crop and considering 
climate change are shown in the right graph of Fig. 42. 

Despite the higher energy intensity of the new crop, due to the overall lower 
yield only 1,930 TJ of ethanol can be produced. This is almost the same yield as 
with first generation ethanol from sugar cane. Also the overall economic balance 
is less favourable than for first generation ethanol production with sugar cane. 
This is due to the higher processing costs associated with second generation 
ethanol production, the higher electricity generation requirements and the lower 
ethanol production. Further, greenhouse gas emissions increase to 59,000 
additional tons of CO2-eq as compared to the business as usual case (BAUCLEWS). 
Overall, while diversifying agriculture is one of the priorities of the Government 
of Mauritius, the new crop performs worse than sugar cane from a cost and 
climate change perspective. 

 

4.4 Adding Value with CLEWS – Summary of the Findings 

When assessing the energy system based on the Current Practice approach, first 
generation ethanol production seems very advantageous for Mauritius. It is 
characterised by a positive economic balance of 43.5 million USD, increased 
energy security through the production of 1,950 TJ ethanol and 148,000 tons of 
CO2-eq reductions in 2030. Second generation ethanol production appears less 
attractive. Apart from the increases in ethanol production, both the cost and 
greenhouse gas balances look worse.  

The conclusions regarding first generation ethanol production do not change 
significantly when considering climate change. While hydropower generation 
decreases by 40%, this still constitutes an insignificant fraction of the overall 
electricity generation. The energy security situation compared to the business as 
usual deteriorates slightly. Additional coal and oil net imports total 400 TJ. The 
overall greenhouse gas emission reductions now amount to 106,000 tons of 
CO2-eq. 
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When pursuing an integrated CLEWS approach, the picture changes 
considerably. The economic balance for both first and second generation 
ethanol production decreases by around 27.5 million USD. This corresponds to 
over 60% of the total net benefit for first generation and over 70% for second 
generation ethanol production. The reductions are mainly due to the losses in 
sugar exports. Greenhouse gas reductions and ethanol production remain 
basically the same as in the Current Practice assessment. 

When assessing the climate change scenarios, the added value of the CLEWS 
approach becomes even more evident. These scenarios are characterised by an 
additional electricity demand for water supply of 67,000 MWh. The hydropower 
generation decreases more significantly and, in 2030, constitutes only 28% of 
the generation derived from the Current Practice assessment. Further, compared 
to the Current Practice approach, the additional net imports of oil and coal 
increase 3.5-fold to 1,380 TJ in the first generation ethanol scenario179. This 
ultimately results in an increase of greenhouse gas emissions by 10,000 tons of 
CO2-eq instead of the previous decrease. Finally, there is a whole new scenario 
which could not have been assessed without the CLEWS approach. This 
scenario focuses on the introduction of a new crop with its characteristic 
fertiliser, water and consequent energy demands as well as greenhouse gas 
emissions180.  

5 Conclusions 

Based on both the present discussion and related analysis [64], a basic level of 
collaboration with professionals from outside of the energy sector appears 
valuable when setting up an energy assessment. Such collaboration helps to 
indicate upfront if any future resource related stresses might occur. In some 
cases it may become apparent that a deep integration among CLEWS is not 

                                                      
179  This refers to additional imports compared to the respective business as usual cases (BAU and 

BAUCLEWS). While such a comparison is commonly used for energy models, a comparison of 
the total values instead of the additions would obviously yield much lower differences in per 
cent. 

180  The crop in this scenario did not perform better than sugar cane. However, it requires a 
CLEWS assessment to come to this conclusion and to justify the assumption that sugar cane 
is also preferable once climate change considerations are taken into account. 
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required. In other instances its added value might justify the modelling and 
coordination effort involved. 

In the present study, a policy for agricultural diversification, the existence of 
ethanol production targets, and the potential need for desalination suggested 
upfront that interdependencies between resource systems may need to be 
accounted for in the energy model. The subsequent analysis showed that 
moving from water surplus to water stress increased the level of CLEWS 
interactions to a point where national dynamics around an ethanol production 
policy changed significantly. 

In general, a CLEWS approach is likely to be valuable for countries intending to 
implement integrated policies with potential implications for multiple resource 
systems. High shares of hydropower and expected climate-induced rainfall 
changes might also indicate the relevance of a CLEWS assessment. In addition 
to climate change, conflicting water management priorities may impede the 
future availability of water for electricity generation. Applying a CLEWS 
approach may further enable a more holistic assessment of greenhouse gas 
emissions. This could serve, for example, to assess the climate implications of 
ensuring energy and water supply while considering technological advances and 
changes in agricultural practices.  

The additional commitment of interlinking the energy model with external 
climate, land-use and water models involves a non-trivial effort. However, the 
purpose of an energy model should be to depict a potential future as adequately 
as possible in order to help derive strategies that are consistent across sectors. 
The underlying research work has shown the importance of capturing linkages 
between CLEWS for informing such consistent strategies. In response to this 
work, the Government of Mauritius has announced the appointment of a high-
level CLEWS panel. This panel will ensure an integrated approach to CLEWS-
related policies is adopted [65]. 
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Concluding Remarks and 
Recommendations 

Section 1 presents overall conclusions. It briefly summarises those presented in the last chapters 

of Section 1 and 2 of Part A, and in the last sections of Part B and Part C of this thesis. 

Section 2 identifies selected areas for future work. 

1 Concluding Remarks 

Improving integration within and between models can enable more holistic 
assessments of policy, operational and investment strategies as well as their 
interrelations with our economies and the wider environment. However, the 
uncertainties and time requirements involved, demand choosing an appropriate 
level of integration. Since inflated models may be computationally intensive and 
opaque, this increased integration should only be considered if it is expected to 
significantly impact the derived findings. That decision may often be up to the 
analysts, relying on their experience, institutional settings and coordination with 
experts from other fields. It is the hope of the author that this thesis may 
provide related insights by demonstrating how results changed when increasing 
the level of integration considered in models.  

Smart Grids are expected to facilitate an improved integration between the 
supply and demand of electricity. The integration of Smart Grid and traditional 
supply options is limited in many long-term modelling efforts. In part this is 
because the modelling toolkits available to the analyst are still evolving. 
Accordingly, the open source model OSeMOSYS was enhanced in this thesis. 
This model provided a relatively transparent test bed to demonstrate potential 
contributions of Smart Grids to reduce peak load requirements, as assessed in a 
simple case study. In addition to the modelling, a set of Smart Grid options for 
developing countries was presented and quantitatively assessed in this thesis. 
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The efficiency improvements and the more user centric approach they may 
facilitate might ultimately help to accelerate electrification rates in sub-Saharan 
Africa. Expanding access will also require significant expansions of the limited 
existing electricity infrastructure. An upfront adoption of some of these Smart 
Grid options may be economically more efficient than a later transition to more 
intelligent grids by replacing and upgrading existing infrastructure. This may 
provide an advantage which is largely unique to developing countries. 

In instances where power system flexibility needs to be considered, models with 
a long-term outlook may need to consider integration between timeframes. The 
need to bridge the gap between operational power system models with high 
temporal detail and the comparatively rather coarse long-term energy models 
has been showcased using Ireland as a case study. This case study demonstrated 
that integrating operational constraints in long-term models improved the 
mismatch in dispatch results from 21.4% to 5.0%. This mismatch was measured 
in comparison to a short-term model with more technical detail and an over 700 
times higher temporal resolution. Further, up to 23.5% of the capacity 
investments differed when omitting operational constraints. Considering such 
short-term constraints is therefore essential when assessing long-term 
investment strategies, especially as ambitious international and national policies 
push for increasing shares of variable renewable energy sources. In addition to 
the gap between models, a potential gap between the requirement for flexible 
technologies and investment incentives was noted. 

Finally, the importance of capturing the linkages between energy and other 
resource systems was demonstrated on a case study of the small island 
developing state of Mauritius. The analysis has shown that resource integration 
is especially important when considering integrated policies, climate change, 
limited resource availabilities and diverging resource management priorities. The 
relevance of this approach is however not limited to country assessments. From 
a local to a global level, whenever resources are limited, considering linkages 
between other resource systems might unveil some otherwise hidden 
opportunities for efficiency gains. Identifying such efficiency gains will help to 
avoid uncoordinated and potentially conflicting policies and accelerate the 
expansion of equitable access to these resources. This may help to deliver on 
local as well as international targets such as the MDGs or the energy goals 
underpinning the UN’s Sustainable Energy for All initiative. 

The modelling adaptations presented in this thesis provide a toolkit that might 
be used to gain insights into aspects of system integration. Some energy models 
may be more compatible with such adaptations than others. However the 
described model improvements are not an attempt to replace existing tools and 
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were all explained in a generic way. This route was followed to help enable their 
implementation, at least to some degree, independently of any specific 
modelling tool. Further, many specialised models exist which are much better 
suited for detailed assessments of specific goals or subsets of the energy system. 

While various dimensions of integration were considered in this thesis, the term 
is so vast that only a selection of possible topics was addressed – and important 
elements had to be excluded. However limited it is, I hope that the contribution 
made in this thesis will prove valuable and provide an addition to the important 
field of energy system analysis. 

2 Recommendations for Future Work 

This thesis investigated a small number of issues related to the treatment of 
systems integration in long-term energy models. There are clear opportunities to 
extend the analysis. 

For example, a modelling tool was extended during the course of this thesis to 
consider a better integration between multiple regions [310]. However, apart 
from test model runs, no multi-regional assessments were performed. Further, 
no direct integration between energy and climate models was taken into 
account. Energy system emissions were however calculated in both Part B and 
Part C of this thesis and results from climate models were used as inputs for the 
resource models applied in Part C. Integration with other economic sectors by 
linking bottom-up with top-down models was also not performed as part of this 
thesis. Yet, this thesis was able to consider elements within each of the 
categories of integration as listed in Section 2 of the introduction. 

In addition to expanding the considered level of integration, future work may 
also focus on extending the applications of the modelling approaches presented 
in this thesis. For example, the CLEWS approach may be applied to other 
countries or regions to better identify resource linkages as well as key aspects 
which enable an upfront indication of the relevance of this approach for specific 
applications. Further, system-wide economic implications of increased invest-
ments in combinations of variable renewable energy sources may be assessed 
taking into consideration their geographical dispersion. Future modelling work 
may help derive insights on how best to accommodate increasing shares of 
renewable energy, such as through improved ramping characteristics of 
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individual technologies, increased accuracy of wind forecasts, expanded storage 
capacities or through demand response measures facilitated by Smart Grids. 

Further, energy security related questions regarding market integration might be 
assessed. For example, models could be extended to investigate the value of 
cross-border trade of electricity and operating reserves. Additionally, the links 
between electricity, heat and transportation demands might be analysed. This 
may help to assess what suites of technology investments would most effectively 
meet the demands placed on future energy systems. 

These areas of future research are just a selection of possible extensions and 
applications of the work presented in this thesis. Various aspects of these areas 
have already been assessed in the literature, yet their combined consideration in 
an integrated modelling framework offers numerous opportunities for future 
insights. Further, various additional topics may profit from increased integration 
to ultimately help support the design of cohesive policy frameworks. 
Considering integration in the models informing such frameworks will hopefully 
point to synergies and help avoid inadvertently conflicting information by 
different modelling tools. 
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 SELECTED TOP-DOWN MODELS Annex A

Annex A.1 Input-Output Models 

The term input-output analysis was coined by Wassily Leontief in the late 1930s 
[445]. This type of analysis builds on a set of linear equations to assess the 
interdependencies between the various sectors within an economy [445]. The 
interrelations between various goods are commonly summarised in input-output 
tables where commodities consumed by a sector and sectors consuming 
commodities are listed. The flows of commodities are commonly measured in 
monetary units, but physical units may as well be used [446]. Drawing these 
tables is commonly the task of national governmental institutions. The level of 
detail provided in such tables can be significant. For example, the U.S. input-
output table for 2002 contains 56,760 lines of data to describe the use of 
commodities by industries [447]. Due to the effort involved in deriving these 
tables, they are not updated on a yearly basis and usually published many years 
after the data collection. 

Input-output tables may be used to calculate ‘output multipliers’ for each sector. 
These multipliers can be applied to derive the required contribution of each 
commodity in all sectors to support an output increase of one financial unit 
within a single sector. As all direct and indirect effects across an economy are 
taken into account, insights can be gained regarding the extent to which sectors 
are linked with other parts of an economy. Increasing the demand for the 
output of a highly interlinked sector will positively affect demands across the 
economy and may therefore be a valuable target for supportive public 
investments. For the purpose of an analysis of the energy system, energy 
intensities of sectors may be combined with input-output tables. This enables 
exploring the implications of changes in sectoral activity on energy demand. 

Input-output tables provide a snapshot of an economy. As such, changes within 
the interdependencies of the sectors cannot be captured without further 
modification of such tables. Further, they are based on the average consumption 
and production of a sector within a given year. Assessments of the response of a 
sector’s production to electricity price signals are therefore beyond the scope of 
a simple input-output analysis and require more sophistication. For example, 
Campana et al. [23] fed output multipliers into an optimisation model to 
investigate energy efficiency measures and their effects on job creation. 
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Annex A.2 Computable General Equilibrium Models 

A general equilibrium occurs when prices have adjusted so that demand equals 
supply of all commodities in the whole economy [448]. Computable general 
equilibrium models ensure that such an economy-wide equilibrium occurs. They 
may build on input-output tables to assess how structural changes disseminate 
through the economy [449].  

CGE models use production functions based on elasticities to specify the 
output as a function of its combination of inputs such as material, labour, capital 
and energy [450]. For example, a higher energy price may negatively impact the 
production of energy intensive industries. Elasticities describe how a percentage 
change of one variable translates into a percentage change of another variable. 
They may be defined by considering production isoquants. In economics, an 
isoquant describes minimum combinations of inputs which all produce the same 
output [451]. It can be interpreted as a set of opportunities for meeting a given 
demand. For example, a specific heating demand may be met by an electric 
heating system or by additionally investing in insulation materials and thus 
reducing the electricity bill. The electricity price will then help decide which 
option is preferable. Isoquants may change over time due to learning by doing, 
technical progress and economies of scale [452]. 

Based on its reliance on production functions, CGE models enable a more 
dynamic assessment of policy measures than input-output models. A possible 
application could be to assess the implications of a CO2 tax on employment or 
economic growth. Also, while economic sectors are commonly modelled at an 
aggregated level, CGE models may be interlinked with bottom-up models. 
Individual sectors may be singled out and technological detail added. For 
example, Laitner and Hanson [450] assessed investments in energy efficiency 
drawing on the AMIGA (All Modular Industry Growth Assessment) modelling 
system. 
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 QUALITATIVE RANKING OF SMART GRID OPTIONS Annex B
 
 

This annex provides explanatory remarks regarding the qualitative ranking. The 
meaning of each ranking category is briefly commented on for each assessment 
criteria. 
 

1. Consumers 

 ++ Overall benefit for consumers with strong pro-poor characteristics 
 + Overall benefit for consumers 
 o Only minor or no impact on consumers 
 - Some reduction in quality of service 
 -- Consumers are burdened by this measure 
 

2. Operation & Quality of Supply 

 ++ Significantly positive impact  
 + Positive impact  
 o Only minor or no impact  
 - Negative impact  
 -- Significantly negative impact  
 

3. Generation 

 ++ Significant reduction of peak demand and/or reduction in losses 
 + Reduction of peak demand and/or reduction in losses 
 o Only minor or no impact on peak demand and/or reduction in 

losses 
 - Increases in peak demand and/or losses 
 -- Significant increase in peak demand and/or losses 
 

4. Environment181 

 ++ Significant positive impact through efficiency increases or fuel 
substitution 

 + Positive impact through efficiency increases or fuel substitution 
 o Only minor or no impact  
 - Negative impact  

                                                      
181 The actual degree of this impact will depend on the generation mix. 
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 -- Significant negative impact 
 

5. Technical Complexity 

 ++ Little technology requirements, or technologies which have already 
been successfully introduced in sub-Saharan Africa 

 + Well known technologies, or existing experience in sub-Saharan 
Africa with comparable technologies; do not necessarily require 
system-wide integration 

 o Existing experience, but system-wide integration required 
 - Complex technologies; do not necessarily require system-wide 

integration, e.g., only at transmission grid or distribution level like 
smart meter installations 

 -- More complex technologies, usually requiring system-wide 
adjustments, e.g., smart meter installations together with smart 
appliances 

 

6. Investments 

 ++ Very small investments, or investments which can easily be 
refinanced 

 + Well confined, targeted smaller investments allow testing out the 
business case 

 o Type of investment strongly dependent on applied design and 
system integration 

 - Investments whose profitability cannot easily be tested out 
beforehand, e.g., because they are system-wide like smart meter 
installations  

 -- Overall larger investments, usually for infrastructure, or large 
investment requirements from a consumer perspective, e.g., for 
smart appliances 

 

7. Human Capacities 

 ++ Already common practice in sub-Saharan Africa 
 + Capacities are to a large extent available within country 
 o Capacities can easily be built, e.g., because they are only required 

centrally at utility level 
 - Significant in-country capacity requirements for implementation or 

operation 
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 -- Significant in-country capacity requirements for both 
implementation and operation 

 

8. Policy, Regulation & Standards 

 ++ Already existing and well established supportive policies and 
regulation 

 + Already in preparation or no or only little requirements 
 o supporting frameworks required, but extensive existing and easily 

translatable precedence 
 - Some policy support, regulation or technical standards required 
 -- Strong dependence on policy support for effectively 

implementation 
 

9. Applicability of Models for Pre-assessments 

 ++ Existing case studies and precedence in literature 
 + Existing electrification model adaptations and runs 
 o Current electrification models need to be extended 
 - Further studies, e.g., on consumer acceptance, required as input to 

extended electrification models 
 -- Impacts are difficult to model 
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 MODELLING ELEMENTS OF SMART GRIDS – CODE Annex C

IMPLEMENTATION 
 
 

The full model code is given below. The code below can effectively be cut and 
pasted into a GNU MathProg model file and run. The reader is referred to 
www.osemosys.org for more information and a non-pdf version of the code, as 
well as sample application files. Note that the ‘#’ symbol precedes a line of code 
not used in the model and is included for comments. 

Annex C.1 Variability in Electricity Generation 

# Model Definition # 

 
# SETS # 

 
set YEAR; 
set TECHNOLOGY; 
set TIMESLICE; 
set FUEL; 
set EMISSION; 
set MODE_OF_OPERATION; 
set REGION;  
 

# PARAMETERS # 

 
# Global # 

 
param YearSplit{y in YEAR,l in TIMESLICE}; 
param DiscountRate{t in TECHNOLOGY, r in REGION}; 
 

# Demand # 

 
param SpecifiedAnnualDemand{y in YEAR,f in FUEL, r in REGION};  
param SpecifiedDemandProfile{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}; 
param AccumulatedAnnualDemand{y in YEAR, f in FUEL, r in REGION}; 
 

# Performance # 

 
param CapacityToActivityUnit{t in TECHNOLOGY, r in REGION}; 
param TechWithCapacityNeededToMeetPeakTS{t in TECHNOLOGY, r in REGION}; 
param CapacityFactor{y in YEAR, t in TECHNOLOGY, l in TIMESLICE, r in REGION}; 
param AvailabilityFactor{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param OperationalLife{t in TECHNOLOGY, r in REGION}; 
param ResidualCapacity{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param SalvageFactor{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param InputActivityRatio{y in YEAR, t in TECHNOLOGY, f in FUEL, m in MODE_OF_OPERATION, r 

in REGION}; 
param OutputActivityRatio{y in YEAR, t in TECHNOLOGY, f in FUEL, m in MODE_OF_OPERATION, 

r in REGION}; 
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# Technology Costs # 

 
param CapitalCost{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param VariableCost{y in YEAR, t in TECHNOLOGY, m in MODE_OF_OPERATION, r in REGION}; 
param FixedCost{y in YEAR, t in TECHNOLOGY, r in REGION}; 
 

# Capacity Constraints # 

 
param TotalAnnualMaxCapacity{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalAnnualMinCapacity{y in YEAR, t in TECHNOLOGY, r in REGION}; 
 

# Investment Constraints # 

 
param TotalAnnualMaxCapacityInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalAnnualMinCapacityInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}; 
 

# Activity Constraints # 

 
param TotalTechnologyAnnualActivityUpperLimit{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalTechnologyAnnualActivityLowerLimit{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalTechnologyModelPeriodActivityUpperLimit{t in TECHNOLOGY, r in REGION}; 
param TotalTechnologyModelPeriodActivityLowerLimit{t in TECHNOLOGY, r in REGION}; 
 

# Reserve Margin # 

 
param ReserveMarginTagTechnology{y in YEAR,t in TECHNOLOGY, r in REGION};  
param ReserveMarginTagFuel{y in YEAR,f in FUEL, r in REGION}; 
param ReserveMargin{y in YEAR, r in REGION}; 
 

# RE Generation Target # 

 
param RETagTechnology{y in YEAR,t in TECHNOLOGY, r in REGION}; 
param RETagFuel{y in YEAR,f in FUEL, r in REGION};  
param REMinProductionTarget{y in YEAR, r in REGION}; 
 

# Emissions & Penalties # 

 
param EmissionActivityRatio{y in YEAR, t in TECHNOLOGY, e in EMISSION, m in 

MODE_OF_OPERATION, r in REGION}; 
param EmissionsPenalty{y in YEAR, e in EMISSION, r in REGION}; 
param AnnualExogenousEmission{y in YEAR, e in EMISSION, r in REGION}; 
param AnnualEmissionLimit{y in YEAR, e in EMISSION, r in REGION}; 
param ModelPeriodExogenousEmission{e in EMISSION, r in REGION}; 
param ModelPeriodEmissionLimit{e in EMISSION, r in REGION}; 
 

# MODEL VARIABLES # 

 
# Demand # 

 
var RateOfDemand{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
var Demand{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
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# Capacity Variables # 

 
var NewCapacity{y in YEAR, t in TECHNOLOGY, r in REGION} >= 0; 
var AccumulatedNewCapacity{y in YEAR, t in TECHNOLOGY, r in REGION} >= 0; 
var TotalCapacityAnnual{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
 

# Activity Variables # 

 
var RateOfActivity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION, r 

in REGION} >= 0;  
var RateOfTotalActivity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION} >= 0; 
var TotalTechnologyAnnualActivity{y in YEAR, t in TECHNOLOGY, r in REGION} >= 0; 
var TotalAnnualTechnologyActivityByMode{y in YEAR, t in TECHNOLOGY,m in 

MODE_OF_OPERATION,r in REGION}>=0; 
var RateOfProductionByTechnologyByMode{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,m in 

MODE_OF_OPERATION,f in FUEL,r in REGION}>= 0; 
var RateOfProductionByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,f in FUEL, r in 

REGION}>= 0; 
var ProductionByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,f in FUEL, r in 

REGION}>= 0; 
var ProductionByTechnologyAnnual{y in YEAR, t in TECHNOLOGY, f in FUEL, r in REGION}>= 0; 
var RateOfProduction{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION} >= 0; 
var Production{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION} >= 0; 
var RateOfUseByTechnologyByMode{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,m in 

MODE_OF_OPERATION,f in FUEL,r in REGION}>= 0; 
var RateOfUseByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 

REGION} >= 0; 
var UseByTechnologyAnnual{y in YEAR, t in TECHNOLOGY,f in FUEL, r in REGION}>= 0; 
var RateOfUse{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
var UseByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,f in FUEL, r in REGION}>= 0; 
var Use{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
var ProductionAnnual{y in YEAR, f in FUEL, r in REGION}>= 0; 
var UseAnnual{y in YEAR, f in FUEL, r in REGION}>= 0; 
 

# Costing Variables # 

 
var CapitalInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var DiscountedCapitalInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var SalvageValue{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var DiscountedSalvageValue{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var OperatingCost{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var DiscountedOperatingCost{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var AnnualVariableOperatingCost{y in YEAR,t in TECHNOLOGY, r in REGION}>= 0; 
var AnnualFixedOperatingCost{y in YEAR,t in TECHNOLOGY, r in REGION}>= 0; 
var VariableOperatingCost{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION}>= 0; 
var TotalDiscountedCost{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var ModelPeriodCostByRegion {r in REGION} >= 0; 
 

# Reserve Margin # 

 
var TotalCapacityInReserveMargin{y in YEAR, r in REGION}>= 0; 
var DemandNeedingReserveMargin{y in YEAR,l in TIMESLICE, r in REGION}>= 0; 
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# RE Gen Target # 

 
var TotalGenerationByRETechnologies{y in YEAR, r in REGION}; 
var TotalREProductionAnnual{y in YEAR, r in REGION}; 
var RETotalDemandOfTargetFuelAnnual{y in YEAR, r in REGION}; 
var TotalTechnologyModelPeriodActivity{t in TECHNOLOGY, r in REGION}; 
 

# Emissions # 

 
var AnnualTechnologyEmissionByMode{y in YEAR, t in TECHNOLOGY, e in EMISSION, m in 

MODE_OF_OPERATION, r in REGION}>= 0; 
var AnnualTechnologyEmission{y in YEAR, t in TECHNOLOGY, e in EMISSION, r in REGION}>= 0; 
var AnnualTechnologyEmissionPenaltyByEmission{y in YEAR, t in TECHNOLOGY, e in EMISSION, r in 

REGION}>= 0; 
var AnnualTechnologyEmissionsPenalty{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var DiscountedTechnologyEmissionsPenalty{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var AnnualEmissions{y in YEAR, e in EMISSION, r in REGION}>= 0; 
var EmissionsProduction{y in YEAR, t in TECHNOLOGY, e in EMISSION, m in 

MODE_OF_OPERATION, r in REGION}; 
var ModelPeriodEmissions{e in EMISSION, r in REGION}>= 0; 
 

# OBJECTIVE FUNCTION # 

 
minimize cost: sum{y in YEAR, t in TECHNOLOGY, r in REGION} TotalDiscountedCost[y,t,r]; 
 

# CONSTRAINTS# 

 
# Demand # 

 
s.t. EQ_SpecifiedDemand{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 

SpecifiedAnnualDemand[y,f,r]*SpecifiedDemandProfile[y,l,f,r]/ YearSplit[y,l]=RateOfDemand[y,l,f,r]; 
 

# Capacity Adequacy A # 

 
s.t. CAa1_TotalNewCapacity{y in YEAR, t in TECHNOLOGY, r in 

REGION}:AccumulatedNewCapacity[y,t,r] = sum{yy in YEAR: y-yy < OperationalLife[t,r] && y-
yy>=0} NewCapacity[yy,t,r]; 

s.t. CAa2_TotalAnnualCapacity{y in YEAR, t in TECHNOLOGY, r in REGION}: 
AccumulatedNewCapacity[y,t,r]+ ResidualCapacity[y,t,r] = TotalCapacityAnnual[y,t,r]; 

s.t. CAa3_TotalActivityOfEachTechnology{y in YEAR, t in TECHNOLOGY, l in TIMESLICE,r in 
REGION}: sum{m in MODE_OF_OPERATION} RateOfActivity[y,l,t,m,r] = 
RateOfTotalActivity[y,l,t,r]; 

s.t. CAa4_Constraint_Capacity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION: 
TechWithCapacityNeededToMeetPeakTS[t,r]<>0}: RateOfTotalActivity[y,l,t,r] <= 
TotalCapacityAnnual[y,t,r] * CapacityFactor[y,t,l,r]*CapacityToActivityUnit[t,r]; 

 
# Capacity Adequacy B # 

 
s.t. CAb1_PlannedMaintenance{y in YEAR, t in TECHNOLOGY, r in REGION}: sum{l in TIMESLICE} 

RateOfTotalActivity[y,l,t,r]*YearSplit[y,l] <= sum{l in TIMESLICE} 
(TotalCapacityAnnual[y,t,r]*CapacityFactor[y,t,l,r]*YearSplit[y,l])* 
AvailabilityFactor[y,t,r]*CapacityToActivityUnit[t,r]; 
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# Energy Balance A # 

 
s.t. EBa1_RateOfFuelProduction1{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in 

MODE_OF_OPERATION, r in REGION}:  RateOfActivity[y,l,t,m,r]*OutputActivityRatio[y,t,f,m,r]  = 
RateOfProductionByTechnologyByMode[y,l,t,m,f,r]; 

s.t. EBa2_RateOfFuelProduction2{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, r in 
REGION}: sum{m in MODE_OF_OPERATION} RateOfProductionByTechnologyByMode[y,l,t,m,f,r] 
= RateOfProductionByTechnology[y,l,t,f,r] ; 

s.t. EBa3_RateOfFuelProduction3{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}: sum{t in 
TECHNOLOGY} RateOfProductionByTechnology[y,l,t,f,r]  =  RateOfProduction[y,l,f,r]; 

s.t. EBa4_RateOfFuelUse1{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in 
MODE_OF_OPERATION, r in REGION}: RateOfActivity[y,l,t,m,r]*InputActivityRatio[y,t,f,m,r]  = 
RateOfUseByTechnologyByMode[y,l,t,m,f,r]; 

s.t. EBa5_RateOfFuelUse2{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, r in REGION}: 
sum{m in MODE_OF_OPERATION} RateOfUseByTechnologyByMode[y,l,t,m,f,r] = 
RateOfUseByTechnology[y,l,t,f,r]; 

s.t. EBa6_RateOfFuelUse3{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}: sum{t in 
TECHNOLOGY} RateOfUseByTechnology[y,l,t,f,r]  = RateOfUse[y,l,f,r]; 

s.t. EBa7_EnergyBalanceEachTS1{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 
RateOfProduction[y,l,f,r]*YearSplit[y,l] = Production[y,l,f,r]; 

s.t. EBa8_EnergyBalanceEachTS2{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 
RateOfUse[y,l,f,r]*YearSplit[y,l] = Use[y,l,f,r]; 

s.t. EBa9_EnergyBalanceEachTS3{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 
RateOfDemand[y,l,f,r]*YearSplit[y,l] = Demand[y,l,f,r]; 

s.t. EBa10_EnergyBalanceEachTS4{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 
Production[y,l,f,r] >= Demand[y,l,f,r] + Use[y,l,f,r]; 

 
# Energy Balance B # 

 
s.t. EBb1_EnergyBalanceEachYear1{y in YEAR, f in FUEL, r in REGION}: sum{l in TIMESLICE} 

Production[y,l,f,r] = ProductionAnnual[y,f,r]; 
s.t. EBb2_EnergyBalanceEachYear2{y in YEAR, f in FUEL, r in REGION}: sum{l in TIMESLICE} 

Use[y,l,f,r] = UseAnnual[y,f,r]; 
s.t. EBb3_EnergyBalanceEachYear3{y in YEAR, f in FUEL, r in REGION}: ProductionAnnual[y,f,r] >= 

UseAnnual[y,f,r] + AccumulatedAnnualDemand[y,f,r]; 
 

# Accounting Technology Production/Use# 

 
s.t. Acc1_FuelProductionByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 

REGION}: RateOfProductionByTechnology[y,l,t,f,r] * YearSplit[y,l] = ProductionByTechnology[y,l,t,f,r]; 
s.t. Acc2_FuelUseByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 

REGION}: RateOfUseByTechnology[y,l,t,f,r] * YearSplit[y,l] = UseByTechnology[y,l,t,f,r]; 
s.t. Acc3_AverageAnnualRateOfActivity{y in YEAR,t in TECHNOLOGY, m in 

MODE_OF_OPERATION, r in REGION}: sum{l in TIMESLICE} 
RateOfActivity[y,l,t,m,r]*YearSplit[y,l] = TotalAnnualTechnologyActivityByMode[y,t,m,r]; 

s.t. Acc4_ModelPeriodCostByRegion{r in REGION}:sum{y in YEAR, t in 
TECHNOLOGY}TotalDiscountedCost[y,t,r]=ModelPeriodCostByRegion[r]; 

 
# Capital Costs # 

 
s.t. CC1_UndiscountedCapitalInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}: 

CapitalCost[y,t,r] * NewCapacity[y,t,r] = CapitalInvestment[y,t,r]; 
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s.t. CC2_DiscountingCapitalInvestmenta{y in YEAR, t in TECHNOLOGY, r in REGION}: 
CapitalInvestment[y,t,r]/((1+DiscountRate[t,r])^(y-min{yy in YEAR} min(yy))) = 
DiscountedCapitalInvestment[y,t,r]; 

 
# Salvage Value # 

 
s.t. SV1_SalvageValueAtEndOfPeriod1{y in YEAR, t in TECHNOLOGY, r in REGION: (y + 

OperationalLife[t,r]-1) > (max{yy in YEAR} max(yy)) && DiscountRate[t,r]>0}: SalvageValue[y,t,r] = 
CapitalCost[y,t,r]*NewCapacity[y,t,r]*(1-(((1+DiscountRate[t,r])^(max{yy in YEAR} max(yy) - y+1)-
1)/((1+DiscountRate[t,r])^OperationalLife[t,r]-1))); 

s.t. SV2_SalvageValueAtEndOfPeriod2{y in YEAR, t in TECHNOLOGY, r in REGION: (y + 
OperationalLife[t,r]-1) > (max{yy in YEAR} max(yy)) && DiscountRate[t,r]=0}: SalvageValue[y,t,r] = 
CapitalCost[y,t,r]*NewCapacity[y,t,r]*(1-(max{yy in YEAR} max(yy) - y+1)/OperationalLife[t,r]); 

s.t. SV3_SalvageValueAtEndOfPeriod3{y in YEAR, t in TECHNOLOGY, r in REGION: (y + 
OperationalLife[t,r]-1) <= (max{yy in YEAR} max(yy))}: SalvageValue[y,t,r] = 0; 

s.t. SV4_SalvageValueDiscountedToStartYear{y in YEAR, t in TECHNOLOGY, r in REGION}: 
DiscountedSalvageValue[y,t,r] = SalvageValue[y,t,r]/((1+DiscountRate[t,r])^(1+max{yy in YEAR} 
max(yy)-min{yy in YEAR} min(yy))); 

 
# Operating Costs # 

 
s.t. OC1_OperatingCostsVariable{y in YEAR,l in TIMESLICE, t in TECHNOLOGY, r in REGION}: 

sum{m in MODE_OF_OPERATION} 
TotalAnnualTechnologyActivityByMode[y,t,m,r]*VariableCost[y,t,m,r] = 
AnnualVariableOperatingCost[y,t,r]; 

s.t. OC2_OperatingCostsFixedAnnual{y in YEAR,t in TECHNOLOGY, r in REGION}: 
TotalCapacityAnnual[y,t,r]*FixedCost[y,t,r] = AnnualFixedOperatingCost[y,t,r]; 

s.t. OC3_OperatingCostsTotalAnnual{y in YEAR,t in TECHNOLOGY,r in REGION}: 
AnnualFixedOperatingCost[y,t,r]+AnnualVariableOperatingCost[y,t,r] = OperatingCost[y,t,r]; 

s.t. OC4_DiscountedOperatingCostsTotalAnnual{y in YEAR, t in TECHNOLOGY, r in REGION}: 
OperatingCost[y,t,r]/((1+DiscountRate[t,r])^(y-min{yy in YEAR} min(yy)+0.5)) = 
DiscountedOperatingCost[y,t,r]; 

 
# Total Discounted Costs # 

 
s.t. TDC1_TotalDiscountedCostByTechnology{y in YEAR, t in TECHNOLOGY, r in REGION}: 

DiscountedOperatingCost[y,t,r]+DiscountedCapitalInvestment[y,t,r]+DiscountedTechnologyEmissionsP
enalty[y,t,r]-DiscountedSalvageValue[y,t,r] = TotalDiscountedCost[y,t,r]; 

 
# Total Capacity Constraints # 

 
s.t. TCC1_TotalAnnualMaxCapacityConstraint{y in YEAR, t in TECHNOLOGY,r in REGION: 

TotalAnnualMaxCapacity[y,t,r]<9999 }: TotalCapacityAnnual[y,t,r] <= TotalAnnualMaxCapacity[y,t,r]; 
s.t. TCC2_TotalAnnualMinCapacityConstraint{y in YEAR, t in TECHNOLOGY,r in REGION: 

TotalAnnualMinCapacity[y,t,r]>0}: TotalCapacityAnnual[y,t,r] >= TotalAnnualMinCapacity[y,t,r]; 
 

# New Capacity Constraints # 

 
s.t. NCC1_TotalAnnualMaxNewCapacityConstraint{y in YEAR, t in TECHNOLOGY, r in REGION: 

TotalAnnualMaxCapacityInvestment[y,t,r]<9999}: NewCapacity[y,t,r] <= 
TotalAnnualMaxCapacityInvestment[y,t,r]; 

s.t. NCC2_TotalAnnualMinNewCapacityConstraint{y in YEAR, t in TECHNOLOGY, r in REGION: 
TotalAnnualMinCapacityInvestment[y,t,r]>0}: NewCapacity[y,t,r] >= 
TotalAnnualMinCapacityInvestment[y,t,r]; 
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# Annual Activity Constraints # 

 
s.t. AAC1_TotalAnnualTechnologyActivity{y in YEAR, t in TECHNOLOGY, r in REGION}: sum{l in 

TIMESLICE} RateOfTotalActivity[y,l,t,r]*YearSplit[y,l] = TotalTechnologyAnnualActivity[y,t,r]; 
s.t. AAC2_TotalAnnualTechnologyActivityUpperLimit{y in YEAR, t in TECHNOLOGY, r in 

REGION:TotalTechnologyAnnualActivityUpperLimit[y,t,r]<9999}: 
TotalTechnologyAnnualActivity[y,t,r] <= TotalTechnologyAnnualActivityUpperLimit[y,t,r] ; 

s.t. AAC3_TotalAnnualTechnologyActivityLowerLimit{y in YEAR, t in TECHNOLOGY, r in REGION: 
TotalTechnologyAnnualActivityLowerLimit[y,t,r]>0}: TotalTechnologyAnnualActivity[y,t,r] >= 
TotalTechnologyAnnualActivityLowerLimit[y,t,r] ; 

 
# Total Activity Constraints # 

 
s.t. TAC1_TotalModelHorizonTechnologyActivity{t in TECHNOLOGY, r in REGION}: sum{y in YEAR} 

TotalTechnologyAnnualActivity[y,t,r] = TotalTechnologyModelPeriodActivity[t,r]; 
s.t. TAC2_TotalModelHorizonTechnologyActivityUpperLimit{y in YEAR, t in TECHNOLOGY, r in 

REGION:TotalTechnologyModelPeriodActivityUpperLimit[t,r]<9999}: 
TotalTechnologyModelPeriodActivity[t,r] <= TotalTechnologyModelPeriodActivityUpperLimit[t,r] ; 

s.t. TAC3_TotalModelHorizonTechnologyActivityLowerLimit{y in YEAR, t in TECHNOLOGY, r in 
REGION: TotalTechnologyModelPeriodActivityLowerLimit[t,r]>0}: 
TotalTechnologyModelPeriodActivity[t,r] >= TotalTechnologyModelPeriodActivityLowerLimit[t,r] ; 

 
# Reserve Margin Constraint  # 

 
s.t. RM1_ReserveMargin_TechologiesIncluded_In_Activity_Units{y in YEAR, l in TIMESLICE, r in 

REGION}: sum {t in TECHNOLOGY} TotalCapacityAnnual[y,t,r] 
*ReserveMarginTagTechnology[y,t,r] * CapacityToActivityUnit[t,r] = TotalCapacityInReserveMargin[y,r]; 

s.t. RM2_ReserveMargin_FuelsIncluded{y in YEAR, l in TIMESLICE, r in REGION}: sum {f in FUEL} 
RateOfProduction[y,l,f,r] * ReserveMarginTagFuel[y,f,r] = DemandNeedingReserveMargin[y,l,r]; 

s.t. RM3_ReserveMargin_Constraint{y in YEAR, l in TIMESLICE, r in REGION}: 
DemandNeedingReserveMargin[y,l,r] * ReserveMargin[y,r]<= TotalCapacityInReserveMargin[y,r]; 

 
# RE Production Target # 

 
s.t. RE1_FuelProductionByTechnologyAnnual{y in YEAR, t in TECHNOLOGY, f in FUEL, r in 

REGION}: sum{l in TIMESLICE} ProductionByTechnology[y,l,t,f,r] = 
ProductionByTechnologyAnnual[y,t,f,r]; 

s.t. RE2_TechIncluded{y in YEAR, r in REGION}: sum{t in TECHNOLOGY, f in FUEL} 
ProductionByTechnologyAnnual[y,t,f,r]*RETagTechnology[y,t,r] = TotalREProductionAnnual[y,r]; 

s.t. RE3_FuelIncluded{y in YEAR, r in REGION}: sum{l in TIMESLICE, f in FUEL} 
RateOfDemand[y,l,f,r]*YearSplit[y,l]*RETagFuel[y,f,r] = RETotalDemandOfTargetFuelAnnual[y,r];  

s.t. RE4_EnergyConstraint{y in YEAR, r in 
REGION}:REMinProductionTarget[y,r]*RETotalDemandOfTargetFuelAnnual[y,r] <= 
TotalREProductionAnnual[y,r]; 

s.t. RE5_FuelUseByTechnologyAnnual{y in YEAR, t in TECHNOLOGY, f in FUEL, r in REGION}: sum{l 
in TIMESLICE} RateOfUseByTechnology[y,l,t,f,r]*YearSplit[y,l] = UseByTechnologyAnnual[y,t,f,r]; 

 
# Emissions Accounting # 

 
s.t. E1_AnnualEmissionProductionByMode{y in YEAR, t in TECHNOLOGY, e in EMISSION, m in 

MODE_OF_OPERATION, r in REGION:EmissionActivityRatio[y,t,e,m,r]<>0}: 
EmissionActivityRatio[y,t,e,m,r]*TotalAnnualTechnologyActivityByMode[y,t,m,r]=AnnualTechnologyEm
issionByMode[y,t,e,m,r]; 
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s.t. E2_AnnualEmissionProduction{y in YEAR, t in TECHNOLOGY, e in EMISSION, r in REGION}: 
sum{m in MODE_OF_OPERATION} AnnualTechnologyEmissionByMode[y,t,e,m,r] = 
AnnualTechnologyEmission[y,t,e,r]; 

s.t. E3_EmissionsPenaltyByTechAndEmission{y in YEAR, t in TECHNOLOGY, e in EMISSION, r in 
REGION}: AnnualTechnologyEmission[y,t,e,r]*EmissionsPenalty[y,e,r] = 
AnnualTechnologyEmissionPenaltyByEmission[y,t,e,r]; 

s.t. E4_EmissionsPenaltyByTechnology{y in YEAR, t in TECHNOLOGY, r in REGION}: sum{e in 
EMISSION} AnnualTechnologyEmissionPenaltyByEmission[y,t,e,r] = 
AnnualTechnologyEmissionsPenalty[y,t,r]; 

s.t. E5_DiscountedEmissionsPenaltyByTechnology{y in YEAR, t in TECHNOLOGY, r in REGION}: 
AnnualTechnologyEmissionsPenalty[y,t,r]/((1+DiscountRate[t,r])^(y-min{yy in YEAR} min(yy)+0.5)) = 
DiscountedTechnologyEmissionsPenalty[y,t,r]; 

s.t. E6_EmissionsAccounting1{y in YEAR, e in EMISSION, r in REGION}: sum{t in TECHNOLOGY} 
AnnualTechnologyEmission[y,t,e,r] = AnnualEmissions[y,e,r]; 

s.t. E7_EmissionsAccounting2{e in EMISSION, r in REGION}: sum{y in YEAR} AnnualEmissions[y,e,r] = 
ModelPeriodEmissions[e,r]- ModelPeriodExogenousEmission[e,r]; 

s.t. E8_AnnualEmissionsLimit{y in YEAR, e in EMISSION, r in REGION}: 
AnnualEmissions[y,e,r]+AnnualExogenousEmission[y,e,r] <= AnnualEmissionLimit[y,e,r]; 

s.t. E9_ModelPeriodEmissionsLimit{e in EMISSION, r in REGION}: ModelPeriodEmissions[e,r] <= 
ModelPeriodEmissionLimit[e,r] ; 

 

 
solve; 
end; 
 

 
 

Annex C.2 Prioritising Demand Types, Demand Shifting and Storage 

The code below considers the integration of all code additions at once. To 
increase readability and for consistency with the main document, the code 
modifications are arranged by blocks of functionality as opposed to parameters, 
variables and constraints. When adding these blocks to the code of OSeMOSYS 
as described under Annex C.1 Variability in Electricity Generation, it is 
recommended to group all parameters and model variables, followed by the 
objective function and the constraints. Parameters and variables mentioned 
under both (as indicated by the sub-heading), Prioritising Demand Types and 
Demand Shifting, only need to be added once.  
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Annex C.2.1 Prioritising Demand Types 

# PARAMETERS # 

 
# Common to both, Prioritising Demand Types and Demand Shifting # 

 
param SpecifiedDailyFlexibleDemand{y in YEAR, fdt in FLEXIBLEDEMANDTYPE, ls in SEASON, ld in 

DAYTYPE, f in FUEL, r in REGION};  
param SpecifiedDailyFlexibleDemandProfile{y in YEAR, fdt in FLEXIBLEDEMANDTYPE, ls in SEASON, 

ld in DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}; 
param DiscountRateDemand>=0; 
 

# Specific to Prioritising Demand Types # 

 
param MaxShareUnmetDemand{y in YEAR, ftd in FLEXIBLEDEMANDTYPE, f in FUEL, r in 

REGION}>=0; 
param PriceOfUnmetDemand{y in YEAR, ftd in FLEXIBLEDEMANDTYPE, f in FUEL, r in 

REGION}>=0; 
 

# MODEL VARIABLES # 

 
# Common to both, Prioritising Demand Types and Demand Shifting # 

 
var RateOfDailyFlexibleDemand{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}>= 0; 
# Specific to Prioritising Demand Types # 

 
var RateOfUnmetDemand{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}>=0; 
var UnmetDemand{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, l in TIMESLICE, f in FUEL, r in 

REGION}>=0; 
var UnmetDemandAnnual{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, f in FUEL, r in REGION}>=0; 
var CostOfUnmetDemand{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, r in REGION}>=0; 
var DiscountedCostOfUnmetDemand{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, r in REGION}>=0; 
 

# CONSTRAINTS # 

 
s.t. D3_SpecifiedFlexibleDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: 
SpecifiedDailyFlexibleDemand[y,fdt,ls,ld,f,r]*SpecifiedDailyFlexibleDemandProfile[y,fdt,ls,ld,lh,f,r] / 
DaySplit[y,lh] = RateOfDailyFlexibleDemand[fdt,y,ls,ld,lh,f,r]; 

s.t. UD1_UpperLimit{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh 
in DAILYTIMEBRACKET, f in FUEL, r in REGION}: 
RateOfUnmetDemand[fdt,y,ls,ld,lh,f,r]<=MaxShareUnmetDemand[y,fdt,f,r]*RateOfDailyFlexibleDeman
d[fdt,y,ls,ld,lh,f,r]; 

s.t. UD2_UnmetDemandSeasonal{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, l in TIMESLICE, f in 
FUEL, r in REGION}: sum{ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET} 
(RateOfUnmetDemand[fdt,y,ls,ld,lh,f,r]*Conversionls[ls,l]*Conversionld[ld,l]*Conversionlh[lh,l])*YearSpl
it[y,l] = UnmetDemand[fdt,y,l,f,r]; 

s.t. UD3_UnmetDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, f in FUEL, r in REGION}: 
sum{l in TIMESLICE} UnmetDemand[fdt,y,l,f,r] = UnmetDemandAnnual[fdt,y,f,r]; 
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s.t. UD4_CostOfUnmetDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, r in REGION}: sum{f in 
FUEL} UnmetDemandAnnual[fdt,y,f,r]*PriceOfUnmetDemand[y,fdt,f,r] = 
CostOfUnmetDemand[fdt,y,r]; 

s.t. UD5_DiscountedCostOfUnmetDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, r in 
REGION}: CostOfUnmetDemand[fdt,y,r]/((1+DiscountRateDemand)^(y-min{yy in YEAR} 
min(yy)+0.5)) = DiscountedCostOfUnmetDemand[fdt,y,r]; 

 
 

Annex C.2.2 Demand Shifting 

# PARAMETERS # 

 
# Common to both, Prioritising Demand Types and Demand Shifting # 

 
param SpecifiedDailyFlexibleDemand{y in YEAR, fdt in FLEXIBLEDEMANDTYPE, ls in SEASON, ld in 

DAYTYPE, f in FUEL, r in REGION};  
param SpecifiedDailyFlexibleDemandProfile{y in YEAR, fdt in FLEXIBLEDEMANDTYPE, ls in SEASON, 

ld in DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}; 
param DiscountRateDemand>=0; 
 

# Specific to Demand Shifting # 

 
 
param MaxShareShiftedDemand{y in YEAR, fdt in FLEXIBLEDEMANDTYPE, f in FUEL, r in 

REGION}; 
param MaxDelay{fdt in FLEXIBLEDEMANDTYPE}>=0; 
param MaxAdvance{fdt in FLEXIBLEDEMANDTYPE}>=0; 
param CostFactorShiftedDemand{fdt in FLEXIBLEDEMANDTYPE}; 
 

# MODEL VARIABLES # 

 
# Common to both, Prioritising Demand Types and Demand Shifting # 

 
var RateOfDailyFlexibleDemand{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}>= 0; 
# Specific to Demand Shifting # 

 
var RateOfNetCharge{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh 

in DAILYTIMEBRACKET, f in FUEL, r in REGION}; 
var RateOfNetChargeDelayed{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}; 
var RateOfNetChargeAdvanced{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}; 
var SumOfDailyNetChargeDelayed{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, f in FUEL, r in REGION}>=0; 
var SumOfDailyNetChargeAdvanced{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, f in FUEL, r in REGION}>=0; 
var CostOfShiftedDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, r in REGION}; 
var DiscountedCostOfShiftedDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, r in REGION}; 
var RateOfChargeDelayed{ftd in FLEXIBLEDEMANDTYPE, y in YEAR,ls in SEASON, ld in DAYTYPE, 

lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}>=0; 
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var RateOfDischargeDelayed{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}>=0; 

var RateOfChargeAdvanced{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}>=0; 

var RateOfDischargeAdvanced{ftd in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}>=0; 

 
# CONSTRAINTS # 

 
s.t. D3_SpecifiedFlexibleDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 

DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: 
SpecifiedDailyFlexibleDemand[y,fdt,ls,ld,f,r]*SpecifiedDailyFlexibleDemandProfile[y,fdt,ls,ld,lh,f,r] / 
DaySplit[y,lh] = RateOfDailyFlexibleDemand[fdt,y,ls,ld,lh,f,r]; 

s.t. DS1_RateOfNetCharge{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: 
RateOfNetChargeDelayed[fdt,y,ls,ld,lh,f,r]+RateOfNetChargeAdvanced[fdt,y,ls,ld,lh,f,r] = 
RateOfNetCharge[fdt,y,ls,ld,lh,f,r]; 

s.t. DS2_RateOfNetChargeDelayed{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: 
RateOfChargeDelayed[fdt,y,ls,ld,lh,f,r]-RateOfDischargeDelayed[fdt,y,ls,ld,lh,f,r] = 
RateOfNetChargeDelayed[fdt,y,ls,ld,lh,f,r]; 

s.t. DS3_RateOfNetChargeAdvanced{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: 
RateOfChargeAdvanced[fdt,y,ls,ld,lh,f,r]-RateOfDischargeAdvanced[fdt,y,ls,ld,lh,f,r] = 
RateOfNetChargeAdvanced[fdt,y,ls,ld,lh,f,r]; 

s.t. DS4_MaxShareConstraint{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: 
RateOfChargeDelayed[fdt,y,ls,ld,lh,f,r]+RateOfChargeAdvanced[fdt,y,ls,ld,lh,f,r] <= 
MaxShareShiftedDemand[y,fdt,f,r]*RateOfDailyFlexibleDemand[fdt,y,ls,ld,lh,f,r]; 

s.t. DS5_DelayedLoadsDailyBalance{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, f in FUEL, r in REGION}: sum{lh in DAILYTIMEBRACKET} 
RateOfChargeDelayed[fdt,y,ls,ld,lh,f,r]*DaySplit[y,lh] <= sum{lh in DAILYTIMEBRACKET} 
RateOfDischargeDelayed[fdt,y,ls,ld,lh,f,r]*DaySplit[y,lh]; 

s.t. DS6_DelayedLoadsStorageLevelGreaterZero{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in 
SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: sum{lhlh in 
DAILYTIMEBRACKET: lh-lhlh>=0} RateOfChargeDelayed[fdt,y,ls,ld,lhlh,f,r]*DaySplit[y,lhlh] >= 
sum{lhlh in DAILYTIMEBRACKET: lh-lhlh>=0} 
RateOfDischargeDelayed[fdt,y,ls,ld,lhlh,f,r]*DaySplit[y,lhlh]; 

s.t. DS7_DelayUpperLimit{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION: lh<=max{lhlh in 
DAILYTIMEBRACKET} max(lhlh)-MaxDelay[fdt]}: sum{lhlh in DAILYTIMEBRACKET: lhlh<=lh} 
RateOfChargeDelayed[fdt,y,ls,ld,lhlh,f,r]*DaySplit[y,lhlh] <= sum{lhlh in DAILYTIMEBRACKET: 
lhlh<=lh+MaxDelay[fdt]} RateOfDischargeDelayed[fdt,y,ls,ld,lhlh,f,r]*DaySplit[y,lhlh]; 

s.t. DS8_AdvancedLoadsDailyBalance{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, f in FUEL, r in REGION}: sum{lh in DAILYTIMEBRACKET} 
RateOfChargeAdvanced[fdt,y,ls,ld,lh,f,r]*DaySplit[y,lh] <= sum{lh in DAILYTIMEBRACKET} 
RateOfDischargeAdvanced[fdt,y,ls,ld,lh,f,r]*DaySplit[y,lh]; 

s.t. DS9_AdvancedLoadsStorageLevelBelowMaximum{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in 
SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: sum{lhlh in 
DAILYTIMEBRACKET: lh-lhlh>=0} RateOfChargeAdvanced[fdt,y,ls,ld,lhlh,f,r]*DaySplit[y,lhlh] <= 
sum{lhlh in DAILYTIMEBRACKET: lh-lhlh>=0} 
RateOfDischargeAdvanced[fdt,y,ls,ld,lhlh,f,r]*DaySplit[y,lhlh]; 

s.t. DS10_AdvanceLowerLimit{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION: lh<=max{lhlh in 
DAILYTIMEBRACKET} max(lhlh)-MaxAdvance[fdt]}: sum{lhlh in DAILYTIMEBRACKET: 
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lhlh<=lh+MaxAdvance[fdt]} RateOfChargeAdvanced[fdt,y,ls,ld,lhlh,f,r]*DaySplit[y,lhlh] >= sum{lhlh in 
DAILYTIMEBRACKET: lhlh<=lh} RateOfDischargeAdvanced[fdt,y,ls,ld,lhlh,f,r]*DaySplit[y,lhlh]; 

s.t. DS11_MinimiseDelay{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in DAYTYPE, 
f in FUEL, r in REGION}: sum{lhlh in DAILYTIMEBRACKET} DaySplit[y,lhlh]*365*24*sum{lh in 
DAILYTIMEBRACKET: lhlh-lh>=0}(RateOfChargeDelayed[fdt,y,ls,ld,lh,f,r]-
RateOfDischargeDelayed[fdt,y,ls,ld,lh,f,r])*DaySplit[y,lh]*365*24 = 
SumOfDailyNetChargeDelayed[fdt,y,ls,ld,f,r]; 

s.t. DS12_MinimiseAdvance{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, f in FUEL, r in REGION}: sum{lhlh in DAILYTIMEBRACKET} 
DaySplit[y,lhlh]*365*24*sum{lh in DAILYTIMEBRACKET: lhlh-
lh>=0}(RateOfDischargeAdvanced[fdt,y,ls,ld,lh,f,r]-
RateOfChargeAdvanced[fdt,y,ls,ld,lh,f,r])*DaySplit[y,lh]*365*24 = 
SumOfDailyNetChargeAdvanced[fdt,y,ls,ld,f,r]; 

s.t. DS13_CostOfShiftedDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, r in REGION}: 
CostFactorShiftedDemand[fdt] * sum{l in TIMESLICE, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, f in 
FUEL}((SumOfDailyNetChargeDelayed[fdt,y,ls,ld,f,r]+SumOfDailyNetChargeAdvanced[fdt,y,ls,ld,f,r])*
DaysInDayType[y,ls,ld])*YearSplit[y,l]*Conversionls[ls,l]*Conversionld[ld,l]*Conversionlh[lh,l]*52 = 
CostOfShiftedDemand[fdt,y,r]; 

s.t. DS14_DiscountedCostOfShiftedDemand{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, r in 
REGION}: CostOfShiftedDemand[fdt,y,r]/((1+DiscountRateDemand)^(y-min{yy in YEAR} 
min(yy)+0.5)) = DiscountedCostOfShiftedDemand[fdt,y,r]; 

 
 

Annex C.2.3 Storage 

# PARAMETERS # 

 
param TechnologyToStorage{t in TECHNOLOGY, m in MODE_OF_OPERATION, s in STORAGE, r in 

REGION}; 
param TechnologyFromStorage{t in TECHNOLOGY, m in MODE_OF_OPERATION, s in STORAGE, r 

in REGION}; 
param StorageLevelStart{s in STORAGE, r in REGION}; 
param StorageMaxChargeRate{s in STORAGE, r in REGION}; 
param StorageMaxDischargeRate{s in STORAGE, r in REGION}; 
param MinStorageCharge{s in STORAGE, y in YEAR, r in REGION}; 
param OperationalLifeStorage{s in STORAGE, r in REGION}; 
param CapitalCostStorage{s in STORAGE, y in YEAR, r in REGION}; 
param DiscountRateStorage{s in STORAGE, r in REGION}; 
param ResidualStorageCapacity{s in STORAGE, y in YEAR, r in REGION}; 
 

# MODEL VARIABLES # 

 
var RateOfStorageCharge{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}; 
var RateOfStorageDischarge{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}; 
var NetChargeWithinYear{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}; 
var NetChargeWithinDay{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}; 
var StorageLevelYearStart{s in STORAGE, y in YEAR, r in REGION} >=0; 
var StorageLevelYearFinish{s in STORAGE, y in YEAR, r in REGION} >=0; 
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var StorageLevelSeasonStart{s in STORAGE, y in YEAR, ls in SEASON, r in REGION} >=0; 
var StorageLevelDayTypeStart{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, r in 

REGION} >=0; 
var StorageLevelDayTypeFinish{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, r in 

REGION} >=0; 
var StorageLowerLimit{s in STORAGE, y in YEAR, r in REGION}>=0; 
var StorageUpperLimit{s in STORAGE, y in YEAR, r in REGION} >=0; 
var AccumulatedNewStorageCapacity{s in STORAGE, y in YEAR, r in REGION} >=0; 
var NewStorageCapacity{s in STORAGE, y in YEAR, r in REGION} >=0; 
var CapitalInvestmentStorage{s in STORAGE, y in YEAR, r in REGION} >=0; 
var DiscountedCapitalInvestmentStorage{s in STORAGE, y in YEAR, r in REGION} >=0; 
var SalvageValueStorage{s in STORAGE, y in YEAR, r in REGION} >=0; 
var DiscountedSalvageValueStorage{s in STORAGE, y in YEAR, r in REGION} >=0; 
var TotalDiscountedStorageCost{s in STORAGE, y in YEAR, r in REGION} >=0; 
 

# CONSTRAINTS # 

 
# Storage Equations # 

 
s.t. S1_RateOfStorageCharge{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}: sum{t in TECHNOLOGY, m in 
MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[t,m,s,r]>0} 
RateOfActivity[y,l,t,m,r] * TechnologyToStorage[t,m,s,r] * Conversionls[ls,l] * Conversionld[ld,l] * 
Conversionlh[lh,l] = RateOfStorageCharge[s,y,ls,ld,lh,r]; 

s.t. S2_RateOfStorageDischarge{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: sum{t in TECHNOLOGY, m in 
MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[t,m,s,r]>0} 
RateOfActivity[y,l,t,m,r] * TechnologyFromStorage[t,m,s,r] * Conversionls[ls,l] * Conversionld[ld,l] * 
Conversionlh[lh,l] = RateOfStorageDischarge[s,y,ls,ld,lh,r]; 

s.t. S3_NetChargeWithinYear{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: sum{l in 
TIMESLICE:Conversionls[ls,l]>0&&Conversionld[ld,l]>0&&Conversionlh[lh,l]>0}  
(RateOfStorageCharge[s,y,ls,ld,lh,r] - RateOfStorageDischarge[s,y,ls,ld,lh,r]) * YearSplit[y,l] * 
Conversionls[ls,l] * Conversionld[ld,l] * Conversionlh[lh,l] = NetChargeWithinYear[s,y,ls,ld,lh,r]; 

s.t. S4_NetChargeWithinDay{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: (RateOfStorageCharge[s,y,ls,ld,lh,r] - 
RateOfStorageDischarge[s,y,ls,ld,lh,r]) * DaySplit[y,lh] = NetChargeWithinDay[s,y,ls,ld,lh,r]; 

s.t. S5_and_S6_StorageLevelYearStart{s in STORAGE, y in YEAR, r in REGION}: 
 if y = min{yy in YEAR} min(yy) then StorageLevelStart[s,r]  
else StorageLevelYearStart[s,y-1,r] + sum{ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET} NetChargeWithinYear[s,y-1,ls,ld,lh,r] 
= StorageLevelYearStart[s,y,r]; 

s.t. S7_and_S8_StorageLevelYearFinish{s in STORAGE, y in YEAR, r in REGION}:   
if y < max{yy in YEAR} max(yy) then StorageLevelYearStart[s,y+1,r] 
else StorageLevelYearStart[s,y,r] + sum{ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET} NetChargeWithinYear[s,y,ls,ld,lh,r]  
= StorageLevelYearFinish[s,y,r];  

s.t. S9_and_S10_StorageLevelSeasonStart{s in STORAGE, y in YEAR, ls in SEASON, r in REGION}: 
if ls = min{lsls in SEASON} min(lsls) then StorageLevelYearStart[s,y,r]  
else StorageLevelSeasonStart[s,y,ls-1,r] + sum{ld in DAYTYPE, lh in DAILYTIMEBRACKET} 
NetChargeWithinYear[s,y,ls-1,ld,lh,r]  
= StorageLevelSeasonStart[s,y,ls,r]; 

s.t. S11_and_S12_StorageLevelDayTypeStart{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, r 
in REGION}:  
if ld = min{ldld in DAYTYPE} min(ldld) then StorageLevelSeasonStart[s,y,ls,r]  
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else StorageLevelDayTypeStart[s,y,ls,ld-1,r] + sum{lh in DAILYTIMEBRACKET} 
NetChargeWithinDay[s,y,ls,ld-1,lh,r] * DaysInDayType[y,ls,ld-1] 
= StorageLevelDayTypeStart[s,y,ls,ld,r]; 

s.t. S13_and_S14_and_S15_StorageLevelDayTypeFinish{s in STORAGE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, r in REGION}: 
if ls = max{lsls in SEASON} max(lsls) && ld = max{ldld in DAYTYPE} max(ldld) then 
StorageLevelYearFinish[s,y,r]  
else if ld = max{ldld in DAYTYPE} max(ldld) then StorageLevelSeasonStart[s,y,ls+1,r] 
else StorageLevelDayTypeFinish[s,y,ls,ld+1,r] - sum{lh in DAILYTIMEBRACKET} 
NetChargeWithinDay[s,y,ls,ld+1,lh,r] * DaysInDayType[y,ls,ld+1] 
= StorageLevelDayTypeFinish[s,y,ls,ld,r]; 

 
# Storage Constraints # 

 
s.t. SC1_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFirstWeek Constraint{s in 

STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: 0 <= (StorageLevelDayTypeStart[s,y,ls,ld,r]+sum{lhlh in DAILYTIMEBRACKET:lh-
lhlh>0} NetChargeWithinDay[s,y,ls,ld,lhlh,r])-StorageLowerLimit[s,y,r]; 

s.t. SC1_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFirstWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: (StorageLevelDayTypeStart[s,y,ls,ld,r]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} 
NetChargeWithinDay[s,y,ls,ld,lhlh,r])-StorageUpperLimit[s,y,r] <= 0;  

s.t. SC2_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: 0 <= if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeStart[s,y,ls,ld,r]-
sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} NetChargeWithinDay[s,y,ls,ld-1,lhlh,r])-
StorageLowerLimit[s,y,r]; 

s.t. SC2_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeStart[s,y,ls,ld,r]-
sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} NetChargeWithinDay[s,y,ls,ld-1,lhlh,r])-
StorageUpperLimit[s,y,r] <= 0; 

s.t. SC3_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}:  0 <= (StorageLevelDayTypeFinish[s,y,ls,ld,r] - sum{lhlh in DAILYTIMEBRACKET:lh-
lhlh<0} NetChargeWithinDay[s,y,ls,ld,lhlh,r])-StorageLowerLimit[s,y,r];  

s.t. SC3_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}:  (StorageLevelDayTypeFinish[s,y,ls,ld,r] - sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} 
NetChargeWithinDay[s,y,ls,ld,lhlh,r])-StorageUpperLimit[s,y,r] <= 0; 

s.t. SC4_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInLastWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: 0 <= if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeFinish[s,y,ls,ld-
1,r]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} NetChargeWithinDay[s,y,ls,ld,lhlh,r])-
StorageLowerLimit[s,y,r]; 

s.t. SC4_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInLastWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeFinish[s,y,ls,ld-
1,r]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} NetChargeWithinDay[s,y,ls,ld,lhlh,r])-
StorageUpperLimit[s,y,r] <= 0; 

s.t. SC5_MaxChargeConstraint{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: RateOfStorageCharge[s,y,ls,ld,lh,r] <= 
StorageMaxChargeRate[s,r]; 
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s.t. SC6_MaxDischargeConstraint{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: RateOfStorageDischarge[s,y,ls,ld,lh,r] <= 
StorageMaxDischargeRate[s,r]; 

 
# Storage Investments # 

 
s.t. SI1_StorageUpperLimit{s in STORAGE, y in YEAR, r in REGION}: 

AccumulatedNewStorageCapacity[s,y,r]+ResidualStorageCapacity[s,y,r] = StorageUpperLimit[s,y,r]; 
s.t. SI2_StorageLowerLimit{s in STORAGE, y in YEAR, r in REGION}: 

MinStorageCharge[s,y,r]*StorageUpperLimit[s,y,r] = StorageLowerLimit[s,y,r]; 
s.t. SI3_TotalNewStorage{s in STORAGE, y in YEAR, r in REGION}: sum{yy in YEAR: y-yy < 

OperationalLifeStorage[s,r] && y-yy>=0} 
NewStorageCapacity[s,yy,r]=AccumulatedNewStorageCapacity[s,y,r]; 

s.t. SI4_UndiscountedCapitalInvestmentStorage{s in STORAGE, y in YEAR, r in REGION}: 
CapitalCostStorage[s,y,r] * NewStorageCapacity[s,y,r] = CapitalInvestmentStorage[s,y,r]; 

s.t. SI5_DiscountingCapitalInvestmentStorage{s in STORAGE, y in YEAR, r in REGION}: 
CapitalInvestmentStorage[s,y,r]/((1+DiscountRateStorage[s,r])^(y-min{yy in YEAR} min(yy))) = 
DiscountedCapitalInvestmentStorage[s,y,r]; 

s.t. SI6_SalvageValueStorageAtEndOfPeriod1{s in STORAGE, y in YEAR, r in REGION: 
(y+OperationalLifeStorage[s,r]-1) <= (max{yy in YEAR} max(yy))}: 0 = SalvageValueStorage[s,y,r]; 

s.t. SI7_SalvageValueStorageAtEndOfPeriod2{s in STORAGE, y in YEAR, r in REGION: 
(y+OperationalLifeStorage[s,r]-1) > (max{yy in YEAR} max(yy)) && DiscountRate[s,r]=0}: 
CapitalInvestmentStorage[s,y,r]*(1-(max{yy in YEAR} max(yy) - y+1)/OperationalLifeStorage[s,r]) = 
SalvageValueStorage[s,y,r]; 

s.t. SI8_SalvageValueStorageAtEndOfPeriod3{s in STORAGE, y in YEAR, r in REGION: 
(y+OperationalLifeStorage[s,r]-1) > (max{yy in YEAR} max(yy)) && DiscountRateStorage[s,r]>0}: 
CapitalInvestmentStorage[s,y,r]*(1-(((1+DiscountRateStorage[s,r])^(max{yy in YEAR} max(yy) - y+1)-
1)/((1+DiscountRateStorage[s,r])^OperationalLifeStorage[s,r]-1))) = SalvageValueStorage[s,y,r]; 

s.t. SI9_SalvageValueStorageDiscountedToStartYear{s in STORAGE, y in YEAR, r in REGION}: 
SalvageValueStorage[s,y,r]/((1+DiscountRateStorage[s,r])^(max{yy in YEAR} max(yy)-min{yy in YEAR} 
min(yy)+1)) = DiscountedSalvageValueStorage[s,y,r]; 

s.t. SI10_TotalDiscountedCostByStorage{s in STORAGE, y in YEAR, r in REGION}: 
DiscountedCapitalInvestmentStorage[s,y,r]-DiscountedSalvageValueStorage[s,y,r] = 
TotalDiscountedStorageCost[s,y,r]; 

 
 

Annex C.2.4 Integration into OSeMOSYS 

This section contains required modifications of the core code, as described in 
‘Part A, Chapter 2.3.6: Bringing It All Together’: 
 

# PARAMETERS # 

 

param SpecifiedAnnualStandardDemand{y in YEAR, f in FUEL, r in REGION};  
param SpecifiedAnnualStandardDemandProfile{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}; 
 

# VARIABLES # 

 

var RateOfStandardDemand{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
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# OBJECTIVE FUNCTION # 

 

minimize cost: sum{y in YEAR, r in REGION} TotalDiscountedCost[y,r]; 
 

# CONSTRAINTS # 

 
s.t. D1_SpecifiedDemand{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}: 

RateOfStandardDemand[y,l,f,r]+sum{fdt in FLEXIBLEDEMANDTYPE, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET}(RateOfDailyFlexibleDemand[fdt,y,ls,ld,lh,f,r]-
RateOfNetCharge[fdt,y,ls,ld,lh,f,r]-
RateOfUnmetDemand[fdt,y,ls,ld,lh,f,r])*Conversionls[ls,l]*Conversionld[ld,l]*Conversionlh[lh,l]=RateOf
Demand[y,l,f,r]; 

s.t. D2_SpecifiedStandardDemand{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}: 
SpecifiedAnnualStandardDemand[y,f,r]*SpecifiedAnnualStandardDemandProfile[y,l,f,r] / 
YearSplit[y,l]=RateOfStandardDemand[y,l,f,r]; 

s.t. D4_and_D5_UpperLimit{fdt in FLEXIBLEDEMANDTYPE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, lh in DAILYTIMEBRACKET, f in FUEL, r in REGION}: if 
MaxShareUnmetDemand[y,fdt,f,r] >= MaxShareShiftedDemand[y,fdt,f,r] then 
MaxShareUnmetDemand[y,fdt,f,r]*RateOfDailyFlexibleDemand[fdt,y,ls,ld,lh,f,r]-
RateOfNetCharge[fdt,y,ls,ld,lh,f,r]; 

s.t. Acc4_rev_ModelPeriodCostByRegion{r in REGION}:sum{y in 
YEAR}TotalDiscountedCost[y,r]=ModelPeriodCostByRegion[r]; 

s.t. TDC1_rev_TotalDiscountedCostByTechnology{y in YEAR, t in TECHNOLOGY, r in REGION}: 
DiscountedOperatingCost[y,t,r]+DiscountedCapitalInvestment[y,t,r]+DiscountedTechnologyEmissionsP
enalty[y,t,r]-DiscountedSalvageValue[y,t,r] = TotalDiscountedCostByTechnology[y,t,r]; 

s.t. TDC2_TotalDiscountedCost{y in YEAR, r in REGION}: sum{t in TECHNOLOGY} 
TotalDiscountedCostByTechnology[y,t,r]+sum{fdt in FLEXIBLEDEMANDTYPE} 
DiscountedCostOfUnmetDemand[fdt,y,r]+sum{fdt in FLEXIBLEDEMANDTYPE} 
DiscountedCostOfShiftedDemand[fdt,y,r]+sum{s in STORAGE} TotalDiscountedStorageCost[s,y,r] = 
TotalDiscountedCost[y,r]; 
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 OPERATING RESERVE AND CAPACITY CREDIT OF Annex D

WIND – CODE IMPLEMENTATION 
 
 

The full model code is given below. First, constraints of the core code of 
OSeMOSYS are listed. The code enhancements are added afterwards. The code 
below can effectively be cut and pasted into a GNU MathProg model file and 
run. The reader is referred to www.osemosys.org for more information and a 
non-pdf version of the code, as well as sample application files. Note that the 
‘#’ symbol precedes a line of code not used in the model and is included for 
comments. 
 

# Model Definition # 

 
# SETS # 

 
set YEAR; 
set TECHNOLOGY; 
set TIMESLICE; 
set FUEL; 
set EMISSION; 
set MODE_OF_OPERATION; 
set REGION; 
set SEASON; 
set DAYTYPE; 
set DAILYTIMEBRACKET; 
set FLEXIBLEDEMANDTYPE;  
set STORAGE; 
 

# PARAMETERS # 

 
# Global # 

 
param YearSplit{y in YEAR,l in TIMESLICE}; 
param DiscountRate{t in TECHNOLOGY, r in REGION}; 
param DaySplit{y in YEAR, lh in DAILYTIMEBRACKET}; 
param Conversionls{ls in SEASON, l in TIMESLICE}; 
param Conversionld{ld in DAYTYPE, l in TIMESLICE}; 
param Conversionlh{lh in DAILYTIMEBRACKET, l in TIMESLICE}; 
param DaysInDayType{y in YEAR, ls in SEASON, ld in DAYTYPE}; 
param TradeRoute{y in YEAR, f in FUEL, r in REGION, rr in REGION}; 
 

# Demand # 

 
param SpecifiedAnnualDemand{y in YEAR,f in FUEL, r in REGION};  
param SpecifiedDemandProfile{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}; 
param AccumulatedAnnualDemand{y in YEAR, f in FUEL, r in REGION}; 
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# Performance # 

 
param CapacityToActivityUnit{t in TECHNOLOGY, r in REGION}; 
param TechWithCapacityNeededToMeetPeakTS{t in TECHNOLOGY, r in REGION}; 
param CapacityFactor{y in YEAR, t in TECHNOLOGY, l in TIMESLICE, r in REGION}; 
param AvailabilityFactor{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param OperationalLife{t in TECHNOLOGY, r in REGION}; 
param ResidualCapacity{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param InputActivityRatio{y in YEAR, t in TECHNOLOGY, f in FUEL, m in MODE_OF_OPERATION, r 

in REGION}; 
param OutputActivityRatio{y in YEAR, t in TECHNOLOGY, f in FUEL, m in MODE_OF_OPERATION, 

r in REGION}; 
 

# Technology Costs # 

 
param CapitalCost{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param VariableCost{y in YEAR, t in TECHNOLOGY, m in MODE_OF_OPERATION, r in REGION}; 
param FixedCost{y in YEAR, t in TECHNOLOGY, r in REGION}; 
 

# Storage # 

 
param TechnologyToStorage{t in TECHNOLOGY, m in MODE_OF_OPERATION, s in STORAGE, r in 

REGION}; 
param TechnologyFromStorage{t in TECHNOLOGY, m in MODE_OF_OPERATION, s in STORAGE, r 

in REGION}; 
param StorageLevelStart{s in STORAGE, r in REGION}; 
param StorageMaxChargeRate{s in STORAGE, r in REGION}; 
param StorageMaxDischargeRate{s in STORAGE, r in REGION}; 
param MinStorageCharge{s in STORAGE, y in YEAR, r in REGION}; 
param OperationalLifeStorage{s in STORAGE, r in REGION}; 
param CapitalCostStorage{s in STORAGE, y in YEAR, r in REGION}; 
param DiscountRateStorage{s in STORAGE, r in REGION}; 
param ResidualStorageCapacity{s in STORAGE, y in YEAR, r in REGION}; 
 

# Capacity Constraints # 

 
param CapacityOfOneTechnologyUnit{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalAnnualMaxCapacity{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalAnnualMinCapacity{y in YEAR, t in TECHNOLOGY, r in REGION}; 
 

# Investment Constraints # 

 
param TotalAnnualMaxCapacityInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalAnnualMinCapacityInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}; 
 

# Activity Constraints # 

 
param TotalTechnologyAnnualActivityUpperLimit{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalTechnologyAnnualActivityLowerLimit{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param TotalTechnologyModelPeriodActivityUpperLimit{t in TECHNOLOGY, r in REGION}; 
param TotalTechnologyModelPeriodActivityLowerLimit{t in TECHNOLOGY, r in REGION}; 
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# Reserve Margin # 

 
param ReserveMarginTagTechnology{y in YEAR,t in TECHNOLOGY, r in REGION};  
param ReserveMarginTagFuel{y in YEAR,f in FUEL, r in REGION}; 
param ReserveMargin{y in YEAR, r in REGION}; 

# RE Generation Target # 

 
param RETagTechnology{y in YEAR,t in TECHNOLOGY, r in REGION}; 
param RETagFuel{y in YEAR,f in FUEL, r in REGION};  
param REMinProductionTarget{y in YEAR, r in REGION}; 
 

# Emissions & Penalties # 

 
param EmissionActivityRatio{y in YEAR, t in TECHNOLOGY, e in EMISSION, m in 

MODE_OF_OPERATION, r in REGION}; 
param EmissionsPenalty{y in YEAR, e in EMISSION, r in REGION}; 
param AnnualExogenousEmission{y in YEAR, e in EMISSION, r in REGION}; 
param AnnualEmissionLimit{y in YEAR, e in EMISSION, r in REGION}; 
param ModelPeriodExogenousEmission{e in EMISSION, r in REGION}; 
param ModelPeriodEmissionLimit{e in EMISSION, r in REGION}; 
 

# Wind Capacity Credit # 

 
param ElectricityForTransmissionTag{f in FUEL, r in REGION}; 
param WindTechnologyTag{t in TECHNOLOGY, r in REGION}; 
param PeakElectricityDemandEntered{y in YEAR, r in REGION}; 
param WindDispersionCoefficient{y in YEAR, r in REGION}; 
param ReliabilityConventionalPlants{y in YEAR, r in REGION}; 
param WindCapacityCreditSwitch; 
 

# Operating Reserve # 

 
param PrimReserveUpCapacityDemand{y in YEAR, l in TIMESLICE, r in REGION}; 
param SecReserveUpCapacityDemand{y in YEAR, l in TIMESLICE, r in REGION}; 
param PrimReserveDownCapacityDemand{y in YEAR, l in TIMESLICE, r in REGION}; 
param SecReserveDownCapacityDemand{y in YEAR, l in TIMESLICE, r in REGION}; 
param MinStableOperation{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param MaxPrimReserveUp{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param MaxSecReserveUp{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param MaxPrimReserveDown{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param MaxSecReserveDown{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param MinSecReserveUpOnline{y in YEAR, r in REGION}; 
param MinPrimReserveUpOnline{y in YEAR, r in REGION}; 
param TimeSliceLinkTag{l in TIMESLICE, ll in TIMESLICE, r in REGION}; 
param MaxOnlineCapReduction{y in YEAR, t in TECHNOLOGY, r in REGION}; 
param MaxGenerationReduction{y in YEAR, t in TECHNOLOGY, r in REGION}; 
 

# MODEL VARIABLES # 

 
# Demand # 

 
var RateOfDemand{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
var Demand{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
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# Storage # 

 
var RateOfStorageCharge{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}; 
var RateOfStorageDischarge{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}; 
var NetChargeWithinYear{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}; 
var NetChargeWithinDay{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}; 
var StorageLevelYearStart{s in STORAGE, y in YEAR, r in REGION} >=0; 
var StorageLevelYearFinish{s in STORAGE, y in YEAR, r in REGION} >=0; 
var StorageLevelSeasonStart{s in STORAGE, y in YEAR, ls in SEASON, r in REGION} >=0; 
var StorageLevelDayTypeStart{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, r in 

REGION} >=0; 
var StorageLevelDayTypeFinish{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, r in 

REGION} >=0; 
var StorageLowerLimit{s in STORAGE, y in YEAR, r in REGION}>=0; 
var StorageUpperLimit{s in STORAGE, y in YEAR, r in REGION} >=0; 
var AccumulatedNewStorageCapacity{s in STORAGE, y in YEAR, r in REGION} >=0; 
var NewStorageCapacity{s in STORAGE, y in YEAR, r in REGION} >=0; 
var CapitalInvestmentStorage{s in STORAGE, y in YEAR, r in REGION} >=0; 
var DiscountedCapitalInvestmentStorage{s in STORAGE, y in YEAR, r in REGION} >=0; 
var SalvageValueStorage{s in STORAGE, y in YEAR, r in REGION} >=0; 
var DiscountedSalvageValueStorage{s in STORAGE, y in YEAR, r in REGION} >=0; 
var TotalDiscountedStorageCost{s in STORAGE, y in YEAR, r in REGION} >=0; 
 

# Capacity Variables # 

 
var NumberOfNewTechnologyUnits{y in YEAR, t in TECHNOLOGY, r in REGION} >= 0,integer; 
var NewCapacity{y in YEAR, t in TECHNOLOGY, r in REGION} >= 0; 
var AccumulatedNewCapacity{y in YEAR, t in TECHNOLOGY, r in REGION} >= 0; 
var TotalCapacityAnnual{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
 

# Activity Variables # 

 
var RateOfActivity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION, r 

in REGION} >= 0;  
var RateOfTotalActivity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION} >= 0; 
var TotalTechnologyAnnualActivity{y in YEAR, t in TECHNOLOGY, r in REGION} >= 0; 
var TotalAnnualTechnologyActivityByMode{y in YEAR, t in TECHNOLOGY,m in 

MODE_OF_OPERATION,r in REGION}>=0; 
var RateOfProductionByTechnologyByMode{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,m in 

MODE_OF_OPERATION,f in FUEL,r in REGION}>= 0; 
var RateOfProductionByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,f in FUEL, r in 

REGION}>= 0; 
var ProductionByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,f in FUEL, r in 

REGION}>= 0; 
var ProductionByTechnologyAnnual{y in YEAR, t in TECHNOLOGY, f in FUEL, r in REGION}>= 0; 
var RateOfProduction{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION} >= 0; 
var Production{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION} >= 0; 
var RateOfUseByTechnologyByMode{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,m in 

MODE_OF_OPERATION,f in FUEL,r in REGION}>= 0; 
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var RateOfUseByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION} >= 0; 

var UseByTechnologyAnnual{y in YEAR, t in TECHNOLOGY,f in FUEL, r in REGION}>= 0; 
var RateOfUse{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
var UseByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,f in FUEL, r in REGION}>= 0; 
var Use{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
var Trade{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION, rr in REGION}; 
var TradeAnnual{y in YEAR, f in FUEL, r in REGION, rr in REGION}; 
var ProductionAnnual{y in YEAR, f in FUEL, r in REGION}>= 0; 
var UseAnnual{y in YEAR, f in FUEL, r in REGION}>= 0; 
 

# Costing Variables # 

 
var CapitalInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var DiscountedCapitalInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var SalvageValue{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var DiscountedSalvageValue{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var OperatingCost{y in YEAR, t in TECHNOLOGY, r in REGION}; 
var DiscountedOperatingCost{y in YEAR, t in TECHNOLOGY, r in REGION}; 
var AnnualVariableOperatingCost{y in YEAR,t in TECHNOLOGY, r in REGION}; 
var AnnualFixedOperatingCost{y in YEAR,t in TECHNOLOGY, r in REGION}; 
var TotalDiscountedCostByTechnology{y in YEAR, t in TECHNOLOGY, r in REGION}; 
var TotalDiscountedCost{y in YEAR, r in REGION}>= 0; 
var ModelPeriodCostByRegion {r in REGION} >= 0; 
 

# Reserve Margin # 

 
var TotalCapacityInReserveMargin{y in YEAR, f in FUEL, r in REGION}>= 0; 
var DemandNeedingReserveMargin{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}>= 0; 
 

# RE Gen Target # 

 
var TotalREProductionAnnual{y in YEAR, r in REGION}; 
var RETotalDemandOfTargetFuelAnnual{y in YEAR, r in REGION}; 
var TotalTechnologyModelPeriodActivity{t in TECHNOLOGY, r in REGION}; 
 

# Emissions # 

 
var AnnualTechnologyEmissionByMode{y in YEAR, t in TECHNOLOGY, e in EMISSION, m in 

MODE_OF_OPERATION, r in REGION}>= 0; 
var AnnualTechnologyEmission{y in YEAR, t in TECHNOLOGY, e in EMISSION, r in REGION}>= 0; 
var AnnualTechnologyEmissionPenaltyByEmission{y in YEAR, t in TECHNOLOGY, e in EMISSION, r in 

REGION}>= 0; 
var AnnualTechnologyEmissionsPenalty{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var DiscountedTechnologyEmissionsPenalty{y in YEAR, t in TECHNOLOGY, r in REGION}>= 0; 
var AnnualEmissions{y in YEAR, e in EMISSION, r in REGION}>= 0; 
var ModelPeriodEmissions{e in EMISSION, r in REGION}>= 0; 
 

# Wind Capacity Credit # 

 
var PeakElectricityDemandCalculated{y in YEAR, r in REGION} >= 0; 
var WindPenetration{y in YEAR, r in REGION} >= 0; 
var WindCapacityCreditCalculated{y in YEAR, r in REGION} >= 0; 
var Segment1Tag {y in YEAR, r in REGION} binary; 
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var Segment2Tag {y in YEAR, r in REGION} binary; 
var Segment3Tag {y in YEAR, r in REGION} binary; 
var Segment4Tag {y in YEAR, r in REGION} binary; 
var Segment5Tag {y in YEAR, r in REGION} binary; 
var Segment6Tag {y in YEAR, r in REGION} binary; 
var Segment1Fraction {y in YEAR, r in REGION} >=0 <=1; 
var Segment2Fraction {y in YEAR, r in REGION} >=0 <=1; 
var Segment3Fraction {y in YEAR, r in REGION} >=0 <=1; 
var Segment4Fraction {y in YEAR, r in REGION} >=0 <=1; 
var Segment5Fraction {y in YEAR, r in REGION} >=0 <=1; 
var Segment6Fraction {y in YEAR, r in REGION} >=0 <=1; 
var WindAverageCapacityFactor{y in YEAR, r in REGION} >= 0; 
var WindCapacityCreditEntered{y in YEAR, r in REGION}; 
 

# Operating Reserve # 

 
var PrimReserveDownByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION} 

>= 0; 
var SecReserveDownByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION} >= 

0; 
var SecReserveUpOnline{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION} >=0; 
var PrimReserveUpOnline{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION} >=0; 
var OnlineCapacity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION}; 
 

# OBJECTIVE FUNCTION # 

 
minimize cost: sum{y in YEAR, r in REGION} TotalDiscountedCost[y,r]; 
 

# CONSTRAINTS# 

 
# Demand # 

 
s.t. EQ_SpecifiedDemand{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 

SpecifiedAnnualDemand[y,f,r]*SpecifiedDemandProfile[y,l,f,r] / YearSplit[y,l] = RateOfDemand[y,l,f,r]; 
 

# Capacity Adequacy A # 

 
s.t. CAa1_TotalNewCapacity{y in YEAR, t in TECHNOLOGY, r in 

REGION}:AccumulatedNewCapacity[y,t,r] = sum{yy in YEAR: y-yy < OperationalLife[t,r] && y-
yy>=0} if CapacityOfOneTechnologyUnit[y,t,r]=0 then NewCapacity[yy,t,r] else 
CapacityOfOneTechnologyUnit[yy,t,r]*NumberOfNewTechnologyUnits[yy,t,r]; 

s.t. CAa2_TotalAnnualCapacity{y in YEAR, t in TECHNOLOGY, r in REGION}: 
AccumulatedNewCapacity[y,t,r]+ ResidualCapacity[y,t,r] = TotalCapacityAnnual[y,t,r]; 

s.t. CAa3_TotalActivityOfEachTechnology{y in YEAR, t in TECHNOLOGY, l in TIMESLICE,r in 
REGION}: sum{m in MODE_OF_OPERATION} RateOfActivity[y,l,t,m,r] = 
RateOfTotalActivity[y,l,t,r]; 

s.t. CAa4_Constraint_Capacity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION: 
TechWithCapacityNeededToMeetPeakTS[t,r]<>0}: RateOfTotalActivity[y,l,t,r] <= 
TotalCapacityAnnual[y,t,r]*CapacityFactor[y,t,l,r]*CapacityToActivityUnit[t,r]; 

 
# Capacity Adequacy B # 

 
s.t. CAb1_PlannedMaintenance{y in YEAR, t in TECHNOLOGY, r in REGION}: sum{l in TIMESLICE} 

RateOfTotalActivity[y,l,t,r]*YearSplit[y,l] <= sum{l in TIMESLICE} 
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(TotalCapacityAnnual[y,t,r]*CapacityFactor[y,t,l,r]*YearSplit[y,l])* 
AvailabilityFactor[y,t,r]*CapacityToActivityUnit[t,r]; 

 
# Energy Balance A # 

 
s.t. EBa1_RateOfFuelProduction1{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in 

MODE_OF_OPERATION, r in REGION: OutputActivityRatio[y,t,f,m,r] <>0}: 
RateOfActivity[y,l,t,m,r]*OutputActivityRatio[y,t,f,m,r] = 
RateOfProductionByTechnologyByMode[y,l,t,m,f,r]; 

s.t. EBa2_RateOfFuelProduction2{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, r in 
REGION}: sum{m in MODE_OF_OPERATION: OutputActivityRatio[y,t,f,m,r] <>0} 
RateOfProductionByTechnologyByMode[y,l,t,m,f,r] = RateOfProductionByTechnology[y,l,t,f,r] ; 

s.t. EBa3_RateOfFuelProduction3{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}: sum{t in 
TECHNOLOGY} RateOfProductionByTechnology[y,l,t,f,r] = RateOfProduction[y,l,f,r]; 

s.t. EBa4_RateOfFuelUse1{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in 
MODE_OF_OPERATION, r in REGION:InputActivityRatio[y,t,f,m,r]<>0}: 
RateOfActivity[y,l,t,m,r]*InputActivityRatio[y,t,f,m,r] = RateOfUseByTechnologyByMode[y,l,t,m,f,r]; 

s.t. EBa5_RateOfFuelUse2{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, r in REGION}: 
sum{m in MODE_OF_OPERATION:InputActivityRatio[y,t,f,m,r]<>0} 
RateOfUseByTechnologyByMode[y,l,t,m,f,r] = RateOfUseByTechnology[y,l,t,f,r]; 

s.t. EBa6_RateOfFuelUse3{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}: sum{t in 
TECHNOLOGY} RateOfUseByTechnology[y,l,t,f,r] = RateOfUse[y,l,f,r]; 

s.t. EBa7_EnergyBalanceEachTS1{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 
RateOfProduction[y,l,f,r]*YearSplit[y,l] = Production[y,l,f,r]; 

s.t. EBa8_EnergyBalanceEachTS2{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 
RateOfUse[y,l,f,r]*YearSplit[y,l] = Use[y,l,f,r]; 

s.t. EBa9_EnergyBalanceEachTS3{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 
RateOfDemand[y,l,f,r]*YearSplit[y,l] = Demand[y,l,f,r]; 

s.t. EBa10_EnergyBalanceEachTS4{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION, rr in 
REGION}: Trade[y,l,f,r,rr] = -Trade[y,l,f,rr,r]; 

s.t. EBa11_EnergyBalanceEachTS5{y in YEAR,l in TIMESLICE, f in FUEL, r in REGION}: 
Production[y,l,f,r] >= Demand[y,l,f,r] + Use[y,l,f,r] + sum{rr in REGION} 
Trade[y,l,f,r,rr]*TradeRoute[y,f,r,rr]; 

 
# Energy Balance B # 

 
s.t. EBb1_EnergyBalanceEachYear1{y in YEAR, f in FUEL, r in REGION}: sum{l in TIMESLICE} 

Production[y,l,f,r] = ProductionAnnual[y,f,r]; 
s.t. EBb2_EnergyBalanceEachYear2{y in YEAR, f in FUEL, r in REGION}: sum{l in TIMESLICE} 

Use[y,l,f,r] = UseAnnual[y,f,r]; 
s.t. EBb3_EnergyBalanceEachYear3{y in YEAR, f in FUEL, r in REGION, rr in REGION}: sum{l in 

TIMESLICE} Trade[y,l,f,r,rr] = TradeAnnual[y,f,r,rr]; 
s.t. EBb4_EnergyBalanceEachYear4{y in YEAR, f in FUEL, r in REGION}: ProductionAnnual[y,f,r] >= 

UseAnnual[y,f,r] + sum{rr in REGION} TradeAnnual[y,f,r,rr]*TradeRoute[y,f,r,rr] + 
AccumulatedAnnualDemand[y,f,r]; 

 
# Accounting Technology Production/Use # 

 
s.t. Acc1_FuelProductionByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 

REGION}: RateOfProductionByTechnology[y,l,t,f,r] * YearSplit[y,l] = ProductionByTechnology[y,l,t,f,r]; 
s.t. Acc2_FuelUseByTechnology{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 

REGION}: RateOfUseByTechnology[y,l,t,f,r] * YearSplit[y,l] = UseByTechnology[y,l,t,f,r]; 
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s.t. Acc3_AverageAnnualRateOfActivity{y in YEAR,t in TECHNOLOGY, m in 
MODE_OF_OPERATION, r in REGION}: sum{l in TIMESLICE} 
RateOfActivity[y,l,t,m,r]*YearSplit[y,l] = TotalAnnualTechnologyActivityByMode[y,t,m,r]; 

s.t. Acc4_ModelPeriodCostByRegion{r in REGION}:sum{y in YEAR}TotalDiscountedCost[y,r] = 
ModelPeriodCostByRegion[r]; 

 
# Storage Equations # 

 
s.t. S1_RateOfStorageCharge{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 

DAILYTIMEBRACKET, r in REGION}: sum{t in TECHNOLOGY, m in 
MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[t,m,s,r]>0} 
RateOfActivity[y,l,t,m,r] * TechnologyToStorage[t,m,s,r] * Conversionls[ls,l] * Conversionld[ld,l] * 
Conversionlh[lh,l] = RateOfStorageCharge[s,y,ls,ld,lh,r]; 

s.t. S2_RateOfStorageDischarge{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: sum{t in TECHNOLOGY, m in 
MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[t,m,s,r]>0} 
RateOfActivity[y,l,t,m,r] * TechnologyFromStorage[t,m,s,r] * Conversionls[ls,l] * Conversionld[ld,l] * 
Conversionlh[lh,l] = RateOfStorageDischarge[s,y,ls,ld,lh,r]; 

s.t. S3_NetChargeWithinYear{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: sum{l in 
TIMESLICE:Conversionls[ls,l]>0&&Conversionld[ld,l]>0&&Conversionlh[lh,l]>0}  
(RateOfStorageCharge[s,y,ls,ld,lh,r] - RateOfStorageDischarge[s,y,ls,ld,lh,r]) * YearSplit[y,l] * 
Conversionls[ls,l] * Conversionld[ld,l] * Conversionlh[lh,l] = NetChargeWithinYear[s,y,ls,ld,lh,r]; 

s.t. S4_NetChargeWithinDay{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: (RateOfStorageCharge[s,y,ls,ld,lh,r] - 
RateOfStorageDischarge[s,y,ls,ld,lh,r]) * DaySplit[y,lh] = NetChargeWithinDay[s,y,ls,ld,lh,r]; 

s.t. S5_and_S6_StorageLevelYearStart{s in STORAGE, y in YEAR, r in REGION}: 
 if y = min{yy in YEAR} min(yy) then StorageLevelStart[s,r]  
else StorageLevelYearStart[s,y-1,r] + sum{ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET} NetChargeWithinYear[s,y-1,ls,ld,lh,r] 
= StorageLevelYearStart[s,y,r]; 

s.t. S7_and_S8_StorageLevelYearFinish{s in STORAGE, y in YEAR, r in REGION}:   
if y < max{yy in YEAR} max(yy) then StorageLevelYearStart[s,y+1,r] 
else StorageLevelYearStart[s,y,r] + sum{ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET} NetChargeWithinYear[s,y,ls,ld,lh,r]  
= StorageLevelYearFinish[s,y,r];  

s.t. S9_and_S10_StorageLevelSeasonStart{s in STORAGE, y in YEAR, ls in SEASON, r in REGION}: 
if ls = min{lsls in SEASON} min(lsls) then StorageLevelYearStart[s,y,r]  
else StorageLevelSeasonStart[s,y,ls-1,r] + sum{ld in DAYTYPE, lh in DAILYTIMEBRACKET} 
NetChargeWithinYear[s,y,ls-1,ld,lh,r]  
= StorageLevelSeasonStart[s,y,ls,r]; 

s.t. S11_and_S12_StorageLevelDayTypeStart{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, r 
in REGION}:  
if ld = min{ldld in DAYTYPE} min(ldld) then StorageLevelSeasonStart[s,y,ls,r]  
else StorageLevelDayTypeStart[s,y,ls,ld-1,r] + sum{lh in DAILYTIMEBRACKET} 
NetChargeWithinDay[s,y,ls,ld-1,lh,r] * DaysInDayType[y,ls,ld-1] 
= StorageLevelDayTypeStart[s,y,ls,ld,r]; 

s.t. S13_and_S14_and_S15_StorageLevelDayTypeFinish{s in STORAGE, y in YEAR, ls in SEASON, ld in 
DAYTYPE, r in REGION}: 
if ls = max{lsls in SEASON} max(lsls) && ld = max{ldld in DAYTYPE} max(ldld) then 
StorageLevelYearFinish[s,y,r]  
else if ld = max{ldld in DAYTYPE} max(ldld) then StorageLevelSeasonStart[s,y,ls+1,r] 
else StorageLevelDayTypeFinish[s,y,ls,ld+1,r] - sum{lh in DAILYTIMEBRACKET} 
NetChargeWithinDay[s,y,ls,ld+1,lh,r] * DaysInDayType[y,ls,ld+1] 
= StorageLevelDayTypeFinish[s,y,ls,ld,r]; 
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# Storage Constraints # 

 
s.t. SC1_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFirstWeek Constraint{s in 

STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: 0 <= (StorageLevelDayTypeStart[s,y,ls,ld,r]+sum{lhlh in DAILYTIMEBRACKET:lh-
lhlh>0} NetChargeWithinDay[s,y,ls,ld,lhlh,r])-StorageLowerLimit[s,y,r]; 

s.t. SC1_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFirstWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: (StorageLevelDayTypeStart[s,y,ls,ld,r]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} 
NetChargeWithinDay[s,y,ls,ld,lhlh,r])-StorageUpperLimit[s,y,r] <= 0;  

s.t. SC2_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: 0 <= if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeStart[s,y,ls,ld,r]-
sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} NetChargeWithinDay[s,y,ls,ld-1,lhlh,r])-
StorageLowerLimit[s,y,r]; 

s.t. SC2_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeStart[s,y,ls,ld,r]-
sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} NetChargeWithinDay[s,y,ls,ld-1,lhlh,r])-
StorageUpperLimit[s,y,r] <= 0; 

s.t. SC3_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}:  0 <= (StorageLevelDayTypeFinish[s,y,ls,ld,r] - sum{lhlh in DAILYTIMEBRACKET:lh-
lhlh<0} NetChargeWithinDay[s,y,ls,ld,lhlh,r])-StorageLowerLimit[s,y,r];  

s.t. SC3_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}:  (StorageLevelDayTypeFinish[s,y,ls,ld,r] - sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} 
NetChargeWithinDay[s,y,ls,ld,lhlh,r])-StorageUpperLimit[s,y,r] <= 0; 

s.t. SC4_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInLastWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: 0 <= if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeFinish[s,y,ls,ld-
1,r]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} NetChargeWithinDay[s,y,ls,ld,lhlh,r])-
StorageLowerLimit[s,y,r]; 

s.t. SC4_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInLastWeek Constraint{s in 
STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, r in 
REGION}: if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeFinish[s,y,ls,ld-
1,r]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} NetChargeWithinDay[s,y,ls,ld,lhlh,r])-
StorageUpperLimit[s,y,r] <= 0; 

s.t. SC5_MaxChargeConstraint{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: RateOfStorageCharge[s,y,ls,ld,lh,r] <= 
StorageMaxChargeRate[s,r]; 

s.t. SC6_MaxDischargeConstraint{s in STORAGE, y in YEAR, ls in SEASON, ld in DAYTYPE, lh in 
DAILYTIMEBRACKET, r in REGION}: RateOfStorageDischarge[s,y,ls,ld,lh,r] <= 
StorageMaxDischargeRate[s,r]; 

 
# Storage Investments # 

 
s.t. SI1_StorageUpperLimit{s in STORAGE, y in YEAR, r in REGION}: 

AccumulatedNewStorageCapacity[s,y,r]+ResidualStorageCapacity[s,y,r] = StorageUpperLimit[s,y,r]; 
s.t. SI2_StorageLowerLimit{s in STORAGE, y in YEAR, r in REGION}: 

MinStorageCharge[s,y,r]*StorageUpperLimit[s,y,r] = StorageLowerLimit[s,y,r]; 
s.t. SI3_TotalNewStorage{s in STORAGE, y in YEAR, r in REGION}: sum{yy in YEAR: y-yy < 

OperationalLifeStorage[s,r] && y-yy>=0} 
NewStorageCapacity[s,yy,r]=AccumulatedNewStorageCapacity[s,y,r]; 
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s.t. SI4_UndiscountedCapitalInvestmentStorage{s in STORAGE, y in YEAR, r in REGION}: 
CapitalCostStorage[s,y,r] * NewStorageCapacity[s,y,r] = CapitalInvestmentStorage[s,y,r]; 

s.t. SI5_DiscountingCapitalInvestmentStorage{s in STORAGE, y in YEAR, r in REGION}: 
CapitalInvestmentStorage[s,y,r]/((1+DiscountRateStorage[s,r])^(y-min{yy in YEAR} min(yy))) = 
DiscountedCapitalInvestmentStorage[s,y,r]; 

s.t. SI6_SalvageValueStorageAtEndOfPeriod1{s in STORAGE, y in YEAR, r in REGION: 
(y+OperationalLifeStorage[s,r]-1) <= (max{yy in YEAR} max(yy))}: 0 = SalvageValueStorage[s,y,r]; 

s.t. SI7_SalvageValueStorageAtEndOfPeriod2{s in STORAGE, y in YEAR, r in REGION: 
(y+OperationalLifeStorage[s,r]-1) > (max{yy in YEAR} max(yy)) && DiscountRate[s,r]=0}: 
CapitalInvestmentStorage[s,y,r]*(1-(max{yy in YEAR} max(yy) - y+1)/OperationalLifeStorage[s,r]) = 
SalvageValueStorage[s,y,r]; 

s.t. SI8_SalvageValueStorageAtEndOfPeriod3{s in STORAGE, y in YEAR, r in REGION: 
(y+OperationalLifeStorage[s,r]-1) > (max{yy in YEAR} max(yy)) && DiscountRateStorage[s,r]>0}: 
CapitalInvestmentStorage[s,y,r]*(1-(((1+DiscountRateStorage[s,r])^(max{yy in YEAR} max(yy) - y+1)-
1)/((1+DiscountRateStorage[s,r])^OperationalLifeStorage[s,r]-1))) = SalvageValueStorage[s,y,r]; 

s.t. SI9_SalvageValueStorageDiscountedToStartYear{s in STORAGE, y in YEAR, r in REGION}: 
SalvageValueStorage[s,y,r]/((1+DiscountRateStorage[s,r])^(max{yy in YEAR} max(yy)-min{yy in YEAR} 
min(yy)+1)) = DiscountedSalvageValueStorage[s,y,r]; 

s.t. SI10_TotalDiscountedCostByStorage{s in STORAGE, y in YEAR, r in REGION}: 
DiscountedCapitalInvestmentStorage[s,y,r]-DiscountedSalvageValueStorage[s,y,r] = 
TotalDiscountedStorageCost[s,y,r]; 

 
# Capital Costs # 

 
s.t. CC1_UndiscountedCapitalInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}: 

CapitalCost[y,t,r] * NewCapacity[y,t,r] = CapitalInvestment[y,t,r]; 
s.t. CC2_DiscountingCapitalInvestment{y in YEAR, t in TECHNOLOGY, r in REGION}: 

CapitalInvestment[y,t,r]/((1+DiscountRate[t,r])^(y-min{yy in YEAR} min(yy))) = 
DiscountedCapitalInvestment[y,t,r]; 

 
# Salvage Value # 

 
s.t. SV2rev_SalvageValueAtEndOfPeriod2{y in YEAR, t in TECHNOLOGY, r in REGION: (y + 

OperationalLife[t,r]-1) > (max{yy in YEAR} max(yy))}: SalvageValue[y,t,r] = 
CapitalCost[y,t,r]*NewCapacity[y,t,r]*(1-(max{yy in YEAR} max(yy) - y+1)/OperationalLife[t,r]); 

s.t. SV3_SalvageValueAtEndOfPeriod3{y in YEAR, t in TECHNOLOGY, r in REGION: (y + 
OperationalLife[t,r]-1) <= (max{yy in YEAR} max(yy))}: SalvageValue[y,t,r] = 0; 

s.t. SV4_SalvageValueDiscountedToStartYear{y in YEAR, t in TECHNOLOGY, r in REGION}: 
DiscountedSalvageValue[y,t,r] = SalvageValue[y,t,r]/((1+DiscountRate[t,r])^(1+max{yy in YEAR} 
max(yy)-min{yy in YEAR} min(yy))); 

 
# Operating Costs # 

 
s.t. OC1_OperatingCostsVariable{y in YEAR,l in TIMESLICE, t in TECHNOLOGY, r in REGION}: 

sum{m in MODE_OF_OPERATION} 
TotalAnnualTechnologyActivityByMode[y,t,m,r]*VariableCost[y,t,m,r] = 
AnnualVariableOperatingCost[y,t,r]; 

s.t. OC2_OperatingCostsFixedAnnual{y in YEAR,t in TECHNOLOGY, r in REGION}: 
TotalCapacityAnnual[y,t,r]*FixedCost[y,t,r] = AnnualFixedOperatingCost[y,t,r]; 

s.t. OC3_OperatingCostsTotalAnnual{y in YEAR,t in TECHNOLOGY,r in REGION}: 
AnnualFixedOperatingCost[y,t,r]+AnnualVariableOperatingCost[y,t,r] = OperatingCost[y,t,r]; 

s.t. OC4_DiscountedOperatingCostsTotalAnnual{y in YEAR, t in TECHNOLOGY, r in REGION}: 
OperatingCost[y,t,r]/((1+DiscountRate[t,r])^(y-min{yy in YEAR} min(yy)+0.5)) = 
DiscountedOperatingCost[y,t,r]; 
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# Total Discounted Costs # 

 
s.t. TDC1_TotalDiscountedCostByTechnology{y in YEAR, t in TECHNOLOGY, r in REGION}: 

DiscountedOperatingCost[y,t,r]+DiscountedCapitalInvestment[y,t,r]+DiscountedTechnologyEmissionsP
enalty[y,t,r]-DiscountedSalvageValue[y,t,r]+sum{l in TIMESLICE} 
(SecReserveDownByTechnology[y,l,t,r]+PrimReserveDownByTechnology[y,l,t,r])*(-0.00001) = 
TotalDiscountedCostByTechnology[y,t,r]; 

s.t. TDC2_TotalDiscountedCost{y in YEAR, r in REGION}: sum{t in TECHNOLOGY} 
TotalDiscountedCostByTechnology[y,t,r]+sum{s in STORAGE} TotalDiscountedStorageCost[s,y,r] = 
TotalDiscountedCost[y,r]; 

 
# Total Capacity Constraints # 

 
s.t. TCC1_TotalAnnualMaxCapacityConstraint{y in YEAR, t in TECHNOLOGY,r in REGION}: 

TotalCapacityAnnual[y,t,r] <= TotalAnnualMaxCapacity[y,t,r]; 
s.t. TCC2_TotalAnnualMinCapacityConstraint{y in YEAR, t in TECHNOLOGY,r in REGION: 

TotalAnnualMinCapacity[y,t,r]>0}: TotalCapacityAnnual[y,t,r] >= TotalAnnualMinCapacity[y,t,r]; 
 

# New Capacity Constraints # 

 
s.t. NCC1_TotalAnnualMaxNewCapacityConstraint{y in YEAR, t in TECHNOLOGY, r in REGION}: 

NewCapacity[y,t,r] <= TotalAnnualMaxCapacityInvestment[y,t,r]; 
s.t. NCC2_TotalAnnualMinNewCapacityConstraint{y in YEAR, t in TECHNOLOGY, r in REGION: 

TotalAnnualMinCapacityInvestment[y,t,r]>0}: NewCapacity[y,t,r] >= 
TotalAnnualMinCapacityInvestment[y,t,r]; 

 
# Annual Activity Constraints # 

 
s.t. AAC1_TotalAnnualTechnologyActivity{y in YEAR, t in TECHNOLOGY, r in REGION}: sum{l in 

TIMESLICE} RateOfTotalActivity[y,l,t,r]*YearSplit[y,l] = TotalTechnologyAnnualActivity[y,t,r]; 
s.t. AAC2_TotalAnnualTechnologyActivityUpperLimit{y in YEAR, t in TECHNOLOGY, r in REGION}: 

TotalTechnologyAnnualActivity[y,t,r] <= TotalTechnologyAnnualActivityUpperLimit[y,t,r] ; 
s.t. AAC3_TotalAnnualTechnologyActivityLowerLimit{y in YEAR, t in TECHNOLOGY, r in REGION: 

TotalTechnologyAnnualActivityLowerLimit[y,t,r]>0}: TotalTechnologyAnnualActivity[y,t,r] >= 
TotalTechnologyAnnualActivityLowerLimit[y,t,r] ; 

 
# Total Activity Constraints # 

 
s.t. TAC1_TotalModelHorizonTechnologyActivity{t in TECHNOLOGY, r in REGION}: sum{y in YEAR} 

TotalTechnologyAnnualActivity[y,t,r] = TotalTechnologyModelPeriodActivity[t,r]; 
s.t. TAC2_TotalModelHorizonTechnologyActivityUpperLimit{y in YEAR, t in TECHNOLOGY, r in 

REGION}: TotalTechnologyModelPeriodActivity[t,r] <= 
TotalTechnologyModelPeriodActivityUpperLimit[t,r] ; 

s.t. TAC3_TotalModelHorizenTechnologyActivityLowerLimit{y in YEAR, t in TECHNOLOGY, r in 
REGION: TotalTechnologyModelPeriodActivityLowerLimit[t,r]>0}: 
TotalTechnologyModelPeriodActivity[t,r] >= TotalTechnologyModelPeriodActivityLowerLimit[t,r] ; 

 
# Reserve Margin Constraint # 

 
s.t. RM1_ReserveMargin_TechologiesIncluded_In_Activity_Units{y in YEAR, f in FUEL, r in REGION}: 

sum {t in TECHNOLOGY, m in MODE_OF_OPERATION: OutputActivityRatio[y,t,f,m,r] <>0} 
TotalCapacityAnnual[y,t,r]*ReserveMarginTagTechnology[y,t,r]*CapacityToActivityUnit[t,r] = 
TotalCapacityInReserveMargin[y,f,r]; 
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s.t. RM2_ReserveMargin_FuelsIncluded{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}: 
RateOfProduction[y,l,f,r]*ReserveMarginTagFuel[y,f,r] = DemandNeedingReserveMargin[y,l,f,r]; 

s.t. RM3_ReserveMargin_Constraint{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION}: 
DemandNeedingReserveMargin[y,l,f,r]*ReserveMargin[y,r] <= TotalCapacityInReserveMargin[y,f,r]; 

 
# RE Production Target # 

 
s.t. RE1_FuelProductionByTechnologyAnnual{y in YEAR, t in TECHNOLOGY, f in FUEL, r in 

REGION}: sum{l in TIMESLICE} ProductionByTechnology[y,l,t,f,r] = 
ProductionByTechnologyAnnual[y,t,f,r]; 

s.t. RE2_TechIncluded{y in YEAR, r in REGION}: sum{t in TECHNOLOGY, f in FUEL} 
ProductionByTechnologyAnnual[y,t,f,r]*RETagTechnology[y,t,r] = TotalREProductionAnnual[y,r]; 

s.t. RE3_FuelIncluded{y in YEAR, r in REGION}: sum{l in TIMESLICE, f in FUEL} 
RateOfDemand[y,l,f,r]*YearSplit[y,l]*RETagFuel[y,f,r] = RETotalDemandOfTargetFuelAnnual[y,r];  

s.t. RE4_EnergyConstraint{y in YEAR, r in 
REGION}:REMinProductionTarget[y,r]*RETotalDemandOfTargetFuelAnnual[y,r] <= 
TotalREProductionAnnual[y,r]; 

s.t. RE5_FuelUseByTechnologyAnnual{y in YEAR, t in TECHNOLOGY, f in FUEL, r in REGION}: sum{l 
in TIMESLICE} RateOfUseByTechnology[y,l,t,f,r]*YearSplit[y,l] = UseByTechnologyAnnual[y,t,f,r]; 

 
# Emissions Accounting # 

 
s.t. E1_AnnualEmissionProductionByMode{y in YEAR, t in TECHNOLOGY, e in EMISSION, m in 

MODE_OF_OPERATION, r in REGION:EmissionActivityRatio[y,t,e,m,r]<>0}: 
EmissionActivityRatio[y,t,e,m,r]*TotalAnnualTechnologyActivityByMode[y,t,m,r]=AnnualTechnologyEm
issionByMode[y,t,e,m,r]; 

s.t. E2_AnnualEmissionProduction{y in YEAR, t in TECHNOLOGY, e in EMISSION, r in REGION}: 
sum{m in MODE_OF_OPERATION} AnnualTechnologyEmissionByMode[y,t,e,m,r] = 
AnnualTechnologyEmission[y,t,e,r]; 

s.t. E3_EmissionsPenaltyByTechAndEmission{y in YEAR, t in TECHNOLOGY, e in EMISSION, r in 
REGION}: AnnualTechnologyEmission[y,t,e,r]*EmissionsPenalty[y,e,r] = 
AnnualTechnologyEmissionPenaltyByEmission[y,t,e,r]; 

s.t. E4_EmissionsPenaltyByTechnology{y in YEAR, t in TECHNOLOGY, r in REGION}: sum{e in 
EMISSION} AnnualTechnologyEmissionPenaltyByEmission[y,t,e,r] = 
AnnualTechnologyEmissionsPenalty[y,t,r]; 

s.t. E5_DiscountedEmissionsPenaltyByTechnology{y in YEAR, t in TECHNOLOGY, r in REGION}: 
AnnualTechnologyEmissionsPenalty[y,t,r]/((1+DiscountRate[t,r])^(y-min{yy in YEAR} min(yy)+0.5)) = 
DiscountedTechnologyEmissionsPenalty[y,t,r]; 

s.t. E6_EmissionsAccounting1{y in YEAR, e in EMISSION, r in REGION}: sum{t in TECHNOLOGY} 
AnnualTechnologyEmission[y,t,e,r] = AnnualEmissions[y,e,r]; 

s.t. E7_EmissionsAccounting2{e in EMISSION, r in REGION}: sum{y in YEAR} AnnualEmissions[y,e,r] = 
ModelPeriodEmissions[e,r] - ModelPeriodExogenousEmission[e,r]; 

s.t. E8_AnnualEmissionsLimit{y in YEAR, e in EMISSION, r in REGION}: 
AnnualEmissions[y,e,r]+AnnualExogenousEmission[y,e,r] <= AnnualEmissionLimit[y,e,r]; 

s.t. E9_ModelPeriodEmissionsLimit{e in EMISSION, r in REGION}: ModelPeriodEmissions[e,r] <= 
ModelPeriodEmissionLimit[e,r] ; 

 
# Wind Capacity Credit # 

 
s.t. WCC1_PeakDemand{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in REGION: 

SpecifiedDemandProfile[y,l,f,r] / YearSplit[y,l] >= max{ll in TIMESLICE} 
max(SpecifiedDemandProfile[y,ll,f,r] / YearSplit[y,ll]) && ElectricityForTransmissionTag[f,r]=1 && 
WindTechnologyTag[t,r]=1}: (RateOfDemand[y,l,f,r] + RateOfUse[y,l,f,r])/CapacityToActivityUnit[t,r] = 
PeakElectricityDemandCalculated[y,r]; 
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s.t. WCC2_WindPenetration{y in YEAR, t in TECHNOLOGY, r in REGION: WindTechnologyTag[t,r]=1}: 
TotalCapacityAnnual[y,t,r]/PeakElectricityDemandEntered[y,r] = WindPenetration[y,r]; 

s.t. WCC3_WindAverageCapacityFactor{y in YEAR, t in TECHNOLOGY, r in REGION: 
WindTechnologyTag[t,r]=1}: sum{l in TIMESLICE} CapacityFactor[y,t,l,r]*YearSplit[y,l] = 
WindAverageCapacityFactor[y,r];  

s.t. WCC4_WindCapacityCreditEntered{y in YEAR,t in TECHNOLOGY, r in REGION: 
WindTechnologyTag[t,r]=1}: ReserveMarginTagTechnology[y,t,r] = WindCapacityCreditEntered[y,r]; 

s.t. WCC5_SegmentSelection{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}: Segment1Tag[y,r] + 
Segment2Tag[y,r] + Segment3Tag[y,r] + Segment4Tag[y,r] + Segment5Tag[y,r] + Segment6Tag[y,r] = 1; 

s.t. WCC6a_SegmentFraction1{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}: 
Segment1Fraction[y,r] <= Segment1Tag[y,r]; 

s.t. WCC6b_SegmentFraction2{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}: 
Segment2Fraction[y,r] <= Segment2Tag[y,r]; 

s.t. WCC6c_SegmentFraction3{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}: 
Segment3Fraction[y,r] <= Segment3Tag[y,r]; 

s.t. WCC6d_SegmentFraction4{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}: 
Segment4Fraction[y,r] <= Segment4Tag[y,r]; 

s.t. WCC6e_SegmentFraction5{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}: 
Segment5Fraction[y,r] <= Segment5Tag[y,r]; 

s.t. WCC6f_SegmentFraction6{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}: 
Segment6Fraction[y,r] <= Segment6Tag[y,r]; 

s.t. WCC7_WindPenetrationSegment{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}:  
(Segment1Fraction[y,r]*1 + Segment2Tag[y,r]*1 + Segment2Fraction[y,r]*4 + Segment3Tag[y,r]*5 + 

Segment3Fraction[y,r]*5 + Segment4Tag[y,r]*10 + Segment4Fraction[y,r]*10 + Segment5Tag[y,r]*20 + 
Segment5Fraction[y,r]*15 + Segment6Tag[y,r]*35 + Segment6Fraction[y,r]*965)/100 = 
WindPenetration[y,r]; 

s.t. WCC8_WindCapacityCredit{y in YEAR, r in REGION: WindCapacityCreditSwitch=1}: 1/100*( 
(Segment1Tag[y,r] + Segment2Tag[y,r])*32.8/(0.306 + WindDispersionCoefficient[y,r])*sum{l in 
TIMESLICE, t in TECHNOLOGY: WindTechnologyTag[t,r]>0} CapacityFactor[y,t,l,r]*YearSplit[y,l]/ 
ReliabilityConventionalPlants[y,r]*(1+3.26*WindDispersionCoefficient[y,r]) + Segment2Fraction[y,r]* 
(32.8/(0.306 + WindDispersionCoefficient[y,r])*sum{l in TIMESLICE, t in TECHNOLOGY: 
WindTechnologyTag[t,r]>0} CapacityFactor[y,t,l,r]*YearSplit[y,l]/ReliabilityConventionalPlants[y,r]* 
(3.26*WindDispersionCoefficient[y,r]*(exp(-0.1077*(0.306+WindDispersionCoefficient[y,r])*(5-1))-1))) + 
Segment3Tag[y,r]*(32.8/(0.306 + WindDispersionCoefficient[y,r])*sum{l in TIMESLICE, t in 
TECHNOLOGY: WindTechnologyTag[t,r]>0} CapacityFactor[y,t,l,r]*YearSplit[y,l]/ 
ReliabilityConventionalPlants[y,r]* (1+3.26*WindDispersionCoefficient[y,r]*exp(-0.1077*(0.306+ 
WindDispersionCoefficient[y,r])*(5-1)))) + Segment3Fraction[y,r] *(32.8/(0.306 + 
WindDispersionCoefficient[y,r])*sum{l in TIMESLICE, t in TECHNOLOGY: 
WindTechnologyTag[t,r]> 0} CapacityFactor[y,t,l,r]*YearSplit[y,l]/ 
ReliabilityConventionalPlants[y,r]*(3.26* WindDispersionCoefficient[y,r]*(exp(-0.1077*(0.306+ 
WindDispersionCoefficient[y,r])*(10-1))-exp(-0.1077*(0.306+WindDispersionCoefficient[y,r])*(5-1))))) + 
Segment4Tag[y,r]*(32.8/(0.306 + WindDispersionCoefficient[y,r])*sum{l in TIMESLICE, t in 
TECHNOLOGY: WindTechnologyTag[t,r]> 0} 
CapacityFactor[y,t,l,r]*YearSplit[y,l]/ReliabilityConventionalPlants[y,r]* (1+3.26* 
WindDispersionCoefficient[y,r]*exp(-0.1077*(0.306+WindDispersionCoefficient[y,r])*(10-1)))) + 
Segment4Fraction[y,r]*(32.8/(0.306 + WindDispersionCoefficient[y,r])*sum{l in TIMESLICE, t in 
TECHNOLOGY: WindTechnologyTag[t,r]>0} CapacityFactor[y,t,l,r]*YearSplit[y,l]/ 
ReliabilityConventionalPlants[y,r]*(3.26*WindDispersionCoefficient[y,r]*(exp(-0.1077*(0.306+ 
WindDispersionCoefficient[y,r])*(20-1))-exp(-0.1077*(0.306+WindDispersionCoefficient[y,r])*(10-1))))) 
+ Segment5Tag[y,r]*(32.8/(0.306 + WindDispersionCoefficient[y,r])*sum{l in TIMESLICE, t in 
TECHNOLOGY: WindTechnologyTag[t,r]>0} 
CapacityFactor[y,t,l,r]*YearSplit[y,l]/ReliabilityConventionalPlants[y,r]*(1+3.26* 
WindDispersionCoefficient[y,r]*exp(-0.1077*(0.306+WindDispersionCoefficient[y,r])*(20-1)))) + 
Segment5Fraction[y,r]*(32.8/(0.306 + WindDispersionCoefficient[y,r])*sum{l in TIMESLICE, t in 
TECHNOLOGY: WindTechnologyTag[t,r]> 0} CapacityFactor[y,t,l,r]*YearSplit[y,l]/ 
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ReliabilityConventionalPlants[y,r]*(3.26* WindDispersionCoefficient[y,r]*(exp(-0.1077*(0.306+ 
WindDispersionCoefficient[y,r])*(35-1))-exp(-0.1077*(0.306+WindDispersionCoefficient[y,r])*(20-1))))) 
+ Segment6Tag[y,r]*(32.8/(0.306 + WindDispersionCoefficient[y,r])*sum{l in TIMESLICE, t in 
TECHNOLOGY: WindTechnologyTag[t,r]> 0} 
CapacityFactor[y,t,l,r]*YearSplit[y,l]/ReliabilityConventionalPlants[y,r]* (1+3.26* 
WindDispersionCoefficient[y,r]*exp(-0.1077*(0.306+WindDispersionCoefficient[y,r])*(35-1)))) = 
WindCapacityCreditCalculated[y,r]; 

 
# Meeting Operating Reserve Demands # 

 
s.t. R1_PrimDemandUp{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION: f = "PrimReserveUp"}: 

sum{t in TECHNOLOGY} RateOfProductionByTechnology[y,l,t,f,r]/CapacityToActivityUnit[t,r] >= 
PrimReserveUpCapacityDemand[y,l,r]; 

s.t. R2_SecDemandUp{y in YEAR, l in TIMESLICE, f in FUEL, r in REGION: f = "SecReserveUp"}: 
sum{t in TECHNOLOGY} RateOfProductionByTechnology[y,l,t,f,r]/CapacityToActivityUnit[t,r] >= 
SecReserveUpCapacityDemand[y,l,r]; 

s.t. R3_PrimDemandDown{y in YEAR, l in TIMESLICE, r in REGION}: {t in TECHNOLOGY} 
PrimReserveDownByTechnology[y,l,t,r]/CapacityToActivityUnit[t,r] >= 
PrimReserveDownCapacityDemand[y,l,r]; 

s.t. R4_SecDemandDown{y in YEAR, l in TIMESLICE, r in REGION}: {t in TECHNOLOGY} 
SecReserveDownByTechnology[y,l,t,r]/CapacityToActivityUnit[t,r] >= 
SecReserveDownCapacityDemand[y,l,r]; 

 
# Considering Ramping Characteristics # 

 
s.t. R5_MaxOnlineCapacity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in 

REGION}:OnlineCapacity[y,l,t,r] <= TotalCapacityAnnual[y,t,r]*CapacityFactor[y,t,l,r]; 
s.t. R6_MaxPrimCapacityDown{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION}: 

PrimReserveDownByTechnology[y,l,t,r] <= 
OnlineCapacity[y,l,t,r]*MaxPrimReserveDown[y,t,r]*CapacityToActivityUnit[t,r]; 

s.t. R7_MaxSecCapacityDown{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION}: 
SecReserveDownByTechnology[y,l,t,r] <= 
OnlineCapacity[y,l,t,r]*MaxSecReserveDown[y,t,r]*CapacityToActivityUnit[t,r]; 

s.t. R8_MaxPrimCapacityUp{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in REGION: 
f = "PrimReserveUp" && MaxPrimReserveDown[y,t,r] >= MinStableOperation[y,t,r] && 
MaxPrimReserveUp[y,t,r] >= MinStableOperation[y,t,r] && MaxSecReserveDown[y,t,r] >= 
MinStableOperation[y,t,r] && MaxSecReserveUp[y,t,r] >= 
MinStableOperation[y,t,r]}:RateOfProductionByTechnology[y,l,t,f,r] <= 
TotalCapacityAnnual[y,t,r]*CapacityFactor[y,t,l,r]*MaxPrimReserveUp[y,t,r]*CapacityToActivityUnit[t,r]; 

s.t. R9_MaxSecCapacityUp{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in REGION: f 
= "SecReserveUp" && MaxSecReserveDown[y,t,r] >= MinStableOperation[y,t,r] && 
MaxSecReserveUp[y,t,r] >= MinStableOperation[y,t,r]}: RateOfProductionByTechnology[y,l,t,f,r] <= 
TotalCapacityAnnual[y,t,r]*CapacityFactor[y,t,l,r]*MaxSecReserveUp[y,t,r]*CapacityToActivityUnit[t,r]; 

s.t. R10_MinElecGeneration1{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: ElectricityForTransmissionTag[f,r]=1 && MaxSecReserveDown[y,t,r] >= 
MinStableOperation[y,t,r] && MaxSecReserveUp[y,t,r] >= MinStableOperation[y,t,r] && 
(MaxPrimReserveDown[y,t,r]>0 || MaxPrimReserveUp[y,t,r]>0 || MaxSecReserveDown[y,t,r]>0 || 
MaxSecReserveUp[y,t,r]>0)}: PrimReserveDownByTechnology[y,l,t,r] + 
SecReserveDownByTechnology[y,l,t,r] <= RateOfProductionByTechnology[y,l,t,f,r]; 

s.t. R11_MinOnlineCapacity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in REGION: 
ElectricityForTransmissionTag[f,r]=1 && MaxPrimReserveDown[y,t,r] >= MinStableOperation[y,t,r] && 
MaxPrimReserveUp[y,t,r] >= MinStableOperation[y,t,r] && MaxSecReserveDown[y,t,r] >= 
MinStableOperation[y,t,r] && MaxSecReserveUp[y,t,r] >= MinStableOperation[y,t,r]}: 
RateOfProductionByTechnology[y,l,t,f,r] <= OnlineCapacity[y,l,t,r]*CapacityToActivityUnit[t,r]; 
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s.t. R12_MinElecGeneration2{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: ElectricityForTransmissionTag[f,r]=1 && MaxSecReserveDown[y,t,r] >= 
MinStableOperation[y,t,r] && MaxSecReserveUp[y,t,r] >= MinStableOperation[y,t,r]}: 
OnlineCapacity[y,l,t,r]*MinStableOperation[y,t,r]*CapacityToActivityUnit[t,r] <= 
RateOfProductionByTechnology[y,l,t,f,r]; 

s.t. R13_MaxPrimCapacityUp{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: f = "PrimReserveUp" && (MaxPrimReserveDown[y,t,r] < MinStableOperation[y,t,r] || 
MaxPrimReserveUp[y,t,r] < MinStableOperation[y,t,r])}: RateOfProductionByTechnology[y,l,t,f,r] <= 
OnlineCapacity[y,l,t,r]*MaxPrimReserveUp[y,t,r]*CapacityToActivityUnit[t,r]; 

s.t. R14_MaxSecCapacityUp{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in REGION: 
f = "SecReserveUp" && (MaxPrimReserveDown[y,t,r] < MinStableOperation[y,t,r] || 
MaxPrimReserveUp[y,t,r] < MinStableOperation[y,t,r]) && (MaxSecReserveDown[y,t,r] < 
MinStableOperation[y,t,r] || MaxSecReserveUp[y,t,r] < 
MinStableOperation[y,t,r])}:RateOfProductionByTechnology[y,l,t,f,r] <= 
OnlineCapacity[y,l,t,r]*MaxSecReserveUp[y,t,r]*CapacityToActivityUnit[t,r]; 

s.t. R15_MinElecGeneration{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in REGION: 
ElectricityForTransmissionTag[f,r]=1 && (MaxPrimReserveDown[y,t,r] < MinStableOperation[y,t,r] || 
MaxPrimReserveUp[y,t,r] < MinStableOperation[y,t,r]) && (MaxSecReserveDown[y,t,r] < 
MinStableOperation[y,t,r] || MaxSecReserveUp[y,t,r] < MinStableOperation[y,t,r]) && 
(MaxPrimReserveDown[y,t,r]>0 || MaxPrimReserveUp[y,t,r]>0 || MaxSecReserveDown[y,t,r]>0 || 
MaxSecReserveUp[y,t,r]>0)}: 
OnlineCapacity[y,l,t,r]*MinStableOperation[y,t,r]*CapacityToActivityUnit[t,r] + 
PrimReserveDownByTechnology[y,l,t,r] + SecReserveDownByTechnology[y,l,t,r] <= 
RateOfProductionByTechnology[y,l,t,f,r]; 

s.t. R16_MinOnlineCapacity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, ff in FUEL, fff 
in FUEL, r in REGION: ff = "PrimReserveUp" && fff = "SecReserveUp" && 
ElectricityForTransmissionTag[f,r]=1 && (MaxPrimReserveDown[y,t,r] < MinStableOperation[y,t,r] || 
MaxPrimReserveUp[y,t,r] < MinStableOperation[y,t,r]) && (MaxSecReserveDown[y,t,r] < 
MinStableOperation[y,t,r] || MaxSecReserveUp[y,t,r] < MinStableOperation[y,t,r])}: 
RateOfProductionByTechnology[y,l,t,f,r] + RateOfProductionByTechnology[y,l,t,ff,r] + 
RateOfProductionByTechnology[y,l,t,fff,r] <= OnlineCapacity[y,l,t,r]*CapacityToActivityUnit[t,r]; 

s.t. R17_MinOnlineCapacity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, ff in FUEL, r 
in REGION: ff = "PrimReserveUp" && ElectricityForTransmissionTag[f,r]=1 && 
(MaxPrimReserveDown[y,t,r] < MinStableOperation[y,t,r] || MaxPrimReserveUp[y,t,r] < 
MinStableOperation[y,t,r]) && MaxSecReserveDown[y,t,r] >= MinStableOperation[y,t,r] && 
MaxSecReserveUp[y,t,r] >= MinStableOperation[y,t,r] && (MaxPrimReserveDown[y,t,r]>0 || 
MaxSecReserveDown[y,t,r]>0 || MaxPrimReserveUp[y,t,r]>0 || MaxSecReserveUp[y,t,r]>0)}: 
RateOfProductionByTechnology[y,l,t,f,r] + RateOfProductionByTechnology[y,l,t,ff,r] <= 
OnlineCapacity[y,l,t,r]*CapacityToActivityUnit[t,r]; 

s.t. R18_MinElecGeneration{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in REGION: 
ElectricityForTransmissionTag[f,r]=1 && (MaxPrimReserveDown[y,t,r] < MinStableOperation[y,t,r] || 
MaxPrimReserveUp[y,t,r] < MinStableOperation[y,t,r]) && MaxSecReserveDown[y,t,r] >= 
MinStableOperation[y,t,r] && MaxSecReserveUp[y,t,r] >= MinStableOperation[y,t,r] && 
MaxPrimReserveDown[y,t,r] > 0}:PrimReserveDownByTechnology[y,l,t,r]*(MinStableOperation[y,t,r] + 
MaxPrimReserveDown[y,t,r])/MaxPrimReserveDown[y,t,r] + SecReserveDownByTechnology[y,l,t,r] <= 
RateOfProductionByTechnology[y,l,t,f,r]; 

 
# Minimum online upward reserve calculations # 

 
s.t. R19_MinPrimReserveUpOnline{y in YEAR, l in TIMESLICE, r in REGION}: 

PrimReserveUpCapacityDemand[y,l,r]*MinPrimReserveUpOnline[y,r] <= sum{t in TECHNOLOGY} 
PrimReserveUpOnline[y,l,t,r]; 

s.t. R20_MinSecReserveUpOnline{y in YEAR, l in TIMESLICE, r in REGION}: 
SecReserveUpCapacityDemand[y,l,r]*MinSecReserveUpOnline[y,r] <= sum{t in TECHNOLOGY} 
SecReserveUpOnline[y,l,t,r]; 
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s.t. R21_MaxPrimReserveUpOnline1{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: f = "PrimReserveUp" && (MaxPrimReserveDown[y,t,r] < MinStableOperation[y,t,r] || 
MaxPrimReserveUp[y,t,r] < MinStableOperation[y,t,r])}: 
RateOfProductionByTechnology[y,l,t,f,r]/CapacityToActivityUnit[t,r] = PrimReserveUpOnline[y,l,t,r]; 

s.t. R22_MaxSecReserveUpOnline1{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: f = "SecReserveUp" && (MaxSecReserveDown[y,t,r] < MinStableOperation[y,t,r] || 
MaxSecReserveUp[y,t,r] < MinStableOperation[y,t,r])}: 
RateOfProductionByTechnology[y,l,t,f,r]/CapacityToActivityUnit[t,r] = SecReserveUpOnline[y,l,t,r]; 

s.t. R23_MaxPrimReserveUpOnline1{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: f = "PrimReserveUp" && (MaxPrimReserveDown[y,t,r] >= MinStableOperation[y,t,r] && 
MaxPrimReserveUp[y,t,r] >= MinStableOperation[y,t,r])}: 
RateOfProductionByTechnology[y,l,t,f,r]/CapacityToActivityUnit[t,r] >= PrimReserveUpOnline[y,l,t,r]; 

s.t. R24_MaxSecReserveUpOnline1{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: f = "SecReserveUp" && (MaxSecReserveDown[y,t,r] >= MinStableOperation[y,t,r] && 
MaxSecReserveUp[y,t,r] >= MinStableOperation[y,t,r])}: 
RateOfProductionByTechnology[y,l,t,f,r]/CapacityToActivityUnit[t,r] >= SecReserveUpOnline[y,l,t,r]; 

s.t. R25_MaxReserveUpOnline{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: ElectricityForTransmissionTag[f,r]=1 && (MaxPrimReserveDown[y,t,r] >= 
MinStableOperation[y,t,r] && MaxPrimReserveUp[y,t,r] >= MinStableOperation[y,t,r] || 
MaxSecReserveDown[y,t,r] >= MinStableOperation[y,t,r] && MaxSecReserveUp[y,t,r] >= 
MinStableOperation[y,t,r])}: OnlineCapacity[y,l,t,r] - 
RateOfProductionByTechnology[y,l,t,f,r]/CapacityToActivityUnit[t,r] >= PrimReserveUpOnline[y,l,t,r] + 
SecReserveUpOnline[y,l,t,r]; 

s.t. R26_MaxPrimReserveUpOnline2{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION: 
MaxPrimReserveDown[y,t,r] >= MinStableOperation[y,t,r] && MaxPrimReserveUp[y,t,r] >= 
MinStableOperation[y,t,r]}: OnlineCapacity[y,l,t,r]*MaxPrimReserveUp[y,t,r] >= 
PrimReserveUpOnline[y,l,t,r]; 

s.t. R27_MaxSecReserveUpOnline2{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION: 
MaxSecReserveDown[y,t,r] >= MinStableOperation[y,t,r] && MaxSecReserveUp[y,t,r] >= 
MinStableOperation[y,t,r]}: OnlineCapacity[y,l,t,r]*MaxSecReserveUp[y,t,r] >= 
SecReserveUpOnline[y,l,t,r]; 

 
# Maximum changes in online capacity and generation # 

 
s.t. R28_MaxCycling{y in YEAR, l in TIMESLICE, ll in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 

REGION: ElectricityForTransmissionTag[f,r]=1 && TimeSliceLinkTag[l,ll,r]<>0}: 
OnlineCapacity[y,ll,t,r]*(1-MaxOnlineCapReduction[y,t,r])*TimeSliceLinkTag[l,ll,r] <= 
OnlineCapacity[y,l,t,r]; 

s.t. R29_MaxGenerationChange{y in YEAR, l in TIMESLICE, ll in TIMESLICE, t in TECHNOLOGY, f in 
FUEL, r in REGION: ElectricityForTransmissionTag[f,r]=1 && TimeSliceLinkTag[l,ll,r]<>0}: 
(RateOfProductionByTechnology[y,ll,t,f,r] - 
OnlineCapacity[y,ll,t,r]*MaxGenerationReduction[y,t,r]*CapacityToActivityUnit[t,r])*TimeSliceLinkTag[l,l
l,r] <= RateOfProductionByTechnology[y,l,t,f,r]; 

 

 
solve 
end; 
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 DETAILED TEST CASE ASSUMPTIONS Annex E
 
 

This annex presents more detail regarding the assumptions applied for the 
illustrative case study assessed in Section 4 of Part B of this thesis. They are in 
addition to the information provided in Section 4.1.  

Demand was assumed to be price-inelastic and increase from 78.2 to 126.0 GW 
during the peak-periods from 2010 until 2040. Four seasons were modelled with 
one representative day each, split up in an equally long day- and night-time 
(Table 16). The underlying annual growth rate of the demand was set to 1.6%. 
This equals the average growth rate of European OECD countries over the 
period 1990 – 2020 [368]. 
 

Table 16 

Demand in each time slice [GW] 

 
 
 

Primary reserve was assumed to be available within seconds and secondary 
reserve within 15 minutes. As suggested in Section 2.2.1 of Part B of this thesis, 
a half an hour time horizon was chosen to estimate primary reserve 
requirements and a four hour time horizon for secondary reserve. Reserve 
requirements were considered based on some of the metrics provided in that 
section. The standard deviation of the demand forecast error was assumed to be 
1% over the half an hour and +-2% over the four hour time horizon. The 
standard deviation of the wind forecast error was assumed to be +-1.4% and   
+-6% over the same time horizons. The total reserve requirements were 
calculated for each time slice as three times the sum of the root-mean-square of 
these standard deviations, plus the outage of the single largest plant for upward 
reserve requirements. The largest plant was assumed to have a capacity of 
1.6 GW182. 

                                                      
182  The Capacity Outage Probability Table (COPT) macro developed by Lang [453] was used to 

estimate the likeliness of an outage to occur which is greater than this largest plant. For this 
purpose, the plant type and size mix was aligned to the German power system [454]. The 
outage probability was calculated based on unavailability data from VGB PowerTech and 
Eurelectric [365]. Their forced outage definition includes outages which are shiftable up to 12 

 

Winter 

Day

Winter 

Night

Spring 

Day

Spring 

Night

Summer 

Day

Summer 

Night

Autumn 

Day

Autumn 

Night

2010 78.2 56.8 66.1 44.1 73.5 47.8 71.4 48.4

2040 126.0 91.4 106.5 70.9 118.4 77.0 114.9 77.9
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This results in maximum primary upward reserve requirements of 4.0 GW in 
2010 and 6.5 GW in 2040. The downward reserve demand increase from 
2.4 GW – 4.9 GW over the same time horizon. For secondary reserve, the peak 
requirements increase from 7.0 GW – 17.1 GW for upward reserve and 5.4 GW 
– 15.5 GW for downward reserve. These significant increases are due to the gain 
in wind power generation throughout the modelling period. One third of all 
upward reserve was required to be provided by online plants183. 
 

Table 17 

Generation Input Data 

 
 
 

Table 17 provides an overview of the modelled technologies and their 
characteristics, which are largely based on the performance of existing plants. 
For simplicity, assumptions about future performance improvements were 
avoided. All capacity factors, expected life times, efficiencies and cost data, apart 
from reserve costs, were taken from average country data provided by the IEA 
et al. [306]. A very small negative cost was assigned to the provision of reserve. 

                                                                                                                              
hours. In line with a study by dena [455], this data was adjusted to account for the shorter 
reserve timeframes and divided by the ‘Mean Time To Repair’ to derive the probability of an 
outage in a specific plant [375,456]. Based on the COPT calculations, the resulting likeliness of 
an outage greater than 1.6 GW was found to be 2.0% within the four hour timeframe and 
0.03% within the half an hour timeframe. 

183  If reserve requirements were normally distributed and reserve demand was entered as three 
times the standard deviation, this would ensure that 68% of all upward reserve requirements 
are provided by online plants. 



 Annex E – Detailed Test Case Assumptions 

301 

This ensures that the model calculates the available reserve, which might be 
higher than the required reserve. 

Minimum stable operation levels and reserve contributions by nuclear power 
plants were aligned with NEA data [370]. For wind, this data was drawn from 
publications by Tsili and Papathanassiou, De Vos et al. and Vestas [371–373]. 
Other minimum stable operations levels were derived from work by Carraretto 
and Deane et al. [49,374]. Other contributions to reserve were taken from data 
provided by Meibom et al. [375]. These values were increased for the primary 
reserve provision by combined cycle gas turbines, assuming half of them would 
be able to operate in frequency response mode with ramping characteristics as 
outlined by Balling, and Pickard and Meinecke [376,377]. Where not explicitly 
available in the mentioned literature, data for the maximum secondary reserve 
contribution was derived by multiplying the ramping rates over the secondary 
reserve timeframe of 15 minutes. 

The applied transmission and distribution losses of 6.1% equal those of the 
OECD Europe region [369]. The wind dispersion coefficient of 0.56 was 
aligned with the value mentioned for Denmark (refer to Section 2.1.2 of Part B). 
In this illustrative application, the availability of wind power in each time slice 
was set equal to the yearly capacity factor. Variations of wind power within each 
time slice were considered implicitly within the calculation of the reserve 
requirements. A detailed modelling of minimum and maximum generation from 
wind power based on probabilistic assessments was however outside the scope 
of this application. IPCC Tier 1 default emission factors were assigned to coal 
and natural gas. They were derived from the technology and environmental 
database within LEAP184. The overall reserve margin of the power system was 
set to 20% and a discount rate of 5% was applied to all expenditures. 

The sinking fund depreciation used in the core code of OSeMOSYS was 
replaced by a straight-line depreciation. This was done by commenting out the 
salvage value and storage investment equations (SV1 & SI8). In (SV2 & SI7) the 
condition was removed that the discount rate has to equal zero for these 
equations to apply [39,101]. Unlike the straight-line depreciation, the sinking 
fund depreciation is lowest in the first years of an investment [457]. Therefore, 
technologies with larger investment costs might become profitable in later years, 

                                                      
184  As mentioned, LEAP uses OSeMOSYS optimisation features for the calculation of power 

plant capacity expansions. It does so by writing an input data file for OSeMOSYS, running 
OSeMOSYS and then importing the results back into LEAP. This input data file was used for 
the first model case presented in Section 4.2.1 of Part B of this thesis.  
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given their higher salvage value at the end of the modelling period. The straight-
line depreciation was applied to avoid this influence of the salvage value. 
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 THE IRISH PUMPED STORAGE HYDROPOWER Annex F

PLANT – CODE IMPLEMENTATION 
 
 

The code implementation for the Irish pumped storage hydropower plant is 
given below. The code below can effectively be cut and pasted into the GNU 
MathProg model file provided in Annex D. The storage parameters, variables 
and constraints provided below need to be added to the model file, whereas 
modified constraints replace there precursors. The reader is referred to 
www.osemosys.org for more information. Note that the ‘#’ symbol precedes a 
line of code not used in the model and is included for comments. 

 

# STORAGE PARAMETERS # 

 
param StorageTag{t in TECHNOLOGY, f in FUEL, r in REGION}; 
param StorageEfficiency{t in TECHNOLOGY, r in REGION}; 
param StorageLimit{t in TECHNOLOGY, r in REGION}; 
param TimeslicesInSeason{ls in SEASON, l in TIMESLICE, r in REGION}; 
param DaysWithinSeason{ls in SEASON, r in REGION}; 
 

# STORAGE VARIABLES# 

 
var StorageCharging{y in YEAR, l in TIMESLICE, t in TECHNOLOGY,f in FUEL, r in REGION} >=0; 
 

# STORAGE CONSTRAINTS# 

 
s.t. DS1_StorageCharging{y in YEAR, ls in SEASON, t in TECHNOLOGY, f in FUEL, r in REGION}: 

sum{l in TIMESLICE} 
ProductionByTechnology[y,l,t,f,r]*TimeslicesInSeason[ls,l,r]/StorageEfficiency[t,r]* StorageTag[t,f,r] = 
sum{l in TIMESLICE} StorageCharging[y,l,t,f,r]*TimeslicesInSeason[ls,l,r]; 

s.t. DS2_MaxChargingPerDay{y in YEAR, ls in SEASON, t in TECHNOLOGY, f in FUEL, r in REGION: 
StorageTag[t,f,r]=1}: (sum{l in TIMESLICE} 
ProductionByTechnology[y,l,t,f,r]*TimeslicesInSeason[ls,l,r]) <= 
StorageLimit[t,r]*DaysWithinSeason[ls,r]; 

 
# MODIFIED CONSTRAINTS# 

 
s.t. EBa4rev_RateOfFuelUse1{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in 

MODE_OF_OPERATION, r in REGION:InputActivityRatio[y,t,f,m,r]<>0 || StorageTag[t,f,r]<>0}: 
RateOfActivity[y,l,t,m,r]*InputActivityRatio[y,t,f,m,r] + StorageCharging[y,l,t,f,r]/YearSplit[y,l] = 
RateOfUseByTechnologyByMode[y,l,t,m,f,r]; 

s.t. CAa4rev_Constraint_Capacity{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION: 
TechWithCapacityNeededToMeetPeakTS[t,r]<>0}: RateOfTotalActivity[y,l,t,r] + sum{f in FUEL} 
StorageCharging[y,l,t,f,r]/YearSplit[y,l] <= 
TotalCapacityAnnual[y,t,r]*CapacityFactor[y,t,l,r]*CapacityToActivityUnit[t,r]; 

s.t. EBa1reva_RateOfFuelProduction1{y in YEAR, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in 
MODE_OF_OPERATION, r in REGION: OutputActivityRatio[y,t,f,m,r] <>0 && not(sum{ff in 
FUEL} StorageTag[t,ff,r] = 1 && f = "PrimReserveUp")}: 
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RateOfActivity[y,l,t,m,r]*OutputActivityRatio[y,t,f,m,r] = 
RateOfProductionByTechnologyByMode[y,l,t,m,f,r]; 

s.t. EBa1revb_RateOfFuelProduction1b{y in YEAR, l in TIMESLICE, f in FUEL, ff in FUEL, t in 
TECHNOLOGY, m in MODE_OF_OPERATION, r in REGION: StorageTag[t,f,r] = 1 && ff = 
"PrimReserveUp"}: RateOfActivity[y,l,t,m,r]*OutputActivityRatio[y,t,ff,m,r] + 
StorageCharging[y,l,t,f,r]/YearSplit[y,l] = RateOfProductionByTechnologyByMode[y,l,t,m,ff,r]; 

s.t. R25rev_MaxReserveUpOnline{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, r in 
REGION: ElectricityForTransmissionTag[f,r]=1 && (MaxPrimReserveDown[y,t,r] >= 
MinStableOperation[y,t,r] && MaxPrimReserveUp[y,t,r] >= MinStableOperation[y,t,r] || 
MaxSecReserveDown[y,t,r] >= MinStableOperation[y,t,r] && MaxSecReserveUp[y,t,r] >= 
MinStableOperation[y,t,r])}:  
OnlineCapacity[y,l,t,r] - RateOfProductionByTechnology[y,l,t,f,r]/CapacityToActivityUnit[t,r] + 
StorageCharging[y,l,t,f,r]/YearSplit[y,l]/CapacityToActivityUnit[t,r] >= PrimReserveUpOnline[y,l,t,r] + 
SecReserveUpOnline[y,l,t,r];   

s.t. R26rev_MaxPrimReserveUpOnline2{y in YEAR, l in TIMESLICE, t in TECHNOLOGY, r in REGION: 
MaxPrimReserveDown[y,t,r] >= MinStableOperation[y,t,r] && MaxPrimReserveUp[y,t,r] >= 
MinStableOperation[y,t,r]}: 
OnlineCapacity[y,l,t,r]*MaxPrimReserveUp[y,t,r] + sum{f in FUEL} 
StorageCharging[y,l,t,f,r]/YearSplit[y,l]/ CapacityToActivityUnit[t,r] >= PrimReserveUpOnline[y,l,t,r]; 
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 POWER PLANT DATA FOR CLEWS STUDY ON Annex G

MAURITIUS 
 
 

 

Efficiency
Maximum 

availability

Capacity 

credit

Capital 

cost

Fixed 

O&M cost

Variable 

O&M cost
Fuel cost Life time Feedstock Fuel

% % %
Mio. 

USD/MW

1000 

USD/MW
USD/MWh USD/GJ Years -

Beau Champ 24 70.3 70.3 2.3 0 7.6 0 30 Coal, Bagasse

Belle Vue 24 65.9 65.9 2.3 48 5.4 1.2 30 Coal, Bagasse

Cascade Ceclie 100 13.2 4.5 4.3 0 5.8 0 30 Hydro

Champagne 100 11.4 90 2.4 0 2.1 10.9 30 Hydro

CTDS 25 91.6 91.6 2.1 48 6.5 2.3 30 Coal

CTSav 24 85 85 2.3 48 5.4 1.2 30 Coal, Bagasse

F.U.E.L. 24 73.3 73.3 2.3 48 5.2 1 30 Coal, Bagasse

Ferney 100 24.6 90 2.4 0 2.1 10.9 30 Hydro

Fort George 44.2 85 95 0.8 35 2.1 10.9 30 Oil

Fort Victoria 42 58 95 0.8 35 2.1 10.9 30 Oil

La Chaumiere 100 85 85 25.5 0 49.4 0 30 Waste

La Ferme 100 12.7 4.4 4.3 0 5.8 0 30 Hydro

La Nicoliere Feeder canal 100 60 60 4.3 0 3.5 0 30 Hydro

Le Val 100 12 4.1 4.3 0 5.8 0 30 Hydro

Magenta 100 20.4 7.1 4.3 0 5.8 0 30 Hydro

Mare Chicose Landfill Gas 100 76 76 2.9 0 33 0.4 30 Biogas

Medine 23 25.5 0 2.3 0 14.3 0 30 Bagasse

Mon Desert Alma 23 36.5 0 2.3 0 8 0 30 Bagasse

Mon Loisir 23 53.5 0 2.3 0 4.9 0 30 Bagasse

Mon Tresor Milling 23 41.3 0 2.3 0 6.4 0 30 Bagasse

New Geothermal 100 86 86 3.4 0 18.2 0 30 Heat

New PV 100 20 0 6 0 33.3 0 30 Solar

Nicolay 26 85 95 0.8 35 2.1 10.9 30 Kerosene

Pointe aux Caves 25 85 85 2.1 48 6.5 2.3 30 Coal

Reduit 100 25 8.6 4.3 0 5.8 0 30 Hydro

Riche En Eau 23 27.1 0 2.3 0 12.2 0 30 Bagasse

Savannah 23 40.1 0 2.3 0 7.3 0 30 Bagasse

St. Louis 39.2 85 95 0.8 35 2.1 10.9 30 Oil

Tamarind Falls 100 26 9 4.3 0 5.8 0 30 Hydro

Thermal not exported to CEB 24 85 85 2.3 48 3.5 0 30 Coal, Bagasse

Union St. Aubin 23 57.3 0 2.3 0 5.1 0 30 Bagasse

Power Plants
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