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Abstract Severe weather, including tornadoes, thunderstorms, wind, and hail annually
cause significant loss of life and property. We are developing spatiotemporal machine learn-
ing techniques that will enable meteorologists to improve the prediction of these events by
improving their understanding of the fundamental causes of the phenomena and by building
skillful empirical predictive models. In this paper, we present significant enhancements of
our Spatiotemporal Relational Probability Trees that enable autonomous discovery of spa-
tiotemporal relationships as well as learning with arbitrary shapes. We focus our evaluation
on two real-world case studies using our technique: predicting tornadoes in Oklahoma and
predicting aircraft turbulence in the United States. We also discuss how to evaluate success
for a machine learning algorithm in the severe weather domain, which will enable new meth-
ods such as ours to transfer from research to operations, provide a set of lessons learned for
embedded machine learning applications, and discuss how to field our technique.
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1 Motivation and introduction

The long-term goal of our research is to fundamentally transform scientists’ understanding
and prediction of severe weather phenomena through the development and application of
spatiotemporal machine learning/data mining techniques. Severe weather phenomena, in-
cluding tornadoes, thunderstorms, hail, and wind, annually cause significant loss of life and
property (e.g., $32B in the United States in 2011, Lubber 2012). Thunderstorms produce
turbulence that is dangerous to aviation, causing costly diversions, delays, cancellations,
and occasional accidents (Eichenbaum 2003). Improving the prediction of such events will
have an immediate impact to society.

Humans are very good at pattern recognition, including scientific discovery. How-
ever, humans have difficulty processing the overwhelming amount of data being produced
by weather observations and numerical models. Meteorologists rely on conceptual mod-
els to help them when they issue severe weather warnings (Lemon and Doswell 1979;
Rasmussen 2003). Although severe weather events are continuous, dynamic entities, me-
teorologists study them through discrete high-level features and relationships. For ex-
ample, Fig. 1(a) shows the simulated reflectivity 25 m above the ground. Figure 1(b)
shows the structure of a canonical supercell thunderstorm (e.g., Lemon and Doswell 1979;
Davies-Jones 1986; Bluestein 1993). Comparing the lower left portion of Fig. 1(a) to
Fig. 1(b), we can see a hook echo (a comma shaped region of high reflectivity) that, coupled
with the low reflectivity region of inflowing air adjacent to it, indicates a region of rotation
(a mesocyclone). The inflow converging into the low reflectivity region produces a strong
rotating updraft (air flowing upward). A hook echo is an indicator of a potential tornado.

We are using statistical relational learning (SRL, Jensen and Getoor 2003; Fern et al.
2006; Getoor and Taskar 2007) to study these phenomena, which enables machine learning
to build models of the data using objects (e.g., the high level features identified by the meteo-
rologists) and the relationships between them. These relationships are crucial. For example,

Fig. 1 These figures are best viewed in color. (a): Simulated reflectivity (proportional to precipitation in-
tensity) just above the ground. (b): Structure of a classic supercell (adapted from Lemon and Doswell 1979;
Davies-Jones 1986; Bluestein 1993)
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the relationship between the updraft and the rear-flank downdraft, an area of relatively cooler
and drier air that spreads out behind the storm, is thought to play a significant role in the
creation of tornadoes (e.g., Rotunno 1993). SRL has proven to be very successful in a wide
variety of applications (e.g., Neville et al. 2005; Fast et al. 2007; Neville and Jensen 2007;
Raghavan et al. 2012). We previously developed the Spatiotemporal Relational Probability
Tree (SRPT) and its related Spatiotemporal Relational Random Forest (SRRF) techniques
(McGovern et al. 2008, 2010, 2011, 2013) and have demonstrated that they can be success-
fully applied to severe weather applications.

For this special issue focusing on machine learning with importance to society and sci-
ence, we summarize our work in developing spatiotemporal machine learning methods and
applying them to severe weather data. We introduce several significant enhancements to the
SRPT and SRRF. We focus on an analysis of two case studies of different severe weather
phenomena, a discussion of how to verify machine learning methods on severe weather, an
impact discussion from several meteorologists, a discussion of how to field these techniques,
and lessons learned for embedding machine learning in a real-world application.

2 Related work in meteorology

The environment within which tornadic storms form is well recognized and is used to issue
tornado watches by the National Weather Service’s (NWS’s) Storm Predication Center (e.g.,
Johns and Doswell 1992; Moller et al. 1994; Thompson et al. 2007). However, once storms
form, it is difficult to identify which storms will produce tornadoes. The most severe tor-
nadoes develop within supercell thunderstorms that are detectable using the NWS network
of Doppler weather radars (e.g., Brown et al. 1978). These radars measure reflectivity and
Doppler velocity (component of precipitation particle motion relative to the radar viewing
direction) as well as newly-added dual-polarization data (used to deduce precipitation par-
ticle type and size) within the storms. Short-term tornado warnings typically are based on
the presence of a supercell thunderstorm using radar information. Unfortunately, most tor-
nado warnings are false alarms (e.g., Simmons and Sutter 2011) because only a minority of
supercell storms produce tornadoes and there are no unique radar or visual signatures that
distinguish these storms.

Meteorologists use numerical modeling of supercell storms with the goal of discovering
precursors that will help discriminate between tornadic and nontornadic supercell storms
(e.g., Klemp and Rotunno 1983; Wicker and Wilhelmson 1995; Snook and Xue 2008).
Numerically-modeled storms typically are initiated by letting a bubble of warm air rise and
interact with vertical profiles of wind, temperature, and moisture that are similar to those
typically found in tornadic supercell environments. Though idealized, output from a nu-
merical model provides an evolving three-dimensional picture of the temperature, humidity,
wind, and hydrometeor particles (rain, hail, graupel, snow) within the modeled storm. One
of the important parameters that is computed from the three-dimensional wind field is the
vertical component of vorticity1 (rotation about a vertical axis), because it is the concentra-
tion of vorticity within the storm’s mesocyclone that leads to a tornado-scale vortex (e.g.,
Markowski et al. 2003; Davies-Jones 2008).

Atmospheric turbulence is a significant source of concern for airline dispatchers, air traf-
fic managers and pilots. Avoiding turbulence is a priority for ensuring passenger safety and

1Vorticity is a measure of the local rotation about an arbitrarily-oriented axis.
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comfort, yet unwarranted cancellations, delays and deviations can be costly in time, staff
compensation and fuel use, not to mention the disrupted plans of passengers. The Federal
Aviation Administration (FAA) has begun addressing this issue by sponsoring development
of a gridded turbulence forecast product known as Graphical Turbulence Guidance (GTG,
described in Sharman et al. 2006). Operational numerical weather prediction (NWP) models
such as the Weather Research and Forecasting (WRF) Rapid Refresh (Benjamin et al. 2006;
Skamarock and Klemp 2008) do not yet create forecasts at a scale that can explicitly re-
solve wind motions that comprise turbulence affecting aircraft (10s to 100s of meters),
so GTG relies on a combination of “diagnostics” that infer turbulence from gradients and
statistics from the 3-D forecast fields. This approach works reasonably well for clear-air
turbulence and mountain-wave turbulence. However, it significantly lacks in its ability to
diagnose turbulence in and around thunderstorms, where turbulence can be particularly dy-
namic and intense. This so-called convectively-induced turbulence (CIT) may be produced
by the shears associated with updrafts, downdrafts, storm tops penetrating the tropopause,2

or gravity waves3 that travel away from the storm and may “break” like waves on a beach.
It is a result of complex interactions between the storm dynamics and environment (Lane
et al. 2012). In an attempt to mitigate the CIT hazard, FAA guidelines (FAA 2012) currently
call for pilots to avoid thunderstorms by a wide margin. However, flight track data show that
these guidelines are frequently violated, either because the pilot is unaware of the proximity
of the storm or because other considerations (e.g., low fuel or a destination near the storm)
make following them untenable. A better understanding of the relationship between radar,
satellite and lightning observations, NWP model forecasts, and CIT is required in order to
better utilize available information to give pilots automated, specific, actionable guidance
on which airspace is likely to be hazardous.

3 Spatiotemporal relational probability trees/forests

We have previously introduced Spatiotemporal Relational Probability Trees (SRPT) and
their associated ensemble forests (SRRF) (McGovern et al. 2008, 2010, 2011, 2013). In this
paper, we focus on the new aspects. The full details of how to grow the trees and the forests
are described in Appendix A. We omit the low-level details in the main body of the paper
and focus on the high-level discussion of what is new along with a brief overview, necessary
to understand these new features.

3.1 Spatiotemporal relational attributed data

Traditional decision trees such as C4.5 (Quinlan 1993) use propositional data, which consist
of a series of attribute-value pairs. Although we could represent severe weather data in
this manner, we would not be able to reason about or autonomously discover relationships
between the high-level features using such a representation. Instead, we use an enhanced
version of the relational attributed graph representation developed by Neville et al. (2003).

Relational data contain objects, such as high-level concepts that meteorologists already
use to describe the data and relationships between these objects. In the previous work, we

2The tropopause is a layer 10 to 15 km above the ground that separates the troposphere below (where tem-
perature decreases with height) from the stratosphere above (where temperature increases with height).
3Gravity waves are undulating waves of air in the atmosphere that alternately overshoot and undershoot an
equilibrium level. The waves come from an interaction between gravity and the buoyancy of air.
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Fig. 2 Schema for the (a) aircraft turbulence and (b) tornadogenesis data

enabled objects to have spatiotemporally varying fields of scalar and vector data associated
with them. We call these fielded objects, following the convention in geographic information
systems (Goodchild et al. 2007; Cova and Goodchild 2002). We have previously described
our modifications in McGovern et al. (2010, 2011, 2013) and we briefly describe the data
through an example here.

Figure 2 shows the schema for data that we have used to predict (a) aircraft turbulence
associated with nearby storms and (b) the formation of tornadoes. These data are fully de-
scribed below. We use them here to illustrate spatiotemporal relational attributed data. Each
object, such as an aircraft or a region of precipitation such as rain or hail, is shown in
the schema with a rounded box. For example, there are five types of objects that can ap-
pear in the turbulence graphs. Although each graph can only have one aircraft object, the
other four types may appear more than once, depending on the storms surrounding the air-
craft. The pre-specified relationships are shown with hexagons and describe possible spatial
relationships between the aircraft and the precipitation regions. Objects and relationships
can each have attributes associated with them. These attributes can be static, meaning they
don’t change during the lifetime of the object, or dynamic. Univariate temporally varying
attributes are denoted with a T and two or three dimensional fields are denoted as T2F or
T3F respectively.

In the work described here, we also enable the data to be described through objects only
and do not require the domain scientist to pre-specify the list of possible relationships. This
is important as the domain scientist may not be able to mathematically specify some of the
complicated relationships, such as the idea of a downdraft wrapping around an updraft. In
future work, we would also like to enable object discovery. Currently, we include all objects
that could be important based on years of study of the atmosphere.

3.2 Spatiotemporal relational probability trees and forests

Spatiotemporal Relational Probability Trees (SRPTs) are probability estimation trees
(Provost and Domingos 2003) that learn with spatiotemporally varying relational data. We
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give a brief overview here and the full details of the learning algorithm are provided in
Appendix A. SRPTs differ from existing tree-based relational learning approaches such as
TILDE (Blockeel and De Raedt 1998; Ramon et al. 2002) in their ability to handle the
discovery of multi-dimensional relationships (such as the spatial ones introduced here) and
their ability to handle temporally varying data. SRRF also differs from the Relational Prob-
ability Tree (RPT Neville et al. 2003) and the temporal extensions to the RPT (Sharan and
Neville 2007, 2008) in its ability to handle spatially and spatiotemporally varying relational
data. This is critical for applications to severe weather.

A single SRPT is grown using the standard greedy algorithm from decision trees such
as ID3 and C4.5 (Quinlan 1986, 1993). Since the trees are primarily used in a forest grown
using the same randomization and bagging approach as Random Forests (Breiman 2001),
the learning algorithm does not prune. Instead of asking questions about each attribute/value
pair at a tree node, the SRPT can ask spatiotemporal questions based on a series of templates
that we have developed. The full list of possible questions is given in Appendix A. We give
illustrations of the questions below.

Data are split in the tree through questions. A question similar to those used by C4.5 trees
could be “Is there an updraft with a maximum vertical wind speed of at least 30 m s−1?” The
specific thresholds that appear in each question are chosen using sampling on the training
data. In previous work, we examined the sensitivity of the performance to these numbers.
The domain scientists prefer us to report a range of numbers rather than a specific one. In
current work, we are investigating the best way to identify this range across the forest and
to communicate it to the domain scientists.

An example of a temporal question is “Is the partial derivative (computed using finite
differences) of the area of the storm object ≥2 within 5 minutes?” This type of question
enables the data to be split on the growth or shrinkage of objects during the storm. Other
temporal questions enable the data to be split based on sustaining a value for a certain
amount time or on statistics of how the values change over time.

Because we focus on severe weather data, we have enhanced the SRPT to include ques-
tions about wind fields that are important to the formation of severe weather. These questions
examine how the wind field is converging or diverging in the neighborhood of the storm as
well as measuring the instantaneous spin.

The objects in the severe weather data are either two or three dimensional, depending on
the source of the data. In both cases, they take on a variety of shapes but they rarely take on
a canonical shape such as a circle, cylinder, or cone. In previous work, we had implemented
a shape recognition algorithm for such shapes (McGovern et al. 2013) but it limited the
identifiable shapes.

We have now developed two approaches that can distinguish arbitrary shapes. For two
dimensional data, we use shapelets as developed by Ye and Keogh (2009), Mueen et al.
(2011). Shapelets are pieces of a time-series that can be used to distinguish different time
series. We use the method from Keogh et al. (2006) to convert two dimensional shapes to
time series. The template for this type of tree node question is “Does the temporal shapelet
of array attribute a on item of type t match in this graph?” The shapelet used for comparison
is chosen from the training data. The new shapelets are one of the most frequently chosen
questions by the tree. In the tornadogenesis data described below, 11 % of the questions in
our forests use shapelets.

Three-dimensional shapes cannot be easily reduced to a single time-series and so we
use another method to address these types of data. Shape distributions are statistical distri-
butions that characterize a 3D shape (Osada et al. 2002). These can be formed by sampling
from random points on the surface of the shape and calculating a simple statistic, such as the
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distance between the two points. We use this idea to distinguish shapes from one another, by
asking the following question: “Given a shape distribution template, is this shape’s distribu-
tion statistically the same?” The distributions are distinguished using Kolmogorov-Smirnov.
We also distinguish graphs based on a shape changing over time.

In addition to the ability to distinguish arbitrary shapes, the other major enhancement
to the SRPT is to enable it to autonomously discover 3D spatial relationships in the data.
Spatial relationships are represented using an idea similar to shape distributions. Instead of
sampling from two points on the same object, the distribution is created by sampling from
one point on each object. This characterizes the shape of the space between the two objects,
enabling us to identify such relationships as one object “partially wrapped around” another
object, which occur in tornadic storms.

4 Verification: moving from research to operations

For a prediction algorithm to be useful in an operational environment, it needs to provide
skilled predictions that are physically realistic and consistent. To evaluate these criteria, we
use both objective verification scores and subjective evaluation of case studies. Verification
scores provide a means to compare the aggregate forecasts with baseline forecasts and to
establish the degree of improvement provided by the new system. Case studies allow for an
in-depth physical examination of the forecasts so that researchers can discover spatial and
temporal tendencies in the forecast and analyze how closely they match the tendencies of
the predicted phenomenon.

The verification scores used to evaluate the SRRF focus on its ability to discriminate be-
tween two outcomes. The Area Under the Receiver Operating Characteristic (ROC) Curve
(AUC; Mason 1982) evaluates how well the algorithm distinguishes between two classes
over a range of thresholds throughout the distribution of the forecast values. AUC ranges
from 0 to 1 with any value above 0.5 indicating a skilled prediction compared to a random
prediction. Binary contingency tables are created at each threshold and can be used to de-
rive a range of scores (Wilks 2011). For this work, we also use the Peirce Skill Score (PSS;
Peirce 1884; Hansen and Kuipers 1965) because it can be used to guide the choice of thresh-
old on the ROC curve. All of the verification statistics are defined precisely in Appendix B.
The probability threshold with the highest PSS balances the proportion of misses and false
alarms, but the ultimate choice of threshold is up to the domain scientist. This is a critical
reason for an interdisciplinary approach because the decision threshold chosen by the com-
puter scientist may not be the best choice for a domain where false alarms have a very high
cost. We use these scores to evaluate the overall performance of the new learning techniques
and to determine how performance varies under different conditions.

The skill statistics appropriate to a particular verification task may depend on the culture
of the problem domain and idiosyncrasies of the data available for performing the verifi-
cation. For instance, in the turbulence domain, ROC AUCs have been used for the FAA’s
evaluation of turbulence forecast algorithms before they are made operational (Wandishin
et al. 2011). This is appropriate because the AUC is not dependent on the ratio of “true” and
“false” events, which is a function of how well pilots avoid turbulence encounters. A differ-
ent skill statistic such as Critical Success Index (Schaefer 1990) might easily show declines
over time as pilots use the turbulence forecasts to avoid turbulence, making it difficult for
new turbulence forecasts to show benefit.

Case studies represent an important means for domain experts to evaluate the abilities
of new techniques in the context of particular events. Individual case study events can be
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selected for their ability to test how the new technique handles the evolution of a particular
phenomenon (Schultz 2010). Analysis of the output from the technique compared with ob-
servations shows how well the technique captured the physical ingredients for a particular
situation. Developing the case study output also aids in the process of transitioning the new
techniques from research to operations. For each of our domain areas, we are compiling
representative case studies for the physical evaluation process. We discuss a few of them in
the following section.

Severe weather presents another challenge for machine learning: unbalanced data. Al-
though events such as tornadoes or turbulence are destructive and may seem frequent in the
age of constant news coverage, they are quite rare. Pilots do their best to avoid turbulence,
which reduces our verified cases of turbulent events. For example, in the aircraft turbulence
data described below, the frequency of turbulence reports above the “moderate or greater”
threshold is approximately 0.02 %. Likewise, violent tornadoes, wind, and hail events are
infrequent. Algorithms that learn with such data must be able to handle the rarity of the
class of interest and to properly scale the final predictions to the probabilities represented
in nature. We have experimented with both undersampling the majority class or oversam-
pling the minority class (techniques discussed in Weiss and Provost 2003; Johnson et al.
2012) and have found that undersampling the majority class works best. The more balanced
data improves the performance of the trees and forest. When outputting actual probabilities,
these can be rescaled using methods such as isotonic regression (Zadrozny and Elkan 2002;
Niculescu-Mizil and Caruana 2005) or logistic regression.

5 Case studies

5.1 Tornadogenesis in Oklahoma

One of the most challenging problems in severe storms forecasting is determining whether
or not a supercell thunderstorm will produce a tornado given the characteristics of the storm
and surrounding environment. For this study, our aim is to determine the skill of predicting a
tornado only with data available from current operational observing systems. Radar-derived
supercell tracks in Oklahoma from 1994 to 2003 (Hocker and Basara 2008) were co-located
with Oklahoma Mesonet (McPherson et al. 2007) surface observations and gridded reanal-
ysis data from the North American Regional Reanalysis (NARR). The surface observations
were used to analyze the storm surface environment and to detect and analyze boundaries
while the NARR data provided information about the near-storm environmental conditions
above the surface (Fig. 2). The SRRF used these data from the time period of supercell for-
mation until tornadogenesis or storm death to determine the probability of tornadogenesis.
More information about the dataset and results with the previous SRRF (without the new
enhancements) can be found in Gagne et al. (2012) and McGovern et al. (2011).

Because there are no operational automated probabilistic tornado prediction products on
the storm level (the Storm Production Center4 has a probabilistic product but it covers an
entire day, not a single storm), we have compared the SRRF predictions with meteorological
variables that are currently used to assess the tornado potential of a given environment.
Table 1 shows the bootstrapped confidence intervals of AUC and binary verification statistics
at the threshold that maximizes PSS for each distribution of forecasts. In the table, CAPE

4http://www.spc.noaa.gov.

http://www.spc.noaa.gov
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Table 1 Comparison of the SRRF against multiple environmental variables used to determine tornado po-
tential. The 95 % bootstrapped confidence intervals (CI) of each verification score are shown. The best score
for each parameter is shown in bold

Name AUC CI Threshold CI PSS CI POD CI POFD CI FAR CI

SRRF 0.65, 0.66 0.23, 0.25 0.21, 0.23 0.51, 0.58 0.29, 0.36 0.65, 0.67

CAPE 0.46, 0.52 2463.39, 2985.83 0.08, 0.10 0.22, 0.29 0.14, 0.19 0.55, 0.67

BWD 0.46, 0.52 17.31, 19.58 0.10, 0.13 0.69, 0.80 0.59, 0.67 0.66, 0.74

SRH 0.44, 0.50 139.89, 239.47 0.04, 0.06 0.47, 0.67 0.44, 0.62 0.63, 0.76

CIN 0.53, 0.60 −9.04, −4.63 0.16, 0.19 0.34, 0.44 0.17, 0.26 0.57, 0.65

STP 0.44, 0.50 0.83, 1.78 0.05, 0.07 0.27, 0.39 0.22, 0.33 0.61, 0.72

EHI 0.48, 0.55 1.77, 2.28 0.11, 0.15 0.47, 0.57 0.35, 0.44 0.64, 0.72

stands for Convective Available Potential Energy, which measures the amount of energy in
the total atmosphere available to storms. High CAPE is associated with stronger updrafts in
storms. BWD is the Bulk Wind Difference, which is the vector difference between winds
at the surface and a higher level. Larger BWD means that supercells would have stronger
rotation and would be more likely to produce a tornado. SRH (Storm Relative Helicity)
is the amount of horizontal rotation available in the lower atmosphere that could be tilted
and stretched by supercell updrafts and downdrafts in order to form a tornado. CIN, or
Convective Inhibition, is the amount of energy that a parcel of air needs in order to rise.
Large magnitudes of CIN prevent storm formation, and small magnitudes of CIN only allow
strong isolated storms to form. STP is the Significant Tornado Parameter, an index of tornado
potential that is a scaled product of CAPE, BWD, SRH and another value. EHI, the Energy
Helicity Index, is the product of CAPE and SRH divided by a constant.

The SRRF outperforms the other variables in AUC and PSS, as shown by the non-
overlapping confidence intervals. Over the full range of their distributions, all of the pa-
rameters except CIN do not have AUC significantly better than random (0.5), but at their
optimal thresholds they do show positive skill as indicated by the positive PSS. The SRRF
and the other parameters struggle with a high False Alarm Ratio (FAR),5 in which one half
to three quarters of the tornadic predictions are for nontornadic supercells. The relatively
low probability of detection (POD) and high FAR are likely due to the coarse spatial and
temporal resolution of the NARR data as well as the fact that neither the SRRF nor the
other parameters account for the effects of storm interactions and processes occurring in the
mesocyclone. These data are not available operationally.

The predictions of the SRRF are shown for two separate tornado event days, 19 April and
8 May 2003 (Fig. 3). On 19 April, successive lines of supercells moved through northern and
eastern Oklahoma in the afternoon producing multiple brief tornado touchdowns. Because
the SRRF is a stochastic algorithm, probabilistic predictions from the SRRFs trained on the
same data will vary. The amount of variability is shown by the 95 % bootstrap confidence
intervals derived for each supercell. If the user applies the mean optimal decision threshold
of 24 % from Table 1, then the SRRF has one miss and one false alarm on April 19 and
correctly predicts all of the storms on May 8. On May 8, the SRRF correctly discriminates
between the two northernmost storms even though they are in a similar thermodynamic
environment. The incorporation of differences in the paths of the storms likely led to the

5All of the verification statistics are defined in Appendix B.
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Fig. 3 Supercell tracks in Oklahoma on 19 April 2003 and 8 May 2003. Solid lines show tornadic super-
cells tracks, and dashed lines show nontornadic supercell tracks. The triangles indicate the touchdown site
of the strongest tornado associated with each storm. The labels indicate the 95 % confidence intervals (top
and bottom numbers) of the SRRF probability of a tornado from each supercell. The filled contours show
the distribution of Convective Available Potential Energy (CAPE), which is a measure of the environmen-
tal instability. It is high in areas with a potential for storms and has sharp gradients along thermodynamic
boundaries

Table 2 Top five variable importance rankings based on 30 SRRFs. θe is the equivalent potential temperature,
and MLCIN is the Mean Layer Convective Inhibition

Object/Relation Item type Attribute name Mean score Std. Dev.

Relation Nearby Boundary-Relative Angle 37.48 5.65

Relation Nearby Distance 24.85 4.11

Object Storm Surface θe 4.53 1.51

Object Environment MLCIN 4.38 1.77

Object Boundary Pressure 2.85 2.14

differences in the probabilities. For the clusters of supercells on April 19 (where the tracks
are near each other), the SRRF gave the highest probabilities to the southernmost supercell
in both instances. That is consistent with the conceptual model of supercell interaction even
though the SRRF did not have explicit information about the presence of other supercells in
the vicinity. With situations like these, the SRRF enhanced classification ability can provide
greater insights for forecasters than the currently used environmental parameters.

Variable importance rankings show significant contributions from attributes of all objects
and relations included in the dataset (Table 2). The angle and distance between boundaries
and storms were the most important attributes by far. Storm movement at an angle roughly
45◦ relative to the boundary can increase the likelihood that individual supercells stay iso-
lated and have a consistent moisture source that is not cut off by nearby storms. Of the
environment attributes, Mean Layer Convective Inhibition (MLCIN) was the most impor-
tant. High magnitudes of MLCIN impede storm formation, and storms moving into those
areas may weaken. Attributes describing the storm surface thermodynamics, moisture, and
storm movement were highly ranked. Boundary thermodynamics were also considered im-
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portant. Although only the top 5 most important attributes were shown for space reasons,
many more were considered statistically significant.

5.2 Convectively induced turbulence

One of the hazards to aviation produced by severe weather is convectively-induced turbu-
lence. Unlike convective turbulence, which is produced within the storm itself, convectively-
induced turbulence originates in the storm and propagates throughout the surrounding clear
air. Because it is neither visible nor measurable on radar, algorithms such as the SRRF are
needed to infer, or diagnose it. For this application, the SRRF was trained on measurements
of the Eddy Dissipation Rate (EDR) from select United Airlines aircraft from March 18
through June 10 of 2010, a time period when CIT would be expected to be responsible for a
significant proportion of turbulence encounters. An EDR threshold of 0.3 m2 s−3 was used
to distinguish Moderate or Greater (MoG) turbulence. The flight data were paired with co-
located radar and Weather Research and Forecasting (WRF, Skamarock and Klemp 2008)
model data. To balance the training set due to the large number of non-turbulent cases and
to keep the training set size computationally feasible, a random sample of up to 15 turbulent
and 15 non-turbulent cases were taken from each day for a total of 1365 training cases. One
set of SRRFs was trained with only WRF data, while a second set of SRRFs was trained
with both WRF data and objects derived from composite radar reflectivity and vertically in-
tegrated liquid (VIL) (see Fig. 2). Both versions of the SRRF were compared with Graphical
Turbulence Guidance (GTG) predictions derived from the same WRF model. Verification
was done on both the deterministic GTG and a logistic-regression-calibrated probabilistic
GTG.

The verification statistics for each algorithm, computed on independent testing subsets
of the resampled data, are shown in Table 3. Both SRRF models outperform GTG in AUC,
PSS, and BSS. The greater skill of the SRRF is likely due to better handling of the convec-
tive induced turbulence, which GTG does not handle well. Using just WRF data, including
derived turbulence diagnostics developed for GTG, provides very skilled predictions from
the SRRF, and the addition of radar data does not change the AUC. At the optimal prediction
threshold around 50 %, the WRF and Radar SRRF does provide a more skilled prediction
as measured by PSS due to an increase in POD and slight decrease in FAR compared to
the WRF SRRF. Since BSS is the mean squared error between probabilistic forecasts and
binary observations, it can be used as a proxy for sharpness, or forecast spread. Sharper
turbulence diagnoses and forecasts help pilots identify safe routes and are therefore more
desirable. Within the distribution of aircraft observations, both SRRFs have similar sharp-
ness and have a greater amount than the GTG.

Table 3 Comparison of the bootstrapped 95 % confidence intervals (CI) for multiple verification statistics
applied to SRRFs trained on the turbulence cases with just collocated WRF model data and with both WRF
model data and nearby radar-derived objects, as well as Graphical Turbulence Guidance (GTG) predictions.
The Threshold (Thresh.) refers to the probability or EDR threshold with the highest Peirce Skill Score (PSS).
Sharpness refers to the standard deviation of the forecast distribution

Model (Data source) AUC CI Thresh. CI PSS CI POD CI FAR CI BSS CI

SRRF (WRF) 0.91, 0.92 0.49, 0.54 0.68, 0.70 0.79, 0.81 0.11, 0.13 0.54, 0.55

SRRF (WRF, Radar) 0.91, 0.92 0.50, 0.56 0.70, 0.72 0.81, 0.84 0.10, 0.13 0.54, 0.56

GTG Logistic (WRF) 0.85, 0.87 0.47, 0.52 0.58, 0.61 0.76, 0.79 0.18, 0.20 0.39, 0.42

GTG (WRF) 0.85, 0.87 0.23, 0.25 0.58, 0.60 0.75, 0.80 0.18, 0.21 NA
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Table 4 Top six important variables based on multiple SRRFs. The NCSU2 Turbulence Index is the cross
product of the Montgomery stream function and relative vorticity (Kaplan et al. 2006)

Objection/Relation Item type Attribute name Mean score SD

Object Aircraft Frontogenesis Function 186.9 21.76

Object Aircraft EDR 123.8 26.15

Relation Nearby Range 92.37 12.70

Object Aircraft NCSU2 Turbulence Index 89.41 20.16

Object Aircraft Deformation 89.34 21.18

Relation Nearby Azimuth 79.39 5.97

The variable importance scores for the SRRFs trained on WRF and Radar data (Table 4)
provide some insight into small difference in AUCs. Most of the top variables are turbulence
parameters from the WRF data. The ones chosen all describe different ingredients of turbu-
lence in the environment and have been used in other turbulence models (Kaplan et al. 2006;
Sharman et al. 2006). Range and azimuth (relative angle) to nearby rain, convection, hail,
and VIL objects, inform the SRRF of proximity to storms that may be generating convective
turbulence as well as what temporal changes are occurring over the last 30 minutes. The
ability to interpret and derive predictive ability from these relationship attributes gives the
WRF and Radar SRRF part of its slight advantage over the WRF SRRF. This additional
information also has an effect on the spatial characteristics of the SRRF predictions. This
can be verified by looking at a case study.

For the case study evaluation, we produced maps of the SRRF predictions for Kansas and
Missouri on 21 July 2010 at 0000 UTC. At 0014 UTC, United Airlines (UAL) Flight 967
experienced severe turbulence in Missouri resulting in multiple injuries. Figure 4 shows the
SRRF nowcast of convectively induced turbulence for this case based on co-located WRF
data, the SRRF nowcast using the WRF and radar data, logistic regression probabilistic
GTG derived from the WRF, and the composite radar reflectivity. At the time of the inci-
dent, the plane was located in an area where the WRF SRRF predicted a 30 % chance of
moderate or greater turbulence, the WRF and Radar SRRF predicted a 35 % chance, and
the GTG predicted at 21 % chance. In this case, the WRF and Radar SRRF produces spa-
tially sharper probabilistic forecasts with higher probabilities around the storms and very
low probabilities further away, a highly desirable characteristic for pilots. The WRF SRRF
issues a broader area of moderate probabilities. Although the verification scores are simi-
lar between the SRRFs, the spatial characteristics differ noticeably, and the influence of the
radar data is apparent in the higher probabilities around the radar echoes. High probabili-
ties also appear in areas distant from the strongest radar echoes for all three models where
turbulence ingredients analyzed by the WRF have a more dominant role. The GTG logistic
prediction is smooth over the storm region and indicates little turbulence near the plane.
By filtering the information from WRF and radar data, the SRRF produces a probabilistic
prediction that highlights threats from all resolvable turbulence factors. While a longer train-
ing and testing set is desirable and calibration of the predictions remains to be done, these
promising results suggest that the SRRF could be a valuable component of an operational
turbulence diagnosis capability.
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Fig. 4 Clockwise from upper left: Probability of moderate or greater (MoG) turbulence from a SRRF trained
with WRF data, probability of MoG turbulence from a SRRF trained with WRF and radar data, probability
of MoG turbulence from the logistic regression calibrated GTG derived from the WRF, and composite radar
reflectivity. The flight path of UAL Flight 967 is indicated by the red dashed line, and the location of the
turbulence incident is marked with a triangle

6 Impact on meteorology

While the occurrence of tornadic supercells remains a relatively rare event, due to their sig-
nificant destructive qualities and potential for loss of life, they remain at the forefront of
research to determine the parameters likely to result in tornadogenesis. Numerous studies
have been conducted to identify those environmental conditions that distinguish between
storms that produce tornadoes, those that do not, and other severe weather phenomena. The
overarching goal has been to increase the confidence of forecasts and warnings while pro-
viding increased lead-time to the public to protect lives and property.

Several different approaches have been employed to accomplish this challenging task.
One involves recognizing large-scale weather patterns at various heights in the atmosphere
that typically are associated with severe weather outbreaks (e.g., Miller 1967). Another
approach is to select various environmental parameters, such as storm relative helicity
that indicates the likelihood that rotation will develop about a vertical axis or convective
available potential energy (CAPE) that is a measure of atmospheric instability that favors
the formation of severe thunderstorms (e.g., Johns and Doswell 1992; Moller et al. 1994;
Thompson et al. 2007).

Such methods have led to improved forecasting of conditions favorable for supercells and
tornadoes. However, tornadoes remain a destructive phenomena that can cause considerable
loss of life. For example, in 2011, 553 fatalities occurred in the United States as a result
of killer tornadoes. In addition, fatalities occurred within every categorical classification of
tornado intensity (i.e., the Enhanced Fujita Scale which ranges from EF0 to EF5).

Because tornadogenesis is a complex process driven by multiple environmental variables,
new methods are required to determine the likelihood of tornado formation using limited



40 Mach Learn (2014) 95:27–50

environmental observations. Similarly, aircraft turbulence is difficult to detect and predict
with univariate analyses. However, by using the novel Spatiotemporal Relational Probabil-
ity Trees and Spatiotemporal Relational Random Forests, one is able to explore the more
complicated interrelationships that occur in nature. For example, the two schemas in Fig. 2
show the types of intricate relationships that can exist when one attempts to identify the de-
velopment of turbulence that will adversely affect aircraft or the factors associated with the
formation of tornadoes. By ranking the importance of the variables (see Tables 2 and 4), one
is able to determine the combination of variables that will have the most impact on the de-
velopment of a particular weather phenomenon. In future work, we will also vary the object
definitions by perturbing the contour thresholds. This will help to remove any preconceived
human bias.

7 Fielding the techniques

A new concept has been proposed to further increase the lead time for issuing tornado and
severe storm warnings. This concept, called Warn-on-Forecast (WoF, e.g., Stensrud et al.
2009), assimilates radar and other observational data into a high-resolution numerical model.
It is proposed that by running the numerical model forward in time, advanced warnings can
be issued based on the time and location of simulated tornadic storm development. This
warning approach is expected to become operational within 10 years. The anticipated role
of SRRF in this effort will be to identify the evolving relationships within the numerical
storms that provide an early indication that a tornado will be developing. These relation-
ships then can be incorporated into the WoF model to help provide an earlier indication
that within-storm conditions are becoming favorable for tornado formation. Every spring,
weather forecasters from across the nation are brought to the Hazardous Weather Testbed
in Norman, OK to help evaluate the usefulness of cutting-edge forecasting techniques and
to provide input on improvements (e.g., Clark et al. 2012). Once the WoF approach with
contributions from the SRRF is completely developed, it will be evaluated and refined in the
testbed for a year or two before being deployed to weather forecast offices.

The FAA Aviation Weather Research Program funds the National Center for Atmo-
spheric Research (NCAR) to develop improved turbulence forecasting and nowcasting tech-
nologies to support aviation users. Each new version of the Graphical Turbulence Guidance
(GTG) system is independently evaluated to verify its improved capabilities and accuracy
(e.g., Wandishin et al. 2011); when approved by the FAA, it is operationally deployed at
the NWS Aviation Weather Center for incorporation into the Aviation Digital Data Service
(ADDS; aviationweather.gov/adds). An initial GTG Nowcast (GTG–N) product is currently
under development at NCAR to provide 15-minute-update “snapshots” of turbulence within
GTG, including a CIT diagnostic capability as described in Williams (2013). The SRRF
method could provide an enhancement of this CIT diagnosis capability, either as a replace-
ment for the existing random forest approach or as an additional input module. This would
require transitioning the SRRF software to NCAR, performing training and evaluation on
larger, more recent datasets, and evaluating cost versus benefit for the overall GTG-N sys-
tem, including runtime, resource use and system complexity. In the future, GTG-N may
incorporate on-line training for some predictive modules, and the SRRF would be an ideal
candidate for performing that function for CIT.

The use of SRRFs for the investigation of convectively-induced turbulence has several
benefits over the random forest (RF) approach described in Williams et al. (2008), Williams
(2013). For example, the RF approach relies on computing local statistics of various pre-

http://aviationweather.gov/adds
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dictor fields around the aircraft location at various radii, since the scales of influence are
not known a priori. It utilizes horizontal and vertical distances to various contours, but is
not able to jointly utilize information about the properties of the objects defined by those
quantities. In contrast, the SRRF requires a definition of objects, attributes and relations via
a schema, but is more flexible in exploring the possibly predictive relationships without re-
quiring pre-defined thresholds or statistics. Moreover, the SRRF’s object-oriented approach
lends itself to knowledge discovery in a form more accessible to scientists, since reason-
ing from objects, their attributes, and relationships between them is more consistent with
humans’ heuristic models of physical processes.

The end result of examining the complex relationships in this way is greater understand-
ing of the physical variables and their relative importance. From a scientific standpoint, this
promotes new research that can be tested through improved observation collection strate-
gies, case studies, and theoretical constructs. Further, humans use such information as part
of their subjective approach to forecasting turbulence and severe weather via improved over-
all understanding of the key physical constraints that drive the development of turbulence
and tornadogenesis.

8 Lessons learned in interdisciplinary collaboration

Embedding machine learning and data mining techniques in the domain science field of
meteorology has provided us with a variety of lessons, both of a general nature and some
specific to machine learning. We describe each of these below, hoping that they will help
other machine learning researchers who want to work closely in interdisciplinary collabora-
tion. In order to really work on “machine learning that matters” (Wagstaff 2012), we are not
working on surface collaborations but true interdisciplinary research.

When scientists of different disciplines begin to work together, they must first learn to
speak each other’s language. This does not refer to the verbal language such as English
but rather to the language of science used to communicate ideas to one another. At the
surface, it seems as though scientists should be able to communicate easily. But when we
begin describing terms to one another, we discover that sometimes words mean two different
things in two different disciplines. For example, the word object has a very specific meaning
in relational learning. It also has a meaning in meteorology, and they are not the same.

In addition to words that may mean different things, the scientists in both disciplines need
to understand the technical terms of the other discipline. For example, this paper defined a
number of technical meteorological terms such as vorticity and gravity waves. We assume
that the computer science reader did not necessarily know these terms. In order to work
closely with the meteorologists, the computer scientists had to learn these items. Likewise,
the meteorologists have learned many technical terms for machine learning and data mining.

Once the language issue is resolved, the next lesson learned is to identify the real sci-
entific question that the domain scientists are trying to answer. Often when the problem is
initially described, the very specific scientific question that is being asked is not clear. This
requires clear communication back and forth. It is critical because otherwise the method
developed will not be of use.

Machine learning researchers often evaluated techniques using measures such as AUC or
even accuracy, depending on the domain. While meteorologists use general statistics to eval-
uate their techniques, fielding a new technique requires a focus on case studies. It is critical
that both sides of an interdisciplinary research team know what it means for the technique to
be successful. This enables the technique to actually be adopted and also enables both sides
to publish the results.
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Another difference between machine learning and a domain science such as meteorol-
ogy comes in the form of the solution desired. In many cases, the goal of a machine learning
method is to have the best evaluation score. In some ML applications to severe weather,
the black box technique with a high score will be the best answer. For turbulence, this is a
possibility for improving automated generation of forecast grids. However, for many appli-
cations, a human forecaster needs to deeply understand the technique or the model before it
will be used. Tornado warnings are issued by humans, not by a computer. If the forecaster
does not understand the model, they are very unlikely to use it. The key lesson here is to
know what form of a solution is needed to adopt the technique.

Another lesson that we have learned is to not allow the assumptions of either side of
the research to constrain the solution. Sometimes one domain is convinced that the problem
is not solvable and then constrains the question being investigated, which constrains the
solution. This can happen either from the computer scientists or the domain scientists. It is
important to not let current solutions or techniques constrain the question being asked and
thus constrain the solution.

9 Ongoing and future work

We have been working on severe weather prediction using spatiotemporal machine learning
and data mining for over eight years and this paper summarizes our most recent approach.
Given the nature of this special issue on machine learning for science and society, we specif-
ically focused on two case studies in this paper: one for predicting tornadoes in Oklahoma
and one on predicting aircraft turbulence. In current work, we are developing a novel set of
high-resolution simulations of supercell thunderstorms that are capable of resolving torna-
does and turbulence. These simulations are at a 75 m horizontal resolution and the domain is
125 km by 125 km by 20 km. These simulations are unique as no one else has generated such
a data set of simulations at this fine-scale resolution. When we complete the simulations,
they will provide a distinctive data set to examine tornadogenesis and convectively-induced
turbulence. Figure 1(a) shows the near-surface reflectivity from one of our simulations. The
SRRF methodology will be an important tool for knowledge discovery in analyzing this
dataset.

The SRRF turbulence predictions may also be implemented as a real-time component of
a turbulence nowcast system currently being developed at NCAR under sponsorship of the
FAA. The system, know as the Graphical Turbulence Guidance Nowcast (GTGN), utilizes
a component for diagnosis of turbulence in and around thunderstorms. An additional pos-
sibility would be to include automated training to update the SRRF using recent data. This
could help the system deal gracefully with changing inputs, e.g., changes to the operational
numerical weather prediction model, satellite, or radar products, or with changes in synoptic
weather patterns such as those associated with the El Niño-Southern Oscillation.

The enhanced SRRF was able to improve prediction over the older versions by making
use of the new ability to distinguish arbitrary shapes using shapelets. We are also enhanc-
ing it with the ability to autonomously discover relationships, as described above. However,
this discovery currently only works with 3D data and the data presented here was 2D. We
are developing 3D approach and we expect the 3D approach to be valuable in our tornado
and turbulence simulations, which provide full 3D pictures of the atmosphere every 30 sec-
onds. We are also developing approaches to improve the prediction of severe wind and hail
events.
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Reproducibility of research: In conjunction with the publication of this paper, we have
released the full SRPT/SRRF code and the turbulence and tornadogenesis data in the format
used by our algorithm at http://idea.cs.ou.edu/software/.
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Appendix A: Details of Spatiotemporal Relational Probability Trees

Spatiotemporal Relational Probability Trees (SRPT) are trained using the standard greedy
algorithm for decision trees, e.g., the one used for ID3 (Quinlan 1986). Since the trees are
used in a forest, they are not pruned. Pruning could be implemented if a single tree would
be used instead. The algorithm for growing the SRPTs is given in Algorithm 1.

The algorithm proceeds by greedily finding the best split possible at each level of the tree.
The primary difference between the traditional decision tree growing algorithm and the one
used to grow the SRPT is that there is essentially an infinite number of possible questions
that can be asked at each tree split. We handle this by sampling from the set of possible
questions. The best question is chosen from a set that is sampled. The possible questions
are given as a template and we sample from the training data to fill in the variables in the
template. This shows up in Algorithm 2 when we generate the random split.

Input: numSamples = Number of questions to sample, Data = training data, maxDepth =
Maximum depth of tree, currentDepth = current tree depth, p p-value used to stop
tree growth

Output: An SRPT
if currentDepth ≤ maxDepth then

tree ← Find-Best-Split(Data,numSamples,p)
if tree �= ∅ then

for all possible values v in split do
tree.addChild(Grow-SRPT(Data where split = v))

end

Return tree
end

end

Return leaf node
Algorithm 1: Grow-SRPT

http://idea.cs.ou.edu/software/
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Input: numSamples = Number of samples, Data = training data, p p-value used to stop tree
growth

Output: A split if one exists that satisfies the criteria or ∅ otherwise
best ← ∅

for i = 1 to numSamples do
split ← generate random split
eval ← evaluate quality of split (using chi-squared)
if eval < p and eval > best evaluation so far then

best ← split
end

end

Return best
Algorithm 2: Find-Best-Split

The full set of possible questions are given below. Variables to be filled in using sampling
are denoted using italics. The questions are grouped by type. If a question refers only to an
object or relationship, it is noted as such. If the question can refer to either an object or
relationship, we denote it as an item. If the question has a choice, such as the statistic to be
chosen, that is also done when it is created. The choice of a statistic is uniformly random
from the choices listed in all capitals.

Although the questions look as if they are binary, simple yes/no questions, we actually
split the data in three ways. Because a single graph is not required to have all of the types
of objects or attributes, and an object is not even required to have all the attributes that it
could possibly have as specified by the schema, we have three branches. The first is the yes
branch, meaning the graph matched the question. The second is the no branch, meaning the
graph had the attribute and or item mentioned but it did not match. The third is the error
branch, meaning the graph did not have the item or attribute mentioned.

The majority of the questions are spatiotemporal. The following three question templates
are the non-spatiotemporal questions.

• Does an item of type t exist in the graph?
• Does an item of type t have a scalar attribute a with value ≥ x?
• Does an item of type t have a scalar attribute a with value = x?

The following questions split the data on temporal characteristics on temporal data. Some
of the questions deal with the temporal data directly and some of them look at statistics on
the data.

– Does an item of type t exist in the graph for at least x steps?
– Does an item of type t have ANY or ALL value in a 2D temporal attribute a with value ≥

x?
– Does an item of type t have ANY or ALL value in a 2D temporal attribute a with value =

x?
– Does an item of type t have a value in a 2D temporal attribute a with value ≥ x for at least

s time steps?
– Does an item of type t have a value in a 2D temporal attribute a with value ≤ x for at least

s time steps?
– Is the partial derivative (computed using finite differences) of a 2D temporal attribute a

on item of type t ≥ x within s time steps?
– Does an item of type t have a 2D temporal attribute a where the MEAN or MAXIMUM

or MINIMUM standard deviation is ≥ x?
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The following questions split the data on either spatial or spatiotemporal characteristics.
These work on fielded attributes. Fields can have either scale values or vectors. Fields can
be 2-D or 3-D. Vectors can also be 2-D or 3-D. If a particular question requires a specific
structure, such as 3-D only, that is noted.

Because we work with weather data, we added several questions that specifically deal
with wind vectors. Wind vectors can either be 2-D or 3-D. The full wind vector has three
components 〈u,v,w〉. The first component is the wind in the East-West direction, the second
component is the North-South direction, and the third component represents the vertical
wind. The formulas below refer to 〈u,v,w〉 for wind and 〈x, y, z〉 for the underlying grid. X
and Y are orthogonal horizontal directions and Z is vertical. Derivatives are calculated using
finite differences.

– Does an item of type t with scalar field attribute f have ANY/ALL value ≥x?
– Does an item of type t with scalar field attribute f have ANY/ALL value = x?
– Is there an item of type t with a scalar field attribute f where the maximum magnitude of

the gradient is ever ≥ x?
– For 3-D scalar fields: 〈

df

dx
,

df

dy
,

df

dz
〉

– For 2-D scalar field: 〈
df

dx
,

df

dy
〉

– Is the MEAN/MAXIMUM/MINIMUM/STANDARD DEVIATION of scalar field at-
tribute f on item of type t ≥ x at ANY/ALL time steps?

– Is there an item of type t with a 2-D or 3-D wind vector field attribute a with the maximum
divergence ≥ x or minimum convergence ≤ x (at a z-level z)?
– Divergence is du

dx
+ dv

dy
and convergence is the negative of divergence (Glickman 2000).

u is the x-component of the 3D wind vector and v is the y-component.
– Is there an item of type t with a 2-D or 3-D wind vector field attribute a with the MAXI-

MUM/MINIMUM of the shearing/stretching deformation ≥ x (at a z-level z)?
– Shearing/stretching deformation of a flow field is a change in the direction and speed

of a flow owing to shearing (where speed changes perpendicular to the flow direction)
and/or stretching (where speed changes along the flow direction) in the flow.

– Shearing deformation is dv
dx

+ du
dy

– Stretching deformation is du
dx

− dv
dy

.
– Is there an item with a 3D wind vector field attribute a with the MAXIMUM/MINIMUM

magnitude of the average horizontal vorticity ≥/≤ x?
– Vorticity is a vector.

〈

dw

dy
−

dv

dz
,
du

dz
−

dw

dx
,
dv

dx
−

du

dy

〉

.

Horizontal vorticity is the first two components of this vector and vertical vorticity is
the third component and w is the z-component of the 3D wind vector.

– Is there an item with a 3D wind vector field attribute a with an average horizon-
tal vorticity vector direction within (+/−) 22.5 degrees of the 16 compass points
(N/NNW/NW/WNW/W/etc)?

The following questions all examine the shape of the data. Shapes can be extracted from
2-D or 3-D fields. Following on Keogh et al.’s work (Ye and Keogh 2009; Mueen et al.
2011), we can also identify shapes in temporal data using shapelets. We use their description
of how to compute them efficiently to precompute the statistics as the data is being loaded
in. This enables the shapelet questions to be evaluated very quickly. In our implementation,
the pre-computation does not add noticeable overhead.
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In order to detect shapes in 2-D fields, we reduce the fields to a single temporal array
following Keogh’s method. This is done by identifying the centroid of the 2-D field and
detecting the outline. The distance from the centroid to the outline all the way around the
shape becomes the temporal array.

– Does the shapelet s of temporal array attribute a on item of type t match in this graph?
– Given a shape distribution d (described in Sect. 3.2), is the shape distribution of the 3-D

fielded attribute f on item of type t statistically the same?
– Following Osada’s paper we use D2 (distance between 2 randomly chosen points) as

the shape distribution and the L1 norm to compute the distance between the pdfs.
– Given two different shape distributions d1 and d2, does the shape distribution of the 3-D

fielded attribute f on item of type t change from d1 to d2 within time period t?
– Given a shape distribution d, does the shape distribution of the 3-D fielded attribute f on

item of type t stay statistically the same as d for at least t steps?

Conjunctive questions can combine the results of the base question in interesting, and
possibly spatiotemporal, ways. All of the questions detailed above are base questions. The
following questions are all conjunctive questions.

– Are there at least n matching items to base question q?
– Are items matching base question q1 in a temporal relationship (listed below) with items

matching base question q2?
– Allen (1991) introduced a full set of temporal relations that any two events can have.

Because they are symmetric and we are sampling from the data, we only take half of
the relations. The other half can be found in a different sample. The possible relations
are: before, meets, overlaps, equals, starts, finishes, and during

– Are there objects matching fielded question q1 that are within Euclidean distance d of
objects matching fielded question q2 for at least t steps?
– This can only apply to objects that have a fielded attribute. The location of the center

of the field is used to compute distance.
– Is there an object matching fielded question q1 that is in a spatial relationship with an

object matching fielded question q2 for at least t steps?
– The spatial relationship is measured using the method described in Sect. 3.2, which is

derived from the shape distributions.

Before the tree building begins, we must process the data. Since we often run many
forest building algorithms in parallel with different parameters, we preprocess the data the
first time it is read in. When we preprocess the data, we create a number of new attributes
that were not specified in the original schema. These are added to the schema and used
to compute statistics and to enable interesting questions to be evaluated efficiently. These
dynamically created attributes are listed below.

– For each scalar field, we create two new temporal array attributes representing the maxi-
mum and minimum magnitude of the gradient for that attribute over time.

– For each wind vector field, we create two new temporal array attributes representing the
maximum and minimum of the divergence/convergence over time. Note, this is currently
only computed for z-level 0 but it can easily be extended.

– For each wind vector field, we create two new temporal array attributes representing the
maximum and minimum of the deformation over time. Note, this is currently only com-
puted for z-level 0 but it can easily be extended.

– For each 3-D wind vector field, we create two new temporal array attributes representing
the maximum and minimum of the horizontal vorticity over time. Note, this is currently
only computed for z-level 0 but it can easily be extended.
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– For each object that has a 2-D field associated with it, create an associated temporal array
attribute representing the shape using Keogh’s method as described above.

– For each object with a scalar field, create a temporal array for each of the MEAN/ MAX-
IMUM/ MINIMUM/ STANDARD DEVIATION of the values in the field at each time
step.

– For each object with the 2-D field, create a temporal attribute of the area of that field.
– For each object with a 3-D field, create a temporal attribute of the average of the area

across all z-levels.
– For each object with a 3-D field, create a temporal attribute of the volume at each time

step.

Appendix B: Verification statistics

The Relative Operating Characteristic (ROC) curve (Mason 1982) is created by evaluating a
set of forecasts over a range of thresholds. A contingency table is created at each threshold.
Multiple summary statistics can be derived from the contingency table shown in Table 5.
Box a represents the hits, box b represents the false alarms, box c represents the misses,
and box d represents the true negatives n. The statistics used in the paper are shown in Ta-
ble 6. Probability of Detection (POD), also known as the hit rate or true positive rate, is the
proportion of observed yes events that are correctly forecast. The Probability of False Detec-
tion (POFD), also known as the false positive rate, is the proportion of no events that were
incorrectly forecast. The False Alarm Ratio (FAR), is the proportion of yes forecasts that
were observed to be no events. The Peirce Skill Score (PSS; Peirce 1884) is the difference
between the POD and the POFD.

The Brier Score (Brier 1950) has been used to verify the both the calibration and refine-
ment of probabilistic forecasts (Murphy 1973). In its simplest form (Eq. (1)), it is the mean
squared error of probabilistic forecasts versus binary observations. The Brier Skill Score
compares the BS of a forecast with the BS of the climatological probability (Eq. (2)). The
calibration aspect of BS and BSS can be used as a proxy to measure the sharpness of a
forecast.

BS =
1

N

N
∑

i=0

(fi − oi)
2, (1)

Table 5 Example binary
contingency table Observed

Y N

Forecast Y a b

N c d

Table 6 Scores derived from the
binary contingency table Name Abbreviation Formula

Probability of Detection POD a
a+c

Probability of False Detection POFD b
b+d

False Alarm Ratio FAR b
a+b

Peirce Skill Score PSS POD-POFD
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BSS = 1 −
BS

BSref

. (2)
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