
 1 Copyright © 2003 by ASME

Proceedings of DETC 03
ASME 2003 Design Engineering Technical Conferences

and Computers and Information in Engineering Conferences
Chicago, Illinois, September 2 – 6, 2003

DETC2003/CIE-48239

ENHANCING VIRTUAL PRODUCT REPRESENTATIONS FOR ADVANCED DESIGN REPOSITORY
SYSTEMS

Matt R. Bohm
and Robert B. Stone, Ph.D.

Design Engineering Laboratory
Department of Basic Engineering

University of Missouri – Rolla
Rolla, Missouri 65401-0210

Simon Szykman, Ph.D.
Manufacturing Systems Integration Division

National Institute of Standards and Technology
100 Bureau Drive, Stop 8263

Gaithersburg, MD 20899-8263

ABSTRACT
This paper describes the transformation of an existing set

of heterogeneous product knowledge into a coherent design re-
pository that supports product information archival, storage and
reuse. Existing product information was analyzed and compared
against desired outputs to ascertain what information management
structure was needed to produce design resources pertinent to the
design process. Several test products were cataloged to determine
what information was essential without being redundant in rep-
resentation. This set allowed for the creation of a novel single
application point of entry for product information that maintains
data consistency and allows information be easily exported. The
exported information takes on many forms that are valuable to the
design process such as a bill of materials and component function
matrix. Enabling technologies include commercial software, XML
(eXtensible Markup Language) data, XSL (eXtensible Stylesheet
Language) transformation sheets and HTML (HyperText Markup
Language). Through this process researchers at the University of
Missouri – Rolla (UMR) have been able to dramatically improve
the way in which artifact data is gathered, recorded and used.

1 INTRODUCTION
As products become more complex there is an increased

need for the designer or team of designers to be able to have
access to a breadth of design information spanning a variety of
disciplines. Consideration of many types of artifacts is necessary
when searching for component solutions, in order to ensure a high
quality product that meets the needs of the customer. Well suited
to meet this need are design repositories – knowledge bases of
heterogeneous product design knowledge that can be searched
and reused. Design repositories support these types of activities
in original design and redesign cases.

Over the course of several years of research and integrated
design coursework at the University of Missouri-Rolla (UMR),

a body of product design knowledge was developed for approxi-
mately fifty consumer products. This knowledge base, which
included descriptive product information such as functionality,
bills of materials and design structure matrices, lacked a stan-
dard interface, data consistency and the ability to output design
representations with ease. Observing user interactions with the
knowledge base, including design modeling activities as well as
retrieval and reuse/redesign activities, revealed that these draw-
backs served as a barrier to effective use of the knowledge base.
By unifying these disparate components into a design repository,
it has been possible to improve the utility of the knowledge base
for viewing, searching and reusing the wealth of preexisting de-
sign knowledge.

This paper reports on research efforts conducted at UMR 1)
to accurately identify the types of design knowledge required to
support designer activities; 2) to represent information from this
product knowledge base in a design repository system; and 3) to
reuse that design knowledge for future product design. By fol-
lowing a National Institute of Standards and Technology (NIST)
research effort in the area of design repositories, and by reviewing
a design knowledge base system previously developed at UMR,
a transformation has taken place in the way research activities at
UMR catalog, view, and export design information. A key goal
of the NIST design repository effort has been to generate a set of
platform-independent data models that can easily be transferred
from one system to another. NIST has proposed a set of informa-
tion models that provide a generic, neutral format for capturing,
storing and reusing product representation knowledge. Mappings
of these information models into XML have been developed to
facilitate system implementation and data exchange. Through
the use of documentation and reports provided by NIST, as well
as personal communications with NIST staff, UMR focused on
developing the capability to export XML data in conformance with
the NIST design repository representation class structure.

 2 Copyright © 2003 by ASME

In addition to adopting the NIST-developed representation
schemata, UMR researchers also had the goal of creating an ap-
plication that could output design aids such as detailed bills of
materials, matrices to support design computations and, ultimately,
graphical functional models. A single, simplified point of entry
for product information that integrate s well with product dissec-
tion processes (Otto & Wood 2001) was also desired. With these
objectives identified, this paper examines the design knowledge
base that had been previously developed at UMR, looking at how
product information is collected and what information is neces-
sary. The key pieces of design information gathered are functional
models and a detailed bill of materials. From combinations of
these two pieces of information, all other desired product repre-
sentations can be derived. These two sets of data form the basis
for transforming an emerging knowledge-based system into a more
mature design repository-based tool.

2 BACKGROUND
In order to create a quality design repository, there are several

elements of previous research that must be used to represent a
product with consistency. This section starts out by reviewing
commercially available software applications that resemble a
design repository system, though do not fully fulfill the role
of repositories in design. Next, section 2.2 focuses on product
functionality, a key component of design information for product
categorization, search and reuse. In particular, the functional ba-
sis is described and is presented as a means to describe product
functionality.

2.1 COMMERCIAL DESIGN REPOSITORY SYSTEMS
There is currently no product on the market that is truly a

design repository; however, there are several packages that contain
elements of a design repository. Such computerized design pack-
ages can be grouped into three basic categories: 1) mechanical
computer-aided design (MCAD) packages that augment traditional
CAD models with more abstract design knowledge; 2) systems
engineering toolsets which contain higher level design informa-
tion that may be used to generate CAD models; and 3) systems
modeling and simulation packages that have little or no interaction
with traditional CAD packages. For the MCAD packages, the
typical approach is to add layers of abstract design knowledge to
the existing CAD model. For all categories, no standard language
has evolved, though there is widespread use of the process of
functional decomposition. Within such decompositions, whether
for function or architecture, no standard exists concerning levels
of abstraction. Finally, each package appears to use its own pro-
prietary data structure to store the additional design knowledge.
One representative example commercial package for each of the
three categories is described for illustrative purposes.1

Unigraphics – UG/WAVE (www.ug.eds.com/ug/). UG/
WAVE is a MCAD package. It adds abstract product design
knowledge capability to the core Unigraphics CAD (or solid
modeling) package. Product architecture information in a para-

metric product layout is captured in a “control structure.” This
appears to be similar to a functional modeling approach to product
design, but is more form oriented. The module allows “what-if”
evaluation of simplified design alternatives, making the neces-
sary modifications to the rest of the design as necessary. It does
store subsystem design knowledge such that it can be re-used in
future products.

3SL – Cradle (www.threesl.com/). Cradle is a British systems
engineering toolset composed of six modules that can be used
together or separately. Its systems modeling component offers
robust support of several modeling notations, including functional
block diagrams, behavior diagrams and object oriented support.
Design knowledge is stored in a single repository structure ac-
cessible by all modules. Cradle also allows high levels of re-use
among subassemblies stored in its repository. While it is not a
CAD package per se, it can export information to a variety of
CAD formats.

Nu Thena Systems – Foresight (www.nuthena.com). Fore-
sight is strictly a systems modeling and simulation tool. It takes
a hierarchical approach to functional and architecture modeling,
allowing as many levels of abstraction as desired. In addition to
the functional and architecture model, a mapping between the
two is stored as design knowledge. This provides a strong link
between function and form design. The package does not interact
with other CAD systems and the functional language used favors
electronic systems.

The concept of a design repository is extremely useful in
the context of automated design storage and retrieval packages.
Although design repository-based systems do not exist in com-
mercial form today, the review of current commercial offerings
indicates that elements of the design repository concept are being
adapted by mainstream commercial product development systems,
and that industry is moving towards the vision of design reposi-
tories. No clear direction exists for its development, though. A
standard repository structure, supported by fundamental functional
and architecture modeling research, is needed to guide work in
this area.

2.2 PRODUCT FUNCTIONALITY
Addressing the need for a clear vocabulary to describe product

function, the functional basis has emerged as a standardized design
language (Hirtz et al., 2002). It was formulated in concert with
NIST to unify two similar, independent research efforts (Szykman
et al., 1999; Stone and Wood, 2000). The functional basis consists
of two sets of terminology: one containing action verbs to describe
function, and a second containing nouns to describe flow. The
functional basis spans all engineering domains while retaining
independence of terms. The function set of the basis is broken
down into eight categories termed the primary classes. These
classes have further divisions, called the secondary and tertiary
levels, that offer increasing degrees of specialization. The primary
class represents the broadest definition of distinct function while
the tertiary class provides a very specific description of function.
The secondary level of the function set, containing twenty-one
action verbs, is the most often used class of the basis. The primary
class and secondary function terms are shown in Table 1.

The flow set of the functional basis allows for the associated

1 Use of any commercial product or company names in this paper is intended
to provide readers with information regarding the implementation of the research
described, and does not imply recommendation or endorsement by the authors
or their institutions.

 3 Copyright © 2003 by ASME

functionʼs input and output flows to also be described. Similar
to the function set, there are three distinct classes within the flow
set of the functional language. Within the primary class of the
flow set, there are three main categories used to describe flow:
material, signal and energy – as popularized by Pahl and Beitz
(1996). Each of these categories has the capability to represent
the input or output of a function. The secondary class of this set
has 20 nouns that are used to describe the type of flow. It is the
secondary class of this basis that is primarily used when describing
a product. The primary class and secondary flow terms are shown
in Table 2. The tertiary level is omitted from Tables 1 and 2 for
reasons of brevity, and can be found in (Hirtz et. al, 2002).

Using the functional basis to represent product functional-
ity within the design repository allows product knowledge to be
searched and categorized by their function. This abstraction al-
lows the designer to focus on overall functionality and to develop
more creative solutions for solving a design problem (McAdams
and Wood, 2000).

3 ASSEMBLING PRODUCT DESIGN KNOWLEDGE
COMPONENTS

In addition to product function, researchers at UMR have
identified design information typically recorded and used in
original and redesign settings which is not formally captured by
current computational design tools. While product function is a
core component of design representation, other higher-level de-
scriptions (such as customer needs) and lower level representations
(such as component dimensions) are needed to completely describe
and, thus, archive product knowledge. The different representa-
tions chosen for this work are based on product information flow
schemes (Shooter et al., 2000) and dissection processes (Sheppard,
1992; Otto and Wood, 2001) as well as information needed in a
variety of modern design methods and tools (Pimmler and Ep-
pinger, 1994; Campbell et al., 2000; McAdams and Wood, 2000;
Wood and Verma, 2000; Campbell et al., 2001; Strawbridge et
al., 2002; Wood et al., 2002; Stock et al., 2003). Eight types of
design models that have been used to represent design information
in support of the conceptual design process at UMR (and more
generally as well) are identified below. Finally, Sections 3.2 and
3.3 describe the NIST-inspired design repository representation
and outlines how it is designed to handle this new data.

3.1 INFORMATION MODELING AND CAPTURE IN THE
UMR KNOWLEDGE-BASED SYSTEM

Customer needs: To record product information, existing
products are utilized and operated, and a basic list of customer
needs associated with the product is gathered. This is vital in
identifying the product s̓ purpose and market niche. It is important
to understand the market area and/or level of performance that an

individual product is expected to meet. To gather customer needs
the product is operated by a designer and a survey is produced.
The survey is geared to determine what features customers enjoy,
how they feel about the product and if there is an overall purpose
for the product. The questionnaire is also designed to find out
what features or additions could be incorporated into the product
and to establish a performance rating of the included features.
The surveys are conducted with potential product customers while
they operate the product. Customers are asked to rate areas on the
survey on a 1-5 (5 being best and 1 being minimal) scale. Once
a base of customers had been surveyed, the responses are aver-
aged to determine the overall customer need weight (Hauser and
Clausing, 1988; Otto, 1996; Urban and Hauser, 1993).

Bill of Materials (BOM): A bill of materials is a detailed
description of all of the artifacts within a given product. This
provides an easy way for designers to see a simple breakdown
of parts contained within a given product. Although artifact
function descriptions are not traditionally used as part of BOM
representations, in the context of research activities at UMR, such
descriptions—represented as function and flow pairs—are associ-
ated with each artifact. For example, the artifact motor has the
functional description of “convert electrical energy to mechanical
energy.” Additional information about an artifactʼs mass, dimen-
sions, manufacturing processes or material composition is also
recorded. The BOM is usually represented in a tabular format
with the artifacts or part number listed on the left most column,
where each row represents a different artifact. A partial BOM for
an electric wok is shown in Table 3.

Functional Model: A functional model is a description of a
product or process in terms of the elementary functions that are
required to achieve its overall function or purpose. A graphical
form of a functional model is represented by a collection of sub-

Table 3 – A partial BOM for an electric wok

Table 1 - Function classes and their basic
categorizations

Table 2 - Flow classes and their basic
categorizations

 4 Copyright © 2003 by ASME

functions connected by the flows on which they operate (Stone and
Wood, 2000). This structure is an easy way for a designer to see
what type of functions are performed without being distracted by
any particular form the artifact may take. An example functional
model of an electric wok is shown in Figure 1.

Modules: Modules are simply clusters of functions that could
be embodied by one component or assembly based on the flow(s)
that the functions operate on. This is important as it suggests to
the designer that a component or assembly that carries out all
of the combined functions can be manufactured. Graphically,
the functional model is augmented with potential modules (or
partitions) based on a heuristic procedure (Stone et al., 1998;
Gonzalez-Zugasti et al., 2000; Stone et al., 2000a; Stone et al.,
2000b). Modules can be seen in Figure 1, denoted by boxes with
hashed lines.

Function Component Matrix: A function-component matrix
records the component(s) that solve each function. Within the
matrix, rows designate product components and columns designate
the sub-functions of the product. For a single component, the
matrix is binary, with a “1” showing that the component solves
the corresponding function and a “0” indicating no relationship.
When multiple product component-function matrices are aggre-
gated together (known as a chi-matrix) the function-component
now can be used to generate concepts (Strawbridge et al., 2002).
The component function matrix also serves as a roadmap linking
the functional model and bill of materials. An example function-
component matrix is shown in Table 4.

Design Structure Matrix: The Design Structure Matrix
(DSM) is a matrix in which rows and columns represent the set
of artifacts within a product (Pimmler and Eppinger, 1994). When
two artifacts within a product interact with one another in some
way, the cell where a row and column corresponding to those two
artifacts meet is marked with a “1” (or alternatively an “X”). Cells
corresponding to pairs of artifacts that do not interact are marked
with a “0” (or alternatively left blank). The DSM representation
results in a symmetric matrix because the interaction between
artifacts A and B will show up at the intersection of row A and
column B, as well as at the intersection of row B and column A.
This is useful in the design process to see how artifacts within a
product relate to each other physically. Table 5 shows a fragment
of a DSM for an electric wok.

Product Vector: A product vector is used to determine a
functionʼs overall importance and is based on the weighted cus-
tomer needs for the product. Each customer need associates with
one or more functions. The weighted sub-functions are summed
to give an overall importance weight for that sub-function. This
is a useful step in the design stage to quickly identify key func-
tions of a product. A product vector for an electric wok is shown
in Table 6.

Geometric Representations: Component and artifact photos

Electricity module Thermal energy module

Food module

Liquid Module

Support module

Module

import
elect.

transmit
elect.

electricity regulate
elect.

convert
elect. to

therm. ener.

measure
therm. ener.

import
solid

store
solid

food distribute
solid

transmit
therm. ener.

export
solid

import
liquid

separate
solid

cleaning
solution stop

liquid
export
liquid

import
hum. force

distribute
mech. ener.

human force stabilize
mech. ener.

secure
mech. ener.

elect. elect. elect. heat

food food
food

heat

food
food

temp.

cleaning
solution

debris

debris

sol’n. sol’n. sol’n.

weight

human force

weight weight
human force

weight

heat
heat level

clean/dirty clean/dirty

Material flow
Energy flow
Signal flow

Table 4 – Partial component-function matrix of an
electric wok

Figure 1 – Functional model of an electric wok

Figure 2 – Example component photos (a & b) and
solid model (c) of an electric wok

Table 5 – Partial design structure matrix of an electric
wok

 5 Copyright © 2003 by ASME

along with solid models (when available) are also collected. These
help the designer to visualize the form of the particular artifact/
function. Figure 2 shows an example of component photos and
solid model captured for an electric wok

3.2 NIST DESIGN REPOSITORY SYSTEM
All of the above identified design knowledge models exceed

the representational capabilities of current commercial compu-
tational design tools. A more flexible and vendor-neutral data
structure is needed to represent the heterogeneous knowledge
that designers use. The NIST Design Repository Project, was
initiated to meet this need (Szykman et al., 1996; Murdock et al.,
1997; Szykman et al., 1999; Shooter et al., 2000; Szykman et al.,
2001; Szykman, 2002).

NIST has developed a set of information models to be used
for modeling product knowledge at varying levels of detail. There
are several data entities which allow for a variety of aspects of a
product description to be represented. The classes specified in the
NIST Core Product Model include: Artifact, Function, Transfer
Function, Flow, Form, Geometry, Material, Behavior, Specifica-
tion, Configuration, Relationship, Requirement, Reference and
Constraint2 (Fenves, 2001). Along with these classes there is a
set of specific information needed with each item and a specified
type of value that can be entered.

Nearly all of the defined data types contain elements such
as those shown in the Artifact Class shown in Figure 3. The
Artifact class specifies that the artifact name along with artifact
information and references are required. The “(I)” means that
any information contained about the denoted elements is inherited
from an abstract class defined separately, in this case the abstract
class called DPR_Object, as indicated in the first line of the class
definition. An element denoted with “# (NOT NULL)” requires
that the field must contain data. The element “type” contains
“[Artifact_Family]” on the same line. Instances such as this one,
in which a term appears in square brackets denotes a list of such
pointers; thus the “function” is defined as being a list of at least

one (because of the “NOT NULL”) or more pointers to items
belonging to the “Function” class.

The NIST design repository representation model is a basic
framework to help guide what type of product information is col-
lected and how the elements of information are related to each
other. NIST has also developed a mapping from this represen-
tational framework into an XML data format. Within the NIST
XML code there are five different sections: Artifacts, Functions,
Forms, Behaviors and Flows. These sections contain information
relative to their denoted naming system.

Figure 4 shows a sample of NIST-formatted XML. The
opening tag is “<DesignRepository>” followed by “<Artifacts>”
and “<Artifact name=…>.” These first few tags begin the XML
representation of the “DesignRepository” and then define the “Ar-
tifacts” subset followed by a specific “Artifact” named “widget.”
Within the “widget” artifact there are tags for information fields
that contain a description of the artifact, the creation date of the
data entity, who created the entity when it was last updated, and
who performed the update. The “<ref:…….>” tags are generic
reference tags within the XML language, used in this context to
link one data entity (e.g., the “widget” artifact) to other entities
that are associated with it but are defined elsewhere (e.g., the
widgetʼs corresponding function, form and behavior). These
entities all have information in their appropriate section of the
XML file. Subartifacts of the “widget” are contained within the
“<subartifacts>” tagged area and are then referenced by the actual

Table 6 – Product vector for an electric wok

Figure 4 – Sample NIST formatted XML data

Figure 3 – Artifact class definition

2 Several “abstract class” definitions also exist. These classes facilitate
database design and implementation by grouping attributes common to all of the
subclasses of a given class. However, instances of the abstract classes cannot
be created, and are therefore not used in actual product models (Szykman et al.,
2001).

 6 Copyright © 2003 by ASME

artifact. The structure of XML is such that an unlimited number of
unique “Artifact” elements can be defined under the <Artifacts>
tag. Every element keyed before “<Artifacts/>,” the close of the
artifacts tag is described underneath the “Artifacts” umbrella. This
structural style also follows for “Functions” contained underneath
the “<Functions>” tag, and likewise for Forms, Behaviors and
Flows. A single product represented in this XML format will span
thousands of lines of data to accurately represent the product.

3.3 TECHNOLOGY
XML (eXtensible Markup Language) is a basic markup lan-

guage for documents containing structured information (W3C,
2000). Structured information includes text, graphics and other
elements and the structure comes from the linking that gives an
indication of what role the data plays. This information comes
from the tags contained within the XML format. XML is similar
to HTML in that it uses tags to “markup” elements. A markup
language is a mechanism to identify structures in a document.
XML differs from HTML by virtue of its extensibility. Unlike
HTML, which has a fixed set of tags, XML allows for the creation
of user-defined tags. The XML specification simply defines a
standardized method to add markup to documents.

XSL (Extensible Stylesheet Language) is a language for ex-
pressing stylesheets given a specified class of arbitrarily structured
XML data (W3C, 2001). XSL is used in conjunction with an XSL
processor and XML data. An XSL stylesheet processor accepts
a document or data in XML, along with an XSL stylesheet and
produces an output that is formatted as defined by the stylesheet.
A stylesheet is essentially a document roadmap, it defines what
elements are, where they can be found and where they need to go.
An XML file can be parsed with an XSL stylesheet and passed
through a stylesheet processor to create reformatted XML, basic
text, HTML or graphics. XSLT (XSL Transformations) provide
a language that is used to define transformations of one XML file
into another (W3C, 2002). XSLT is an important part of XSL.

4.0 RESEARCH METHOD
This section begins with a summary of the practice of design

data entry and usage in the knowledge-based system previously
developed at UMR. The shortcomings of the previous system
are summarized in section 4.1. Section 4.2 presents a frame-
work for an enhanced design repository-based system with ease
of entry and design tool output capability. Finally the solution is
implemented for an improved repository entry, management and
retrieval method. The system architecture is described in section
3.3 and details of its underpinnings and output capabilities are
described in sections 4.4-5.

4.1 OBSERVATION
Approaching this as a design problem, a list of customer needs

for an effective design repository is initially developed. The most
important customer need is to improve the repository data entry
method. In order to improve data entry, researchers at UMR
reviewed the current design tools and determined what pieces of
information are required to fully represent product knowledge.
The data sets recorded contain customer needs lists, bills of
materials, functional models, module based functional models,

function-component matrices, design structure matrices, product
vectors, artifact photos and assembly instructions. Although this
information is valuable to the design repository, it is sometimes
redundant in explanation and creation. Most of these elements are
currently created inside of spreadsheet and drawing applications.
Some application dependence is removed by exporting the final
files to an Adobe PDF (Portable Document Format); however
manipulation of the design knowledge still requires the original
applications. Product of design tools from the repository is often
a tedious process. For example, an aggregate component-function
matrix was populated manually by dragging and dropping indi-
vidual product component-function matrices into the combined
component-function matrix.

The goal of the research described in this paper is to reduce
workload of design engineers to populate design repositories, and,
thus make them more appealing as a design tool. It was found that
the bill of materials and a functional model are the key pieces of
information that are required to generate a majority of the remain-
ing representation schemata.

The most noticeable issues with the previously existing data
were the inconsistency of product representation language and
format. This design repository effort at UMR has been in existence
since the summer of 2000 and had over 11 different researchers
contributing product data. The inconsistency between artifact
representations can be linked to the time span and number of
researchers associated with the repository. This indicated that
a strict framework was needed in order to unify the repository
format and increase consistency.

Physical artifact information such as dimensions, material
and the manufacturing process varied greatly. Most artifact di-
mensions were represented by “L=6, W=2, H=3.” Noticeably
the lack of associated units of measure results in an imprecisely
specified product description. Multiple artifact dimensions were
often keyed into a single cell rather than individual cells, with
no consistent use of labeling. Similar issues were present with
material and manufacturing process data. Also noticed across
the repository was a great discrepancy between use of various
function levels (i.e. primary, secondary or tertiary) for modeling.
According to Hirtz et al. (2000) the secondary level of function
is the preferred level for artifact representation. Another issue
encountered was inconsistencies in the use of abbreviations for
functions, such as “Ex” for Export, “Im” for Import, “Sep” for
Separate, or “Dist” for Distribute.

The textual information within the bill of materials combined
the input flow along with the function into a single cell. An ex-
ample of this is “Conv. EE to ME” which represents “Convert
Electrical Energy to Mechanical Energy.” Often an artifact has
multiple sub-functions and input flows, which took a similar rep-
resentation form as “Conv. EE to ME” combined together and
sometimes separated by commas or colons. The data types and
extensive variations in representation would not allow for even
an intelligent parser to retrieve accurate information.

Another hurdle to tackle was deciding how much textual
product information would be necessary to automatically gener-
ate a functional model, a function component matrix and other
representation types described in section 3. The functional model
of a given product includes subfunctions as well as input and

 7 Copyright © 2003 by ASME

output flows. In order to represent this type of information digi-
tally, both input and output flow must be recorded, along with
the given artifactʼs subfunction. These artifacts and associated
subfunctions generally have input and output flows linking them
to other artifacts and subfunctions, but can also interface with an
environment outside of the functional model (import/export). In
the repositoryʼs initial state, this type of artifact linking had not
been captured.

From the initial examination of product data and review of
current design representation schemas, an extensive list of areas
for improvement was identified. The next section presents a for-
mulation of an improved repository knowledge entry scheme to
address these issues.

4.2 HYPOTHESIS (SOLUTION FORMULATION)
The approach taken by researchers at UMR to address this

problem was the development of a single application called
the Enhanced Bill of Materials (EBOM), which handles entry,
management and export of repository knowledge. This ap-
proach somewhat parallels the original repository editor of the
NIST Design Repository Project (Szykman, 2002). All design
knowledge corresponds to a single artifact (which may itself be
composed of additional subartifacts), suggesting that an efficient
EBOM should similarly be focused around each single artifact.
To accurately represent design knowledge and to embody flow
origin and destination information, an extensive representation
for each artifact must be created. The layout must include the
standard elements of a BOM, along with additional information
regarding the flow paths so that an accurate digital representation
of the product can be achieved.

A test bed of ten products was chosen to create the initial
implementation of the EBOM. These ten products were chosen
because they contained artifact representations spanning nearly
all classes of flows and subfunctions and they were generally
electromechanical consumer products. Having a test data-set that
maps into each of the function and flow types ensured that the most
possibilities and combinations of artifact setup were taken into
consideration while developing a new repository entry method.

The ten products were used both to test the integrity of the
data, and for a lesson in database programming. The test prod-
ucts ̓Microsoft Excel spreadsheets were aggregated into a large
spreadsheet and then imported into a FileMaker Pro database. At-
tempts at exporting XML, Excel and HTML data were conducted

within FileMaker Pro (from FileMaker Inc.). Importing the data
into a formal database and the simple export tests demonstrated
the strengths and weaknesses of the database and the information
contained within.

To eliminate discrepancies in language representation, ab-
breviations and formatting, defined lists of commonly used BOM
elements along with a structured set of the functional language
terms must be implemented. This is achieved through the use
of master lists within a relational database. This ensures that all
products and artifacts represented across the entire span of reposi-
tory data are consistent, not only in language but also in format.
For example, the material and manufacturing process fields are
limited to a pre-defined list of commonly used materials and
manufacturing techniques. Because these lists are maintained in
separate relational databases, whenever the master list is updated
it will propagate to all the products. The initial material master list
shown in Table 7, was created by examining the most commonly
used materials that were already represented within the repository.
The manufacturing process list shown in Table 8, was adapted from
the Dixon and Poli (1995) Taxonomy of Manufacturing, and was
combined with commonly seen processes from previous product
dissection. Master lists were also created for flow and function
secondary classes using the Hirtz et al. (2002) functional basis.
In addition, these lists can easily be edited to expand the terms
available to users.

4.3 SYSTEM ARCHITECTURE
To implement the EBOM formulation, a database was created

using FileMaker Pro. The main user interface screen, shown in
Figure 5, allows product knowledge to be entered on an artifact-
by-artifact basis. The Artifact Name field is a simple text field
used to type a common name for the represented artifact. The
Part Number field is a simple indexing serial number to track part
changes. Although this number is indexed, it can be manually
overridden by entering a different numeric value. The Sub Artifact
Of field is where a higher-level artifact can be associated with the
current artifact. This list can be typed in manually, however, the
field has a drop/select menu associated with it. The drop/select
menu pulls textual data from all of the artifacts already entered
for the corresponding product. If an assembly to sub-assembly
to component sequence is followed when entering a product the
Sub Artifact Of field along with the Part Number field will auto-
matically allow for the current artifactʼs predecessor to be easily
selected and the part number will order correctly. This automated
numbering and name selection feature greatly decreases the prod-
uct knowledge entry time.

The Input Artifact, Input Flow, Sub Function, Output Flow
and Output Artifact fields are used to trace product flow through
their corresponding artifacts and subfunctions. On a typical BOM
only the input flow and subfunction of an artifact are recorded and
usually represented like “input solid.” This type of information
is descriptive, however there is not enough information to create
a string of artifacts and functions within a given product. The
EBOM method overcomes this limitation. As described above,
the need for consistent data format for the physical parameters
is a must. Here the physical parameters are a more abstract rep-
resentation of the artifact, often capturing the dimensions of the

Table 7 – Material type
master list

Table 8 - Manufacturing
processes master list

 8 Copyright © 2003 by ASME

bounding volume and key feature dimensions. A more detailed
CAD/Solid model can be associated with the artifact as well by
attaching the CAD/Solid model using the “Browse” button. To
unify the parameter description, auto-select fields have been added.
The user simply chooses what type of measurement is being re-
corded from a pre-defined list of dimensioning variables. After
selecting the type of dimension variable, the user then inputs the
dimensions corresponding numeric value. The database can hold
up to five unique dimensions per artifact, allowing for almost any
type of product to be dimensioned properly.

Referring again to Figure 5, the middle section of the
screenshot of the main product entry page shows how functional
representations of the artifact are entered. The EBOM has place-
holders for the Input Artifact and its Input Flow as well as the Sub
Function of the artifact being described with its Output Flow and
Output Artifact fields. After information about the destination/
origin artifacts and flows and the subfunction of an artifact have
been entered, enough information exists to create the function-
flow referencing key, a unique key that attaches the subfunction
description to a specific artifact.

4.4 UNDER THE HOOD
The function-flow referencing key uses its naming structure

from the Artifact Label field, which is automatically created upon
entering a product name and cannot be altered by the user. The

Artifact Label that is created removes any abbreviating characters,
replaces spaces with underscores and removes all symbols from
the Artifact Name field. The Artifact Label also attaches an under-
score and a numeric value at the end of the modified artifact name,
corresponding to the artifactʼs record number within the productʼs
database file. It is this key that is used to create the flow-function-
flow string. The string elements are separated by commas so that
they can be parsed out for further manipulation.

An example of the referencing string is given below:
flow_”Input Flow”+_name_+”Input Artifact Label”, sub_”Sub
Function”+_name_+”Artifact Label”, flowout_”Output
Flow”+_name_+”Output Artifact Label”

Although the user sees the plain English name when selecting
or keying elements into the input or output artifact fields they are
actually telling the current record which Artifact Label name to
include in the flow-function-flow keys. This information is not
particularly useful while the data is within FileMaker because there
is already inherent referencing within the database structure. The
function-flow-function output is useful when data from FileMaker
is exported as a general text, comma/tab delimited or XML file.
At this point the string is then useful to text/XML parsers to re-
organize, structure and further format the data.

FileMaker also allows for an artifact photo to be attached

Figure 5 – Repository artifact input screen

 9 Copyright © 2003 by ASME

alongside the corresponding artifact data, this is useful when
exporting because the photo can be exported to a media folder
renamed with the Artifact Label field with a .jpg extension. This
allows an external browser to view images by being linked based
on name commonality. The Creator ID and Modifier ID fields can
be automatically entered if an option is enabled to make the user
login to the database with name and password. The Date Created
and Date Modified fields are automatically generated values that
are created or updated when original or repeated record activity
takes place.

Currently each individual product is maintained in a separate
database file. As the number of products increases, it becomes
a massive undertaking to update or change all of the individual
database files. This is overcome by using AppleScript (by Apple
Computer), a system and application scripting language, to auto-
matically make changes to all of the individual database files.

4.5 SYSTEM OUTPUT
This database program is an excellent gateway for original

artifact information input, or to import and edit information from
existing file structures. FileMaker does not, however, allow for
easy manipulation of variables, customized detailed searches or
data-dependent output display. All of the information that is en-
tered into FileMaker is transformed into a neutral Unicode Text
basis so that it can be parsed and easily read by other file formats
and programs. The main intent of this form of entry is to gener-
ate XML or other platform-independent data. Although the user
may see artifacts represented in plain English format, the Unicode
text naming structure behind FileMaker is necessary to create a
platform-independent data set.

Following NISTʼs approach toward neutral data exchange,

XML was identified as the desired output format from the File-
Maker-based design repository. Other common exports from
FileMaker are usually in the form of comma or tab delimited
files that can easily be imported to Microsoft Excel.

When choosing to export XML data from FileMaker, it is
necessary to specify an XSL schema to follow. FileMaker has
the capability to export its own semi-proprietary XML data for-
mat. The XML that FileMaker exports is syntactically valid, but
FileMaker does not easily recognize the databaseʼs field naming
structure without an XSL schema to parse the output into a com-
monly recognizable form of XML. Having data in an XML format
is a very powerful and effective tool for moving the data into other
forms and transporting to various database systems.

XSLT is necessary to do any of these XML data transforma-
tions. XSL is a file mapping roadmap between the input format
and the desired output format. An XSL file combined with an
XML file can be passed through an XML parser. The parser will
check that the XML and XSL files are in a valid format and match
each other. The latest version of the XML standard is version
2.0, which allows outputs ranging from a general text format to a
scalable vector image. Commonly-used parsing engines include
Sun Microsystems ̓Xerces and Xalan engines. There are many
other proprietary parsers that generally adhere to XML but neglect
some of the strict rules imposed by XML 2.0.

By outputting all of the FileMaker product databases into
XML they can all be merged into a single XML data file. The
data will not overlap or overwrite other data because each artifact
and its associated information will be tagged within an individual
product opening and closing tag. Having the multiple product
repositories represented in a single XML file is useful when it is
necessary to search across the entire set of artifacts for particular

Figure 6 – HTML table output of a BOM

 10 Copyright © 2003 by ASME

functions, or to create an extensive function-component matrix.
The repository information in a single XML file can also be passed
to a SQL (MySQL), WebObjects (Apple Computer) or another
database server. From the server a wide variety of repository sort-
ing and outputs can be performed. By creating JSP (JavaServer
Pages) the XML from the database server can be viewed or sorted
and then passed through XSLT stylesheets and viewed as HTML
through a standard web browser (Sun Microsystems, 2003).

With the implementation approach described above, product
information can be easily exported into a variety of formats rang-
ing from a brief product overview to a thorough product layout.
An example of one such export into a bill of materials is shown
in Figure 6. This bill of materials was created by exporting XML
data and then performing an XSL transformation which converted
the data into an HTML table.

Product information from a database can also be exported
into the XML-based format developed as part of the NIST Design
Repository Project using the appropriate XSL transform sheet.
Figure 7 shows a portion of an artifact represented in the XML
version of NISTʼs design repository data format.

5 CONCLUSIONS
The implementation of this project has significantly increased

the usefulness of repository of design knowledge developed at
UMR in several ways. The first and most noticeable aspect are
the types of product design knowledge and the way in which
a designer records this knowledge. The workload of entering
product knowledge into a design repository is greatly reduced.
The previous approach required seven separate data entry sets
over a variety of applications. The EBOM entry system reduces
that to one. Because the repository can export multiple types of
data and data formats, the need to manually create individual bill
of materials, design structure matrices and component function
matrices is eliminated. The repository is now capable of importing
and exporting product knowledge in the NIST design repository
format. A simpler approach to product dissection also results.
The repository information entry scheme allows a researcher to
focus on a single artifact at a time and automatically keeps track
of component interactions, providing a big picture view of the

product once all product artifacts have been entered. Overall, the
repository system creates a unified point of access with which to
interact and control all of the contained data.

Currently the process of combining multiple repositories into
a single XML file for the purpose of web-based access is indirect,
and must be performed manually when product files are updated
or created. Although many steps have been taken to ensure that
artifact referencing is unique, there can exist rare circumstances
where referenced artifacts may conflict when joined together with
other design repositories. A fully integrated repository manager
must be created to check across the entire database of products
to validate and prompt the user if duplicate product referencing
exists to eliminate this potential hazard. A repository database
manager could also complete such tasks as automatically updating
web content when repository knowledge is added or altered.

Looking at the big picture, several important types of de-
sign knowledge used by designers have been determined, and
redundant information in the representations has been identified
and distilled down to one core set of required knowledge. This
greatly reduces the repository data entry workload for designers.
From this knowledge set, several key types of representations
and design aids (discussed earlier in section 2.3) can be gener-
ated and used.

6 FUTURE WORK
Future work includes increasing the number of design tools

that can be directly exported from the repository, as well as in-
tegrating more knowledge representations into it. In particular,
the EBOM entry system is currently being expanded in order to
be able to accept performance equations for each artifact. Once
implemented, models of system performance can be constructed
for components or, more abstractly, for a chain of functions.
Also, component failure data will be integrated into the reposi-
tory structure to support failure analysis techniques with actual
occurrence data.

The repository project thus far has been based on a target
requirement of containing only a few hundred unique products.
Ultimately the intent is to create a design repository system ca-
pable of managing thousands of products. To handle this much
larger system a standalone Java application is envisioned, which
will be capable of storing and retrieving data to and from an SQL
database server. The Java application would be platform-inde-
pendent, and capable of operating on numerous clients accessing
a single database of information.

REFERENCES

Campbell, M., Cagan, J. and Kotovsky, K. (2000), “Agent-based
Synthesis of Electro-Mechanical Design Configurations,” Jour-
nal of Mechanical Design, 122(1): 61-69.

Campbell, M., Cagan, J. and Kotovsky, K. (2001). “Learning From
Design Experience: Todo/Taboo Guidance,” Proceedings of the
2001 Proceedings of the 2001 ASME Design Engineering Tech-
nical Conferences and Computers in Engineering Conference,
DETC01/DTM-21687, Pittsburgh, PA.

Dixon, J. and Poli, C. (1995), Engineering Design and Design

Figure 7 – Portion of an artifact in NIST XML repre-
sentation

 11 Copyright © 2003 by ASME

for Manufacturing: A Structured Approach, Conway, MA,
Field Stone.

Fenves, S. J. (2001), A Core Product Model for Representing De-
sign Information, NISTIR 6736, National Institute of Standards
and Technology, Gaithersburg, MD, April

Gonzalez-Zugasti, J. P., Otto, K. N. and Baker, J. D. (2000), “A
Method for Architecting Product Platforms,” Research in En-
gineering Design, 12(2): 61-72.

Hauser, J. and Clausing, D. (1988), “The House of Quality,”
Harvard Business Review, 66(3): 63-73.

Hirtz, J., Stone, R., McAdams, D., Szykman, S. and Wood, K.
(2002), “A Functional Basis for Engineering Design: Reconcil-
ing and Evolving Previous Efforts,” Research in Engineering
Design, 13(2): 65-82.

McAdams, D. and Wood, K. (2000). “Quantitative Measures For
Design By Analogy,” Proceedings of the 2000 Proceedings of
DETC2000, DETC2000/DTM-14562, Balitmore, MD.

Murdock, J., Szykman, S. and Sriram, R. (1997). “An Information
Modeling Framework to Support Design Databases and Re-
positories,” Proceedings of the 1997 Proceedings of DETCʼ97,
DETC97/DFM-4373, Sacramento, CA.

NIST (2000). Workshop on Product Representation for Next-Gen-
eration Distributed Product Development. Gaithersburg, MD,
National Institute of Standards and Technology.

Otto, K. (1996). “Forming Product Design Specifications,” Pro-
ceedings of the 1996 Proceedings of the 1996 ASME Design
Theory and Methodology Conference, Irvine, CA.

Otto, K. and Wood, K. (2001), Product Design: Techniques in
Reverse Engineering, Systematic Design, and New Product
Development, New York, Prentice-Hall.

Pahl, G. and Beitz, W. (1996), Engineering Design: A Systematic
Approach, Springer Verlag.

Pimmler, T. and Eppinger, S. (1994). “Integration Analysis of
Product Decompositions,” Proceedings of the 1994 Proceed-
ings of the ASME Design Theory and Methodology Conference,
DE-Vol. 68.

Sheppard, S. D. (1992). “Mechanical Dissection: An experience in
how things work,,” Proceedings of the 1992 Proceedings of the
Engineering Education: Curriculum Innovation & Integration,
Santa Barbara, CA.

Shooter, S., Keirouz, W., Szykman, S. and Fenves, S. (2000). “A
Model For Information Flow In Design,” Proceedings of the
2000 Proceedings of the ASME Design Theory and Methodology
Conference, DETC2000/DTM-14550, Baltimore, MD.

Stock, M., Stone, R. and Tumer, I. Y. (2003). “Going Back in Time
to Improve Design: The Function-Failure Design Method,” Sub-
mitted to Proceedings of the 2003 ASME Design Engineering
Technical Conference, Design Theory and Methodology Con-
ference, Chicago, IL.

Stone, R. and Wood, K. (2000), “ Development of a Functional
Basis for Design,” Journal of Mechanical Design, 122(4):
359-370.

Stone, R., Wood, K. and Crawford, R. (1998). “A Heuristic
Method to Identify Modules from a Functional Description of
a Product,” Proceedings of the 1998 Proceedings of DETC98,
DETC98/DTM-5642, Atlanta, GA.

Stone, R., Wood, K. and Crawford, R. (2000a), “A Heuristic

Method for Identifying Modules for Product Architectures,”
Design Studies, 21(1): 5-31.

Stone, R. B., Wood, K. L. and Crawford, R. H. (2000b), “Using
quantitative functional models to develop product architec-
tures,” Design Studies, 21(3): 239-260.

Strawbridge, Z., McAdams, D. A. and Stone, R. B. (2002). “A
Computational Approach to Conceptual Design,” Proceedings
of the 2002 ASME Design Engineering Technical Conference,
Design Theory and Methodology Conference, DETC02/DTM-
34001, Montreal, Canada.

Sun Microsystems, Inc. (2003). The JavaServer Pages Specifica-
tion, Version 2.0, http://jcp.org/en/jsr/detail?id=152.

Szykman, S. (2002). “Architecture and Implementation of a De-
sign Repository System,” Proceedings of the 2002 Proceedings
of DETC2002, DETC2002/CIE-34463, Montreal, Canada.

Szykman, S., Fenves, S., Keirouz, W. and Shooter, S. (2001), “A
Foundation for Interoperability in Next-Generation Product
Development Systems,” Journal of Computer Aided Design,
33: 545-559.

Szykman, S., Racz, J. and Sriram, R. (1999). “The Representation
of Function in Computer-Based Design,” Proceedings of the
1999 Proceedings of the ASME Design Theory and Methodology
Conference, DETC99/DTM-8742, Las Vegas, NV.

Szykman, S., Sriram, R. and Smith, S. (1996). “Proceedings of
the NIST Design Repository Workshop,” Proceedings of the
1996 Gaithersburg, MD.

Urban, G. and Hauser, J. (1993), Design and Marketing of New
Products, New York, Prentice Hall.

W3C (2000), Extensible Markup Language (XML) 1.0 (Second
Edition), W3C Recommendation, World Wide Web Consortium,
http://www.w3.org/TR/REC-xml.

W3C (2001), Extensible Stylesheet Language (XSL) Version 1.0,
W3C Recommendation, World Wide Web Consortium, http:
//www.w3.org/TR/xsl.

W3C (2002), XSL Transformations (XSLT) Version 2.0,
W3C Working Draft, World Wide Web Consortium, http:
//www.w3.org/TR/sxlt20/.

Wood, W. H., Gietka, P. and Verma, M. (2002). “Functional Mod-
eling, Reverse Engineering, and Design Reuse,” Proceedings
of the 2002 ASME Design Engineering Technical Conference,
DTM, Montreal, Canada.

Wood, W. H. and Verma, M. (2000). “A Function-Based Approach
To Design For Manufacturing,” Proceedings of the 2000 ASME
Design Engineering Technical Conference, DFM, Baltimore,
Maryland.

