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Enhancing Visual Perception of Shape through Tactile Glances

Mårten Björkman, Yasemin Bekiroglu, Virgile Högman, and Danica Kragic

Abstract— Object shape information is an important param-
eter in robot grasping tasks. However, it may be difficult to
obtain accurate models of novel objects due to incomplete and
noisy sensory measurements. In addition, object shape may
change due to frequent interaction with the object (cereal boxes,
etc). In this paper, we present a probabilistic approach for
learning object models based on visual and tactile perception
through physical interaction with an object. Our robot explores
unknown objects by touching them strategically at parts that
are uncertain in terms of shape. The robot starts by using only
visual features to form an initial hypothesis about the object
shape, then gradually adds tactile measurements to refine the
object model. Our experiments involve ten objects of varying
shapes and sizes in a real setup. The results show that our
method is capable of choosing a small number of touches to
construct object models similar to real object shapes and to
determine similarities among acquired models.

I. INTRODUCTION

One of the reasons that makes the process of autonomous

grasping challenging is that object properties required for

grasp planning such as shape are commonly not known

a priori. In addition, sensory information used to extract

this information from the environment, e.g. vision, is prone

to error. Processes prior to shape extraction such as scene

segmentation are not perfectly accurate due to several issues,

e.g., occlusions and noisy measurements. Besides object

shape, conceptual high-level object category information is

another important input that can be used. In particular, for

goal-oriented grasp planning, different instances from the

same category can be grasped in a similar way for a particular

task. For instance, bottles should be grasped from a side for

a pouring task, so as not to block the opening.

Humans interact with the environment using rich sensory

information. Studies show that both visual and haptic modal-

ities contribute to the combined percept [1]–[3]. Results

from [3] suggest that observers integrate visual and haptic

shape information of real 3D objects and that bimodal shape

estimates are more reliable than shape estimates that rely on

either vision or touch alone.

The goal of our work is to complement visual information

with tactile sensing in order to acquire 3D object models. We

investigate how to deal with uncertainties in the sensory data

to extract object shape and category. Given a scene like the

one shown in Fig. 1, with an object in the center of view,

our goal is to gain insight on what manipulation actions the
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Fig. 1: Extracting object model: We rely on visual mea-

surements from a Kinect and tactile measurements from the

fingers. The model is formed based on the point cloud (in

yellow) from the camera and the contact points (in red).

object affords. If the shape of the object were known, one

could get some idea of what actions to consider, especially

if the shape is similar to an object that has already been

manipulated. Much information can be provided through

stereo vision, using e.g. a Kinect device. Regardless of which

stereo vision system is used, however, only one side of

an object is seen, i.e., the one side facing the cameras.

Without any additional sensory modalities, one can only

make qualified guesses of what the occluded side looks like,

using assumptions such as symmetry [4], assumptions that

may well be incorrect. In this paper we instead propose

touch as a means to get additional information. By carefully

touching the object, we will show how an object model

can be created, a model that provides enough information

to categorize the object based on shape.



II. RELATED WORK AND CONTRIBUTIONS

In robotics, object shape estimation has been studied with

unimodal data, i.e., only visual [5] or tactile [6] sensing, and

bimodal data with visual and tactile sensing combined [7].

Clearly, vision alone delivers useful information about object

shape. Krainin et al. [5] proposed a method where a robot

picks up and moves an object in front of a sensor. Their

approach based on Kalman filters is able to build 3D models

of unknown objects using a depth camera observing the

robot’s hand moving the object. However, they showed that

the approach may produce failures with poor alignment in

case of a combination of high uncertainty in the object pose,

nondistinctive object geometry (completely planar surface)

or fairly uniform color and poor lighting conditions. Tactile

information can be used to alleviate such problems.

Bierbaum et al. [8] introduced the idea of using Dy-

namic Potential Fields for tactile exploration to build a con-

tact/tactile point cloud of an unknown object. Their system

requires a rough initial estimate about the object position,

orientation and dimension, then exhaustively performs grasps

in unexplored regions. Faria et al. [9] also builds contact

point clouds in an exhaustive way. They however follow a

probabilistic approach to store the extracted tactile points

in a volumetric map. In their experiments, a human subject

wearing a glove with magnetic tracking sensors to obtain

fingertip positions performs grasps that follow the contour of

objects. Meier et al. [6] followed a similar strategy and used

a probabilistic approach, Kalman filters, to build a model of

the contact point cloud. Their robot grasps objects at different

heights and positions also varying the orientation of the hand.

Their results show that the acquired models can successfully

be used for classification.

There are approaches that supplement vision with more

sensory information especially where visual sensing is weak,

e.g., occluded object parts. Maldonado et al. [10] used a

proximity sensor to scan the unseen parts of an object by

a depth camera without touching the object. They combined

the point cloud from the camera and the sensor and built a 3D

Gaussian point representation based on the convex hull of the

complete point cloud. Their representation simply contains

the centroid and the shape of the object through the mean and

the covariance matrix of the Gaussian distribution. Dragiev

et al. [7] has included laser data in addition to haptic mea-

surements in order to complement vision. They proposed to

use Gaussian Process Implicit Surfaces to fuse the uncertain

sensory data and showed that this representation can be used

to control reaching and grasping such that the hand is moved

and oriented towards the object and grasps aligning the

fingers according to the object shape. There are also studies

that focus on object recognition without explicitly modeling

the full 3D shape, but rather representing the objects based

on visual [11], tactile [12], [13] or both features [14].

Differently from the aforementioned approaches, we focus

on building object models that can be extracted with a

small number of actions (touches) in order to understand the

category objects belong to, rather than exhaustively trying to

explore the whole object. This is an iterative process where

the robot executes more touches as it is less confident about

the object shape. In summary, our contributions can be listed

as follows:

• We incrementally include tactile readings in the shape

estimation to further refine the object model that is

initialized based on visual measurements only.

• We use a probabilistic approach to shape estimation

through Gaussian Process regression to deal with un-

certainties in sensory measurements.

• Instead of an exhaustive exploration, we obtain a model

of a given object by selecting where to touch next, given

the object regions where the shape estimation is most

uncertain.

• Our system is able to build models that can be used for

shape categorization after a small number of touches.

III. OBJECT MODELLING

In this section, we describe how objects are represented

based on visual and tactile measurements. We introduce

Gaussian Process regression modeling of Implicit Surfaces,

the strategy to determine how to acquire tactile data and the

shape descriptors used for measuring similarities between

different objects.

A. Visual Measurements

An observed object is segmented from its background

using a segmentation and tracking system that works over

sequences of touches. The system uses stereo vision, in our

case a Kinect device, in an heterogeneous MRF based frame-

work [15]. The framework uses color and depth information

to divide the scene into either planar surfaces, bounded

objects or uniform clutter models. The planar and uniform

models are automatically initialized, while an ellipsoid used

to model the observed object is initiated by a point that

is manually placed inside the corresponding image region.

From the resulting object segments we get point clouds that

serve as starting points for object modelling. Later we will

complement these points with tactile readings from touches.

B. Implicit surfaces

From a set of measurements of 3D points {xi, i = 1...N}
that are located on the surface of an object, we now describe

how to derive implicit surfaces for representation. The model

should later be used for deciding object category based on

shape. In our case the measurements originate from stereo

vision as well as tactile readings. With a function f : R3 7→
R, we define an implicit surface by the supporting points

x ∈ R
3 that satisfy

f(x) = 0.

The function f(x) is modelled by Gaussian Process (GP)

regression [16], with each observation y = f(x)+ǫ assumed

to be subjected to zero-mean Gaussian noise, ǫ ∼ N (0, σ2

n).
The shape of the GP is governed by a thin plate covariance

function [17]

cov(f(xi), f(xj)) = k(xi,xj) = 2|r|3 − 3Rr2 +R3,
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Fig. 2: Evolution of object models against the number of touches (t.) for the cylinders: (a) Initial models based solely on

visual (v.) measurements depicted by yellow points. The models are oriented to show the back sides that are not visible

by the camera. Highest uncertainty is represented by red color and dark green regions correspond to least uncertainty. (b)

Models after including tactile measurements from one touch applied to the region with highest uncertainty. Contact points

obtained by touching are depicted by red points. (c) Models after 4 touches. (d) Models after 12 touches which were found

sufficient to group all the objects confidently. (e) Models after exhaustively exploring the objects which require 54 touches

with our setup. (f) The real objects for comparison.

where r = |xi − xj | and R is a maximum possible value of

r. This covariance function has slightly better characteristics

than the more frequently used squared exponential function,

in particular for rectangular objects where the flatness of

surfaces needs to be preserved. Quantitatively, however, we

have not observed any significant differences between the

two when applied for categorization.

The model is learned from a set of tuples (xi, yi), where

yi = 0 for the stereo vision or tactile measurements. Since

a physical object, at least those that can be acted on by a

robot, occupies a certain volume in 3D space, the implicit

surfaces need to be compact (closed and bounded). In order

to guarantee this, we place additionally exterior points, for

which yi = +1, on the boundaries of the scene and a single

interior point that is forced to be inside the closed surface

with yi = −1.

In the later experiments, this interior point was chosen as

the centroid of the stereo point cloud displaced by 1 cm along

the direction of the camera, assuming that this is the smallest

object thickness one can expect. With objects assumed to be

located within a cube with side lengths L = 30 cm and

centered at the centroid, the parameter R was set to
√
3L.

The only remaining hyperparameter is the expected noise

level which is set to σ2

n = 0.1. The value was chosen so as

a balance between the smoothness of the surfaces and the

noise in the integration of tactile and visual readings.

C. Action selection and cue integration

With GP regression we do not explicitly get a function

f(x), but the mean f̄ and variance V(f) of all possible

functions that could fit the measurements. The variance can

be used as a measure of uncertainty, with higher variance

for points far away from already recorded measurements.

Examples of implicit surfaces and variances can be seen in

Fig. 2a. A surface is given by points for which the mean

is zero and the colors illustrate the corresponding variances,

with red for points of highest variance. The stereo vision

point clouds are shown as yellow points, most of which are

occluded by the objects in the figure.

To refine the object models and decrease the uncertainty,

the robotic hand is guided towards those points for which the

variance is large in order to select a position for touching.

We call these touches ordered touches in the experiments

below, as opposed to random touches where new touches

are selected in random order. The arm-hand configuration

has earlier been calibrated with respect to the camera system,

with a precision of a few millimeters. The highest variance

point is searched for in a discrete action space defined by the

vertical position and the approach angle, both of which are

computed with respect to the centroid of the current model.

For each possible action, the closest point to each respective

tactile sensor pad is found on the implicit surface. The

action selected for execution is then based on the maximum

variance found among all actions and sensor pads.

Touches are then executed in sequence and the GP model
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Fig. 3: Convergence of curvature point clusters using ordered (solid) and random (dashed) touches with respect to the final

result after up to 54 touches (x-axis). Plots from random touches are based on the average from 10 runs and are thus

smoother than those of the ordered touches.

is updated accordingly, as new measurements are integrated

with the model. To speed up computations, the measurement

set is made sparser to about two thousand points1. This is

necessary since the computational cost of the GP increases to

the cube of number of points. Recorded tactile measurements

can be seen as red points in Fig. 2 for an increasing number

of touches. In some cases, these points are displaced with

respect to the implicit surface, which might happen if the

object moves considerably when it is touched. To minimize

these displacements, which is critical for long sequences of

touches, the object frame is constantly updated for each new

touch. This is done by registering the stereo vision point

clouds, given by the segmentation system, before and after

a touch using the Iterative Closest Point algorithm [18] and

transforming new measurements back to the original frame.

D. Shape Descriptors

Representing object shape as a GP or a mesh derived from

points on the resulting implicit surface is not straightforward,

if the goal is to compare shapes for action selection. Instead

we represent the extracted implicit surfaces with shape

descriptors that capture information invariant to possible ma-

nipulation actions, while discarding redundant information.

Two very different objects may afford similar actions, while

two seemingly similar objects might not. For example, a

rectangular box and a cylinder typically require different

grasping strategies, but they may well appear similar when

e.g., represented as ellipsoids, if aspect ratios are similar.

In this work, we look at two different rotation and trans-

lation invariant shape descriptors; 3D Zernike moments and

surface curvatures. Zernike moments have successfully been

used for shape retrieval [19] and are attractive due to the

flexibility and low number of dimensions required, as well

as the fact that Euclidean distances can be used for shape

comparison. For the Zernike moments, voxelization is first

applied in a 3D grid with voxels of side length l = 0.75 cm,

keeping the interior voxels for which the GP means are f̄ ≤ 0
at their center points.

1On a 3.2 MHz Core i7 CPU the cost of computing the GP model and
associated shape descriptor is about 4 s using PCL, VTK and Eigen.

For comparison using surface curvatures, the Marching

Cubes algorithm [20] is first applied to the same grid to find

a triangular mesh representing the implicit surface. From this

mesh, principal curvatures are then computed [21], with one

2D measurement per vertex point. The shape of an object is

thus represented by a sample set of about 500 measurements

of curvatures. A kernel based two sample test [22] is used

to compare two such representations, using Gaussian kernels

with standard deviations of 0.25, which yields a soft decision

on the similarity between the sample sets.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe our experimental platform

and then present results from shape estimation and catego-

rization experiments comparing touch selection strategies and

shape descriptors.

The experimental robot platform is composed of an indus-

trial Kuka arm (6 dof), a three-finger Schunk Dextrous hand

(7 dof) equipped with tactile sensing arrays, and a Kinect

stereo vision camera. The robot can acquire tactile imprints

via pressure sensitive tactile pads mounted on the Schunk

hand’s fingers. Each finger of the hand has 2 tactile sensor

arrays composed of 6x13 and 6x14 cells, which yields at

most 486 tactile points after one touch. For each touch, the

hand is set to a fixed initial joint configuration where the

thumb opposes the other two fingers as seen in Fig. 1, then

fingers are closed until contact is sensed.

In an earlier study [23] we concluded that the object class

was an important factor, if one wants to determine what

grasping action to pursue to fulfill particular tasks, tasks such

as hand-over, pouring or dish-washing. However, the object

class was not derived directly from sensory data, but given

manually prior to the experiments. In this work, we aim to

automate this process by learning shape-dependent features

to replace the manually set object class. Our starting point

is thus a set of objects for which we know the respective

affordances from earlier experiments. These ten objects can

be seen in Fig. 4, with names indicating the similarity

in afforded actions. The end goal is to use stereo vision

and tactile measurements through a series of touches to
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Fig. 4: Spectral embeddings of curvature point clusters, after 0 (left), 1, 4, 12 and 54 (right) touches, using ordered (first

row) and random (middle row) touches, as well as with Zernike moments and ordered touches (last row). Ordered touches

lead to faster convergence than random touches, and Zernike moments cluster objects more based on similarity in object

aspect ratios, than similarities in affording grasp actions.

determine which grasping action the object would afford.

The question is: how many touches this would require and

what representation should one aim for?

cy
l-1

cy
l-2

cy
l-3

cy
l-4

sp
ra

y-
1

sp
ra

y-
2

sp
ra

y-
3

box
-1

box
-2

box
-3

cyl-1

cyl-2

cyl-3

cyl-4

spr.-1

spr.-2

spr.-3

box-1

box-2

box-3

cy
l-1

cy
l-2

cy
l-3

cy
l-4

sp
ra

y-
1

sp
ra

y-
2

sp
ra

y-
3

box
-1

box
-2

box
-3

Fig. 5: Similarity matrices using up to 54 touches with

columns and rows given by the objects in Fig. 4 using either

curvature measures (left) or Zernike moments (right).

A. Experimental results

The ten objects were placed on a table-top with the Kinect

camera overlooking objects from one side. To fully cover

an object with tactile measurements, up to 54 touches (27

for cyl-2 and 18 for box-2 due to their lower heights) were

performed from the side parallel to the table in a grid of

9 angles (22.5◦ apart) and 6 heights (spaced at a vertical

distance of 2 cm) with respect to the table. The tactile

measurements are illustrated as red points in Fig. 2. From

the resulting implicit surface model, shape descriptors based

on curvatures and Zernike moments (up to order 10) were

computed and analyzed.

The convergence of the curvature based descriptors was

studied by computing the distances between the descriptors

after different numbers of touches and the final one. In

Fig. 3 the convergence is shown using either ordered touches

computed from points of maximum GP variance or touches

selected randomly. The randomly generated sequences of

touches were executed 10 times and then averaged. Thus the

corresponding curves are slightly smoother than those of the

ordered touches. The difference between the two strategies

is not consistent. For most objects the difference is small

and for some objects random touches are sometimes better,

in particular in the beginning. The reason is because ordered

pushes are computed from implicit surfaces obtained so far

and at an early stage the shapes are still mostly unknown. For
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Fig. 6: Evolution of object models against the number of touches for the spray bottles and the boxes. See Fig. 2 for details.

the box shaped objects, the first ordered push is usually at a

corner edge on the back side of the object, when a preferable

push would instead have been on one of the sides. Thus it

takes another push or two for the ordered touches to catch

up. From the graphs in Fig. 3, as well as from Fig. 2 and

6, it can be concluded that most changes occur during the

initial ten touches.

As an illustration of the similarity between different ob-

jects, similarity matrices were computed for both curvature

and Zernike based shape descriptors, which are given in

Fig. 5. From the structures of the two matrices it can be

concluded that while the curvatures capture classes relevant

for grasping, Zernike moment does not do so to the same

degree. In fact, the grouping is quite different for Zernike

moments and more related to the aspect ratios of the objects

than the curvatures.

This can be more easily illustrated with spectral clustering.

Using the method of Ng et al. [24], we computed 2D spectral

embeddings from the similarity matrices, embeddings that

are shown in Fig. 4 for different numbers of touches. Here

the object cyl-3 is grouped with box-1 and box-3 for Zernike

moments, due their similar height/width ratios. Whereas the

elongated cyl-2 and cyl-4 are similar, they are very different

from the shorter cylinder cyl-1. Even if box-1 is a bit distant

from box-3 using curvature measures, the three classes can

still be trivially found using e.g. k-means clustering. From

the embeddings, the benefits of ordered touches can also

be seen, compared to the random ones. Already after four

touches, the three classes are grouped, even if it is not until

12 touches the box-1 is closer to the other boxes than the

group of spray bottles. The reason for this is that this box

is thinner than the other boxes and since the GPs tend to

smoothen edges, it is more like a spray bottle after too few

touches. The thin plate prior tends to weaken this effect

compared to a typical exponential one.
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Fig. 7: Evolution of quotient between within- and between-

category distances with random (dashed) and ordered (solid)

touches using curvatures, as the number of touches increases.



A final illustration of the benefits of ordered touches for

shape discrimination can be seen in Fig.7, where the quotient

between within- and between-category distances are shown

for an increasing number of touches. The quotient stabilizes

after only about ten ordered touches, but for random touches

at least 25 touches are required. Thus even if the benefits

of ordered touches are sometimes limited when studying

individual objects, they are considerable for categorization.

V. CONCLUSIONS

This paper has presented a method 2 for creation of object

models from visual and tactile measurements, with the goal

of later applying these for classification and manipulation.

From an initial set of visual measurements, an object model

is refined by touching the corresponding object on surface

points predicted to be most uncertain. Given a curvature

based representation of object shape, it was shown that about

ten touches are sufficient for objects to be grouped into

clusters relevant for manipulation. What remains to be tested

in future work, however, is to what extent this representation

captures manipulation affordances and can be directly used

for action selection, preferably without using an intermediate

step of supervised object classification.

A weakness of the current system arises from the fact that

GPs have a computational cost proportional to the number of

measurement points cubed. To cope with this we currently

sample from the total set of points to make the problem

computationally tractable. However, there are methods for

sparse GPs that choose an optimal subset of points instead

[25], [26], which will become a necessity in particular if

measurements from additional modalities are later included.

The presented work can be extended in several directions.

We intend to investigate more descriptors, other than surface

curvatures and Zernike moments, that can be useful for object

categorization. We will further integrate the presented ap-

proach with a pushing mechanism that can provide additional

information on object affordances, e.g. rolling or sliding,

potentially leading to more informed decisions about whether

more measurements are needed given a particular task. Grasp

planners e.g., often need information on object category [23],

[27] to plan goal-directed grasps, where objects from the

same category can be grasped in a similar way. Hence, we

also plan to test the obtained object models for grasping tasks

by using them for grasp planning.
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