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ABSTRACT
This paper describes the transformation of an existing set 

of heterogeneous product knowledge into a coherent design re-
pository that supports product information archival, storage and 
reuse.  Existing product information was analyzed and compared 
against desired outputs to ascertain what information management 
structure was needed to produce design resources pertinent to the 
design process.  Several test products were cataloged to determine 
what information was essential without being redundant in rep-
resentation.  This set allowed for the creation of a novel single 
application point of entry for product information that maintains 
data consistency and allows information be easily exported.  The 
exported information takes on many forms that are valuable to the 
design process such as a bill of materials and component function 
matrix.  Enabling technologies include commercial software, XML 
(eXtensible Markup Language) data, XSL (eXtensible Stylesheet 
Language) transformation sheets and HTML (HyperText Markup 
Language).  Through this process researchers at the University of 
Missouri – Rolla (UMR) have been able to dramatically improve 
the way in which artifact data is gathered, recorded and used.

1     INTRODUCTION
As products become more complex there is an increased 

need for the designer or team of designers to be able to have 
access to a breadth of design information spanning a variety of 
disciplines.  Consideration of many types of artifacts is necessary 
when searching for component solutions, in order to ensure a high 
quality product that meets the needs of the customer.  Well suited 
to meet this need are design repositories – knowledge bases of 
heterogeneous product design knowledge that can be searched 
and reused.  Design repositories support these types of activities 
in original design and redesign cases. 

Over the course of several years of research and integrated 
design coursework at the University of Missouri-Rolla (UMR), 

a body of product design knowledge was developed for approxi-
mately fifty consumer products.  This knowledge base, which 
included descriptive product information such as functionality, 
bills of materials and design structure matrices, lacked a stan-
dard interface, data consistency and the ability to output design 
representations with ease.  Observing user interactions with the 
knowledge base, including design modeling activities as well as 
retrieval and reuse/redesign activities, revealed that these draw-
backs served as a barrier to effective use of the knowledge base.  
By unifying these disparate components into a design repository, 
it has been possible to improve the utility of the knowledge base 
for viewing, searching and reusing the wealth of preexisting de-
sign knowledge.

This paper reports on research efforts conducted at UMR 1) 
to accurately identify the types of design knowledge required to 
support designer activities; 2) to represent information from this 
product knowledge base in a design repository system; and 3) to 
reuse that design knowledge for future product design.  By fol-
lowing a National Institute of Standards and Technology (NIST) 
research effort in the area of design repositories, and by reviewing 
a design knowledge base system previously developed at UMR, 
a transformation has taken place in the way research activities at 
UMR catalog, view, and export design information.  A key goal 
of the NIST design repository effort has been to generate a set of 
platform-independent data models that can easily be transferred 
from one system to another.  NIST has proposed a set of informa-
tion models that provide a generic, neutral format for capturing, 
storing and reusing product representation knowledge.  Mappings 
of these information models into XML have been developed to 
facilitate system implementation and data exchange.  Through 
the use of documentation and reports provided by NIST, as well 
as personal communications with NIST staff, UMR focused on 
developing the capability to export XML data in conformance with 
the NIST design repository representation class structure.   
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In addition to adopting the NIST-developed representation 
schemata, UMR researchers also had the goal of creating an ap-
plication that could output design aids such as detailed bills of 
materials, matrices to support design computations and, ultimately, 
graphical functional models.  A single, simplified point of entry 
for product information that integrate s well with product dissec-
tion processes (Otto & Wood 2001) was also desired.  With these 
objectives identified, this paper examines the design knowledge 
base that had been previously developed at UMR, looking at how 
product information is collected and what information is neces-
sary.  The key pieces of design information gathered are functional 
models and a detailed bill of materials.  From combinations of 
these two pieces of information, all other desired product repre-
sentations can be derived.  These two sets of data form the basis 
for transforming an emerging knowledge-based system into a more 
mature design repository-based tool.

2     BACKGROUND
In order to create a quality design repository, there are several 

elements of previous research that must be used to represent a 
product with consistency.  This section starts out by reviewing 
commercially available software applications that resemble a 
design repository system, though do not fully fulfill the role 
of repositories in design.  Next, section 2.2 focuses on product 
functionality, a key component of design information for product 
categorization, search and reuse.  In particular, the functional ba-
sis is described and is presented as a means to describe product 
functionality.   

2.1     COMMERCIAL DESIGN REPOSITORY SYSTEMS
There is currently no product on the market that is truly a 

design repository; however, there are several packages that contain 
elements of a design repository.  Such computerized design pack-
ages can be grouped into three basic categories: 1) mechanical 
computer-aided design (MCAD) packages that augment traditional 
CAD models with more abstract design knowledge; 2) systems 
engineering toolsets which contain higher level design informa-
tion that may be used to generate CAD models; and 3) systems 
modeling and simulation packages that have little or no interaction 
with traditional CAD packages.  For the MCAD packages, the 
typical approach is to add layers of abstract design knowledge to 
the existing CAD model.  For all categories, no standard language 
has evolved, though there is widespread use of the process of 
functional decomposition.  Within such decompositions, whether 
for function or architecture, no standard exists concerning levels 
of abstraction.  Finally, each package appears to use its own pro-
prietary data structure to store the additional design knowledge.  
One representative example commercial package for each of the 
three categories is described for illustrative purposes.1

Unigraphics – UG/WAVE (www.ug.eds.com/ug/).  UG/
WAVE is a MCAD package.  It adds abstract product design 
knowledge capability to the core Unigraphics CAD (or solid 
modeling) package.  Product architecture information in a para-

metric product layout is captured in a “control structure.”  This 
appears to be similar to a functional modeling approach to product 
design, but is more form oriented.  The module allows “what-if” 
evaluation of simplified design alternatives, making the neces-
sary modifications to the rest of the design as necessary.  It does 
store subsystem design knowledge such that it can be re-used in 
future products.

3SL – Cradle (www.threesl.com/).  Cradle is a British systems 
engineering toolset composed of six modules that can be used 
together or separately.  Its systems modeling component offers 
robust support of several modeling notations, including functional 
block diagrams, behavior diagrams and object oriented support.  
Design knowledge is stored in a single repository structure ac-
cessible by all modules.  Cradle also allows high levels of re-use 
among subassemblies stored in its repository.  While it is not a 
CAD package per se, it can export information to a variety of 
CAD formats.

Nu Thena Systems – Foresight (www.nuthena.com).  Fore-
sight is strictly a systems modeling and simulation tool.  It takes 
a hierarchical approach to functional and architecture modeling, 
allowing as many levels of abstraction as desired.  In addition to 
the functional and architecture model, a mapping between the 
two is stored as design knowledge.  This provides a strong link 
between function and form design.  The package does not interact 
with other CAD systems and the functional language used favors 
electronic systems.  

The concept of a design repository is extremely useful in 
the context of automated design storage and retrieval packages.  
Although design repository-based systems do not exist in com-
mercial form today, the review of current commercial offerings 
indicates that elements of the design repository concept are being 
adapted by mainstream commercial product development systems, 
and that industry is moving towards the vision of design reposi-
tories.  No clear direction exists for its development, though.  A 
standard repository structure, supported by fundamental functional 
and architecture modeling research, is needed to guide work in 
this area.

2.2  PRODUCT FUNCTIONALITY
Addressing the need for a clear vocabulary to describe product 

function, the functional basis has emerged as a standardized design 
language (Hirtz et al., 2002).  It was formulated in concert with 
NIST to unify two similar, independent research efforts (Szykman 
et al., 1999; Stone and Wood, 2000).  The functional basis consists 
of two sets of terminology: one containing action verbs to describe 
function, and a second containing nouns to describe flow.  The 
functional basis spans all engineering domains while retaining 
independence of terms.  The function set of the basis is broken 
down into eight categories termed the primary classes.  These 
classes have further divisions, called the secondary and tertiary 
levels, that offer increasing degrees of specialization.  The primary 
class represents the broadest definition of distinct function while 
the tertiary class provides a very specific description of function.  
The secondary level of the function set, containing twenty-one 
action verbs, is the most often used class of the basis.  The primary 
class and secondary function terms are shown in Table 1.

The flow set of the functional basis allows for the associated 

1 Use of any commercial product or company names in this paper is intended 
to provide readers with information regarding the implementation of the research 
described, and does not imply recommendation or endorsement by the authors 
or their institutions. 
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functionʼs input and output flows to also be described.  Similar 
to the function set, there are three distinct classes within the flow 
set of the functional language.  Within the primary class of the 
flow set, there are three main categories used to describe flow: 
material, signal and energy – as popularized by Pahl and Beitz 
(1996).  Each of these categories has the capability to represent 
the input or output of a function.  The secondary class of this set 
has 20 nouns that are used to describe the type of flow.  It is the 
secondary class of this basis that is primarily used when describing 
a product.  The primary class and secondary flow terms are shown 
in Table 2.  The tertiary level is omitted from Tables 1 and 2 for 
reasons of brevity, and can be found in (Hirtz et. al, 2002).

Using the functional basis to represent product functional-
ity within the design repository allows product knowledge to be 
searched and categorized by their function.  This abstraction al-
lows the designer to focus on overall functionality and to develop 
more creative solutions for solving a design problem (McAdams 
and Wood, 2000).  

3 ASSEMBLING PRODUCT DESIGN KNOWLEDGE 
COMPONENTS

In addition to product function, researchers at UMR have 
identified design information typically recorded and used in 
original and redesign settings which is not formally captured by 
current computational design tools.  While product function is a 
core component of design representation, other higher-level de-
scriptions (such as customer needs) and lower level representations 
(such as component dimensions) are needed to completely describe 
and, thus, archive product knowledge.  The different representa-
tions chosen for this work are based on product information flow 
schemes (Shooter et al., 2000) and dissection processes (Sheppard, 
1992; Otto and Wood, 2001) as well as information needed in a 
variety of modern design methods and tools (Pimmler and Ep-
pinger, 1994; Campbell et al., 2000; McAdams and Wood, 2000; 
Wood and Verma, 2000; Campbell et al., 2001; Strawbridge et 
al., 2002; Wood et al., 2002; Stock et al., 2003).  Eight types of 
design models that have been used to represent design information 
in support of the conceptual design process at UMR (and more 
generally as well) are identified below.  Finally, Sections 3.2 and 
3.3 describe the NIST-inspired design repository representation 
and outlines how it is designed to handle this new data. 

3.1 INFORMATION MODELING AND CAPTURE IN THE 
UMR KNOWLEDGE-BASED SYSTEM

Customer needs:  To record product information, existing 
products are utilized and operated, and a basic list of customer 
needs associated with the product is gathered.  This is vital in 
identifying the product s̓ purpose and market niche.  It is important 
to understand the market area and/or level of performance that an 

individual product is expected to meet.  To gather customer needs 
the product is operated by a designer and a survey is produced.  
The survey is geared to determine what features customers enjoy, 
how they feel about the product and if there is an overall purpose 
for the product.  The questionnaire is also designed to find out 
what features or additions could be incorporated into the product 
and to establish a performance rating of the included features.  
The surveys are conducted with potential product customers while 
they operate the product.  Customers are asked to rate areas on the 
survey on a 1-5 (5 being best and 1 being minimal) scale.  Once 
a base of customers had been surveyed, the responses are aver-
aged to determine the overall customer need weight (Hauser and 
Clausing, 1988; Otto, 1996; Urban and Hauser, 1993).

Bill of Materials (BOM):  A bill of materials is a detailed 
description of all of the artifacts within a given product.  This 
provides an easy way for designers to see a simple breakdown 
of parts contained within a given product.  Although artifact 
function descriptions are not traditionally used as part of BOM 
representations, in the context of research activities at UMR, such 
descriptions—represented as function and flow pairs—are associ-
ated with each artifact.  For example, the artifact motor has the 
functional description of “convert electrical energy to mechanical 
energy.”  Additional information about an artifactʼs mass, dimen-
sions, manufacturing processes or material composition is also 
recorded.  The BOM is usually represented in a tabular format 
with the artifacts or part number listed on the left most column, 
where each row represents a different artifact. A partial BOM for 
an electric wok is shown in Table 3.

Functional Model:  A functional model is a description of a 
product or process in terms of the elementary functions that are 
required to achieve its overall function or purpose.  A graphical 
form of a functional model is represented by a collection of sub-

Table 3 – A partial BOM for an electric wok

Table 1 - Function classes and their basic 
categorizations

Table 2 - Flow classes and their basic 
categorizations
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functions connected by the flows on which they operate (Stone and 
Wood, 2000).  This structure is an easy way for a designer to see 
what type of functions are performed without being distracted by 
any particular form the artifact may take.  An example functional 
model of an electric wok is shown in Figure 1.

Modules:  Modules are simply clusters of functions that could 
be embodied by one component or assembly based on the flow(s) 
that the functions operate on.  This is important as it suggests to 
the designer that a component or assembly that carries out all 
of the combined functions can be manufactured.  Graphically, 
the functional model is augmented with potential modules (or 
partitions) based on a heuristic procedure (Stone et al., 1998; 
Gonzalez-Zugasti et al., 2000; Stone et al., 2000a; Stone et al., 
2000b).  Modules can be seen in Figure 1, denoted by boxes with 
hashed lines.

Function Component Matrix:  A function-component matrix 
records the component(s) that solve each function.  Within the 
matrix, rows designate product components and columns designate 
the sub-functions of the product.  For a single component, the 
matrix is binary, with a “1” showing that the component solves 
the corresponding function and a “0” indicating no relationship.  
When multiple product component-function matrices are aggre-
gated together (known as a chi-matrix) the function-component 
now can be used to generate concepts (Strawbridge et al., 2002).  
The component function matrix also serves as a roadmap linking 
the functional model and bill of materials.  An example function-
component matrix is shown in Table 4.

Design Structure Matrix:  The Design Structure Matrix 
(DSM) is a matrix in which rows and columns represent the set 
of artifacts within a product (Pimmler and Eppinger, 1994).  When 
two artifacts within a product interact with one another in some 
way, the cell where a row and column corresponding to those two 
artifacts meet is marked with a “1” (or alternatively an “X”).  Cells 
corresponding to pairs of artifacts that do not interact are marked 
with a “0” (or alternatively left blank).  The DSM representation 
results in a symmetric matrix because the interaction between 
artifacts A and B will show up at the intersection of row A and 
column B, as well as at the intersection of row B and column A.  
This is useful in the design process to see how artifacts within a 
product relate to each other physically.  Table 5 shows a fragment 
of a DSM for an electric wok.

Product Vector:  A product vector is used to determine a 
functionʼs overall importance and is based on the weighted cus-
tomer needs for the product.  Each customer need associates with 
one or more functions.  The weighted sub-functions are summed 
to give an overall importance weight for that sub-function.  This 
is a useful step in the design stage to quickly identify key func-
tions of a product.  A product vector for an electric wok is shown 
in Table 6.

Geometric Representations: Component and artifact photos 

Electricity module Thermal energy module

Food module

Liquid Module

Support module

Module

import
elect.

transmit
elect.

electricity regulate
elect.

convert
elect. to

therm. ener.

measure
therm. ener.

import
solid

store
solid

food distribute
solid

transmit
therm. ener.

export
solid

import
liquid

separate
solid

cleaning
solution stop

liquid
export
liquid

import
hum. force

distribute
mech. ener.

human force stabilize
mech. ener.

secure
mech. ener.

elect. elect. elect. heat

food food
food

heat

food
food

temp.

cleaning
solution

debris

debris

sol’n. sol’n. sol’n.

weight

human force

weight weight
human force

weight

heat
heat level

clean/dirty clean/dirty

Material flow
Energy flow
Signal flow

Table 4 – Partial component-function matrix of an 
electric wok 

Figure 1 – Functional model of an electric wok

Figure 2 – Example component photos (a & b) and 
solid model (c) of an electric wok 

Table 5 – Partial design structure matrix of an electric 
wok 
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along with solid models (when available) are also collected.  These 
help the designer to visualize the form of the particular artifact/
function.  Figure 2 shows an example of component photos and 
solid model captured for an electric wok

3.2 NIST DESIGN REPOSITORY SYSTEM
All of the above identified design knowledge models exceed 

the representational capabilities of current commercial compu-
tational design tools.  A more flexible and vendor-neutral data 
structure is needed to represent the heterogeneous knowledge 
that designers use.  The NIST Design Repository Project, was 
initiated to meet this need (Szykman et al., 1996; Murdock et al., 
1997; Szykman et al., 1999; Shooter et al., 2000; Szykman et al., 
2001; Szykman, 2002).

NIST has developed a set of information models to be used 
for modeling product knowledge at varying levels of detail.  There 
are several data entities which allow for a variety of aspects of a 
product description to be represented. The classes specified in the 
NIST Core Product Model include: Artifact, Function, Transfer 
Function, Flow, Form, Geometry, Material, Behavior, Specifica-
tion, Configuration, Relationship, Requirement, Reference and 
Constraint2 (Fenves, 2001).  Along with these classes there is a 
set of specific information needed with each item and a specified 
type of value that can be entered.  

Nearly all of the defined data types contain elements such 
as those shown in the Artifact Class shown in Figure 3.  The 
Artifact class specifies that the artifact name along with artifact 
information and references are required.  The “(I)” means that 
any information contained about the denoted elements is inherited 
from an abstract class defined separately, in this case the abstract 
class called DPR_Object, as indicated in the first line of the class 
definition.  An element denoted with “#  (NOT NULL)” requires 
that the field must contain data.  The element “type” contains 
“[Artifact_Family]” on the same line.  Instances such as this one, 
in which a term appears in square brackets denotes a list of such 
pointers; thus the “function” is defined as being a list of at least 

one (because of the “NOT NULL”) or more pointers to items 
belonging to the “Function” class. 

The NIST design repository representation model is a basic 
framework to help guide what type of product information is col-
lected and how the elements of information are related to each 
other.  NIST has also developed a mapping from this represen-
tational framework into an XML data format.  Within the NIST 
XML code there are five different sections: Artifacts, Functions, 
Forms, Behaviors and Flows.  These sections contain information 
relative to their denoted naming system.

Figure 4 shows a sample of NIST-formatted XML.  The 
opening tag is “<DesignRepository>” followed by “<Artifacts>” 
and “<Artifact name=…>.”  These first few tags begin the XML 
representation of the “DesignRepository” and then define the “Ar-
tifacts” subset followed by a specific “Artifact” named “widget.”  
Within the “widget” artifact there are tags for information fields 
that contain a description of the artifact, the creation date of the 
data entity, who created the entity when it was last updated, and 
who performed the update.  The “<ref:…….>” tags are generic 
reference tags within the XML language, used in this context to 
link one data entity (e.g., the “widget” artifact) to other entities 
that are associated with it but are defined elsewhere (e.g., the 
widgetʼs corresponding function, form and behavior). These 
entities all have information in their appropriate section of the 
XML file.  Subartifacts of the “widget” are contained within the 
“<subartifacts>” tagged area and are then referenced by the actual 

Table 6 – Product vector for an electric wok

Figure 4 – Sample NIST formatted XML data

Figure 3 – Artifact class definition

2 Several “abstract class” definitions also exist.  These classes facilitate 
database design and implementation by grouping attributes common to all of the 
subclasses of a given class.  However, instances of the abstract classes cannot 
be created, and are therefore not used in actual product models (Szykman et al., 
2001).
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artifact.  The structure of XML is such that an unlimited number of 
unique “Artifact” elements can be defined under the <Artifacts> 
tag.  Every element keyed before “<Artifacts/>,” the close of the 
artifacts tag is described underneath the “Artifacts” umbrella.  This 
structural style also follows for “Functions” contained underneath 
the “<Functions>” tag, and likewise for Forms, Behaviors and 
Flows.  A single product represented in this XML format will span 
thousands of lines of data to accurately represent the product.

3.3 TECHNOLOGY
XML (eXtensible Markup Language) is a basic markup lan-

guage for documents containing structured information (W3C, 
2000).  Structured information includes text, graphics and other 
elements and the structure comes from the linking that gives an 
indication of what role the data plays.  This information comes 
from the tags contained within the XML format.  XML is similar 
to HTML in that it uses tags to “markup” elements.  A markup 
language is a mechanism to identify structures in a document.  
XML differs from HTML by virtue of its extensibility.  Unlike 
HTML, which has a fixed set of tags, XML allows for the creation 
of user-defined tags.  The XML specification simply defines a 
standardized method to add markup to documents. 

XSL (Extensible Stylesheet Language) is a language for ex-
pressing stylesheets given a specified class of arbitrarily structured 
XML data (W3C, 2001).  XSL is used in conjunction with an XSL 
processor and XML data.  An XSL stylesheet processor accepts 
a document or data in XML, along with an XSL stylesheet and 
produces an output that is formatted as defined by the stylesheet.  
A stylesheet is essentially a document roadmap, it defines what 
elements are, where they can be found and where they need to go.  
An XML file can be parsed with an XSL stylesheet and passed 
through a stylesheet processor to create reformatted XML, basic 
text, HTML or graphics.  XSLT (XSL Transformations) provide 
a language that is used to define transformations of one XML file 
into another (W3C, 2002).  XSLT is an important part of XSL.

4.0 RESEARCH METHOD
This section begins with a summary of the practice of design 

data entry and usage in the knowledge-based system previously 
developed at UMR.  The shortcomings of the previous system 
are summarized in section 4.1.  Section 4.2 presents a frame-
work for an enhanced design repository-based system with ease 
of entry and design tool output capability.   Finally the solution is 
implemented for an improved repository entry, management and 
retrieval method.  The system architecture is described in section 
3.3 and details of its underpinnings and output capabilities are 
described in sections 4.4-5.

4.1 OBSERVATION
Approaching this as a design problem, a list of customer needs 

for an effective design repository is initially developed.  The most 
important customer need is to improve the repository data entry 
method.  In order to improve data entry, researchers at UMR 
reviewed the current design tools and determined what pieces of 
information are required to fully represent product knowledge.  
The data sets recorded contain customer needs lists, bills of 
materials, functional models, module based functional models, 

function-component matrices, design structure matrices, product 
vectors, artifact photos and assembly instructions.  Although this 
information is valuable to the design repository, it is sometimes 
redundant in explanation and creation.  Most of these elements are 
currently created inside of spreadsheet and drawing applications.  
Some application dependence is removed by exporting the final 
files to an Adobe PDF  (Portable Document Format); however 
manipulation of the design knowledge still requires the original 
applications.  Product of design tools from the repository is often 
a tedious process.  For example, an aggregate component-function 
matrix was populated manually by dragging and dropping indi-
vidual product component-function matrices into the combined 
component-function matrix. 

The goal of the research described in this paper is to reduce 
workload of design engineers to populate design repositories, and, 
thus make them more appealing as a design tool.  It was found that 
the bill of materials and a functional model are the key pieces of 
information that are required to generate a majority of the remain-
ing representation schemata.  

The most noticeable issues with the previously existing data 
were the inconsistency of product representation language and 
format.  This design repository effort at UMR has been in existence 
since the summer of 2000 and had over 11 different researchers 
contributing product data.  The inconsistency between artifact 
representations can be linked to the time span and number of 
researchers associated with the repository.  This indicated that 
a strict framework was needed in order to unify the repository 
format and increase consistency.  

Physical artifact information such as dimensions, material 
and the manufacturing process varied greatly.  Most artifact di-
mensions were represented by “L=6, W=2, H=3.”  Noticeably 
the lack of associated units of measure results in an imprecisely 
specified product description.  Multiple artifact dimensions were 
often keyed into a single cell rather than individual cells, with 
no consistent use of labeling.  Similar issues were present with 
material and manufacturing process data.  Also noticed across 
the repository was a great discrepancy between use of various 
function levels (i.e. primary, secondary or tertiary) for modeling.  
According to Hirtz et al. (2000) the secondary level of function 
is the preferred level for artifact representation.  Another issue 
encountered was inconsistencies in the use of abbreviations for 
functions, such as “Ex” for Export, “Im” for Import, “Sep” for 
Separate, or “Dist” for Distribute. 

The textual information within the bill of materials combined 
the input flow along with the function into a single cell.  An ex-
ample of this is “Conv. EE to ME” which represents “Convert 
Electrical Energy to Mechanical Energy.”  Often an artifact has 
multiple sub-functions and input flows, which took a similar rep-
resentation form as “Conv. EE to ME” combined together and 
sometimes separated by commas or colons.  The data types and 
extensive variations in representation would not allow for even 
an intelligent parser to retrieve accurate information.  

Another hurdle to tackle was deciding how much textual 
product information would be necessary to automatically gener-
ate a functional model, a function component matrix and other 
representation types described in section 3. The functional model 
of a given product includes subfunctions as well as input and 
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output flows.  In order to represent this type of information digi-
tally, both input and output flow must be recorded, along with 
the given artifactʼs subfunction.  These artifacts and associated 
subfunctions generally have input and output flows linking them 
to other artifacts and subfunctions, but can also interface with an 
environment outside of the functional model (import/export).  In 
the repositoryʼs initial state, this type of artifact linking had not 
been captured.

From the initial examination of product data and review of 
current design representation schemas, an extensive list of areas 
for improvement was identified.  The next section presents a for-
mulation of an improved repository knowledge entry scheme to 
address these issues.  

4.2 HYPOTHESIS (SOLUTION FORMULATION)
The approach taken by researchers at UMR to address this 

problem was the development of a single application called 
the Enhanced Bill of Materials (EBOM), which handles entry, 
management and export of repository knowledge.  This ap-
proach somewhat parallels the original repository editor of the 
NIST Design Repository Project (Szykman, 2002).  All design 
knowledge corresponds to a single artifact (which may itself be 
composed of additional subartifacts), suggesting that an efficient 
EBOM should similarly be focused around each single artifact.  
To accurately represent design knowledge and to embody flow 
origin and destination information, an extensive representation 
for each artifact must be created.  The layout must include the 
standard elements of a BOM, along with additional information 
regarding the flow paths so that an accurate digital representation 
of the product can be achieved.

A test bed of ten products was chosen to create the initial 
implementation of the EBOM.  These ten products were chosen 
because they contained artifact representations spanning nearly 
all classes of flows and subfunctions and they were generally 
electromechanical consumer products.  Having a test data-set that 
maps into each of the function and flow types ensured that the most 
possibilities and combinations of artifact setup were taken into 
consideration while developing a new repository entry method.  

The ten products were used both to test the integrity of the 
data, and for a lesson in database programming.  The test prod-
ucts  ̓Microsoft Excel spreadsheets were aggregated into a large 
spreadsheet and then imported into a FileMaker Pro database.  At-
tempts at exporting XML, Excel and HTML data were conducted 

within FileMaker Pro (from FileMaker Inc.).  Importing the data 
into a formal database and the simple export tests demonstrated 
the strengths and weaknesses of the database and the information 
contained within.

To eliminate discrepancies in language representation, ab-
breviations and formatting, defined lists of commonly used BOM 
elements along with a structured set of the functional language 
terms must be implemented.  This is achieved through the use 
of master lists within a relational database.  This ensures that all 
products and artifacts represented across the entire span of reposi-
tory data are consistent, not only in language but also in format.   
For example, the material and manufacturing process fields are 
limited to a pre-defined list of commonly used materials and 
manufacturing techniques. Because these lists are maintained in 
separate relational databases, whenever the master list is updated 
it will propagate to all the products.  The initial material master list 
shown in Table 7, was created by examining the most commonly 
used materials that were already represented within the repository.  
The manufacturing process list shown in Table 8, was adapted from 
the Dixon and Poli (1995) Taxonomy of Manufacturing, and was 
combined with commonly seen processes from previous product 
dissection.  Master lists were also created for flow and function 
secondary classes using the Hirtz et al. (2002) functional basis.  
In addition, these lists can easily be edited to expand the terms 
available to users.

4.3 SYSTEM ARCHITECTURE
To implement the EBOM formulation, a database was created 

using FileMaker Pro.  The main user interface screen, shown in 
Figure 5, allows product knowledge to be entered on an artifact-
by-artifact basis.  The Artifact Name field is a simple text field 
used to type a common name for the represented artifact.  The 
Part Number field is a simple indexing serial number to track part 
changes.  Although this number is indexed, it can be manually 
overridden by entering a different numeric value.  The Sub Artifact 
Of field is where a higher-level artifact can be associated with the 
current artifact.  This list can be typed in manually, however, the 
field has a drop/select menu associated with it.  The drop/select 
menu pulls textual data from all of the artifacts already entered 
for the corresponding product.  If an assembly to sub-assembly 
to component sequence is followed when entering a product the 
Sub Artifact Of field along with the Part Number field will auto-
matically allow for the current artifactʼs predecessor to be easily 
selected and the part number will order correctly. This automated 
numbering and name selection feature greatly decreases the prod-
uct knowledge entry time.

The Input Artifact, Input Flow, Sub Function, Output Flow 
and Output Artifact fields are used to trace product flow through 
their corresponding artifacts and subfunctions.  On a typical BOM 
only the input flow and subfunction of an artifact are recorded and 
usually represented like “input solid.”  This type of information 
is descriptive, however there is not enough information to create 
a string of artifacts and functions within a given product.  The 
EBOM method overcomes this limitation.  As described above, 
the need for consistent data format for the physical parameters 
is a must.  Here the physical parameters are a more abstract rep-
resentation of the artifact, often capturing the dimensions of the 

Table 7 – Material type 
master list

Table 8 - Manufacturing 
processes master list
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bounding volume and key feature dimensions.  A more detailed 
CAD/Solid model can be associated with the artifact as well by 
attaching the CAD/Solid model using the “Browse” button.   To 
unify the parameter description, auto-select fields have been added.  
The user simply chooses what type of measurement is being re-
corded from a pre-defined list of dimensioning variables.  After 
selecting the type of dimension variable, the user then inputs the 
dimensions corresponding numeric value.  The database can hold 
up to five unique dimensions per artifact, allowing for almost any 
type of product to be dimensioned properly.  

Referring again to Figure 5, the middle section of the 
screenshot of the main product entry page shows how functional 
representations of the artifact are entered.  The EBOM has place-
holders for the Input Artifact and its Input Flow as well as the Sub 
Function of the artifact being described with its Output Flow and 
Output Artifact fields.  After information about the destination/
origin artifacts and flows and the subfunction of an artifact have 
been entered, enough information exists to create the function-
flow referencing key, a unique key that attaches the subfunction 
description to a specific artifact.

4.4 UNDER THE HOOD
The function-flow referencing key uses its naming structure 

from the Artifact Label field, which is automatically created upon 
entering a product name and cannot be altered by the user.  The 

Artifact Label that is created removes any abbreviating characters, 
replaces spaces with underscores and removes all symbols from 
the Artifact Name field.  The Artifact Label also attaches an under-
score and a numeric value at the end of the modified artifact name, 
corresponding to the artifactʼs record number within the productʼs 
database file.  It is this key that is used to create the flow-function-
flow string.  The string elements are separated by commas so that 
they can be parsed out for further manipulation.  

An example of the referencing string is given below:
flow_”Input Flow”+_name_+”Input Artifact Label”, sub_”Sub 
Function”+_name_+”Artifact Label”, flowout_”Output 
Flow”+_name_+”Output Artifact Label”

Although the user sees the plain English name when selecting 
or keying elements into the input or output artifact fields they are 
actually telling the current record which Artifact Label name to 
include in the flow-function-flow keys.  This information is not 
particularly useful while the data is within FileMaker because there 
is already inherent referencing within the database structure.  The 
function-flow-function output is useful when data from FileMaker 
is exported as a general text, comma/tab delimited or XML file.   
At this point the string is then useful to text/XML parsers to re-
organize, structure and further format the data.

FileMaker also allows for an artifact photo to be attached 

Figure 5 – Repository artifact input screen
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alongside the corresponding artifact data, this is useful when 
exporting because the photo can be exported to a media folder 
renamed with the Artifact Label field with a .jpg extension.  This 
allows an external browser to view images by being linked based 
on name commonality.  The Creator ID and Modifier ID fields can 
be automatically entered if an option is enabled to make the user 
login to the database with name and password.  The Date Created 
and Date Modified fields are automatically generated values that 
are created or updated when original or repeated record activity 
takes place.  

Currently each individual product is maintained in a separate 
database file.  As the number of products increases, it becomes 
a massive undertaking to update or change all of the individual 
database files.  This is overcome by using AppleScript (by Apple 
Computer), a system and application scripting language, to auto-
matically make changes to all of the individual database files.

4.5 SYSTEM OUTPUT
This database program is an excellent gateway for original 

artifact information input, or to import and edit information from 
existing file structures.  FileMaker does not, however, allow for 
easy manipulation of variables, customized detailed searches or 
data-dependent output display.  All of the information that is en-
tered into FileMaker is transformed into a neutral Unicode Text 
basis so that it can be parsed and easily read by other file formats 
and programs.  The main intent of this form of entry is to gener-
ate XML or other platform-independent data.  Although the user 
may see artifacts represented in plain English format, the Unicode 
text naming structure behind FileMaker is necessary to create a 
platform-independent data set. 

Following NISTʼs approach toward neutral data exchange, 

XML was identified as the desired output format from the File-
Maker-based design repository.  Other common exports from 
FileMaker are usually in the form of comma or tab delimited 
files that can easily be imported to Microsoft Excel.  

When choosing to export XML data from FileMaker, it is 
necessary to specify an XSL schema to follow.  FileMaker has 
the capability to export its own semi-proprietary XML data for-
mat.  The XML that FileMaker exports is syntactically valid, but 
FileMaker does not easily recognize the databaseʼs field naming 
structure without an XSL schema to parse the output into a com-
monly recognizable form of XML.  Having data in an XML format 
is a very powerful and effective tool for moving the data into other 
forms and transporting to various database systems. 

XSLT is necessary to do any of these XML data transforma-
tions.  XSL is a file mapping roadmap between the input format 
and the desired output format.  An XSL file combined with an 
XML file can be passed through an XML parser.  The parser will 
check that the XML and XSL files are in a valid format and match 
each other.  The latest version of the XML standard is version 
2.0, which allows outputs ranging from a general text format to a 
scalable vector image.  Commonly-used parsing engines include 
Sun Microsystems  ̓Xerces and Xalan engines.  There are many 
other proprietary parsers that generally adhere to XML but neglect 
some of the strict rules imposed by XML 2.0.   

By outputting all of the FileMaker product databases into 
XML they can all be merged into a single XML data file.  The 
data will not overlap or overwrite other data because each artifact 
and its associated information will be tagged within an individual 
product opening and closing tag.  Having the multiple product 
repositories represented in a single XML file is useful when it is 
necessary to search across the entire set of artifacts for particular 

Figure 6 – HTML table output of a BOM
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functions, or to create an extensive function-component matrix.  
The repository information in a single XML file can also be passed 
to a SQL (MySQL), WebObjects (Apple Computer) or another 
database server.  From the server a wide variety of repository sort-
ing and outputs can be performed.  By creating JSP (JavaServer 
Pages) the XML from the database server can be viewed or sorted 
and then passed through XSLT stylesheets and viewed as HTML 
through a standard web browser (Sun Microsystems, 2003).

With the implementation approach described above, product 
information can be easily exported into a variety of formats rang-
ing from a brief product overview to a thorough product layout.  
An example of one such export into a bill of materials is shown 
in Figure 6.  This bill of materials was created by exporting XML 
data and then performing an XSL transformation which converted 
the data into an HTML table. 

Product information from a database can also be exported 
into the XML-based format developed as part of the NIST Design 
Repository Project using the appropriate XSL transform sheet.  
Figure 7 shows a portion of an artifact represented in the XML 
version of NISTʼs design repository data format.  

5 CONCLUSIONS
The implementation of this project has significantly increased 

the usefulness of repository of design knowledge developed at 
UMR in several ways.  The first and most noticeable aspect are 
the types of product design knowledge and the way in which 
a designer records this knowledge.  The workload of entering 
product knowledge into a design repository is greatly reduced.  
The previous approach required seven separate data entry sets 
over a variety of applications.  The EBOM entry system reduces 
that to one.  Because the repository can export multiple types of 
data and data formats, the need to manually create individual bill 
of materials, design structure matrices and component function 
matrices is eliminated.  The repository is now capable of importing 
and exporting product knowledge in the NIST design repository 
format. A simpler approach to product dissection also results.  
The repository information entry scheme allows a researcher to 
focus on a single artifact at a time and automatically keeps track 
of component interactions, providing a big picture view of the 

product once all product artifacts have been entered.  Overall, the 
repository system creates a unified point of access with which to 
interact and control all of the contained data.

Currently the process of combining multiple repositories into 
a single XML file for the purpose of web-based access is indirect, 
and must be performed manually when product files are updated 
or created.  Although many steps have been taken to ensure that 
artifact referencing is unique, there can exist rare circumstances 
where referenced artifacts may conflict when joined together with 
other design repositories.  A fully integrated repository manager 
must be created to check across the entire database of products 
to validate and prompt the user if duplicate product referencing 
exists to eliminate this potential hazard.  A repository database 
manager could also complete such tasks as automatically updating 
web content when repository knowledge is added or altered.

Looking at the big picture, several important types of de-
sign knowledge used by designers have been determined, and 
redundant information in the representations has been identified 
and distilled down to one core set of required knowledge.  This 
greatly reduces the repository data entry workload for designers.  
From this knowledge set, several key types of representations 
and design aids (discussed earlier in section 2.3) can be gener-
ated and used.  

6 FUTURE WORK
Future work includes increasing the number of design tools 

that can be directly exported from the repository, as well as in-
tegrating more knowledge representations into it.  In particular, 
the EBOM entry system is currently being expanded in order to 
be able to accept performance equations for each artifact.  Once 
implemented, models of system performance can be constructed 
for components or, more abstractly, for a chain of functions.  
Also, component failure data will be integrated into the reposi-
tory structure to support failure analysis techniques with actual 
occurrence data.

The repository project thus far has been based on a target 
requirement of containing only a few hundred unique products.  
Ultimately the intent is to create a design repository system ca-
pable of managing thousands of products.  To handle this much 
larger system a standalone Java application is envisioned, which 
will be capable of storing and retrieving data to and from an SQL 
database server.  The Java application would be platform-inde-
pendent, and capable of operating on numerous clients accessing 
a single database of information.
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