
Abe et al. BMC Genomics 2019, 20(Suppl 2):191

https://doi.org/10.1186/s12864-019-5476-9

RESEARCH Open Access

ENIGMA: an enterotype-like unigram
mixture model for microbial association
analysis
Ko Abe1, Masaaki Hirayama2, Kinji Ohno3 and Teppei Shimamura4*

From The 17th Asia Pacific Bioinformatics Conference (APBC 2019)

Wuhan, China. 14-16 January 2019

Abstract

Background: One of the major challenges in microbial studies is detecting associations between microbial

communities and a specific disease. A specialized feature of microbiome count data is that intestinal bacterial

communities form clusters called as “enterotype”, which are characterized by differences in specific bacterial taxa,

making it difficult to analyze these data under health and disease conditions. Traditional probabilistic modeling

cannot distinguish between the bacterial differences derived from enterotype and those related to a specific disease.

Results: We propose a new probabilistic model, named as ENIGMA (Enterotype-like uNIGram mixture model for

Microbial Association analysis), which can be used to address these problems. ENIGMA enabled simultaneous

estimation of enterotype-like clusters characterized by the abundances of signature bacterial genera and the

parameters of environmental effects associated with the disease.

Conclusion: In the simulation study, we evaluated the accuracy of parameter estimation. Furthermore, by analyzing

the real-world data, we detected the bacteria related to Parkinson’s disease. ENIGMA is implemented in R and is

available from GitHub (https://github.com/abikoushi/enigma).
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Background
More than 100 trillion microbes live on and within

human beings and form of complex microbial commu-

nities (microbiota). Most microbes cannot be cultured

in laboratories, making it difficult to understand how

individual microorganisms mediate vital microbiome-

host interactions under health and disease conditions.

However, recent important advances in high-throughput

sequencing technology have enabled observation of the

composition of these intestinal microbes. For each sam-

ple drawn from an ecosystem, the number of occurrences

of each operational taxonomic units (OTUs) is measured

and the resulting OTU abundance can be summarized at
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any level of the bacterial phylogeny. Discovering recur-

rent microbial compositional patterns that are related to

a specific disease is a significant challenge, as individuals

with the same disease typically harbor different microbial

community structures.

Recent large-scale sequencing surveys of the human

intestinal microbiome, such as the USNIHHumanMicro-

biome Project (HMP) and the European Metagenomics

of the Human Intestinal Tract project (MetaHIT), have

revealed considerable variations in microbiota composi-

tion among individuals [1, 2]. Particularly, community

clusters characterized by differences in the abundance

of signature taxa, referred to as enterotypes, were first

reported in humans [3]. Later, other studies identified

enterotype-like clusters that may reflect features of the

host-microbial physiology and homeostasis in different

species [4, 5] or at different human body sites [6–9]. This
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microbial stratification has motivated the development

of methods for examining unknown clusters of microbial

communities.

Probabilistic modeling of microbial metagenomics data

often provides a powerful framework for characteriz-

ing the microbial community structures [10–12]. For

example, Knights et al. [10] applied a Dirichlet prior

to a single-level hierarchy and proposed a Bayesian

approach for estimating the proportion of microbial

communities. Holmes et al. [11] extended the Dirich-

let prior to Dirichlet multinomial mixtures to facili-

tate clustering of microbiome samples. Shafiei et al.

[12] proposed a hierarchical model for Bayesian infer-

ence of microbial communities (BioMiCo) to iden-

tify clusters of OTUs related to environmental factors

of interest.

However, such models are not suitable for discov-

ering enterotype-like clusters of microbial communi-

ties and associations between microbes and a spe-

cific disease for the following two reasons. First, the

frameworks of Knights et al. [10] and Holmes et al.

[11] do not explicitly address the association between

the microbial compositional patterns and environmen-

tal depend on the interest. Second, the framework of

Shafiei et al. [12] models the structure of each sam-

ple using a hierarchical mixture of multinomial dis-

tributions that are depends on the factors of interest.

Individual host properties such as body mass index,

age, or gender cannot explain the observed enterotypes

[3]. Thus, such enterotype-like clusters that describes

interindividual variability among humans do not always

to directly affect host probabilities such as diseases rang-

ing from localized gastroenterologic disorders to neuro-

logic, respiratory, metabolic hepatic, and cardiovascular

illnesses.

Here, we introduce a novel probabilistic model of a

microbial community structures, named as ENIGMA

(Enterotype-like uNIGram mixture model for Micro-

bial Association analysis), to address these problems.

ENIGMA includes the following contributions:

1. ENIGMA uses OTU abundances as input and

models each sample by the underlying unigram

mixture whose parameters are represented by

unknown group effects and known effects of interest.

The group effects are represented by baseline

parameters that change with a latent group of

microbial communities. One of the most important

features of our model is that the group effects are

independent of the effects of interest. This enables

the separation of interindividual variability and fixed

effects of the host properties related to disease risk.

2. ENIGMA is regarded as Bayesian learning for

detecting associations between a community

structure and factors of interest. Our model can be

used to simultaneously learn how enterotype-like

clusters of OTUs contribute to the microbial

structure and how microbial compositional patterns

may be related to known features of the sample.

3. We provide an efficient learning procedure for

ENIGMA by using a Laplace approximation to

integrate latent variables and estimate the evidence

of the complete model and credible intervals of the

parameters. The software package that implements

ENIGMA in the R environment is available from

https://github.com/abikoushi/enigma.

We describe our proposed framework and algorithm

in the “Methods” section. We evaluate the performance

of ENIGMA using simulated data in terms of its accu-

racy to estimate parameters and identify clusters in the

“Simulation study” section. We apply ENIGMA to clini-

cal metagenomics data and demonstrate how ENIGMA

simultaneously identifies enterotype-like clusters and gut

microbiota related to Parkinson’s disease (PD) in the

“Results on real data” section.

Methods
The key idea of ENIGMA is to adjust for the effects of

the enterotype and evaluate the increases and decreases

of bacterial abundance associated with environmental fac-

tors. Figure 1 shows a conceptual view of ENIGMA.

The formal definition of the model is described in

the following Mode section. Here we introduce several

notations.

Suppose that we observe microbiome count data of

K taxa for N samples with M individual host prop-

erties, (ynk , xnm) (n = 1, . . . , n; k = 1, . . . ,K ;m =

1, . . . ,M) where ynk ∈ N represents the abundance

of the k-th taxa in the n-th sample and xnm repre-

sents a binary variable such that xnm = 1 if the n-

th sample has the m-th host property and is otherwise

xnm = 0. Here the word taxa can represent any level

of the bacterial phylogeny, e.g., species, genes, family,

order, etc.

Model

Figure 2 shows a plate diagram of the proposed model

for metagenome sequencing, where yn is the read count

vector of the n-th sample, xn is the vector of the host

properties of the n-th sample and zn ∈ {1, . . . , L} is a

latent class of the n-th sample. Our model is a simple

extension of the unigram mixture model. We assume that

each sample is generated from a multinomial distribu-

tion with the parameter vector pn = (pn1, . . . , pnK )⊤.

The elements of pn and pnk (k = 1, . . . ,K) are prob-

abilities of the occurrence of the K taxa for the n-th

sample. We also assume that pnk can be influenced

https://github.com/abikoushi/enigma
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Fig. 1 A conceptual view of ENIGMA

independently by the environmental factor on the taxa

that is common to all latent classes and the interindi-

vidual factor on the latent enterotype-like classes. More

specifically, the generative process of ENIGMA is defined

as follows:

yn|zn, xn,β ∼ Multinomial
(

pn
)

pn = softmax
(

γ zn + xnB
)

zn|π ∼ Categorical(π)

π |α ∼ Dirichlet(α)

βm ∼ NormalK
(

OK , σ
2IK

)

γ l ∼ NormalK
(

OK , τ
2IK

)

(1)

where γ l is baseline parameter (K-dimensional vector)

that changes with the latent class, M × K matrix B =

(βmk) is effect of a environmental factor common to all

enterotype-like clusters, βm is a m-th row-vector of B,

π = (π1, . . . ,πL) is a mixing ratio of components, OK

is a K-dimensional zero matrix and IK is K-dimensional

identity matrix. Here, the softmax function is defined by

softmax(x) =
exp(x)

∑K
k=1 exp(xk)

for a vector x = (x1, . . . , xK )⊤

using an element-wise exponential function and the prob-

ability function of categorical distribution is parameter-

ized as Pr(z = l|π) = πl, l ∈ {1, . . . , L}. In a Bayesian

approach, the prior distributions for π , β , and γ l must be

defiend. We set a prior based on the Dirichlet distribution

for π , and flat priors to the hyperparameters σ and τ for

Fig. 2 Plate diagram of the model for ENIGMA yn is affected from environmental factors xn and latent variables zn
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Fig. 3 Simulation result of B The comparison true B and the mean of B̂. The error bars indicates SE

β and γ , respectively. For the convenience of later section,

let p′
l = softmax(γ l) be the probabilities of the occurrence

of bacteria in the latent classes l.

Parameter estimation

Let us denote observed matrix by Y = (ynk), X = (xnm),

the unknown parameters by θ = (α,B, γ 1, . . . , γ L, σ , τ),

and their prior by φ(θ). The posterior distribution is

represented as follows:

p(θ , z|Y ) ∝

N
∏

n=1

p(yn|zn, xn, θ)p(zn|θ)φ(θ) (2)

First, latent variable zn must be marginalized. The likeli-

hood is described by

N
∏

n=1

p(yn|xn, θ) =

N
∏

n=1

L
∑

l=1

πlp(yn|zn = l, xn, θ). (3)

The posterior distribution is proportional to the prod-

uct of the likelihood and prior density:

p(θ |Y ) ∝ exp

{

N
∑

n=1

log p
(

yn|xn, θ
)

+ logφ(θ)

}

Let θ̂ be the MAP estimator of θ , found by maximizing

log p(θ ,Y ,X).

We use a Laplace approximation [13] for parameter

estimation. A Taylor expansion around θ̂ gives

log p(θ |Y ,X) ≈ log p(θ̂ |Y ,X) +
1

2
(θ − θ̂)⊤H(θ̂)(θ − θ̂)

(4)

where H(θ̂) is the Hessian of log p(θ |Y ,X) evaluated at θ̂ .

Eq. 4 gives

p(θ |Y ,X) ≈
1

C
exp

{

1

2
(θ − θ̂)⊤H

(

θ̂
) (

θ − θ̂
)

}
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where C is a normalizing constant. This relation-

ship shows that p(θ |Y ,X) can be approximated by

the normal distribution N
(

θ̂ ,H−1
(

θ̂
))

. Credible inter-

vals can be calculated from this multivariate normal

distribution.

We used the stochastic programming language Stan

(http://mc-stan.org/) for its implementation. The MAP

estimators were obtained by the L-BFGS method.

Credible intervals were computed from the using a

Stan function to compute the Hessian at the MAP

estimates.

After fitting the model, the enterotype-like cluster of

each sample must be classified. The conditional probabil-

ity of zn = l is

Pr(zn = l) =
πlp(yn|γ l,β , xn)

∑L
l=1 πlp(yn|γ l,β , xn)

. (5)

This is the probability that the n-th sample belongs to

cluster l. Next, the n-th sample is then classified into the l-

th cluster thatmaximizes the conditional probability given

by Eq. 5.

Model Selection

We also examined whether or not the whole set rather

than individual bacteria is related to the environmental

factors of interest. We compared between the two models

when B �= 0 and B = 0. We used the log marginal like-

lihood as the goodness of fit for model comparison. The

marginal likelihood is given by

P(Y |X) =

∫

p(Y , θ |X) dθ . (6)

From Eq. 4, we have

∫

p(θ ,Y |X) dθ ≈ p
(

θ̂ |Y ,X
)

∫

exp

(

1

2

(

θ − θ̂
)⊤

H
(

θ̂
) (

θ − θ̂
)

)

d θ .

(7)

Thus, the log marginal likelihood is approximated by the

following formula:

logP(Y |X) ≈ log p
(

Y |θ̂ ,X
)

+ φ

(

θ̂
)

+
D

2
log 2π −

1

2
log |H

(

θ̂
)

|

(8)

where D is the number of free parameters. In model com-

parison, we choose the model showing larger log marginal

likelihood.

Simulation study
To demonstrate the performance of ENIGMA, we con-

ducted several simulation experiments. The synthetic

data were naturally produced via our generative process

coverage probability
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Fig. 4 Coverage probability of B. The histogram of coverage probability of B

http://mc-stan.org/
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given by Eq. 1. We set M = 2000, L = 3, πl =

1/3, and α = (1, 1, 1)T . We first generated B and γ l

from the standard normal distribution. The variables xn,

zn, and yn are then sampled from the Bernoulli dis-

tribution with probability of 0.5, the categorical distri-

bution, and the multinomial distribution, respectively.

For the above parameter settings, we randomly gener-

ated a count dataset of 100 taxa for 100 samples for

evaluation.

• Coverage probability (CP): The coverage

probability is the proportion of the time over which

the interval contains the true value. A discrepancy

between the coverage probability and the nominal

coverage probability frequently occurs. When the

actual coverage is greater than the nominal coverage,

the interval is referred to as conservative. If the

interval is conservative, there is no inconsistency in

interpretation.
• Bias: The bias of B is defined by the difference

between true value and estimated value E[ B̂]−B.
• Standard error (SE): The standard error is the

standard deviation from the estimate. A smaller

standard error indicates the higher accuracy of

estimation.
• Root mean squared error (RMSE): The RMSE is

defined by
√

E[
(

B̂ − B
)2

]. A smaller RMSE indicates the higher

accuracy of the estimation.
• Accuracy: The accuracy is the percentage of samples

correctly classified into original group.

To calcurate these metrics, we detrmined that we

calculated the sample means and standard devia-

tions of B̂ and
(

B̂ − B
)2

from the 10,000 synthetic

datasets.

Figure 3 shows a comparison of the true B and the

mean and standard deviation of estimates B̂ obtained

from the 10,000 simulations. We observed that the

points were arranged diagonally, indicating that the esti-

mator of ENIGMA was unbiased. We also calculated

the proportion of the time for which the 95% credi-

ble interval contains the true value of B. We found that

this proportion was greater than nominal value of 0.95 for

all B in Fig. 4. Table 1 shows the coverage probability (CP),

bias, standard error (SE), and RMSE of B̂, respectively.

We observed that the bias and standard error decreased

when βmk was large (i.e. the corresponding abundance

was large). We also found that the accuracy of classi-

fication given by Eq. 5 was exactly 100%. Thus, these

results indicate that ENIGMA can produce reasonable

estimates.

Table 1 Coverage probability (CP), bias, standard error (SE), and

RMSE of B̂

β CP Bias SE RMSE β CP Bias SE RMSE

-3.40 0.97 0.08 0.15 0.17 -0.04 1.00 0.01 0.05 0.05

-2.65 0.97 0.06 0.15 0.16 -0.04 1.00 0.01 0.05 0.05

-2.34 0.99 0.04 0.12 0.13 -0.01 1.00 0.01 0.05 0.05

-2.32 0.99 0.03 0.12 0.12 0.01 1.00 0.01 0.04 0.04

-1.83 0.98 0.03 0.14 0.15 0.02 1.00 0.01 0.06 0.06

-1.59 0.99 0.02 0.13 0.13 0.02 1.00 0.01 0.04 0.05

-1.58 0.99 0.03 0.13 0.13 0.03 1.00 0.01 0.04 0.04

-1.51 0.99 0.02 0.14 0.14 0.10 1.00 -0.00 0.08 0.08

-1.51 0.99 0.02 0.13 0.13 0.13 1.00 0.01 0.03 0.03

-1.29 0.99 0.02 0.11 0.11 0.14 1.00 0.01 0.03 0.03

-1.14 0.99 0.01 0.11 0.11 0.21 1.00 0.01 0.06 0.06

-0.95 1.00 0.01 0.09 0.09 0.23 1.00 0.00 0.08 0.08

-0.95 0.99 0.01 0.12 0.12 0.29 1.00 0.01 0.04 0.04

-0.92 1.00 0.01 0.09 0.09 0.31 1.00 0.01 0.05 0.05

-0.88 0.99 0.01 0.12 0.12 0.32 1.00 0.00 0.08 0.08

-0.84 1.00 0.01 0.05 0.05 0.33 1.00 0.01 0.04 0.04

-0.82 1.00 0.01 0.08 0.08 0.44 0.99 -0.02 0.10 0.10

-0.78 0.99 0.01 0.13 0.13 0.46 1.00 0.01 0.05 0.05

-0.78 1.00 0.01 0.07 0.07 0.50 1.00 -0.01 0.08 0.08

-0.76 1.00 0.01 0.08 0.08 0.53 1.00 0.00 0.06 0.06

-0.72 0.99 0.00 0.12 0.12 0.54 1.00 -0.00 0.08 0.08

-0.68 1.00 0.01 0.10 0.10 0.55 1.00 0.01 0.04 0.04

-0.65 0.99 0.01 0.11 0.11 0.55 1.00 0.01 0.03 0.03

-0.65 0.99 0.01 0.11 0.11 0.56 1.00 0.01 0.05 0.05

-0.65 1.00 0.01 0.06 0.06 0.76 1.00 -0.00 0.07 0.07

-0.61 1.00 0.01 0.06 0.06 0.79 1.00 0.00 0.06 0.06

-0.58 1.00 0.01 0.06 0.06 0.84 1.00 0.00 0.05 0.05

-0.58 1.00 0.01 0.07 0.07 0.90 1.00 0.01 0.04 0.04

-0.56 1.00 0.01 0.05 0.05 0.93 1.00 0.00 0.05 0.05

-0.52 1.00 0.01 0.06 0.06 0.96 1.00 -0.01 0.08 0.08

-0.52 1.00 0.01 0.07 0.07 0.98 1.00 0.01 0.04 0.04

-0.51 1.00 0.01 0.04 0.05 1.01 1.00 -0.01 0.08 0.08

-0.50 1.00 0.01 0.05 0.05 1.08 1.00 0.00 0.05 0.06

-0.50 1.00 0.01 0.04 0.04 1.10 1.00 0.00 0.05 0.05

-0.49 0.99 0.00 0.11 0.11 1.13 1.00 0.01 0.04 0.04

-0.47 1.00 0.01 0.05 0.05 1.14 1.00 0.01 0.04 0.04

-0.45 1.00 0.01 0.09 0.09 1.16 1.00 -0.01 0.07 0.07

-0.42 0.99 -0.01 0.13 0.13 1.22 1.00 0.01 0.04 0.04

-0.33 1.00 0.01 0.07 0.07 1.23 1.00 -0.02 0.09 0.09

-0.28 1.00 0.00 0.09 0.09 1.43 1.00 0.00 0.04 0.04

-0.27 1.00 0.01 0.07 0.07 1.45 1.00 0.01 0.04 0.04

-0.23 1.00 0.00 0.09 0.09 1.47 1.00 0.00 0.04 0.04

-0.21 1.00 0.01 0.07 0.07 1.55 1.00 -0.01 0.07 0.08

-0.18 1.00 0.00 0.10 0.10 1.60 1.00 0.01 0.03 0.03

-0.15 0.99 -0.01 0.11 0.11 1.61 1.00 0.00 0.05 0.05

-0.11 1.00 0.01 0.06 0.06 1.89 1.00 0.01 0.03 0.03

-0.09 1.00 0.00 0.09 0.09 1.91 1.00 0.01 0.03 0.03

-0.05 1.00 0.01 0.04 0.04 1.95 1.00 0.01 0.02 0.02

-0.05 1.00 0.01 0.04 0.04 2.25 1.00 0.00 0.04 0.04
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Fig. 5 Probability of occurrence in three bacteria

Results on real data
Arumugam et al. (2011)’s data

We demonstrated that the enterotype-like cluster can be

estimated using the data of Arumugam et al. [3]. This

data is N = 33, K = 55. The data of Arumugam et al.

[3] does not disclose the total read count. Thus, We

used the relative abundance multiplied by 10,000 as ynk .

Based on the result of Arumugam et al. [3], the number

of latent classes in ENIGMA was chosen to be L = 3.

We estimated the parameters using the ENIGMA and

setting all βmk = 0 in Eq. 1. We set the hyperparameters

of Dirichlet prior α = (1, . . . , 1)⊤, which is equivalent to

a noninformative prior.

Arumugam et al. [3] showed that the enterotype

is characterized by the differences in the abundance

of Bacteroides, Prevotella, and Ruminococcus. Estimates

of the probability of occurrence of those bacteria in

three clusters are shown in the Fig. 5. Class 1 con-

tains high-level Ruminococcus, class 2 contains high-level

Bacteroides, and class 3 contains high-level Prevotella.

This result is consistent with that of Arumugam et al.

(2011) [3].

Parkinson’s disease data

To validate the performance of ENIGMA in discover-

ing clusters of microbial communities and associations

between microbes and a specific disease, we applied

ENIGMA to the real metagenomic sequencing data

from Scheperjans et al. [14], Hill-Burns et al. [15],

Heintz-Buschart et al. [16] and Hopfner et al. [17].

The data was analyzed by sequencing the bacterial

16S ribosomal RNA genes sampled from patients with

Parkinson’s disease (PD) and controls in Finland, USA,

and Germany. Table 2 shows the summary statistics of

the data. The OTUs were mapped to the SILVA tax-

onomic reference, version 132 (https://www.arb-silva.

de/) and the abundances of family-level taxa were

calculated.

To assess the optimal number of clusters, we used the

Calinski-Harabasz (CH) Index. It is defined as:

CHl =
BCl/(l − 1)

WCl/(n − l)
(9)

Table 2 Data summary

PD CO

Finland 74 74

German 55 64

USA 207 139

https://www.arb-silva.de/
https://www.arb-silva.de/


Abe et al. BMC Genomics 2019, 20(Suppl 2):191 Page 70 of 185

0

5

10

15

2 3 4

L

C
H

 i
n
d
e
x

Finland

0

5

10

15

2 3 4

L

C
H

 i
n
d
e
x

Germany

0

10

20

30

40

2 3 4

L
C

H
 i
n
d
e
x

USA

Fig. 6 The CH indexes in each country

where BCl is the between-cluster sum of squares (i.e.

the squared distances between all points i and j, for

which i and j are not in the same cluster) and WCl

is the within-clusters sum of squares (i.e. the squared

distances between all points i and j, for which i and j

are in the same cluster). Here, we used Jensen-Shannon

divergence (JSD) as the distance. The JSD between sam-

ples a = (a1, . . . , aK ) and b = (b1, . . . , bK ) is defined

as follows:

JSD(a, b) =
1

2

(

K
∑

k=1

ak log(ak/bk)) +

K
∑

k=1

bk log(bk/ak))

)

.

(10)

When calculating the JSD, we used the normal-

ized abundance obtained by dividing ynk by the total

read count, and 0 was replaced with pseudo count

10−6. We chose the number of clusters L such that

Table 3 Cross-tabulation of gender and cluster

Class 1 2 3

Female 22 31 21

Male 21 27 26

CHl was maximal. To evaluate the CH Index, we

use the function index.G1() from the R library

clusterSim. The number of latent classes in ENIGMA

was chosen to be L = 3 in Finland and Ger-

many and L = 2 in USA by the CH indexes

(Fig. 6).

First, we evaluated whether the model assumption was

satisfied when using this data. According to Arumugam

et al. (2011) [3], the gender of the host is not related

with the enterotype. The genders of the subjects were

published in the Finland study. We examined the rela-

tionship between gender and enterotype-like cluster using

the data from Finland. Table 3 shows there was no cor-

relation between them. We conducted a Chi-squared test

for independence as shown in Table 3 and the p-value

was 0.66.

We evaluated whether the model showing that bacteria

were associated with PD is better than the model without

the associations in terms of marginal likelihood. Marginal

Table 4 Comparison marginal likelihood

Finland Germany USA

M0 -442734.62 -5913441.14 -3010279.35

M1 -355079.50 -3807297.76 -2063932.02
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Fig. 7 Heatmap showing
(

p̂
′
l

)

. These quantities correspond to the probabilities of the occurrences of bacteria for the three latent classes

likelihood represents the model evidence expressing

the preference of the data for different models. Let

M1 be the model which is described by Eq. 1 and

M0 be the model setting all βmk = 0 in Eq. 1.

Table 4 shows that the marginal likelihood of M1 was

greater than M0. It is preferrd to explain the data

by considering the association between the microbiota

and PD.

Figure 7 shows the estimated probabilities of the

occurrences of bacteria for the three latent classes, p′
l,

(l = 1, 2, 3). Bacteria detected in fewer three coun-

tries were removed. Arumugam et al. [3] showed

that enterotype is characterized by the differences

in the abundance of Bacteroides, Prevotella, and

Ruminococcus. The results of ENIGMA showed the

same tendency as the previous survey. Figure 8 shows

the (γ̂ l)
′ values and their credible intervals. The top

three microbes in each enterotype-like cluster are

shown in excerpts for this plot. According to the results

of ENIGMA, the abundance of Enterobacteriaceae

and Lachnospiraceae also differed greatly among

clusters. Bacterial abundance differed between coun-

tries. In the USA, there was a high abundance of

Verrucomicrobiaceae, while in Finland, few of these

bacteria were detected. In contrast, Finland showed

more Prevotellaceae, with fewer in the in USA

it is less.

Table 5 shows the coefficients whose 95% cred-

ible intervals did not contain zero in more than

two countries. The microbes with these coefficients

indicates that the corresponding microbial com-

position patterns were significantly related to PD.

We found that at the family levels, Clostridiaceae,

Comamonadaceae, Prevotellaceae, Actinomycetaceae,

Bifidobacteriaceae, Enterococcaceae, Synergistaceae,

Verrucomicrobiaceae and Victivallaceae, the signs of the

coefficients matched in all countries. These results are

consistent with those of previous studies. Hill-Burns

et al. [15] reported that patients with PD contained high

levels of Bifidobacteriaceae and Verrucomicrobiaceae.

Scheperjans et al. [14] reported PD patients contained

high levels of Verrucomicrobiaceae and low levels of

Prevotellaceae. Hopfner et al. reported that patients with

PD have high levels of Enterococcaceae.

We compared ENIGMA to the Wilcoxon rank sum

test, a classical methods for identifying bacteria related

with an environmental factor of interest [16]. Table 6

shows the bacteria significantly related to PD with p-

value < 0.05 in more than two countries. We observed

that the bacteria detected by the Wilcoxon test were

mostly included in those of ENIGMA (Table 5). Notably,

all of the corrected p-values in Table 6 are larger than

0.05. This result shows that ENIGMA was superior

to the Wilcoxon rank sum test in terms of identify-

ing a larger number of associations between microbiota

and PD.

Finally, we combined the results of ENIGMA to

those of PICRUSt (version 1.1.3) [18] in order to
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Fig. 8 Top three
(

γ̂ l

)′
in each country

evaluate which functions are related to PD. In the

present study, PICRUSt was performed using the default

settings. The Fig. 9 shows the functions exhibiting an

increase and decrease from the median, which matched

in all countries and clusters with respect to PD and

control (CO). This result indicates that ENIGMA is

a valuable tool for discovering new disease-related

functions.

The analyses using real-world data thus show that

ENIGMA can identify enterotype-like clusters and the

associations between the gut microbiota and PD. Some of

the results were strongly supported by those of previous

studies.

Conclusion
We proposed a novel hierarchical Bayesian model,

ENIGMA, for discovering the underlying microbial com-

munity structures and associations between microbiota

and their environmental factors from microbial

metagenome data. ENIGMA is based on a probabilistic

model of a microbial community structures and supplied

with labels for one or more environmental factors of inter-

est for each sample. The structures of each sample are

modeled by a multinomial distribution whose parameters

are represented independently by group and environ-

mental effects of each sample, which prevents mixing

of individual differences and the effects of interest. This
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Table 5 Bacteria significantly associated with PD in more than two countries

Finland Germany USA

Family β̂ Lower
bound

Upper
bound

β̂ Lower
bound

Upper
bound

β̂ Lower
bound

Upper
bound

Anaeroplasmataceae -0.87 -1.28 -0.45 -1.69 -2.03 -1.35 - - -

Bacteroidales S24-7 group -0.52 -0.93 -0.11 0.22 -0.12 0.56 -0.80 -1.16 -0.44

Bradyrhizobiaceae - - - -0.82 -1.17 -0.47 -1.44 -2.21 -0.66

Brevibacteriaceae - - - -1.02 -1.38 -0.66 -0.65 -1.05 -0.25

Brucellaceae - - - -1.69 -2.50 -0.87 -1.34 -1.75 -0.92

Clostridiaceae 1 -0.54 -0.96 -0.13 -0.08 -0.42 0.26 -0.52 -0.88 -0.16

Comamonadaceae -0.85 -1.35 -0.35 -1.27 -1.61 -0.93 -0.21 -0.57 0.15

Elusimicrobiaceae -4.17 -5.60 -2.74 -2.11 -2.54 -1.68 2.52 1.03 4.01

Intrasporangiaceae - - - -3.47 -4.86 -2.07 -3.00 -4.72 -1.28

Leuconostocaceae -2.66 -4.30 -1.02 0.50 0.13 0.86 -1.74 -2.22 -1.25

Moraxellaceae - - - -1.58 -1.92 -1.24 -0.92 -1.28 -0.56

Pasteurellaceae -1.62 -2.07 -1.17 0.30 -0.04 0.64 -1.88 -2.25 -1.51

Prevotellaceae -2.46 -2.87 -2.05 -0.03 -0.37 0.30 -0.53 -0.89 -0.17

Rhodocyclaceae - - - -3.53 -4.93 -2.13 -0.75 -1.18 -0.32

Actinomycetaceae 0.11 -0.78 1.01 0.42 0.07 0.78 0.91 0.54 1.28

Bacillaceae 1.72 0.34 3.11 -2.35 -2.72 -1.99 0.80 0.43 1.17

Bdellovibrionaceae - - - 1.43 0.40 2.46 3.07 1.78 4.36

Bifidobacteriaceae 1.34 0.82 1.86 0.54 0.20 0.88 0.01 -0.35 0.37

Campylobacteraceae 0.36 -0.31 1.03 4.90 4.48 5.33 0.83 0.46 1.21

Cytophagaceae - - - 2.45 1.56 3.34 1.70 0.27 3.13

Enterococcaceae 3.87 2.70 5.05 0.74 0.40 1.08 0.09 -0.28 0.45

Lactobacillaceae 3.00 2.56 3.43 -0.51 -0.85 -0.18 1.73 1.36 2.09

Leptotrichiaceae -0.90 -1.89 0.09 2.57 1.88 3.26 0.82 0.36 1.27

Methanobacteriaceae - - - 0.93 0.59 1.27 0.67 0.30 1.04

Mitochondria 0.60 -1.27 2.46 0.73 0.11 1.36 1.57 0.95 2.20

Paenibacillaceae - - - 2.19 1.28 3.10 1.71 1.30 2.12

Planococcaceae - - - 1.06 0.72 1.41 3.26 2.67 3.85

Rhizobiaceae - - - 0.64 0.24 1.03 1.52 1.08 1.95

Streptococcaceae 0.44 0.03 0.86 0.84 0.50 1.17 0.26 -0.10 0.62

Succinivibrionaceae -0.32 -0.76 0.11 0.74 0.40 1.08 4.31 3.76 4.86

Synergistaceae 1.26 0.80 1.71 0.25 -0.10 0.61 1.44 1.06 1.82

Verrucomicrobiaceae 1.71 1.23 2.19 1.62 1.29 1.96 -0.06 -0.42 0.30

Victivallaceae 0.42 -0.00 0.85 0.68 0.34 1.02 0.93 0.54 1.32

The “-” notation indicates the bacteria undetected in that country

framework enables the model to simultaneously learn (i)

how microbes contribute to an underlying community

structures (cluster) and (ii) how microbial compositional

patterns are explained by environmental factors of inter-

est. The effectiveness of ENIGMA was evaluated through

experiments involving both synthetic and read-world

datasets. These newly discovered clusters and associa-

tions estimated using ENIGMA can provide insight into

the the mechanisms of a microbial communities.

Table 6 p-Value of Wilcoxon test

Finland Germany USA

Lachnospiraceae 0.009371 0.719014 0.002839

Lactobacillaceae 0.030404 0.077771 0.000002

Pasteurellaceae 0.006493 0.495315 0.004232

Prevotellaceae 0.001303 0.030892 0.194592
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Fig. 9 Predicted functional trait abundance in each country and cluster

The major limitation of ENIGMA is its scalability and

efficiency, as the number of the parameters in the model

increase proportionally with the number of taxa when

the number of environmental factors of interest is large.

Further studies should focus on developing a scalable

probabilistic model of microbial compositions to analyze

underlying microbial structures with a large number of

these effects by using sparse parameter estimation [19].

We are also interested in developing a dynamic probabilis-

tic model similar to that reported by Blei and Lafferty [20]

for analyzing time-varying bacteria compositions during

disease progression.
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