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One of the most obvious challenges facing the Internet can

be observed every day when surfing the Web. As people start

their working day, the application-level performance of the

Web decreases drastically as the infrastructure of the WWW

had not been designed for the huge amount of users.

Caching is a standard solution for this kind of problem,
which is why the current situation of caching in the WWW

forms the initial part of this paper. As several issues are

shown to remain, the more advanced concept of replication

and naming is presented afterwards. It is shown that the

latter not only helps to reduce the overall bandwidth as well

as user-perceived latency, but that a more fault-tolerant and
more evenly balanced system results. The presented system,

CgR/WLIS, is shown to be realizable in a transparent and

backward compatible manner as compared to the installed

base of WWW software.

TODAY’S WEB

A few years ago, the notion of an Information Superhighway

has been envisioned. Today, it is beginning to become a
reality—including traffic jams as on conventional (motor)
highways. The fortunate message is that anyone having
access to the Internet may potentially profit from the vast
amount of information available. Due to the fact that most
members of the still growing Internet community surf the
Web at daytime, we are faced with the problem of network
congestion at those times. Low bandwidth, especially for
intercontinental links, is the immediate consequence. The
user itself experiences high latencies. The problems become
even more serious when looking at the hot pages of the day.
One major difficulty arises due to the most common case
that all requests of all users have to be served by a single
machine. In this single-server approach, the Web server
becomes a bottleneck. Even worse, if this machine fails, the
access path to the information is lost. There is a single point
of failure. Therefore, solutions for a couple of interrelated
problems have to be come up with in order to preserve the
usability of the World Wide Web:

• Decrease document retrieval latency
While this is the most beneficial goal from the users
point of view, it is the most complex to achieve.

• Reduce the amount of data transferred
This is the primary goal for anyone having to pay for net-
work usage.

• Increase document availability
According to the problems of the single-server approach
already discussed, we have to look for strategies to dis-
tribute documents among several servers.

• Retain transparency
Requests for a document have to be handled fully trans-
parent without the user being aware of the existence of an
underlying infrastructure. Thus, the distribution of docu-
ments has to be hidden from the Web user.

• Balance the bandwidth usage
Relinquish bandwidth at peak-times by shifting network
access to periods of low traffic. The users surfing at day-
time immediately benefit from the higher bandwidth.

• Backward compatibility
A rather pragmatic issue to be followed is to remain com-
patible with the existing Web. Currently installed soft-
ware must continue to function properly.

A very popular and widely accepted approach to address at
least some of the problems stated above is the usage of
caching proxies. The next chapter looks at what caching can
accomplish, which issues remain to be solved and in which
way. Afterwards, a discussion of another more current
solution developed at our research group is introduced.

CACHING

The rationale behind caching is the idea to bring the data as
close to its consumer as possible in order to minimize access
times. Primarily, this technique has been applied to memory
hierarchies employed in nearly every computer. While the
processor’s registers are located at the top of the memory
hierarchy, the main memory typically can be found several
levels below, followed by the disks. The closer one gets to
the actual job of processing the data, the smaller the
available memory becomes but the faster it can be accessed.
The advantages of caching rely on the principle of reference
locality — data that has just been used is assumed to be
accessed again in the near future. The first time the data is
requested, it has to be loaded from the memory level where it
is stored, for example from a file residing on disk. According
to the notion of reference locality, the data may be cached.
From now on, further requests can be satisfied directly from
the cache. Thus, performance gains can be obtained up from
the second request for the same data. Because of space
constraints, the hard job in any caching system is to decide
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which data to cache. A severe problem known as cache
coherency arises if the data is changed on the originating
level without recognition by the cache. Caching strategies
have to tackle this issue as well.

When considering caching in the WWW, the notion of a
memory hierarchy could be extended when interpreting
Web servers as another, external level. As a first approach
of caching, a client-local disk- and/or in-memory-cache has
been established in Web browsers. However, caching only
makes sense when the same document is requested more
than once. Thus, the profit of caching can be increased
noticeably when the cache is shared among several users.
The idea of caching proxies arose [15]. A proxy acts as a
mediator between the user’s machines and the outside
world. From the user’s point of view, the proxy acts like a
Web server. Each request is sent to and answered by the
proxy, which in turn may forward the request to the
originating server, acting itself as a client from the server’s
point of view. Therefore, the proxy has an ideal position to
include another cache. It is shared among several users
serving all their requests, so the probability of a document
to be accessed more than once increases. As a side effect,
this machine can act as a firewall, permitting local machines
to access the outside world in a controllable manner.

Another special aspect of caching within the Web is the
divergence in profit that can be obtained by different pages.
In a classical cache, items can be treated equally, making it
easy for a replacement policy to select an item to be
overwritten within the cache. There are several additional
properties to be considered when caching is applied to the
Web. The first one is the size of documents to be cached. In
case of a disk cache, there is an upper limit defined for the
size of the caching area. Now assume a full cache and a
request for a big document we want to store in the cache.
The burden placed on the replacement policy drastically
increases. Is it more sensible to replace a single big
document than several smaller ones? There are many factors
to be considered besides the size of the document. Among
them are the pattern of document access and the time
required to reload the documents. This loading time in turn
depends on the origin of the document. Data that has to be
transferred over international links typically needs longer to
be retrieved than information from servers in the same
country. Because bandwidth varies through the course of a
day, an additional indeterminism and difficulty is
introduced.

Furthermore, the cache coherency problem already stated
above arises. With respect to the Web, this problem is often
referred to as document staleness. Cached documents may
change on the originating server. Since caching proxies do
not know about changes, any further request satisfied from
the cache would deliver out-of-date information.
Unfortunately, the expiration date potentially included in
each document transferred through the Hypertext Transfer
Protocol (HTTP, [2], [7], [11]), is still used by too few Web
servers. As a consequence, caching proxies have to come up
with heuristics to determine document staleness. One
possible heuristic is known as time-to-live (TTL). The
rationale behind this approach is the experience that

documents that have not been modified recently will
probably not be changed in the near future. In contrast,
recently changed documents should not be kept too long in
the cache without checking their consistency. Based on the
date of the last modification included in every reply from a
Web server, a timing-window called TTL is associated with
each document as it is put into the cache. At the time a
document is requested, its TTL is checked. An access inside
the timing window is served directly from the cache, quietly
assuming the document to be consistent. After TTL has
expired, a conditional reload is performed. The originating
server will answer either with the new document or a special
reply indicating unchanged data.

Advantages
For quantifying the profit drawn from caching, the
underlying metrics have to be redefined, taking the size of
the document into account. The simple measurement of a
cache hit where each item cached is considered to obtain the
same profit is no longer sufficient. A more sensible
approach taking the size of the cached document into
account is referred to as the byte hit rate.

Despite all problems of caching within the Web, there are
numerous advantages remaining that can be observed.
Based on the log files created by specially instrumented
proxies of our University as well as of our research group,
we performed various traces. The questions to be answered
by our investigations included:

• Does reference locality exist with respect to the Web?

• How does the available application-level bandwidth
vary on the course of a day?

• Which hit rates can theoretically be achieved?

• What profit is obtained by using currently installed
caches?

Reference locality in the Web
Based on the logs of April 96, we summed the number of
references of each requested document. A total of 220.000
documents distributed over 11.000 servers have been
accessed. As shown in figure 1, only a very small subset of
pages incorporates a high number of references while most
documents are accessed relatively seldom.
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Averaged over 8 months, we found that 14% of all cached
pages are responsible for 42% of the cached data while
retaining only 7% of the overall disk space. So we can
conclude that reference locality does indeed exist with
respect to the Web and therefore caching really makes
sense.

Variation of the available bandwidth
Exploiting the logs of three months, we calculated the
bandwidth from the document sizes and the duration of the
transfers. The results are presented in figure 2.

It should be noted that the variation in bandwidth of
international links is much more severe than that of national
ones. When using transatlantic links from Germany to the
US, bandwidth varies between 100 bytes/sec around noon
and 5.000 bytes/sec at about 6 a.m., a difference of a factor
of 50. Regarding only nationwide transfers, the
measurements only vary by a factor of 7 between
1.000 bytes/sec and 7.000 bytes/sec. In contrast, the graph’s
behaviour remains nearly the same when comparing
national and international accesses. The early morning
hours appear to be best suited for surfing the Web.

Theoretically achievable hit rates

A challenging point for investigations is to determine which
hit rates are theoretically achievable. Based on our log files
we performed a simulation using a virtual cache with
unlimited size. The logs of April 96 have been applied to
warm up the cache, so all documents requested in this
month are ready to be delivered directly from the cache.
Now we traced the requests of the following month, serving
the documents from the cache whenever possible and
counting the hits. Any newly accessed document has been
added to the virtual cache. Document staleness has been
ignored for this investigation. The results are as follows:

Cache hit rate: 56,5%
Byte hit rate: 40,6%
Transferred data: 3.650.950.731 bytes

The term transferred data indicates the amount of data
transmitted between the cache and the outside Web servers.
An amazingly high cache hit rate of 56,5% could have been
achieved, while the byte hit rate of 40,6% is significantly
lower. From this fact we can conclude that small documents

more likely contribute to the cache hits.

As already pointed out, any document stored in the cache
has been delivered directly, resulting in 28,2% of stale data
to be presented to the user. 

Profit of real caching

The logs of the CERN httpd proxy server that was used
during the period surveyed have been applied to evaluate
the profit actually achieved. There were 500 MB of disk
space allocated as caching area. According to the caching
policy applied by CERN httpd, on the course of a day all

requested pages are cached, regardless of the disk space
needed. Through nighttime, documents get deleted until a
low watermark cache size has been reached. As long as
possible, expired pages are selected for deletion. The results
as obtained from evaluating the logs are listed below:

Cache hit rate: 21,3%
Byte hit rate: 16,6%
Transferred data: 4.992.987.253 bytes

Note that the stale rate cannot be reported. It is not possible
to determine from the logs whether a document served from
the cache was stale or not.

Comparing the results with the optimal cache discussed
above, we must conclude that real caching is far from being
optimal. Only 40% of the theoretically possible byte hit rate
has been achieved. Though the advantages gained from
caching are clearly recognizable, caching is not able to
tackle all the goals for a better Web already mentioned
above.

Problems caching does not solve
Referring back to the goals listed in the second section, the
first issue is to decrease document retrieval latency.
Caching addresses only parts of the problem. The first time
a document is requested, it has to be retrieved from the
originating server. Only beginning with the second access
the cache may help, thus reducing the total amount of data
transferred, which is the second goal mentioned above.
From a theoretical point of view it would therefore be
fortunate if the first user to request the document could also
benefit from a globally knowledgeable cache as 69.9%
(according to our measurements) of the pages have been
retrieved only once.

Increasing document availability — goal number three — is
not addressed by pure caching. Even when a document is
cached, checking whether it is up to date remains
impossible when the originating server is down. The only
way out is to deliver the document anyway, despite its
possible staleness. In the case the document is not in the
cache, it cannot be delivered at all.

When using caching proxies, the user only has to register
the proxy at his Web browser. Afterwards, documents are
either delivered directly from the caching proxy or they are
retrieved from the originating server. In either case, the
decision made by the proxy is fully hidden from the user.
From this point of view, caching proxies fulfill the fourth
goal of transparent access. However, because the proxy uses
heuristics to determine document staleness, the pages
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delivered may be out-of-date. The user would obtain a
different document when retrieving it directly from the
originating server. Therefore, no full transparency can be
accomplished by only using caching proxies.

In achieving the fifth goal of balancing the available
bandwidth usage, caching is not appropriate. All document
loading and staleness checks are made in the critical path
exactly at the time of the request. Therefore, network load
follows the user’s temporal preferences of surfing the Web,
namely during daytime.

In order to address the remaining problems, we have to look
for a more advanced solution, taking our last goal into
account — backward compatibility. Our proposal taking all
the goals into account will be explained in the next section.

A PROMISING SOLUTION: REPLICATION

The basic idea to address the problems caching does not
solve is replication. It has already been pointed out that one
major goal to achieve is the increased document
availability. This is the primary aim of replication.
Additionally, we will see how bandwidth balancing and
backward compatibility may seamlessly be integrated in a
replication scheme. This section will focus on the concepts
of replication with a special look at the Web. Following, the
realization and a prototype implementation will be
described.

Mechanisms
Today, documents accessible in the Web typically are
stored at a single server. Whenever the server is down, the
one and only path to the original data is lost. In order to
increase the document availability, alternative access paths
have to be provided. This is not a particularly new problem.

Consider FTP sites, which are usually mirrored to increase
their availability and to balance the load between multiple
FTP servers. The user has to be aware of their existence in
order to benefit from selecting a close one from the
network’s point of view. As a result, the network load is
reduced, because shorter and more local links are used —
another advantage gained from replication.

The down side of replication is the need to maintain
consistency between the data stored on the original server
and all its mirrors. Fortunately, we may benefit from two
properties typical for the Web. First, by far the most
requests for a document are read-only accesses, which are
not critical for consistency maintenance. The second
property to be mentioned is that changes to documents in
most cases occur at the originating site by the document’s
creator. Therefore, besides a propagation of such changes,
we only have to come up with a solution for the uncommon
case of write-accesses by normal users.

A more challenging aspect is how to introduce the
additional servers into today’s Web. The chief requirement
to make replication really useful is to achieve replication

transparency. Particularly, users should not be aware of the
existence of multiple servers. From the user’s point of view,
a service like the request for a document is presented to one
logical server. The logical server acts as a representation of
a group of physical servers. In particular, a request should
not be directed to any of the physical servers. In case of its
failure, the request could still be fulfilled by a different
server. 

Naming
Currently, a document available in the Web is represented

by its URL (Uniform Resource Locator). Because URLs

literally contain the name of the server, we actually run into

the problem of transparently directing a request to a specific

physical server in a logical group of replicated servers. Cer-

tain solutions based on DNS lookup exist, providing differ-

ent server IP-addresses if asked for a name resolution [6].

However, this strategy only allows for whole-site replica-

tion. As has been determined by several groups, generally

only a small set of documents a server offers are very popular

(see [13] e.g.). Therefore, a more sensible approach would

allow the replication of only those documents.

Caching goes Replication
Combining the paradigms of caching and replication
promises a synergetic solution addressing all the five goals
for a better Web. The concept we have put into practice is
called Caching goes Replication (CgR). The basic idea of
our approach is that of an active caching scheme, where
servers can decide which documents should be cached and
where this should be done.

For the current Web scenario, this implies transforming
previously only passively caching servers into Replicated

Servers (RS, see figure 3). These RS will then actively
duplicate parts of the original Primary Server’s (PS) URL
namespace, i.e. a subset of the data provided by them. The
selection of which caching servers to convert to RS can

PS

RS2RS1 RS3

RS5RS4

CP

client

level 1

level 2

Fig. 3: Overview of the CgR scheme. One Primary
Server (PS) forms the root of a logical tree of
Replicated Servers (RS), which are serving (part
of) the PS’ replicated namespace. Via a Client-
side Proxy (CP), the client can access either RS
or PS resp.
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either be done manually or automatically based on
appropriate heuristics. While the latter is aimed at lowering
the overall latency of all data accesses, a manual selection is
especially sensible if it is known, which data is important to
the community of users accessing the replicate server.
Besides the conversion of existing caches to RS, new
dedicated RS might be set up as well. Creating a
hierarchical structure of RS and PS helps improving
scalability: the PS will only have to know the set of its
direct replicates (RS1-RS3 in figure 3). These first level

replicates will in turn themselves have RS (e.g. RS4 and

RS5) for which they act as the PS, creating a logical tree of

Replicated Servers.

One might wonder how an active propagation of data to-be-
replicated fits into the client/server architecture of the Web.
However, this does not impose any technical problem:
servers can initiate a propagation by sending a normal
HTTP GET request bearing a particular notification. CgR
enhanced RS will interpret this notification as a command to
request the data to-be-replicated themselves. A more serious
question to be addressed is the one of clients selecting RS,
PS, and normal WWW servers, resp. At the first glance, this
might induce modifications to the clients making them
aware of their choices. By choosing a CgR enhanced Client-
side Proxy (CP), all CgR specific actions can transparently
be performed without modifying the clients or their
interface to the Web. Fortunately, virtually every Web
browser offers the possibility to redirect requests to a proxy
server. This CP will direct WWW requests no longer only to
the conventional (primary) servers, but also to available RS
if possible. Such proxies can either be located near the client
as the name CP suggests, or they can be set up by
information providers who want to mask the application-
level replicated nature of their server network.

Web Location and Information Service
The concept of CP just offers the basic mechanisms for
clients to address a group of servers. What is still needed is
a way to propagate the information about which RP exist
and what replicates they hold. For this purpose, we
developed the Web Location and Information Service

(WLIS, pronounced „Willis“). The primary purpose of this
application-level name service is to keep track of which
URL namespaces are replicated and which servers belong to
logical groups of PS and RS. A natural place to implement
the WLIS service is the CP (as assumed below), but it can
also be included in the PS or can be offered by separate
WLIS servers. The currently realized former approach
permits the inclusion of replication information in form of
hyperlinks to RS into the user-delivered document. This
gives the end-user the choice of transparently using CgR/
WLIS or of directly accessing a specific site, e.g. for
reasons of data freshness. The approach of separate WLIS
servers in contrast helps to reduce the load of document
serving machines.

As a necessity for good scalability, WLIS information has
to be collected and propagated automatically. Figure 4 gives
an idea of how the distributed WLIS database is being set
up. Assuming that no WLIS information is available, the CP

will forward any requests directly to the appropriate PS
(step 1). The PS itself knows about its first-level RS (RS1-

RS3) and will include this information in a special HTTP

header field of its answer. This initial WLIS information
thus reaches the CP piggybacked with the conventional
answer, from which it will be removed and used to build a
list of RS associated to the respective PS. For subsequent
requests to the respective URL namespace, the CP will
address either the PS or one of the three newly „learned“
RS1-RS3. At this point, heuristics for estimating available

bandwidth and thus for choosing an „optimal“ server are
applied. If the selection is made to query one of the RS (e.g.
RS1 in figure 4, step 2), this one will in turn answer with the

requested document and a list of its own replicates (RS4 and

RS5 in this example). The CP will add this information to its

database, and as these steps are performed over time, the CP
will continuously learn about the whole server group. A
third request might e.g. be directed to RS5 (step 3). Manual

insertion of WLIS information can further speed up the
learning process especially in the case of already explicitly
established WWW mirror sites [1].

Results
The combination of CgR and WLIS as it is currently
implemented has been evaluated in our research group and
has proven to be a sensible solution. Sets of RS for several
different PS have been set up and are in daily use. As an
additional service, our CP also offer replication on demand,
allowing users to explicitly request an URL namespace
subtree to be replicated. However, due to our limited
possibilities to install CgR enhanced PS and RS in a wider
extent, simulations are used to estimate the benefits of
adding replication to the conventional caching mechanisms.
The following graphs show the results of a simulation based
on the WWW requests originating from our university in
May 1996. For the tests, a single RS was addressed with

PS

RS2RS1

RS3

RS5

RS4

CP

client

1

2

3

WLIS

Fig. 4: Propagation of WLIS information. Over steps 1-
3, the CP „learns“ about all RS.
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certain quotas of its overall cache space assigned to
exclusively holding replicates. Caches and replicate quotas
were previously warmed with data of the preceding month,
i.e., they were filled with the requests of April 1996. LRU is
used as the replacement policy for the conventional cache.
On the arrival of new documents, this strategy will replace
documents that were least recently used (LRU). LRU is
deployed in most existing caching proxies.

Figure 5 shows the cache hit rate, figure 6 the byte hit rate to
be achieved at different cache sizes and varying replicate
quotas. For small cache sizes, reserving a considerable
amount of cache space exclusively for replicates decreases
overall performance. As long as the requests do not show a
high reference locality that can be served from the
replicates, this is an expected effect. Beyond a break-even
point (which is about 350MByte for our tests), however,
replication improves the cache hit rate by about 4% at
850MByte cache size. A more obvious effect can be
observed on the byte hit rate. For a 500MByte cache, a 40%

replicate quota can improve the byte hit rate by 9.2%. A
reason for the bad performance of the 10% and 40%
replicate quotas at higher cache sizes could not yet be
identified - this is subject to further investigations.

The user-perceivable average transmission times for
requested documents are shown in figure 7. The bad
performance of the replication-based approach for small
cache sizes relates to the lower cache hit and byte hit rates
as to be seen in figure 5 and figure 6. With increasing cache
sizes, active replication can reduce transmission times by
about 1.5%. 

Another advantage of the replication concept is the more
evenly distributed network bandwidth usage. Namespace
replicates will be updated during low-traffic hours and the
bandwidth requirements in usual peak-traffic hours are
reduced. The reduction in the amount of data transmitted
during normal requests in figure 8 validates this assumption.
With only one 500MByte RS the data to be transmitted can
be reduced by 3.8%. Additionally, the traffic is shifted from
inside the network closer to the client, relieving the core
network. The unexpected behaviour of the 10% and 40%
replicate quotas at higher cache sizes relates to the
corresponding lower byte hit rates as seen in figure 6.

As measurable improvements can already be achieved by
using only one RS, applying CgR in a broader context
promises even more significant benefits. With lots of sites
accessing RS instead of the originating PS, e.g., the
130MBytes of transmitted data saved with a single RS
(referring to figure 8 at a cache size of 500MByte) are
multiplied. This fact considerably reduces the HTTP traffic
on the connections from RS to PS, which will often be on
network backbones. The traffic caused by keeping
replicates consistent will be placed in times of low
background traffic, balancing the bandwidth usage. Besides
the impact of CgR when applied in large extend, setting up
replicated servers for dedicated user groups with distinct
reference locality will further improve hit rates and thus the
benefits of replication.
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Other important advantages of CgR are not directly
expressed by the figures above. Among them are the
possibility of realizing HTTP traffic shaping and the
introduction of failure-tolerant groups of Web servers.
Especially the latter aspect can greatly improve service
availability, as current Web servers are single points of
failure. Another point is, that active replication can much
better achieve document freshness. In contrast to the
caching proxy approach, a definite maximum staleness of
documents can be guaranteed.

Apart from these improvements, CgR and WLIS have been
designed to encapsulate all necessary modifications in CP
and the servers (RS and PS). Neither browsers nor the
HTTP protocol have to be modified, so CgR is compatible
with the existing Web infrastructure.

RELATED WORK

The general advantages of caching in the World-Wide Web
have already been pointed out in section 2. For more
detailed discussions of advantages and drawbacks of
caching proxies, the interested reader may be referred to [3],
[5], [6], [13] or [16]. As far as server-driven approaches are
concerned, several other works deserve particular attention.
In the area of more conceptually oriented papers, [4]
presents a list of basic advantages of server initiated cache
invalidation. Partially building on this work, [8] shows in a
more thorough way the advantages of replication on the
Web including detailed simulations of their concepts.
However, as in [4], neither the naming problem has been
tackled, nor an actually installable piece of software, i.e., a
WWW server or proxy resulted from their work. As far as
proxying software is concerned, Harvest [9], [14] and Squid
[12] deserve particular attention. Though originally
intended to provide efficient caching infrastructures, both
systems gradually incorporate elements being of advantage
to server initiated replication strategies. Particularly their
ability to be hierarchically structured prove to be of high
value in this respect.

FURTHER WORK

With respect to the future, several paths to further work are
immediately visible. From a performance tuning point of
view, the most essential information yet to be gathered is a
list of data to be replicated to obtain the largest benefit as
well in terms of overall network traffic reduction as well as
with respect to user-perceptible latency reduction. In the
realm of the former, the actual algorithm and timetable for
replicating modified data from primary to replica servers
need to be established so as not to interfere with peak times
of network traffic generated otherwise. In the opposite
direction, the question remains to be solved, how the
selection of appropriate RS has to be decided, given the
solution of the more imminent problem, namely the
definition of the term appropriate. As probably no clear,
firm, and decisive answers applicable to any combination of
PS and RS can be given in any of the areas outlined above,
new heuristics have to be developed. Since they initially
will be based on the simulations presented above, further
explanations and models for the behavior observed during
our tests have to be developed. Additionally, more traces
will have to be collected to permit more substantial
statements on the WWW data retrieval behavior of
heterogeneous user communities.

A completely different area of further work concerns the
inclusion of client-initiated data uploads to the servers. Such
write operations tend to be much more involved in an
unreliable environment as set up by the Internet than in
more easily controllable local area networks where most
work on this topic has been performed so far. However, as
multicasting on wide-area networks becomes more
commonplace than it is today, techniques like those
presented in [10] might be considered in the future.

The introduction of an automated document retrieval
automaton into a RS fetching data on behalf of a person
wishing to be able to easily and quickly access certain sets
of documents sometime later proved to be very attractive. In
this area, further work can be started investigating in how
far a combination of CgR/WLIS can be used to effectively
—though certainly not reliably— shape traffic at
application level, e.g. by re-routing requests as suggested by
usage patterns observed earlier. In this respect, such a
system might even become an initial, distributed platform
for experiments with qualities of service. The latter can
certainly not be guaranteed as the Internet is an inherently
unreliable system, but in expectation of respective facilities
in the next generation IP protocol [17], it might provide first
experiences with user-perceptible end-to-end guarantees.

CONCLUSION

Caching and replication have shown their advantages in
many areas of computing. This paper intended to revisit and
extend on more basic research in this field with a distinct
focus on its usefulness at the application level, particularly
the World-Wide Web. Results of simulations have been
presented supporting the conceptual advantages of caching
and replication. In order to fully reap the benefits of
replication particularly in the WWW, an application-level
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naming service has been introduced. This Web Location
and Information Service originally has been intended to
provide for a transparent introduction of fault-tolerance and
load-balancing in a replication enhanced Web. During the
work carried out, it grew into a full-fledged naming service
of potential impact on other protocols and applications
within the Internet permitting the latter to scale and thus,
grow in a more healthy manner than today. The concepts
and initial measurements presented in this paper have been
shown to be extensible in various directions. One of the
most interesting ones is the creation of a first notion of
quality of service over the inherently unreliable Internet.
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