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 

Abstract—Images captured underwater are often characterized 
by low contrast, color distortion, and noise. To address these visual 
degradations, we propose a novel scheme by constructing an 
adaptive color and contrast enhancement, and denoising (ACCE-
D) framework for underwater image enhancement. In the 
proposed framework, Difference of Gaussian (DoG) filter and 
bilateral filter are respectively employed to decompose the high-
frequency and low-frequency components. Benefited from this 
separation, we utilize soft-thresholding operation to suppress the 
noise in the high-frequency component. Specially, the low-
frequency component is enhanced by using an adaptive color and 
contrast enhancement (ACCE) strategy. The proposed ACCE is 
an adaptive variational framework implemented in the HSI color 
space, which integrates data term and regularized term, as well as 
introduces Gaussian weight and Heaviside function to avoid over-
enhancement and oversaturation. Moreover, we derive a 
numerical solution for ACCE, and adopt a pyramid-based 
strategy to accelerate the solving procedure. Experimental results 
demonstrate that our strategy is effective in color correction, 
visibility improvement, and detail revealing. Comparison with 
state-of-the-art techniques also validate the superiority of 
proposed method. Furthermore, we have verified the utility of our 
proposed ACCE-D for enhancing other types of degraded scenes, 
including foggy scene, sandstorm scene and low-light scene. 
 

Index Terms—underwater image enhancement, variational 
framework, adaptive color and contrast enhancement, denoising, 
numerical optimization. 

I. INTRODUCTION 

As more and more scarce resources have been found in lake, 
river and ocean, underwater imaging receives growing 
attentions in recent years. Unlike the common outdoor images, 
underwater scenes always suffer from a poor visibility because 
of color cast and contrast loss. In-depth researches [1], [2] have 
revealed that this problem is caused by the propagated 
attenuation when light travels through water, primarily due to 
absorption and scattering. The absorption reduces the light 
energy, while the scattering forces a change in the direction of 
light travel. The color distortion is caused by light of different 
wavelengths decaying in water at different rates. For example, 
the red component, which has the longest wavelength, rapidly 
vanishes in about 3 meters distance, while the shorter green and 
blue components reach a greater depth, and gradually dominate 
the main tones of underwater image. As a result, images 
captured under water are visually unpleasing, and can hardly be 
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directly used to carry out further studies, as shown in Fig. 1. 
To address these problems, a series of underwater image 

restoration and enhancement methods have been proposed to 
improve the quality of underwater images. According to the 
treating processes, the existing methods can be generally 
divided into three categories: image restoration-based methods, 
image enhancement-based methods and deep learning-based 
methods. Image restoration-based methods [3]-[5] utilize the 
underwater image formation model [6], [7] and invert it to 
acquire the non-degraded image. On the contrary, image 
enhancement-based methods [8]-[10] utilize the effective 
image processing techniques to enhance some characteristics of 
image, aiming to produce visual pleasing results. More recently, 
deep learning has received extensive attention because of its 
remarkable performance on image processing. Several deep 
learning-based methods [11]-[13] are also specially explored to 
improve the quality of underwater image. 

Despite some breakthroughs made in recent years, it is still 
challenging to address the light absorption and scattering 
problems. Actually, some exiting methods cannot 
comprehensively address the multiple degradation problems 
existing in underwater images improvement. In some examples, 
the enhanced or resorted results may be accompanied with 
inadequate contrast, inaccurate color correction, minimal 
brightness improvement and noise amplification. Specially, the 
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Fig. 1.  Examples of underwater images with different degradations. 
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majority problem of enhancement-based methods exhibits to 
overstretch the contrast, which may lead to the loss of valuable 
information. Therefore, it is expected to develop an effective 
method overcome these shortcomings. 

In this paper, we propose a novel strategy for underwater 
image enhancement by adaptively enhancing color and contrast, 
and suppressing noise. Our key contributions and works are 
summarized as follows: 

(1) Taking advantage of noise typically distributes in the 
high frequency component, we develop a decomposition 
scheme to avoid noise amplification in the low frequency 
component. The proposed scheme can not only reduce the noise 
effect, but also sharpen the important edge blurred by the 
forward-scattering. 

(2) A new adaptive variational framework ACCE is 
formulated for color and contrast enhancement, in which we 
exploit the Heaviside function to divide the image channel into 
two subsets, and adopt two different enhancement strategies for 
each subset to avoid the over-enhancement and oversaturation.  

(3) In order to reduce the computational complexity of 
proposed framework, a numerical approximation combining 
the gradient descent and a pyramid-based acceleration strategy 
is designed to optimize the whole progress.  

(4) The proposed method doesn’t require any prior 
knowledge or optical process, so it is more robust and can be 
generalized to improve the quality of other types of degraded 
images. Extensive experiments demonstrate that our scheme is 
effective in color correction, contrast enhancement, and 
sharpness promotion. 

The rest of this paper is organized as follows. In section II, 
we introduce the related work by presenting a brief overview of 
the existing state-of-the-art methods of improving underwater 
image quality. In section III, the proposed ACCE-D method is 
presented and analyzed. Section IV is devoted to discuss the 
experimental results as well as comparison to advanced 
techniques. Finally, we summarize our work in section V. 

II. RELATED WORK 

In this section, we give an overview of existing related work 
of improving underwater images involving restoration–based 
methods, enhancement-based methods, and deep learning-
based methods.  

As mentioned above, image restoration-based methods rely 
on the underwater image formation model (UIFM) [7], [8] and 
physical assumption to dehaze or deblur the degraded scene, as 
to recovery the desired results. Since UIFM has a close form to 
the hazy image formation model proposed by Koschmieder [14], 
which characterizes the propagation progress of light in 
atmosphere. Therefore, some method designed for outdoor 
scene dehazing can also be applied underwater after a 
reasonably modification. The famous dark channel prior (DCP) 
method [15] assumes that the haze-free image has a very low 
value in at least one channel. Based on this hypothesis, He et al. 
inversed the hazy imaging model to estimate the restored results. 
Drews, Jr., et al. [16] thought that for the underwater 
environment, the red component can not provide sufficient 
visual information since it decays too fast. They hence 

calculated the dark channel image by only using the green and 
blue color channels. On the contrary, Galdran et al. [17] utilized 
the reciprocal of red component to estimate the scene depth, and 
proposed a novel red channel prior (RCP). Peng et al. [18] 
incorporated the adaptive color correction into the IFM and 
developed a general restoration method on the basis of DCP. 
Beyond these, several methodologies [19]-[21] were proposed 
to improve the accuracy of transmission map estimation. 
However, since it is unrealistic that single assumption or water 
properties are applicable to various challenge underwater 
environments, this kind of methods only perform well in some 
given scenes. In addition, these methods may have no 
advantages in terms of color correction. 

Different from the restoration-based methods, image 
enhancement-based methods aim to generate visually pleasing 
results by directly modifying image pixel values. Some 
traditional enhancement methods (e.g., histogram equalization 
[22], [23], Gray-world [24], [25]) have been applied for 
improving the underwater image quality. Despite these methods 
can improve the image quality in some aspects, they are seldom 
used alone due to the neglecting of other factors that may cause 
the visual degradation. Iqbal et al. [26] stretched the dynamical 
range of pixels in RGB and HSI space, aiming to equalize the 
color and contrast. In [27], Ghani and Isa modified the schemes 
of [26] and proposed a series of stretching strategies based on 
the Rayleigh distribution. Experimental results show that their 
methods are able to ameliorate the visibility meanwhile reduce 
the over-enhancement or under-enhancement regions. Ancuti et 
al. [28] applied multi-scale image fusion technology for 
underwater dehazing task. They used a single image to generate 
one color corrected version and another contrast enhanced 
version, then fused them with defined weights to obtain the 
desired result. More recently, this fusion strategy was further 
improved in [29] to cope with more severe imaging 
environment. Marques et al. [30] combined the local contrast 
and fusion techniques to specifically enhance the underwater 
low-light images. Fu et al. [31] utilized a two-step scheme 
including color correction and optimal contrast improvement 
algorithms to address the problem of color distortion and low 
contrast. Later, in [32], they propose a variational framework to 
enhance single underwater image based on the Retinex theory. 
Zhang and Wang [33] extended the muti-scale retinex (MSR) 
to LAB-MSR for improving the quality underwater image. 
Compared with the traditional MSR, their method not only 
increases the visual quality, but also mitigates the halo-artifact. 
Afterward, Zhang et al. [34] developed a new method using 
color correction and Bi-interval contrast enhancement to 
enhance underwater image.  

Different from restoration-based and enhancement-based 
methods, deep learning technology utilize the artificial neural 
network to automatically extract features and learn mapping 
functions from training set. For the case of underwater image, 
many deep learning-based methods have been proposed to 
estimate the non-degraded scene. Li et al. [35] developed a 
weakly supervised color transfer method for the color 
correction. In [36], a multiscale dense generative adversarial 
network (GAN) is presented for underwater image 
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enhancement. Chen et al. [37] employed a GAN-based 
restoration scheme to adaptively improve underwater image 
quality in real time. Islam et al. [38] also proposed a GAN-
based approach to enhance underwater image and constructed a 
large-scale dataset composed of a paired and unpaired set of 
underwater images. In [39], Li et al. proposed an underwater 
scene prior and developed a convolutional neural network for 
enhancing underwater image. Fu et al. [40] designed a novel 
deep learning method based on global-local network and 
compressed-histogram equalization (GNCE) to solve the visual 
degradation in complex and changeable underwater scenes. 
Yang et al. [41] utilized a conditional generative adversarial 
network with dual discriminator to improve visual quality of 
underwater image. Besides, a real-world benchmark dataset is 
built in [42] and used for training an end-to-end underwater 
image enhancement network. Qi et al. [43] proposed a novel 
Co-Enhancement network for enhancing underwater image 
based on an encoder-decoder Siamese architecture. Despite 
achieving notable progress, deep learning-based methods 
highly depend on the data-driven. In addition, due to the 
complicate underwater condition, it is very difficult to collect 
effective and sufficient real-world and synthetic underwater 
images for training deep networks. 

In contrast to existing algorithms, the proposed method 
doesn’t directly enhance the contrast of image, but manipulates 
in where we called low-frequency components, so that the noise 
effect can be isolated. Compared with existing contrast-
enhancement techniques, our method is more effective in local 
and global contrast boosting, as well as produces less 
information loss since the enhancement strategy is adaptively 
adjusted according to the local conditions. Therefore, our 
ACCE-D method can significantly improve the image quality 
in terms of contrast, color, and brightness. Moreover, as our 
proposed method doesn’t rely on any physical model, it is also 
robust and can be well generalized to other degraded scenes. 

III.  PROPOSED METHOD 

Sourced from Retinex theory [44], the automatic color 
equalization (ACE) [45], [46] is an effective method for color 
and contrast enhancement. By considering the spatial, local and 
nonlinear features of the human visual system (HVS), ACE can 
generate more natural results, which is well consistent with 
perception. In [47], Bertalmío et al. generalized it to a 
variational form, which allow us to extract the desired 
characteristics from ACE. The energy functional in [47] is 
established as: 
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where I  and 0I  denote one channel of enhanced result and 
original image, respectively. x , y are the pixel coordinates on 

image plane. w is the distance weighted function, its value 

decreases along with the increase of the distance between x  

and y . S  is the primitive of the slope function that accounts for 

the relative intensity difference. By performing the 
minimization of (1), an enhanced result can be produced. 
However, when comes to the more challenging underwater 
scenes, ACE often fails to achieve the visual appealing results 
due to its inaccurate color correction strategy. To illustrate this, 
we have exhibited several enhanced images generated by ACE 
algorithm as shown in Fig. 2. Besides, the enhanced results by 
using our proposed method are also accordingly presented. 
From Fig. 2, we can observe that ACE fails to correct the color 
cast precisely. But even so, the contrast enhancement of ACE 
is still meaningful for us because the local-global mechanism is 
contained.  

Inspired by ACE, we propose a novel enhancement strategy 
ACCE-D to improve the visibility of underwater image without 
relying on any optical model inversion or physical assumption. 
Since the main information of an image is mainly contained in 
the low frequency component, and the edge and texture 
information are mainly contained in the high frequency 
component. Therefore, we first decompose the image into the 
low-frequency component and the high-frequency component. 
In our framework, we adopt the bilateral filter [48] to obtain 
low-frequency information for extracting more valuable 
information. For removing the color deviation as well 
enhancing contrast, we construct an adaptive variational 
framework for underwater image enhancement, dubbed ACCE. 
Since the hue channel H, saturation channel S, and intensity 
channel I are independent of each other in the HSI color space. 
We convert it from RGB color space to the HSI color space, in 
which we perform the ACCE operation to generate an enhanced 
result by color correction and contrast enhancement. Moreover, 
we design a fast numerical solution combing with the gradient 
descent and a pyramid-based acceleration strategy for solving 
the proposed ACCE framework. For the high-frequency 
component, we employ the Difference of Gaussian (DoG) [49] 
filter to separate it from the original image, and subsequently 
perform a simple soft thresholding operation [50] to reduce the 
noise to avoid mistaking it for an edge. Finally, we utilize a 

   

   

   
(a)                        (b)                        (c) 

 
Fig. 2. Comparisons of the results of ACE and proposed method. (a) Raw 
images, (b) the enhanced results of ACE method, (c) the enhanced results of 
proposed method. 
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simple linear combination to integrate the enhanced low-
frequency component and the denoised high-frequency 
component. The workflow of our method is presented in Fig. 3. 

As the core of our scheme, in the following, we will give the 
detailed explanation of the proposed ACCE framework. 
Denoting that all inputs are normalized to the interval [0, 1], a 
color and contrast enhancement framework is initially 
established as: 
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where I  is the enhanced result. x and y  represent two 

pixels on the image plane. h , s , i  represent the three channels 

in HSI color space. Cr  denotes a guided image with color 

correction. The constrains in (2) are used to prevent the values 
of sI  and iI  from exceeding the range [0, 1].  

To generate the Cr , we employ a simple yet effective 

operation [32] by calculating the mean values and the mean 
square error (MSE) on each channel in RGB space. Then, the 
upper and lower threshold of each channel can be obtained by: 

( ) ( )
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where f  is the low-frequency component of input image, UL  

and LL are the upper and lower thresholds. { , , }R G B  denotes 

the color channel,   is a parameter related to the image 

dynamic, which is often empirically set to 2.3. Subsequently, 
the color corrected image can be obtained by stretching the 
histogram of the pixels within the upper and lower thresholds. 

( )
( ) 255

f x LT
Cr x

UT LT

 


 


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
                         (4) 

It can be easily observed from (2) that the proposed 
variational model constructs a competitive relationship between 
one positive term and two negative terms. The positive term is 
utilized to correct the trend of color variance by penalizing the 

deviation of I  from the Cr . However, the other two negative 

terms attempt to amplify the difference of the weight w  

between each pixel in S and I channels, which is beneficial to 
local and global contrast enhancement. By minimizing (2), we 
can acquire an enhanced outcome characterized by high 

 
 

Fig. 3. Flowchart of the proposed ACCE-D method. 
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contrast and bright color. But unfortunately, some pixels 
(saturation or brightness values are close to 0 or 1) will lie 
outside of the range [0, 1] because of excessive enhancement. 
This maybe lead to produce some brighter or darker areas in the 
enhanced result. More seriously, some valuable information 
may also be lost. Fig. 4 displays the enhanced results yielded by 
minimizing (2). It can be easily seen that the results generated 
from (2) are not satisfactory due to over-enhancement. 

To solve the above problem, an extended adaptive color and 
contrast enhancement (ACCE) framework is subsequently 
developed, which is mathematically expressed as: 
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To avoid over-flow, we design a Gaussian weight function 
( )sG I  and ( )iG I  to adaptively adjust the weight of the two 

corresponding terms to achieve better contrast and brightness. 
The expression of ( )cG I  is given by: 
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                               (6) 

where   is positive parameter that represents a distribution 

parameter,  ,c s i denotes the color channel. In fact,  cG I  is 

a ‘bell’ structure, as displayed in Fig. 5. It can be observed from 
Fig. 5 that the weight distribution shows a higher trend when 
pixels located with intermediate values. On the contrary, it has 

a litter effect on the brighter or darker side. According to the 
distribution, pixels with small or large values approaching 0 or 
1 are assigned less weight, while pixels with intermediate 
values 0.5 gain the highest weights. Therefore, the function 

( )cG I   can play an important role in preventing some brighter 

or darker areas from being over-enhanced. Moreover, the 
variation of   can make the distribution uniform or polarized, 

thus altering the influence of contrast enhancement in the 
different regions. This local-condition based strategy enables 
the over-enhancement and information loss to be manually 
controlled within an acceptable range. 

In (5), the Heaviside function  ( )cH I x  is introduced to 

determine whether the weight function  ( )cG I x  works. It is 

defined as: 
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Here,   , ( ) ( )c c
y

w x y I x I y   denotes a predicted direction 

of enhancement, which is derived from the derivatives of the 

regularized term  
2

( , ) ( ) ( )c c
x y

w x y I x I y  in (5). Combing 

with (5), (6) and (7), ACCE method will perform different 
strategy to generate a desired outcome based on different 

value of  ( )cH I x . In one case (  ( ) =1cH I x ), if an input pixel 

value ( )cI x  in (0.5, 1] is increased by the regularized terms 

(or ( )cI x  in [0, 0.5] is reduced), (5) can be transformed into: 

   

   

   

2

, ,

2

2

1
( ) ( )

2

( ) ( , ) ( ) ( )
2

( ) ( , ) ( ) ( )
2

h s i x

s s s
x y

i i i
x y

E I Cr x I x

G I x w x y I x I y

G I x w x y I x I y

 








 

 

 

 

 

 

         (8) 

Accordingly, in another case (  ( ) =0cH I x ), (5) will turn to: 

 

(a) (b) (c) (d) 

    

    
 
Fig. 4.  Example of underwater image enhancement. (a) Raw images, (b) the 
guided images, (c) the over-enhanced results by minimizing (2), (d) the results 
by minimizing (5). 
  

 
Fig. 5.  The ‘bell’ structure of ( )cG I . 
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which is actually consistent with (2). 
To implement the minimization of energy in (5), we employ 

a gradient descent strategy to solve it. In fact, the problem of (5) 
can be decomposed into: 
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To apply the descent strategy, we firstly need to compute the 
Euler-Lagrange equation of (10). However, it is inefficient to 
directly calculate the regularized terms, since the join of 

 ( )cH I x  make the original structure more complex. To solve 

it, following the strategy in [51], [52], we apply an 

approximated methodology that reckon it as a constant  cH x , 

whose value is directly computed by using (7) in each iteration. 
Thus, the Euler-Lagrange equation of (10) can be accordingly 
modified as: 

   1 ( ) ( ) 0h h hE I Cr x I x                      (11-a) 
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(11-c) 

Next, we apply the gradient descent strategy, the evolution 

follows  
I

E I
t




  , where t  represents the timeline. For (5), 

after an explicit discretion with t , we can obtain: 

 1 1k k
h h hI t I t Cr                           (12-a) 

 

Algo.1 The computation of operator D  
1.  Input parameter: image I , window radius w . 
2.  Output parameter: D  
 
3.  function Speed_Up ( I , w ) 
4.       Subsample I  to construct the k-level Gaussian 

pyramid L , with Size( [ ]L k ) w , where [ ]L k  the 

kth level. 
5.      for j  from -1k  to 1  do 

6.          if Size( [ 1]L j  ) w  do 

7.            [ +1]D j  Zeros(Size( [ +1]L j )); 

8.             break if; 
9.             else 
10.          [ +1]D j   Resize( [ +1]D j ,Size( [ ]L j )); 

11.          [ 1]L j    Resize( [ 1]L j  ,Size( [ ]L j )); 

12.          [ ]P j  Compute_D( [ ]L j , w ); 

13.          [ +1]P j  Compute_D( [ 1]L j  , w ); 

14.           ( [ ])a sqrt mse L j ; 

15.           ( [ 1])b sqrt mse L j   st. [0.2 * ,0.8 * ]b a a ; 

16.           Normalize the coefficients a , b; 
17.          [ ] [ 1] * [ ] * [ +1]D j D j a P j b P j    ; 

18.         end if 
19.     end for 
20.     return [1]D ; 

21. end function 
 
22. function Compute_D( L , w ) 
23.     Calculate the operator D  for each pixel by a sliding 

window in L , with radius set as w ; 
24.     return the computational result; 
25. end function 
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(12-c) 

During the solutions, the computation of operator of Do  and 

Di  is inestimable. Because for each pixel, we need to calculate 

it with all the other pixels in the image to obtain the 
computational results. To accelerate this progress, we apply a 
speed-up strategy based on the Gaussian pyramid to solve it. 
Firstly, we roughly estimate the global information on the low-
resolution map of pyramid, and then update it to obtain an 
accurate one layer by layer. In this manner, we narrow the 
calculation scope from the whole image to the adjacent region, 

which can reduce the computational complexity from 4( )O N  to
2( log )O N N . For clarity, the solutions of operator of Do  and 

Di  are summarized in Algo.1. Moreover, to hold the 

convergence of (5), we introduce the following stopping criteria 
for terminating iterations:  

   
 

+1 -k k

k

E I E I

E I
                            (13) 

where E  is the energy function,  is an extremely small value. 

IV.  EXPERIMENTAL RESULTS 

In this section, we first discuss the parameter sensitivity of 
the proposed ACCE method, as well as its performance on 
denoising effect. Then, we compare our proposed ACCE-D 
method with state-of-the-art methods qualitatively and 
quantitatively to demonstrate its superiority. Finally, we also 
extend the proposed ACCE-D method to other degradation 
scenarios. All the experiments are implemented in the Matlab 
R2016b on a Windows 10 platform with 3.6 GHz CPU and 8GB 
RAM. 

A. Performance of proposed method 

In this subsection, in order to examine the effectiveness of 
the proposed method, we describe and analyze some 
experimental results in respect to the influence of parameters 
and denoising effect. 

1) Parameter sensitivity 
There are three parameters (i.e.,  ,  , ) in our functional 

energy, as shown in (5) and (6). Following, we study the 
influence of these three parameters.  

We first analyze the effect of parameter  .   is the 

coefficient of saturation terms, which controls the enhancement 
degree on the S channel in HSI color space. In the test, we 
implement the proposed method by setting 

 0.05, 0.15, 0.25, 0.4   and fixing =0.3 , =0.03 . It can be 

observed from Fig. 6(a)-(d) that the saturation in some regions 

of the enhanced version is increased with the raising of  . We 

can see in Fig. 6(a) that if   is too small (i.e., =0.05 ), 

although the result performers well in terms of contrast, 
showing a low-saturation appearance. On the contrary, when   

  is too large (i.e., =0.4 ), the color of the enhanced result 

seems unnatural since the saturation is over enhanced. In 

general, we find that  0.15, 0.3   is suitable. More 

specifically, =0.25 is an appropriate configuration, resulting 

in a more perceptual color performance. 
 Similar to  ,   is the coefficient of intensity terms. To test 

its effect, we vary   in the set  0.05, 0.15, 0.3, 0.4 , and fix 

other two parameters on the baseline configurations (i.e., 
=0.25 , =0.03 ). In Fig. 6(e)-(h), we can see that a smooth 

variation of contrast appears in the enhanced result as   

increases. In Fig. 6(a) and Fig, 6(b), we see that when 0.15  , 

the results are not enhanced significantly, leading to some 
residual haze in scene. This problem is subsequently solved by 
taking a lager  , as shown in the Fig. 6(g), where the haze 

appearance is effectively removed. However, it may causally 
bring about the noisy result. To balance the contrast, noise and 
natural appearance, we find that [0.15, 0.35]   is suitable. In 

 
(a)                   (b)                   (c)                   (d) 

 
(e)                   (f)                    (g)                  (h) 

 
(i)                    (j)                    (k)                   (l) 

 
(m) 

 
Fig. 6.  The results of varying different parameters. (a-d) the results with 
configurations: =0.3, =0.03  and =0.05, 0.15, 0.25, 0.4 , respectively; (e-h) 

the results with configurations: =0.25, =0.03  and =0.05, 0.15, 0.3, 0.4 , 

respectively; (i-l) the results with configurations: =0.25, =0.3  and 

= , 0.3, 0.1, 0.01  , respectively; (m) the corresponding curves of  cG I  with 

= , 0.3, 0.1, 0.01  . 
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the following experiments, we set =0.3 . A lot of experiments 

have shown that varying   and   may lead to different 

results. However, the other results corresponding to the other 
values of   and   are still acceptable, which demonstrate that 

our ACCE method is more robust to   and  . 

Next, we study the quality of the enhanced results for 
different  . As discussed in (6),  indicates a distribution 

parameter of the proposed Gaussian weight. As a special case 
when  , the weight becomes a constant 1, and no longer 

play a role. Here, the proposed approach is executed again by 
fixing the =0.25  and =0.3 , and   is varied in the set

 , 0.3, 0.1, 0.01 . The enhanced results are displayed in Fig. 

6(i)-(l) accompanied with the corresponding curves of proposed 
Gaussian weight, as show in Fig. 6(m), where we can appreciate 
how the reduction of   produces a suppression in the over-

enhanced regions. Note that vary small   will also influence a 

global effect of the proposed framework, as reflected in the Fig. 
6(l). In our experiments, we find that the ACCE method 
presents a better result when   is set to be 0.03.  

For better viewing the results with declared configurations, 
i.e., =0.25, =0.3, =0.03  t=0.7  =0.05   ， ， , we provide 60 raw 

underwater images captured under various conditions for test, 
as shown in Fig. 7(a). Their corresponding enhanced versions 
are accordingly presented in Fig. 7(b). In Fig 7, one can easily 
see the quality of the raw images is significantly improved. For 
these underwater images with different degraded types, the 
proposed method is able to recovery the abundant color 
dynamic as well as high visibility. Even for some extreme 
deteriorated scenarios, ACCE-D method is still effective in the 
color and contrast enhancement, which preliminarily proved the 
superiority of our scheme.  

2) Evaluation on noise reduction 
In this subsection, we further carry out some tests to evaluate 

the improvement of ACCE in suppressing noise by introducing 
the high-frequency denoising scheme. Fig. 8 illustrates two 

examples to demonstrate the excellent performance in 
denoising by using the proposed scheme. As shown in Fig. 8(b), 
the cropped red region appears more undesired noise when 
compared with the original underwater image in Fig. 8(a). But 
comparing with Fig. 8(c), we can observe that our noise 
reduction strategy can effectively reduce the noise and preserve 
more edges and details. For more objective evaluation, we 
further exploit two commonly used measures PSNR and SSIM 
[53] to assess the performance of proposed ACCE-D method. 
Since there is no available ground truth database for underwater 
images, we calculate the PSNR and SSIM values between the 
original underwater images and the corresponding recovered 
ones.  Likewise, the higher PSNR and SSIM scores in Fig. 8(c) 
also demonstrate that our schemes can effectively avoid the 
noise amplification, as well as improve the accuracy of 
enhanced results. 

B. Qualitative comparison 

To demonstrate the superiority of proposed method, in this 

 

 
(a) 

 

 

 
(b) 

Fig. 7.  Performance of the proposed method. (a) Raw underwater images, (b) the corresponding enhanced results by using ACCE-D method. 
  

 

(a) 

  

(b) 
 

PSNR/SSIM 19.8304/0.5660 
 

PSNR/SSIM 19.5133/0.5807 

(c) 
 

PSNR/SSIM 20.7002/0.7042 

 
PSNR/SSIM 19.7369/0.7824 

 
Fig. 8.  Examples of the denoising effect. (a) Raw images, (b) the results 
without using the high-frequency denoising strategy, (c) the results by using 
our ACCE-D method. 



 9

part we compare our results versus several state-of-the-art 
methods including ACE [47], RCP [17], IBLA [20], UMSR 
[33], L2UWE [30] and GNCE [40]. We conduct some 
experiments on six types of underwater images, which are 
captured under the greenish, blueish, blue-greenish, hazy, low-
light and turbid scenes, respectively, as shown in Fig. 9(a). 
Their enhanced and restored version are accordingly displayed 
in Fig. 9(b)-(h). In Fig. 9(b), it can be seen that ACE method 
can effectively enhance the contrast and thus bring an 
improvement in visibility. But it fails to achieve visual 
appealing results due to the inaccurate color correction. RCP 
and IBLA methods restore the degraded image based on the 
physical model, which seem to have less effect on seriously 
distorted image. More specifically, for the scene with 

insufficient illumination, RCP method even reduces the 
contrast of dark regions, resulting the poor visibility, as 
presented in the Fig. 9(c). In spite of the well performance in 
edge sharpness, IBLA method is prone to over enhance the 
input image, especially for the image with uneven lighting, as 
shown in Fig. 9(d). On the contrary, we can see from Fig. 9(f) 
that UMSR method unveils more details in dark region by 
making illumination uniform. However, it introduces 
considerable artifacts and unnatural grey appearance.  Likewise, 
as an enhancer specific for low-light image, the L2UWE method 
focuses on the detail and edge, while rarely considers the color 
deviation. Last but not least, The GNCE method can alleviate 
the problem of image color deviation to some extent, but it is 
not good at improving the contrast. Compare with these 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 9.  Comparisons of different methods on various challenging underwater scenes. (a) Raw images captured under different challenging scenes, (b)-(h) the 
enhanced and restored results by using ACE, RCP, IBLA, UMSR, L2UW, GNCE and the proposed method, respectively. 
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methods, our ACCE-D method has the best visual quality, since 
it not only recovery the genius color, but also significantly 
improve the clarity of scenes. Besides, unlike the others contrast 
enhancement algorithms, our approach does not oversaturate 
pixel values so that the details are better retained or even 
highlighted. We can better view this argument via a careful 
inspection on the seaweed in the low-light scene in Fig. 9(h).  

To assess the amount of clarity improved, we depend on the 
Canny edge detection [54] for purpose of visible edge recovery 
evaluation on images with serious deterioration in visibility. Fig. 
10 presents the enhanced and restored results and their 
corresponding edge maps. One can easily observed that the 
edges of original images can hardly be detected due to the 

intense scattering. For these challenging scenes, RCP, IBLA, 
UMSR methods seem to leave fog in the results, as reflected on 
the edge map. Compared with the original image, the retrieved 
edge does not increase much. On the contrary, a larger number 
of visible edges is reproduced by our methodology. Observing 
from Fig. 10(g), almost all the contours of our enhanced images 
are contained in the detected results, which indicates that the 
proposed ACCE-D can effectively remove the influence of 
foggy appearance as well as reveal more details of image 
structure.  

For the color correction, since there is no ground-truth image 
to refer to, we utilize the polar hue histograms to assess it. 
Besides, a metric of color deviation detection [55] is also 

 

 

 

 

 

 
(a)                     (b)                     (c)                     (d)                     (e)                      (f)                      (g)                     (h) 

Fig. 10.  Comparisons of the Canny edge results. (a) Raw images and their visible edge maps from canny operator; (b-h) the corresponding results of ACE, RCP, 
IBLA, UMSR, L2UWE, GNCE and proposed method, respectively. 
 

 

              

13.16               0.38                 3.14                 4.19                0.91                10.02               1.11                0.33 

(a)                     (b)                     (c)                     (d)                     (e)                      (f)                      (g)                     (h) 

Fig. 11.  Comparisons of color performance. (a) Raw image and its polar hue histograms, (b-h) the corresponding results of ACE, RCP, IBLA, UMSR, L2UWE, 
GNCE and proposed method. The score of color cast detection is presented on the bottom of each image. 
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adopted to rate the results of each algorithm. The wider the 
diverse chromaticity of histogram and the smaller the score of 
detection represent a more vivid color performance. In order to 
better compare their difference, we choose a typical blueish 
image to test, as shown in Fig. 11. At first glance on the hue 
histogram, the result of RCP method appears to have the best 
chromatic diversity. However unfortunately, its seemingly 
good distribution of red hues is actually due to RCP method 
over enhancing the red channel. It is proved by the careful 
inspection on the restored result of RCP, wherein the black area 
is reddish. In all other case, the chromaticity of our result 
performs more diversity than the compared state-of-the-art 

methods, which indicates that the proposed method has the 
highest accuracy for color correction. This is also demonstrated 
by the subsequent detection of color cast. In test, the best score 
is gained by our result, and is far less than the original image. 
Therefore, we can conclude that the proposed approach 
subjectively outperforms other methods in terms of contrast and 
color accuracy.  

C. Quantitative comparison 

To objectively test the proposed method, we exploit four 
widely used metrics including UCIQE [56], UIQM [57], CPBD 
[58] and PCQI [59]. CBPD calculates the accumulative 

Table I Quantitative comparisons of UCIQE (The best result is in bold). 

 Greenish Blueish Blue-greenish Hazy Low-light Turbid Average 
Original 0.3928 0.4801 0.5170 0.3930 0.5579 0.4893 0.4717 

ACE 0.6111 0.5833 0.6464 0.6058 0.5732 0.6085 0.6047 
RCP 0.5866 0.5549 0.6095 0.5869 0.5652 0.5677 0.5785 
IBLA 0.5781 0.5999 0.5838 0.5366 0.5639 0.6916 0.5923 

UMSR 0.5056 0.5154 0.6562 0.3677 0.5548 0.5504 0.5250 
L2UWE 0.4118 0.5148 0.5380 0.4302 0.6151 0.5075 0.5029 
GNCE 0.6446 0.6133 0.6449 0.5878 0.5901 0.6203 0.6168 
New 0.6785 0.6385 0.6917 0.6118 0.6215 0.6561 0.6462 

 
Table II Quantitative comparisons of UIQM (The best result is in bold). 

 Greenish Blueish Blue-greenish Hazy Low-light Turbid Average 
Original 0.6035 0.6397 1.1978 0.4064 1.1935 0.6840 0.7875 

ACE 1.4767 1.2209 1.5114 1.0466 1.5112 1.1195 1.3144 
RCP 1.1203 0.8347 1.4650 0.8309 1.3750 0.8531 1.0798 
IBLA 1.0727 0.9817 1.3538 0.7902 1.3954 1.2984 1.1487 

UMSR 1.1720 0.9359 1.4767 0.6344 1.7375 1.0671 1.1706 
L2UWE 1.3464 1.0479 1.4943 0.9546 1.6756 1.1044 1.2705 
GNCE 1.2492 0.9563 1.4188 0.8844 1.4615 1.0172 1.1646 
Ours 1.6090 1.2621 1.6603 1.2263 1.8889 1.3542 1.5001 

 
Table III Quantitative comparisons of PCQI (The best result is in bold). 

 Greenish Blueish Blue-greenish Hazy Low-light Turbid Average 
Original 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

ACE 1.2661 1.0747 1.1859 1.1364 1.0628 1.0352 1.1269 
RCP 1.0112 0.9471 1.0824 1.0471 1.0301 0.9555 1.0122 
IBLA 1.0956 1.0191 1.0683 1.0384 1.0105 1.0890 1.0535 

UMSR 1.2358 1.0232 1.2260 1.0286 1.2277 1.1878 1.1549 
L2UWE 1.3083 1.1037 1.2611 1.1460 1.2906 1.1460 1.2232 
GNCE 1.1290 1.0437 1.1800 1.0545 1.1009 1.0726 1.0968 
Ours 1.3167 1.1228 1.3555 1.1878 1.3940 1.2683 1.2743 

 
Table IV Quantitative comparisons of CPBD (The best result is in bold). 

 Greenish Blueish Blue-greenish Hazy Low-light Turbid Average 
Original 0.5858 0.3074 0.3467 0.5506 0.7108 0.3426 0.4740 

ACE 0.8398 0.6953 0.4047 0.6383 0.7169 0.4138 0.6181 
RCP 0.7575 0.3360 0.3422 0.5671 0.6809 0.3497 0.5056 
IBLA 0.8332 0.4860 0.3482 0.6138 0.6941 0.4807 0.5760 

UMSR 0.8218 0.5329 0.3974 0.5755 0.7116 0.3799 0.5699 
L2UWE 0.8307 0.7670 0.3627 0.6547 0.6989 0.5092 0.6372 
GNCE 0.8038 0.5382 0.3538 0.5587 0.7079 0.5587 0.5869 
Ours 0.8483 0.7582 0.4661 0.6680 0.7445 0.4782 0.6590 

 
Table V Quantitative comparisons of average values of UCIQE, UIQM, PCQI, CPBD of 200 random selected raw images (The best result is in bold). 

Metric ACE RCP IBLA UMSR L2UWE GNCE Ours 

UCIQE 0.6107 0.5576 0.5398 0.5620 0.5102 0.5975 0.6454 

UIQM 1.4772 1.2760 1.3223 1.4105 1.4471 1.3825 1.6035 

PCQI 1.2005 1.0621 1.1279 1.2372 1.2994 1.1815 1.3642 

CPBD 0.6043 0.6079 0.6199 0.5993 0.6007 0.5985 0.6478 
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probability of detecting blur to score the image. PCQI is a 
patch-based index that focus on the image contrast variation. In 
contrast to CPBD and PCQI, UIQM and UCIQE are more 
comprehensive indicators specifically designed for evaluating 
underwater image quality. UCIQE is a linear combination of 
chroma, saturation and contrast to quantify the image quality. 
Similarly, UIQM scores the outcomes based on the colorfulness, 
sharpness and contrast. For all the metrics, the higher score 
indicates a better result.  

The assessment results associated to Fig. 9 are displayed in 
Tables I-V. The best score of each column has been marked in 
bold. It can be observed that our method outperforms others in 
most cases. For different kinds of degraded images, the UCIQE 
scores of our results is above 0.6, and UIQM is also higher than 
1.2. When move on to CBPD and PCQI, our method still 
received the highest evaluation due to the more stable and 
outstanding scores. The best UCIQE, UIQM, CBPD and PCQI 
indicates that the proposed method can significantly improves 
the contrast and visibility of degraded image, meanwhile 
recovers more vivid color, which is consistent with our 
subjective analysis. To make our experimental results more 
convincing, we conduct a broader test using 200 randomly 
selected degraded images from underwater benchmark dataset 
[42]. The average values of UCIQE, UIQM, CBPD, and PCQI 
of these five compared methods and our ACCE-D method are 
counted and presented in Table V. Again, the optimal scores 

reveal that ACCE-D achieves more robustness than the other 
techniques. We have hence demonstrated the superiority of the 
proposed method.  

D. Other applications 

Despite our method is designed for underwater environment, 
it can be generalized to other types of degraded images, due to 
it doesn’t rely on any model assumptions or physical processes. 
As mentioned before, the atmospheric foggy images have the 
similar imaging formation model to that of underwater scenes, 
which can be adopted to test their ability in terms of de-
scattering. Fig. 12(a) presents the results of different methods 
on atmospheric foggy images. We observe that the ACE and 
GNCE methods produce unexpected color deviation in the 
results. For the model-based methods, RCP fails to remove the 
hazy layer, while IBLA reduces contrast and brightness of dark 
regions. In the results of UMSR, some residual hazy can be also 
found in remote objects. Intuitively, L2UWE method can 
effectively increase the visible edges and details. But 
unfortunately, it seems to retain the haze color in the enhanced 
results. On the contrary, the best dehazing effect is achieved by 
the ACCE-D due to the outperforms local and global contrast 
in outcomes. Besides, our results are more natural since their 
color performance are close to the subjective perception.  

Compared with the foggy images, the sandstorm images 
contain more serious yellowish color cast. In such cases, for 
each algorithm, there are still the problems that have appeared 

 

 
(a) 

 

 
(b) 
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Fig. 12. Comparisons on other types of degraded images: (a) foggy images, (b) sandstorm images and (c) low-illumination images. From left to right: raw images 
and the enhanced and restored results of ACE, RCP, IBLA, UMSR, L2UWE, GNCE and proposed method, respectively. 
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in the foggy scenes, as shown in Fig. 12(b). Although RCP and 
UMSR methods can correct the color bias in some degree, they 
are unavailable to eliminate the scattered effect. IBLA method 
further aggravates the color cast. Visually, the outcomes 
generated by the proposed scheme show more genius color and 
higher clarity, which demonstrate its effectiveness.  

The low light images are characterized by the deficient 
ambient light. For these degraded images, the model-based 
methods usually erroneously estimate the depth, and thus fail to 
work. In Fig. 12(c), we can easily find that RCP and GNCE 
method produce inappreciable influence in illumination 
recovery. IBLA method provides unstable outputs because it 
may produce some invisible dark areas, as shown in the fourth 
column of Fig. 12(c). UMSR is more aggressive in raising the 
image exposure, which is beneficial to unveil more details. 
Nevertheless, some over-enhanced areas and amplified noise 
can be found in enhanced results. Likewise, ACE and L2UWE 
methods introduce the artifacts into their outcomes. In contrast, 
our ACCE-D can well balance the noise and illumination, as 
well as slightly improve the color performance. Therefore, the 
superiority and versatility of ACCE-D are further verified.  

V. CONCLUSION 

In this paper, we have presented a novel framework for 
enhancing underwater image via adaptive color and contrast 
enhancement and denoising, in which we decompose the image 
into high- and low-frequency components by using the DoG 
filter and bilateral filter, respectively. For the high-frequency 
part, a simple soft-thresholding algorithm is adopted to reduce 
the noise and preserve the edges. In low-frequency component, 
we design a variational framework for adaptively enhancing the 
contrast and color, which can significantly improve the 
visibility and highlight the details of scene without excessive 
enhancement. Numerous experiments on real-word underwater 
image with different challenge scenes demonstrate that the 
proposed method is robust and effective in contrast 
enhancement, color correction and noise suppression. The 
extensively qualitative and quantitative experimental results 
further validate its superiority comparing with other advanced 
methods. In addition, the application tests verified the proposed 
ACCE-D can be extend to enhance other kind of degraded 
scenarios.  
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