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Abstract

This paper addresses video summarization, or the prob-

lem of distilling a raw video into a shorter form while still

capturing the original story. We show that visual repre-

sentations supervised by freeform language make a good

fit for this application by extending a recent submodular

summarization approach [9] with representativeness and

interestingness objectives computed on features from a joint

vision-language embedding space. We perform an eval-

uation on two diverse datasets, UT Egocentric [18] and

TV Episodes [45], and show that our new objectives give

improved summarization ability compared to standard vi-

sual features alone. Our experiments also show that the

vision-language embedding need not be trained on domain-

specific data, but can be learned from standard still image

vision-language datasets and transferred to video. A further

benefit of our model is the ability to guide a summary using

freeform text input at test time, allowing user customization.

1. Introduction

People today are producing and uploading video con-

tent at ever increasing rates. To appeal to potential view-

ers, videos should be well edited, containing only signifi-

cant highlights while still conveying the overall story. This

is especially important for video from wearable cameras,

which can consist of hours of monotonous raw footage. Au-

tomatic video summarization techniques [36] can facilitate

more rapid video search [40, 42] and ease the burden of edit-

ing a long video by hand [35]. Consequently, many meth-

ods for computing video summaries have been proposed by

researchers [1, 5, 6, 8, 15, 20, 25, 30, 42, 48, 47].

Summarizing video typically involves a tradeoff between

including segments that are interesting in their own right

and those that are representative for the story as a whole.

Some events may be interesting in isolation, but if they

are repeated too frequently the summary may become re-
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dundant or unrepresentative. Gygli et al. [9], whose work

we build upon, proposed an optimization approach for bal-

ancing the criteria of interestingness and representativeness.

Prior work has defined these criteria in abstract mathemat-

ical terms (e.g., using notions of sparsity, graph connected-

ness, or statistical significance) [2, 17, 49] or tried to learn

them using implicit or explicit supervision [30, 35, 43, 47].

Generally, it is agreed that bringing in explicit semantic

understanding, or the ability to associate video shots with

high-level categories or concepts, is helpful for enabling

meaningful summaries. A number of approaches have fo-

cused on learning limited vocabularies of concepts (often in

a weakly supervised manner) from large databases of im-

ages and/or video collected from the web [1, 14, 15, 41].

When rich supervision in the form of freeform language

(titles, on-screen text, or closed captioning) is available,

it becomes possible to use more sophisticated joint vision-

language models to capture a wider range of concepts and to

extract a more meaningful video summary [33]. Joint mod-

eling of visual content and text is becoming increasingly

common for video summarization and retrieval, typically to

help identify whether a given shot is relevant to the overall

story of a video or a particular user query [23, 32, 34, 42].

Recently, we have seen a proliferation of powerful

vision-language models based on state-of-the-art feedfor-

ward and recurrent neural networks. Such models have been

used for cross-modal retrieval [16, 19, 26, 29, 27, 37, 39],

image caption generation [12, 13, 27, 38, 44], and visual

storytelling [11, 50]. Motivated by these successful appli-

cations, we experiment with a joint image-text embedding

as a representation for video summarization. Such an em-

bedding is given by functions trained to project image and

text features, which may initially have different dimension-

alities, into a common latent space in which proximity be-

tween samples reflects their semantic similarity. We use the

two-branch neural network of Wang et al. [39] to learn a

nonlinear embedding using paired images and text (or video

and specially produced annotations). Then, at test time, we

use the embedding to compute the similarity between two

video segments without requiring any language inputs. As

we can see from Figure 1, even an embedding trained on
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A man and a girl are both 
looking at something of 
interest.

A man with a beer and 
another man facing each 
other, talking.

Video Frame Query Nearest Flickr30k Test Images

The organizers of the 
fundraiser were chatting at 
registration.

A man in a red shirt is 
walking towards a blue 
market stall.

A woman is sitting outside at 
a table, using a knife to cut 
into a sandwich.

A woman writes in a 
notebook while sitting on a 
wicker seat.

Figure 1. Example query video frames (left column) and their

best-matching still images with their captions from the Flickr30k

dataset [46] (right two columns). The similarity is computed by

mapping the visual features describing both the video frames and

the still images into a learned vision-language space, which pro-

vides a semantically consistent representation for video summa-

rization.

a different domain, i.e., the Flickr30k dataset of still im-

ages and captions [46], can retrieve semantically consistent

results for a query video frame (e.g. images of an outdoor

market are returned for the second query, or a woman sitting

at a table for the third).

An overview of our system is presented in Figure 2. We

start with the approach of Gygli et al. [9], which creates

a video summary based on a mixture of submodular ob-

jectives on top of vision-only features. We augment this

method, which we will refer to as Submod in the follow-

ing, with a set of vision-language objectives computed in

the cross-modal embedding space. The effectiveness of this

approach is experimentally demonstrated on the UT Ego-

centric [18] and TV Episodes [45] datasets, which have dif-

ferent statistics and visual content. Our experiments show

that the embedding can be learned on traditional vision-

language datasets like Flickr30k [46] while still providing

a good representation for the target video datasets. We are

able to leverage this improved representation to create more

compelling video summaries and, using the same underly-

ing model, allow a user to create custom summaries guided

by text input.

2. Semantically-aware video summarization

A common way of summarizing video is by selecting a

sequence of segments that best represent the content found

in the input clip. Following the Submod method of Gygli et

al. [9], we formulate this selection process as optimization

of a linear combination of objectives that capture different

traits desired in the output summary. We chose to build on

the Submod framework due to its two attractive properties.

First, it is generic and easily adaptable to different summa-

rization tasks that may have different requirements. Sec-

ond, by constraining the weights in the combination to be

nonnegative and the objectives to be submodular, a near-

optimal solution can be found efficiently [28].

Given a video V consisting of n segments, our goal is to

select the best summary Y ⊂ V (typically subject to a bud-

get or cardinality constraint) based on a weighted combina-

tion of visual-only objectives φo(V, Y ) and vision-language

objectives φo′(V, Y ):

argmax
Y⊂V

∑

o

woφo(V, Y )

︸ ︷︷ ︸

Visual-Only Objectives

+
∑

o′

wo′φo′(V, Y )

︸ ︷︷ ︸

Vision-Language Objectives

. (1)

The weights are learned from pairs of videos and output

summaries as in [9]. The objectives are restricted to being

submodular and the weights to being non-negative, which

makes it possible to use a greedy algorithm to obtain ap-

proximate solutions Eq. (1) with guarantees on the approx-

imation quality.

We start with the same visual-only objectives as in the

original Submod method [9], which will be reviewed in

Section 2.1. The contribution of our work is in proposing

new vision-language objectives, which will be introduced

in Sections 2.2 and 2.3.

2.1. Visual Objectives

Submod [9] splits the subshot selection task into a mix-

ture of three objectives enforcing representativeness, uni-

formity, and interestingness, as explained below.

Representativeness. A good summary needs to include all

the major events of a video. To measure how well the cur-

rent summary represents the original video’s content, visual

features are extracted from each segment and a k-medoids

loss function is employed. We can think of the summary

as a set of codebook centers, and for each segment from the

original video represented by some feature vector fi, we can

map it onto the closest codebook center fs, and compute the

total squared reconstruction error:

L(V, Y ) =

n∑

i=1

min
s∈Y

||fi − fs||
2

2
. (2)
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Summarization 
Model

Visual Features

Vision-Language 
Embedding

Optional input: Text 
summary of desired video

Required input: Video

I walked through the 
grocery store with my 
friend. My friend and I sat at 
the table and ate a meal 
together….

Output summary

Figure 2. Method Overview. At test time, we assume we are given a video and, optionally, a written description of the desired summary.

Our approach projects visual features into a learned vision-language embedding space where similarity reflects semantic closeness. By

using this representation, we can produce more diverse and representative summaries than those created with visual features alone. The

cross-modal embedding space further enables us to use text input to directly modify a summary.

This is reformulated into a submodular objective:

φrep(V, Y ) = L(V, {p′})− L(V, Y ∪ {p′}) , (3)

where p′ represents a phantom exemplar [6], which ensures

we don’t take the minimum over an empty set.

As in [9], we represent a segment’s visual content fs by

the average of the image features over all its frames. How-

ever, we replace the DeCAF features [4] used in [9] with

more up-to-date Deep Residual Network features [10] (we

use the 2048-dimensional activations before the last fully

connected layer of the 152-layer ResNet trained on Ima-

geNet [3]).

Uniformity. The second objective is designed to enforce

temporal coherence, as excessively large temporal gaps be-

tween segments can interrupt the flow of the story, while

segments that are too close to each other can be redundant.

The uniformity objective φunif (V, Y ) is completely anal-

ogous to Eq. (3), except that the feature representing each

frame is simply its mean frame index (i.e., it is a scalar in

this case).

Interestingness. Some segments might be preferred over

others in a summary, even if they all represent the same

event. For example, a segment where a child is smiling and

waving at the camera might be preferred to one where they

have their back to the camera. The notion of what is “inter-

esting” is typically highly particular to the exact nature of

the desired summary and/or application domain, although

some generic definitions of “interestingness” have been pro-

posed as well (e.g. [8, 18]). We use the same method as

in [9] to produce a per-frame interestingness score for all

the frames in a video segment. Since in principle it is pos-

sible for different segments to overlap, we sum over the in-

terestingness scores I(y) of all the unique frames y in the

current summary Y :

φint(V, Y ) =
∑

y∈Ŷ

I(y) , (4)

where Ŷ denotes the union of all the frames in Y . In our

experiments, we use this term on only one dataset, UT Ego-

centric [18], which has per-frame interestingness annota-

tions that can be used for training a classifier for producing

the scores I(y). More details about this will be given in

Section 3.

2.2. VisionLanguage Objectives

We would like to project video features into a learned

joint vision-language embedding space, in which we expect

similarity to be more reflective of semantic closeness be-

tween different video segments. Due to its state-of-the-art

performance on vision-language retrieval tasks, we chose to

learn our embedding model using the two-branch network

of Wang et al. [39]. One of the branches of this network

takes in original visual features A and the other one takes

in text features B. Each branch consists of two fully con-

nected layers with ReLU nonlinearities between them, fol-

lowed by L2 normalization. The network is trained with

a margin-based triplet loss combining bi-directional rank-

ing terms (for each image feature, matching text features

should be closer than non-matching ones, and vice versa),

and a neighborhood-preserving term (e.g. text features that

correspond to the same image should be closer to each other

than non-matching text features).

In this paper, we experiment with two different embed-

dings. The first one is trained using the dense text anno-

tations that come with both our video datasets. However,

due to the small size and vocabulary of these datasets, as

well as the domain-specific nature of their descriptions, this

embedding may not generalize well. Thus, we train a sec-

ond embedding on the Flickr30k dataset [46], which con-

tains 31,783 still images with five sentences each. By using

Flickr30k, we can evaluate how well its representation can

be transferred to video, which has quite different properties.

We train both embeddings using the code provided by the

authors of [39]. On the visual side we use the same ResNet
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features as in Section 2.1. On the text side, we use the same

6000-dimensional HGLMM features as in [16, 39]. The

output dimensionality of the embedding space is 512.

After learning an embedding, we map our visual fea-

tures to the shared semantic space and use them to compute

two additional objectives we refer to as semantic repre-

sentativeness and semantic interestingness. These share

the forms of the visual-only versions, i.e., Eqs. (3) and (4),

respectively. While one might assume that these semantic

objectives should supersede their visual-only counterparts,

our experiments will show that both are needed for best re-

sults. Just as semantic representativeness provides a notion

of how semantically similar two video segments are, visual

representativeness provides a notion of more low-level vi-

sual similarity. Ideally, a good summary will be both se-

mantically and visually diverse so as to provide the maxi-

mum amount of information under the current budget.

2.3. TextGuided Summarization

Including a vision-language embedding into our summa-

rization model not only allows us to select segments that are

more semantically representative and interesting, but also

gives us a direct way to incorporate human input when cre-

ating a summary, as shown in Figure 2. A user can supply

a freeform description of the desired summary, and the ob-

jective function can be augmented with a term that encour-

ages the result to be consistent with this description. This is

similar to the query-focused summarization framework of

Sharghi et al. [32], but rather than consisting of keywords

that can apply across many videos, our descriptions can be

freeform sentences that are specific to the input video. We

consider two scenarios corresponding to different assump-

tions about the form of the optional language input.

Constrained text guidance. In this version of text guid-

ance, we assume that we are given a written description in

which each sentence maps onto a single desired segment.

That is, the first selected segment from the video should be

consistent with the first sentence in the input description,

the second segment should be consistent with the second

sentence, and so on. We introduce an additional vision-

language objective for Eq. (1) based on the sum of inter-

modal scores between each summary segment and its corre-

sponding sentence. More precisely, let gs denote the feature

representation of the segment s (i.e., the mean of per-frame

feature vectors in the vision-language embedding space), ts
be the representation of the corresponding sentence from

the description D, and sim(gs, ts) be the cosine similar-

ity between them. Then our new text guidance objective

is given by

φtext(V, Y,D) =
∑

s∈Y

sim(gs, ts) . (5)

This is similar to what one would do for sentence-to-

video retrieval, except the sentences are provided as a set

and there are global costs for the summary as a whole (e.g.,

the uniformity and representativeness objectives). Since we

assume that the sentences are given in correct temporal or-

der, when a segment is chosen for a sentence it greatly re-

stricts the available segments for the remaining sentences.

Since our target videos have continuous shots with a lot

of redundant segments, a standard retrieval approach would

likely return a lot of very similar nearby segments in the top

few results. The global summary-level costs are necessary

to provide diversity.

Unconstrained text guidance. For videos that contain

hours of footage, or in cases when a description of the de-

sired summary cannot be written immediately after a video

is shot, it may be difficult to remember the correct ordering

of events or provide a temporally aligned description. In a

related scenario, a user may want to summarize a video they

did not shoot and maybe have not even seen – e.g., someone

may want to summarize a soccer match and is particularly

interested in corner kicks. For these reasons, we also imple-

ment an unconstrained version of text guidance, in which

the input sentences and the associated video segments do

not have to appear in the same order. This results in a bipar-

tite matching problem between a set of candidate segments

and the list of sentences which we solve using the Hungar-

ian algorithm. After obtaining the assignments, we compute

the text guidance objective using Eq. (5).

3. Experiments

3.1. Protocol and Implementation Details

Datasets. We evaluate our approach on two datasets for

which detailed segment-level text annotations are available:

the UT Egocentric (UTE) dataset [18] and the TV Episodes

dataset [45]. The UTE dataset consists of four wearable

camera videos capturing a person’s daily activities. Each

video is three to five hours long, for a total of over 17 hours.

The TV Episodes dataset [45] consists of four videos of

three different TV shows that are each 45 minutes long.

For both UTE and TV Episodes datasets, Yeung et

al. [45] provided dense text annotations for each 5- and 10-

second video segment, respectively. While the UTE dataset

videos are first-person videos taken in an uncontrolled en-

vironment, the TV episodes are well edited, third-person

videos. As a result of these variations, the text annota-

tions also have some obvious differences in statistics (e.g.

the UTE annotations typically begin with a self reference to

the camera wearer in the first person, while the TV Episodes

typically refer to people by their name in the episode).

Note that there exist other popular benchmarks for video

summarization, including SumMe [8] and TVSUM [34]

datasets. However, we did not include them in our evalua-

tion as they do not have text annotations on which a vision-
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language embedding model could be trained.

Training. For each video in the UTE and TV Episodes

datasets, Yeung et al. [45] have supplied three human-

composed reference text summaries. To train the weights

for different objectives in the Submod method, these sum-

maries need to be mapped to suitable subsets of segments

in the videos by matching sentences from the summaries to

the original per-segment video annotations. We follow the

same greedy n-gram matching and ordered subshot selec-

tion procedures as previous work [9, 45] to obtain 15 train-

ing summaries for each video.

For each dataset, we use a four-fold cross-validation

setup, training on each each subset of three videos and

testing on the fourth one. This involves training the

vision-language embedding (for models that do not use the

Flickr30k-trained embedding), the interestingness function

(only on the UTE dataset, as detailed in Section 3.2) and

the weights in Eq. (1). For the latter step, the training data

consists of 45 video-summary pairs.

Testing and evaluation. For both datasets, we set our

budget (i.e., the maximum number of segments that can

be selected) at 24, producing 2-minute summaries on the

UTE dataset and 4-minute summaries on the TV Episodes

dataset. Following [9, 32, 45], we evaluate video sum-

marization in the text domain. At test time, given a

video summary generated by our method, we create the

corresponding text summary by concatenating the original

text annotations of the segments that make up the sum-

mary. We use non-overlapping segments for each dataset

so as to have a non-ambiguous mapping to the text anno-

tations, though the Submod approach is still applicable to

video segmentations that produce overlapping segments [9].

The automatically produced summary is compared against

the three human-provided reference summaries using the

recall-based ROUGE metric [22]. Note that this evalu-

ation is content-based: multiple segments may score the

same if they are associated with the same or a very simi-

lar text description regardless of their relative visual qual-

ity (e.g., a blurry segment may be considered as good as a

sharper one). As in prior work [9, 32], we report the recall

and f-measure on each dataset using the ROUGE-SU score,

which demonstrated the strongest correlation with human

judgment [45]. We use the same ROUGE parameters as

in [9, 45], obtained through personal communication with

the authors.

In our evaluation, we compare the following baselines

and variants of our method:

1. Sampling. Baselines that sample segments in the test-

ing video uniformly or randomly. We run these base-

lines five times each and report the mean results.

2. Video MMR. The approach of [21] as implemented by

the authors of [45]. They provided us their output sum-

maries on the UTE dataset only, and we evaluated them

using our ROUGE settings.

3. seqDPP. The approach of [7] using their code. We re-

place their SIFT-based feature representation [24] with

our ResNet features which we also use to compute the

context-based representation required in this method.

We concatenate these with features computed over a

saliency map [31] as in [7].

4. Submod-V. The original Submod approach using the

code of Gygli et al. [9] and their visual-only objectives.

5. Submod-S. Submod which replaces visual-only rep-

resentativeness and interestingness with the semantic

versions.

6. Submod-V + Sem. Inter. Combination of the seman-

tic interestingness objective with the visual-only ob-

jectives.

7. Submod-V + Sem. Rep. Combination of the semantic

representativeness objective with the visual-only ob-

jectives.

8. Submod-V + Both. Combination of the semantic inter-

estingness and semantic representativeness objectives

with the visual-only objectives.

Note that variants 6 and 8 above are only available on the

UTE dataset since it is the only one that has an interesting-

ness function.

3.2. UTE Dataset Results

For this dataset, Lee et al. [18] have provided importance

annotations that can be used to train an interestingness clas-

sifier. Following [9], we learn to predict the interestingness

of a video segment (as a binary label) using a support vector

machine with a radial basis function kernel over our visual

or vision-language features. As in [9], we compute features

on the whole image rather than on regions as in [18]. For

reference, the resulting classifier using the visual features

has an average precision of 56.2 on the annotated frames.

We evaluate our approach on two-minute-long sum-

maries in Table 1. Our new semantic features trained on

UTE data provide a combined improvement in f-measure of

nearly 5%, with a 4% improvement in recall as shown in

the last line of Table 1(c). A majority of that gain comes

from our semantic representativeness objective. Despite

having very different text annotations on images with differ-

ent statistics, the semantic features trained on the Flickr30k

dataset perform nearly as well as the UTE-trained features.

Figure 4 visualizes the weights of the five objectives in

our best-performing model. We can see that visual and

semantic representativeness get the two highest weights,
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My friend and I watched a 
car pass.  My friend drove 
the car,  and I sat in the 
passenger seat.

I took a look 
around the 
market. 

I looked at the menu on the wall.   I watched the TV on the wall. My friend and I 
ate pizza together.  I sat at the table and looked at the wall.  My friend and I 
looked at the TVs.  I sat at the table and had a drink.  

I looked at the counter.  I sat and ate 
frozen yogurt.  I ate frozen yogurt and 
watched TV.

I took a look 
around the 
market. 

Transit Market Restaurant Yogurt Shop

With 
Semantic 
Features

Without 
Semantic 
Features

My friend drove the car,  and I 
sat in the passenger seat.  My 
friend drove the car,  and I sat 
in the passenger seat.

My friend and I drove 
in his car.

I looked at the menu on the wall.  My friend and I sat at the table. My friend and I 
ate pizza together. I watched the TV on the wall. My friend and I ate pizza together. I 
sat at the table with my friend. 

I ate frozen yogurt and 
watched TV.  I looked out 
the window.  

Transit

(b)

(a)

I played with LEGO's.  I picked an object 
from a box and connected it to one in my 
hand.  I put LEGO's together.

I walked down a side walk.  I walked 
down the street with my friend.  I looked 
up at the ceiling.

I sat on the floor.  I went through a book.  
I watched TV.

I played with LEGO‘s.I played with LEGO's.  My friend and I played 
with LEGO's.  I looked at the directions.  

Transit Playing with LEGOs Playing with LEGOs Washing Dishes

With 
Semantic 
Features

Without 
Semantic 
Features

I walked down a side walk.  My friend 
and I walked down the street on the 
sidewalk.  I looked up at the ceiling.

I watched TV.  I went through a book.  I 
sat in the chair and looked at a book.

I played with LEGO's.

I ran water on the sponge.  I washed 
the dishes in the sink.

Watching TV/Reading

I washed the dishes in the sink.  I 
stood at the kitchen sink.

Figure 3. Output summaries of UT Egocentric Video 2 produced with and without the semantic features, corresponding to models in the

last lines of Table 1(c) and (a), respectively. Parts (a) and (b) show the first and second halves of the summary. For better readability, we

add a color-coded timeline hand-annotated with high-level scenes (e.g., Transit, Market). (a) The first Transit scene is captured with the

semantic features and missed otherwise. (b) While the two summaries represent each scene with an equal number of segments, we can

see a difference in the precise segments that are selected: In the Washing Dishes scene, the summary based on semantic features selects

segments more representative of dishwashing, rather than simply standing at the sink.

Method F-measure Recall

(a) Baselines

Random 26.51 25.23

Uniform 28.13 25.76

Video MMR [21] 22.73 20.80

seqDPP [7] 28.87 26.83

Submod-V [9] 29.35 27.43

(b) Flickr30k Embedding

Submod-S 27.18 29.69

Submod-V+Sem. Inter. 31.44 28.28

Submod-V+Sem. Rep. 32.40 30.00

Submod-V+Both 33.50 31.16

(c) UTE Embedding

Submod-S 29.54 31.01

Submod-V+Sem. Inter. 31.58 29.24

Submod-V+Sem. Rep. 33.24 30.84

Submod-V+Both 34.15 31.59
Table 1. UT Egocentric summarization performance. (a) con-

tains our baselines including our reproduction of [7, 9] using their

code with updated visual features. (b-c) demonstrates the effec-

tiveness of our vision-language objectives on this task using em-

beddings trained on different datasets.

Uniformity

16%

Interestingness

12%

Semantic 

Interestingness

4%Representativeness

47%

Sematnic 

Representativeness

21%

UTE OBJECTIVE WEIGHTS

Figure 4. Learned weights for the five objectives of our best-

performing model on the UT Egocentric dataset, averaged across

the four training-test splits.

adding up to more than 60% of the total, followed by uni-

formity. The two interestingness objectives have the small-

est (though still non-negligible) contribution, indicating that

representativeness does most of the job of capturing story

elements.

Qualitatively, the performance gains afforded by the se-

mantic features appear to stem primarily from the addition

of missing story elements. An example of this is shown in

Figure 3(a), where the car drive to the market is completely
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Method F-measure Recall

(a) Baselines

Random 32.83 28.88

Uniform 33.90 29.15

seqDPP [7] 35.39 32.12

Submod-V [9] 38.18 33.47

(b) Flickr30k Embedding

Submod-S 38.92 35.28

Submod-V+Sem. Rep. 39.87 36.50

(c) TV Episodes Embedding

Submod-S 37.29 32.75

Submod-V+Sem. Rep. 40.90 37.02
Table 2. TV Episodes summarization performance. (a) Base-

lines, including our reproduction of [7, 9] using their code with

updated visual features. (b,c) Different combinations of vision-

language objectives using embeddings trained on Flickr30k and

TV Episodes, respectively.

missing from the output summary without the semantic fea-

tures. Another manifestation, although more subtle, can be

seen in the Washing Dishes section of Figure 3(b). The seg-

ment being chosen with semantic features corresponds to an

action that is common in washing dishes (rinsing a sponge),

while without semantic features the user is just standing

there.

3.3. TV Episodes Results

The TV Episodes dataset does not provide per-frame im-

portance annotations with which to train a semantic inter-

estingness classifier, so we do not use the interestingness

objective of Eq. (4) here. The results in Table 2 show

that augmenting the visual representativeness and unifor-

mity objectives with the semantic representativeness objec-

tive once again provides an improvement. As can be seen

from Table 2(c), semantic representativeness computed on

top of the TV Episodes embedding increases the f-measure

by 1.5%, and recall by just over 3%. As on the UTE dataset,

the embedding trained on the dataset itself performs slightly

better than the Flickr30K-trained one.

Overall, the absolute improvement in the ROUGE scores

here is smaller than on UTE. In fact, of the four training-

test splits, adding semantic representativeness improves re-

sults in two cases and actually makes them worse in the

other two, though the absolute improvements end up be-

ing larger. We also see much higher variance in the per-

objective weights learned by the Submod method on TV

Episodes than on UTE. Part of the problem is the limited

amount of training data. We also suspect an interestingness

objective as used for the UTE dataset would help stabilize

the summaries and make them more meaningful.

Figure 5 compares summaries produced with and with-

out semantic representativeness on the fourth TV Episodes

Dataset Text Guidance F-measure Recall

UTE
Unconstrained 34.90 31.77

Constrained 35.21 32.31

TV Eps.
Unconstrained 41.18 38.14

Constrained 41.17 38.11
Table 3. Performance on text-constrained summarization, when

the written description of the desired summary is given as an ad-

ditional input at test time. We are using our full models with the

vision-language embedding trained on the respective datasets (cor-

responding to the last lines of Tables 1 and 2).

video. The result with the semantic objective more com-

monly agrees with the segments in the reference summary.

On the left, the segment with the semantic features focuses

on selecting a segment deemed more critical to the story of

the original video (i.e. Joel being attacked vs. him walking

around his house). For the center pair of segments, seman-

tic representativeness selects the segment when a video of

Joel’s attack is shown at the police department, instead of a

segment where the video is simply mentioned.

3.4. TextGuided Summarization Results

Table 3 shows the evaluation of text-guided summariza-

tion, where a reference text description is provided as an

additional input at test time. These results are obtained with

our full models with the vision-language embedding trained

on the respective datasets. Comparing the results in Table 3

with the last lines of Tables 1 and 2, we see gains across both

datasets. While one might think the constrained version,

where the written description is provided in temporal order,

would perform better, we only see this manifest on the UTE

dataset. On the TV Episodes dataset, the two versions per-

form about the same. We believe this is not only due to the

differences in length of the raw videos, but also the repet-

itive nature of the different scenes. Although the videos

in the UTE dataset form a continuous stream and tend to

change gradually, once a place is left is isn’t often revis-

ited. Looking at the different story elements in Figure 3(a)

and Figure 3(b), only Transit and Playing with LEGOs is

repeated. In contrast, the nature of the TV Episodes dataset

means that the general visual elements corresponding to dif-

ferent sets may occur multiple times. The offices where the

people work, the homes of suspects, or crime scenes (as

these TV Episodes are of crime shows) are often repeated,

making it challenging to identify the specific scene being

described without considering the audio as well. The un-

constrained model appears to be more robust to this kind of

confusion.

4. Conclusion

In this paper we demonstrated that video summarization

can be improved through the use of vision-language em-
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Joel Santos is struck on the head with a 
baseball bat by an unknown assailant.

Segments Selected:
w/o Semantic Features
Reference Summary
w/ Semantic Features

Joel Santos enters the kitchen. We are 
shown this as surveillance footage.

Larry and Megan say goodbye to each 
other. Buzz Aldrin waits to pick up Larry.

Megan begins to cry because Larry is 
going to outer space.

Joel Santos is shown on video, bound 
and beaten by the serial killer.

David discusses a video found on the 
internet.

Figure 5. Comparison between the video summaries on Video 4 from the TV Episodes dataset produced with and without the semantic

representativeness objective. For completeness, we also show the frames from the reference summary. The summary with semantic features

more commonly selects segments found in the reference summary. The figure shows frames from three such occurrences along with the

closest selected segment in the summary without semantic features.

beddings trained on image features paired with text annota-

tions, whether from the same domain (i.e., videos of a sim-

ilar type) or from a quite different one (still images with di-

verse content). The feature representation in the embedding

space has the potential to better capture the story elements

and enable users to directly guide summaries with freeform

text input.

While our work shows the promise of video summariza-

tion datasets accompanied by rich text annotations, like the

ones released by Yeung et al. as part of their VideoSET

framework [45], it also shows their limitations. In particu-

lar, these datasets have only a few videos that can be highly

variable. Thus, the amounts of training and test data are

not necessarily sufficient to draw firm conclusions about

the relative advantages of different summarization methods

(in our case, we struggled with instability issues on the TV

Episodes dataset). Compounding the problem are the incon-

sistencies in the kinds of annotations that are available for

different datasets (in particular, annotations that can be used

to train good interestingness objectives) and the evaluation

methodologies that are proposed in the literature. While ef-

forts like VideoSET are a good start, they need to be greatly

expanded in scope.
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