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ABSTRACT

A data owner outsourcing the database of a multi user application
wants to prevent information leaks caused by outside attackers ex-
ploiting software vulnerabilities or by curious personnel. Query
processing over encrypted data solves this problem for a single
user, but provides only limited functionality in the face of access
restrictions for multiple users and keys. ENKI is a system for se-
curely executing queries over sensitive, access restricted data on
an outsourced database. It introduces an encryption based access
control model and techniques for query execution over encrypted,
access restricted data on the database with only a few cases requir-
ing computations on the client. A prototype of ENKI supports all
queries seen in three real world use cases and executes queries from
TPC-C benchmark with a modest overhead compared to the single
user mode.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administration—Secu-

rity, Integrity, and Protection

General Terms

Security

Keywords

Encryption-based Access Control, Encrypted Query Processing, Mul-
ti User

1. INTRODUCTION
Outsourcing an application’s database backend offers efficient

resource management and low maintenance costs, but exposes out-
sourced data to a service provider. To ensure data confidentiality,
data owners have to prevent unauthorized access while the data is
stored or processed. Storing data on an untrusted database requires
protection measures against curious personnel working for the ser-
vice provider or outside attackers exploiting software vulnerabili-
ties on the database server. In addition, data owners also have to
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control data access for their own personnel.
An emerging solution to the problem of untrusted databases is en-
crypted query processing [28, 16, 8, 1, 2, 6, 30, 5, 25, 24] where
queries are executed on encrypted data.
To grant or restrict shared data access to personnel processing un-
encrypted query results, data owners have to implement additional
fine-grained access control mechanisms. Implementing such a multi
user mode using encrypted query processing for a single user oper-
ating with one key [28, 16, 8, 1, 2, 6, 5, 25] combined with an ad-
ditional authorization step at the application server like [26] can be
compromised: Assume that a user working for the data owner and a
service provider’s employee collude. If the user knows the decryp-
tion key of the data and the employee provides the encrypted data
stored in the database, they are able to decrypt all data bypassing
the access control mechanisms.
This paper presents the design, implementation, and evaluation of
ENKI, a system that securely processes relational operations over
encrypted, access restricted relations. Its approach is to encrypt
data with different access rights using different encryption keys.
Further, it introduces techniques to handle query processing over
data encrypted with multiple encryption keys. ENKI builds on pre-
vious work in encrypted query processing for a single user as de-
scribed in [16, 8, 1, 6, 25], but ENKI is the first system that ef-
ficiently supports queries over data encrypted with different keys.
Existing approaches only support query processing with multiple
keys for searchable encryption which allows to check if an en-
crypted value matches a token [30, 24, 3] or if there is no shared
data [25].
The support of query processing over access controlled encrypted
data presents two major challenges: The first challenge is the map-
ping of any complex access control structure required in a multi
user scenario to an encryption enforced access control model which
still allows query execution. Previous works only focus on the ac-
cess control mechanism [9] or the key management [4, 7]. The sec-
ond challenge is to efficiently execute a range of queries while min-
imizing the revealed information on the server and the amount of
computations on the client. Current approaches for multiple users
offer either limited functionality [30, 25, 24, 3] or expose confiden-
tial information to the database [21].
We tackle these challenges using two ideas: First, we introduce a
new model for encryption based access control in Section 3 which
defines access control restrictions on the level of attribute values
and applies encryption as a relational operation to enforce the ac-
cess restrictions on a relational algebra.
Second, we present three different techniques to support the execu-
tion of relational operations in multi user mode. The first technique
is query rewriting to adapt relational operations over data encrypted
with different keys described in Subsection 4.1. The next technique
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Figure 1: ENKI’s architecture and threat model

is a new privacy-preserving method for join, set difference, and
count distinct in multi user mode presented in Subsection 4.2. The
last technique is a post-processing step on the client saving compu-
tational effort on the client while preserving the confidentiality of
the data explained in Subsection 4.3. Our results are subsumed in a
multi user algorithm introduced in Subsection 4.4.
We have implemented ENKI for a SAP HANA database extend-
ing HANA’s JDBC driver and a client application. Our solution
supports most relational operations and aggregation functions. The
evaluation of different query types seen in three use cases and in the
TPC-C benchmark shows that this range is suitable for real world
applications. Our performance evaluation shows that ENKI con-
sumes an average overhead of 36.98% (which is a time penalty of
0.6181 ms on average) for the query execution of queries seen in
the TPC-C benchmark in a two user scenario compared to the sin-
gle user mode and that the overhead increases modestly in a more
complex scenario.

2. OVERVIEW
Problem Statement. Consider two users, Alice and Bob, who

share access to a database with two tables R and S. Assume that
Alice has private access to one tuple and shares access to other tu-
ples with Bob in both tables R and S respectively.
We encrypt tuples of table R that are only accessible for Alice with
key r_a and tuples of table S that are only accessible for Alice with
key s_a. Tuples of table R that are accessible for both Alice and
Bob are encrypted with key r_ab and of table S with key s_ab.
Alice knows the keys r_a, r_ab, s_a, and s_ab and Bob knows the
keys r_ab and s_ab.
Assume Alice issues an equal join on tables R and S. Therefore,
the database executes a cartesian product on all tuples of R and S
that Alice is allowed to access and proxy re-encrypts these tuples
to check the equal condition. Current proxy re-encryption proto-
cols for deterministic encryption schemes [25],[22] cannot adhere
the access restrictions while applied to the tuples: they reveal pri-
vate information. To illustrate the problem, consider the proxy
re-encryption of keys r_a and r_ab to a new key r_c denoted as

r_a ∼ r_c and r_ab ∼ r_c. Existing protocols are symmetric and
transitive such that a proxy re-encryption r_a ∼ r_c ∼ r_ab ex-
ists. Therefore, Bob can proxy re-encrypt all data encrypted with
Alice’s key r_a to their shared key r_ab. This circumvents the
defined access restrictions as the proxy re-encryption reveals infor-
mation exclusively accessible by Alice.
Architecture. Figure 1 shows ENKI’s overall architecture and the
involved entities. These involved entities are the data owner who
also maintains the application and the service provider who oper-
ates the database. There are also different users (denoted in Figure
1 as User A, User B, User C) which are personnel working for the
data owner.
A user accesses the database with a client which issues queries
via JDBC driver to the database backend. We extended the JDBC
driver with the ENKI Query Adapter to rewrite an incoming query
with minimal effort to be processable in the multi user mode. We
also modified the clients to post-process the returned query results.
The execution of a rewritten query on a database containing en-
crypted tuples requires that the predicates of this query must be
encrypted, too. Based on access policies, users are acquainted with
the necessary encryption keys. These keys are stored encrypted in
a key store. If a user logs in, she hands over her masterkey to de-
crypt her encryption keys stored in the key store. Using the stored
and decrypted encryption keys, the ENKI Query Adapter encrypts
the rewritten query. The database management system (DBMS)
receives the rewritten, encrypted query and executes it on the en-
crypted database. The encrypted query result is returned to the
JDBC driver where it is decrypted by the ENKI Query Adapter be-
fore it is post-processed on the client. Note that keys stored in the
key store cannot be decrypted if their respective users are logged
out.
DBMS and database stay unmodified. User-defined functions (UDFs)
perform cryptographic operations like our new privacy-preserving
proxy re-encryption introduced in Subsection 4.2.
Threat. Our threat model assumes that an attacker has compro-
mised application and database server. The attacks are depicted
with flashes in Figure 1. We assume that the attacker is passive:



she can read all information stored on the database, but does not
manipulate the stored data or issued queries. The attacker learns
the encryption keys of all users logged in at the time of the attack.
Acquainted with their masterkeys and their encryption keys, the at-
tacker is able to read all data of these compromised users stored on
the database. In particular, the attacker can access data shared with
other uncompromised users. ENKI offers confidentiality guaran-
tees for non-compromised users during such an attack: the attacker
cannot learn their private data i.e. data which are not shared with
compromised users.
ENKI provides this security guarantees in the face of a passive at-
tacker. An active attacker which alters or deletes information stored
on the database is out of scope for ENKI. We argue that such ma-
nipulations might be easier to detect than a passive attack. ENKI

does also not prevent attacks on client machines that lead to the
compromise of keys.

3. ENCRYPTION-BASED ACCESS CON-

TROL ON A RELATIONAL ALGEBRA
This section presents a new model how to specify access rights

on attribute values of relations and how to enforce them crypto-
graphically.

3.1 Access Restrictions on Relations
We define access restrictions on attribute values of a relation us-

ing an access control matrix. Note that an access control matrix
may serve as a base for more enhanced access models exploiting
role-based access control [27].
Let A be an access control matrix where the rows correspond to
subjects s and the columns correspond to objects o. Figure 2 illus-
trates an access control matrix with two users, Alice and Bob, as
subjects and a relation R containing five tuples, t1, . . . , t5, as ob-
jects. We denote S as the set of all subjects with |S| = n and O as
the set of all objects.
A data owner grants access for an object o to a subject s by setting
the entry in the access matrix A[s, o] to 1. This enables the user to
read, update, or delete the object. If no access is granted, the entry
is set to 0. Our approach does not support the implementation of
different types of access rights e.g. read only or read-write.
A column of an access control matrix is a representation of the set
of subjects which has access to an object o. We denote this as the
qualified set QSo of object o. We assume that each object can be
accessed by at least one subject such that there are no zero columns
and no empty qualified sets. Consider QSt4 = {1, 1} in Figure 2.
This is the qualified set of object t4 denoting that user Alice and
user Bob have access to tuple t4.
We further name P∗(S) the power set of all subjects S without the
empty set. We denote each of these subsets as pi ∈ P

∗(S) for all
i = 1, . . . , 2n− 1 and call it a user group. From the access control
matrix depicted in Figure 2, we derive three user groups:

p1 ={Alice} := A

p2 ={Bob} := B

p3 ={Alice,Bob} := AB.

We define a mapping which assigns each user to the user groups
she participates in. For each user s, there is a set of pj with j =
{1, . . . , 2n − 1} of all user groups the user participates in. This
mapping is called user group mapping and can be stored as a re-
lation with the attributes user and user group. Figure 3 shows the
user group mapping for our example. It has two attributes: User
and User Group. It shows that user Alice is member of user groups
A and AB and user Bob is member of user groups B and AB.

Access Control Matrix of Relation R

User t1 t2 t3 t4 t5

Alice 0 1 1 1 1
Bob 1 1 0 1 0

Figure 2: Access Control Matrix for relation R. The relation con-
tains five tuples t1, . . . , t5. Two users, Alice and Bob, access the
the relation. The users’ access is binary on tuple level such that a
user is either granted the right to read and alter a tuple (denoted as
1) or not (denoted as 0).

User Group Mapping

User User Group

Alice A

Alice AB
Bob B

Bob AB

Virtual Relation Mapping

User Group Relation Virtual

Relation

A R R_A
B R R_B

AB R R_AB

Figure 3: Depicted on the left is the User Group Mapping which
relates a user to the usergroups the user participates in. Depicted
on the right is the Virtual Relation Mapping which relates a pair of
relation and user group to a virtual relation.

A qualified set of an object maps to one and only one user group
which contains the same set of subjects. We group all objects ac-
cessible by the same user group and call this an object set. It is
defined as

O(pi) = {o|o ∈ O ∧QSo = pi} (1)

for a user group pi ∈ P
∗(S). This is the set of all objects assigned

to the same user group. In Table 2, it is O(p1) = {t3, t5}, O(p2) =
{t1}, and O(p3) = {t2, t4}.
Note that all O(pi) form a partition over O as each two object sets
are pairwise disjoint and the union of all object sets (which are non-
empty by definition) is equal to the set of all objects O.
We use this resulting partition to divide the underlying relation.
This is to store each object set in a separate relation which we call
virtual relation. A virtual relation indicates that one user group can
access all of its tuples. This saves the annotation of a tuple with
access information as its insertion in a virtual relation implies that
this tuple can be accessed by a certain user group.
For n users, each relation is partitioned in a maximum of 2n − 1
virtual relations. The total number of tuples does not change as
each tuple of a relation is stored in one and only one virtual relation.
We define a mapping which assigns each user group and relation to
the virtual relation containing the tuples this user group is granted
access to. This mapping is called virtual relation mapping and can
be stored as a relation with the attributes User Group, Relation, and
Virtual Relation.
Figure 3 shows the virtual relation mapping for the user groups A,
B, and AB and the relation R. The pair user group A and relation
R is mapped to the virtual relation RA, the pair user group B and
relation R is mapped to the virtual relation RB , and the pair of user
group AB and relation R is mapped to the virtual relation RAB .
The data owner specifies and maintains the user group mapping and
the virtual relation mapping.

3.2 Encryption as Relational Operation
We now define encryption as a relational operation and show

how to enforce the previously defined access restrictions.

Definition 1. Consider a relation R = R(A1, . . . , An) with
A1, . . . , An attributes. It contains tuples tk = (t1k , . . . , tnk

) with
1, . . . , n the number of attributes and k = 1, . . . , j the cardinality.



An encryption κz(Ai) of attribute Ai with key z is defined as

κz(Ai) := {κz(tik)|tik ∈ Ai for all k = 1, . . . , j} (2)

with tik the attribute values of Ai for all k = 1, . . . , j.
The encryption of relation R = R(A1, . . . , An) is the encryption
of its attributes A1, . . . , An and their attribute values t1k , . . . , tnk

for all k = 1, . . . , j as

κz(R) :=R(κz(A1), . . . , κz(An))

={κz(t1k ), . . . , κz(tnk
)|tik ∈ Ai

for all i = 1, . . . , n and for all k = 1, . . . , j}.

(3)

We apply adjustable query-based encryption introduced in [25] to
efficiently support the execution of relational operations over en-
crypted data. In the following sections, we only refer to an en-
cryption scheme as relational operation κz with key z, but omit
the details of the adjustable encryption and the different encryption
keys of each attribute value.
We now use encryption to enforce access restrictions on the at-
tribute values of a relation. Consider a relation R = R(A1, . . . , An)
and three user groups A, B, and AB. The data owner splits R into
virtual relations RA, RB , and RAB . These virtual relations adopt
the same schema as relation R and contain the tuples accessible
for the respective user group. The data owner generates encryption
keys for each user group and encrypts the respective virtual relation
with its key. She generates key r_a for user group A and encrypts
RA as

κr_a(RA) = {κr_a(t)|t ∈ RA}. (4)

She also generates keys r_b and r_ab and encrypts RB and RAB

for user groups B and AB accordingly. The data owner issues the
respective keys to the member of each user group.
The number of keys distributed to a user depends on the number of
user groups a user participates in. The maximum number of user
groups is 2n − 1 which is the superset of the number of users n
without the empty set. In real world applications, the total number
of user groups is even smaller: its order is bound by the number of
users n [19].

4. QUERY PROCESSING OVER AN EN-

CRYPTED RELATIONAL ALGEBRA
Encrypted query processing over a relational operation can be

efficiently supported for single user mode [25]. In particular, this
holds for the following primitive and derived relational operations:
selection, projection, rename, cartesian product, set union, set dif-

ference, equi join, and the aggregate functions group by, count (dis-

tinct), sum, average, maximum, minimum, and sort.
The introduction of access restrictions on relations interferes with
encrypted query processing in three ways:
First, a relational operation is now executed on (potentially) mul-
tiple virtual relations depending on the access rights of the user
rather than on one relation. To tackle this problem, we introduce
query rewriting strategies in Subsection 4.1. Applying these rewrit-
ing strategies does not change the application logic: we point out
that the user only has to submit the original, unchanged query and
its user id. The ENKI Query Adapter rewrites the query and adapts
it for encrypted query processing.
Second, proxy re-encryption of virtual relations is necessary to sup-
port count distinct, equi-join, or set difference operations on the
server. We present a new privacy-preserving encryption scheme
to support proxy re-encryption in a multi user setting in Subsec-
tion 4.2. It offers proxy re-encryption of attributes or relations en-
crypted with different keys while preserving the access rights.

Third, some relational operations can only be executed on server-
side with significant computational effort, huge storage capacities,
or diminishing security. For such cases, we present a client-server
split requiring only small data traffic and minimal computational
effort on the client while preserving confidentiality in Subsection
4.3.
All introduced techniques are combined in a multi user algorithm to
handle the presence of multiple users described in Subsection 4.4.
The multi user algorithm takes as input a user id and a query con-
sisting of a combination of relational operations, processes it over
virtual relations, and returns the result. It can handle an arbitrary
set of users.
To explain the three techniques, we use the small example intro-
duced in Section 3: we part table R in virtual relations RA, RB ,
and RAB and encrypt them as κr_a(RA), κr_b(RB), and κr_ab(RAB)
with keys r_a, r_b, r_ab. Table S is treated accordingly.

4.1 Rewriting Strategies
We introduce rewriting strategies for the relational operations se-

lection, projection, rename, aggregate function count, set union,
and cartesian product over encrypted virtual relations. Applying
the rewriting strategies allows the straightforward execution of these
relational operations over encrypted data. The rest of this subsec-
tion presents the rewriting of these relational operations in detail.
Selection. Consider a predicate θ (e.g. =, <,≤, >,≥) and α, β
attributes, constants, or terms of attributes, constants, and data op-
erations. A selection σαθβ(R) on relation R issued by user Al-
ice is executed on the encrypted virtual relations κr_a(RA) and
κr_ab(RAB). The condition αθβ has to be applied on both virtual
relations. Therefore, αθβ is encrypted with key r_a as
κr_a(α)θκr_a(β) and with key r_ab as κr_ab(α)θκr_ab(β). It is

(σαθβ(R), Alice)

=σκr_a(α)θκr_a(β)(κr_a(RA)) ∧ σκr_ab(α)θκr_ab(β)(κr_ab(RAB))

={κr_a(t)|t ∈ RA ∧ κr_a(α)θκr_a(β)}

∪ {κr_ab(t)|t ∈ RAB ∧ κr_ab(α)θκr_ab(β)}.
(5)

Projection. Let R′ be a relation with

R′(Ai(1), . . . , Ai(k)) ⊆ R(A1, . . . , An) (6)

and R′A and R′AB the respective virtual relations. A projection

πβ(R) with attribute list

β = (Ai(1), . . . , Ai(k)) ⊆ (A1, . . . , An) (7)

on relation R issued by user Alice is executed on the encrypted vir-
tual relations κr_a(RA) and κr_ab(RAB). Therefore, the attribute
list β is encrypted with key r_a as

κr_a(β) = κr_a(Ai(1)), . . . , κr_a(Ai(k)) (8)

and also encrypted with key r_ab as

κr_ab(β) = κr_ab(Ai(1)), . . . , κr_ab(Ai(k)). (9)

It is

(πβ(R), Alice) =πκr_a(β)(κr_a(RA)) ∪ πκr_ab(β)(κr_ab(RAB))

=κr_a(R
′

A) ∪ κr_ab(R
′

AB).

(10)

Rename. A rename ρ of an attribute Ai ∈ R to Q issued by Al-
ice is executed on the encrypted virtual relations κr_a(RA) and
κr_ab(RAB). The new attribute name Q is encrypted with key r_a
as κr_a(Q) and with key r_ab as κr_ab(Q) respectively. It replaces



the encrypted original attribute name Ai in the virtual relations. It
is

(ρQ←Ai(R), Alice) =ρκr_a(Q)←κr_a(Ai)(κr_a(RA))

∪ ρκr_ab(Q)←κr_ab(Ai)(κr_ab(RAB)).

(11)

A rename is not persisted.
Count. The aggregate function βγCount(Ai)(R) on a relation R is-
sued by Alice is executed on the encrypted virtual relations κr_a(RA)
and κr_ab(RAB). It is

(βγCount(Ai)(R),Alice)

=κr_a(β)γCount(κr_a(Ai))(κr_a(RA))

+κr_ab(β) γCount(κr_ab(Ai))(κr_ab(RAB)).

(12)

with Count the aggregate function executed on server-side. It
counts the numbers of attribute values of Ai for the virtual rela-
tions RA and RAB separately and adds these partial results on the
server. The output represents the number of attribute values of at-
tribute Ai accessible by Alice.
Set Union. Let relations R and S have the same set of attributes. A
set union R∪S issued by Alice is executed on the encrypted virtual
relations κr_a(RA), κr_ab(RAB), κs_a(SA), and κr_ab(SAB). It
is

(R ∪ S,Alice) ={κr_a(t)|t ∈ RA} ∪ {κr_ab(t)|t ∈ RAB}

∪ {κs_a(t)|t ∈ SA} ∪ {κr_ab(t)|t ∈ SAB}.

(13)

Cartesian Product. Let r be a tuple of relation R and s be a tuple
of relation S. A cartesian product R × S issued by Alice is ex-
ecuted on the encrypted virtual relations κr_a(RA), κr_ab(RAB),
κs_a(SA), and κs_ab(SAB). It is

(R × S,Alice) ={κr_a(r)κs_a(s) ∨ κr_a(r)κs_ab(s)

∨ κr_ab(r)κs_a(s) ∨ κr_ab(r)κs_ab(s)

|r ∈ (RA ∨RAB) ∧ s ∈ (SA ∨ SAB)}.
(14)

ENKI also supports queries to update, delete, or insert a tuple as
well as queries to modify the table schema. The introduced rewrit-
ing techniques can be directly applied to update and delete a tu-
ple. Schema modification and insertion of a tuple require different
rewriting strategies. In case a user modifies the schema of one re-
lation, the query must be rewritten to modify the schemas of all its
virtual relations. In case a user inserts a tuple in a relation, the tu-
ple can only be inserted in one of the virtual relations the user is
allowed to access. To rewrite the insert query, exactly one virtual
relation must be specified. This depends on the access restrictions
defined by the data owner.
The computational complexity to rewrite and encrypt a query for
the multi user mode depends on the number of operands seen in the
original query (i.e. number of involved relations) and the number of
user groups a user participates in. Assume that the computational
complexity is O(s) for unary and binary operations in the single
user mode. The computational complexity to rewrite and encrypt
an unary operation is linear given k user groups. Each query is
rewritten and encrypted to be executed on k virtual relations result-
ing in a computational complexity ofO(s×k). The computational
complexity to rewrite and encrypt a binary operation is quadratic
given that a user is granted access to k virtual relations of each
relation respectively. Each query is rewritten and encrypted to be
executed on one of k2-pairs of the involved virtual relations result-
ing in a computational complexity of O(s× k2).

4.2 Proxy Re-Encryption as Relational Oper-
ation

Virtual relations are encrypted with different encryption keys
which prevent comparisons of tuples even if a deterministic en-
cryption scheme is used. However, comparisons are necessary to
compute the unary operation count distinct or the binary operations
equi-join and set difference over (deterministically) encrypted data.
Our goal is to proxy re-encrypt virtual relations on the database
server so that all queried attributes share the same encryption key
while preserving data confidentiality. To formalize this approach,
we define proxy re-encryption as a relational operation.

Definition 2. A proxy re-encryption alters an attribute κz(Ai)
encrypted with key z to enable its decryption with another key y.
We define a proxy re-encryption χy(κz(Ai)) of attribute Ai as

χy(κz(Ai)) : = {χy(κz(tik))|tik ∈ Ai for all k = 1, . . . , j}

= {κy(tik)|tik ∈ Ai for all k = 1, . . . , j}

= κy(Ai)

(15)

with tik the attribute values of Ai for all k = 1, . . . , j.
The proxy re-encryption of a relation κz(R) is the proxy re-encryp-
tion of all attributes. It is

χy(κz(R)) : = R(χy(κz(A1)), . . . , χy(κz(An)))

= R(κy(A1), . . . , κy(An)) = κy(R).
(16)

Definition 3. A proxy re-encryption is called symmetric if

χb(κa(Ai)) = κb(Ai)⇔ χa(κb(Ai)) = κa(Ai). (17)

Definition 4. A proxy re-encryption is called transitive if

χb(κa(Ai)) = κb(Ai) ∧ χc(κb(Ai)) = κc(Ai)

⇒χc(κa(Ai)) = κc(Ai).
(18)

A symmetric and transitive proxy re-encryption scheme ensures
privacy-preserving computations on the database server in the sin-
gle user mode [25]. However, if you recall the problem statement
in Section 2, it does not preserve data confidentiality in the face of
multiple users as its application leads to a data compromise. This
motivates the introduction of a non-symmetric and non-transitive
proxy re-encryption scheme called DETPRE as the cryptographic
primitive for count distinct, equi-joins, and set differences in multi
user mode.

Definition 5. A deterministic proxy re-encryption scheme is a
tuple of algorithms ParamGen, KeyGen, Enc, Token, Pre
such that:

• Parameter Generation. The probabilistic polynomial time
algorithm ParamGen takes as input the security parameter
λ and outputs system parameters params:
params← ParamGen(1λ).

• Key Generation. The probabilistic polynomial time algo-
rithm KeyGen takes as input the security parameter λ and
outputs a key ki: ki ← KeyGen(1λ).

• Encryption. The deterministic polynomial time algorithm
Enc takes as input a plaintext m and key ki and outputs a
ciphertext: C = Enc(m, ki).

• Token. The deterministic polynomial time algorithm Token
takes as input two keys ki, kj and outputs a token to proxy
re-encrypt ki to kj : T = Token(ki, kj).



• Proxy Re-Encryption. The deterministic polynomial time
algorithm Pre takes as input a ciphertext C and a token T
and outputs a ciphertext C′: C′ = Pre(C,T ).

We now present our deterministic proxy re-encryption scheme DET-

PRE by specifying each algorithm.
ParamGen. Given a security parameter λ, ParamGen works as
follows: we generate a prime p and two groups G1,G2 of order p,
and a bilinear, non-degenerated, computable map e : G1×G1 −→
G2. We choose a generator G ∈ G1 uniformly at random.
KeyGen. We choose ki ∈ Zp uniformly at random.
Enc. We encrypt a plaintext m with a key ki and compute a ci-
phertext C as

C = Gmki ∈ G1. (19)

Token. We generate a token T that proxy re-encrypts a ciphertext
encrypted with a key ki to be encrypted with a key kj and compute

T = G
kj
ki ∈ G1. (20)

Pre. We proxy re-encrypt a ciphertext C encrypted with a key ki
to a ciphertext C′ encrypted with a key kj and compute

C′ = e(C, T ) =e(Gmki , G
kj
ki ) = e(G,G)

mki
kj
ki = e(G,G)mkj

=gmkj ∈ G2.

(21)

DETPRE is single-hop meaning that a ciphertext can only be proxy
re-encrypted once. This restricts its usability as the key of a once
proxy re-encrypted ciphertext is persisted. Therefore, we propose
the following strategy which allows to benefit from the application
of DETPRE while maintaining its re-usablity:

1. We encrypt all attribute values using the algorithm Enc. These
encrypted attribute values are called base values.

2. If a proxy re-encryption is required, we use the algorithm
Pre and proxy re-encrypt the base values with a temporary
key c. The proxy re-encrypted results are called DETPRE val-

ues.

3. We store the DETPRE values temporarily as a concatenation
to the base values and use them to process a relational oper-
ation.

4. After the user logs out, the DETPRE values are deleted.

We now describe our adversary model to informally explain the se-
curity guarantees our proxy re-encryption schemes provides.
We consider a passive adversary, i.e., the adversary can read all
encrypted attribute values of all users, but does not modify them.
We assume that the adversary has also compromised the applica-
tion and its database proxy and observes executed operations. In
particular, if a user is compromised during the attack, the adver-
sary learns the user’s masterkey, the encryption keys stored in the
key store, and the used tokens of a user. Our goal is to prevent an
adversary from using this information to learn private data of non-
compromised users.
Therefore, we assume a number of users distributed to n user groups
with each user group endowed with an encryption key d1, . . . , dn
which are kept private.
We allow the adversary to compromise all but one encryption key.
The adversary could have learned these keys as a result of a collu-
sion between service provider and personnel working for the data

owner. Therefore, she has access to keys {d1, . . . , dn−1} but not
to key dn. It implies that the adversary can decrypt all database
entries encrypted with the keys d1, . . . , dn−1. In particular, if dn
is the private key of a single user i.e. of a user group with only one
member and this user also participates in additional user groups
with compromised members, then the adversary can decrypt all tu-
ples encrypted for these user groups but cannot decrypt the tuples
encrypted with dn.
The adversary can compute or learn tokens Token(di∗ , di) for all
compromised keys di∗ ∈ {d1, . . . , dn−1} to be proxy re-encrypted
to an arbitrary key di. Thereby, she can proxy re-encrypt the database
entries encrypted with the compromised encryption keys
d1, . . . , dn−1.
The database entries encrypted with key dn are not compromised
and the adversary cannot access these database entries. She also
cannot compute or learn tokens Token(dn, di) which proxy re-
encrypt the database entries encrypted with key dn to an arbitrary
key di. However, she can compute tokens Token(di, dn) such that
a database entry encrypted with an arbitrary key di can be proxy re-
encrypted to a key dn.
Given all these information, the adversary should not be able to
proxy re-encrypt an attribute value encrypted with the encryption
key dn to another key. We refer to this property as non-reversion.
Next, we study a security game to formally define the described se-
curity guarantees and proof our claims based on a known hardness
assumption.
LetA be a probabilistic time adversary modeled as described above.
Let C be the challenger. Then consider the following security game
for a security parameter λ:

Setup. C takes a security parameter λ, runs algorithm ParamGen,
and returns the system parameters params toA. C also runs
algorithm KeyGen and outputs keys d1, . . . , dn. C sends
d1, . . . , dn−1 toA and keeps dn as a secret. C runs algorithm
Token and outputs Token(di, dj) for all i, j = 1, . . . n that
allow a database entry encrypted with the key di to be proxy
re-encrypted to the key dj . C sends Token(di∗ , di) with
i∗ = 1, . . . , n− 1 and i = 1, . . . , n to A.

Phase 1. A performs actions q1, . . . , qm where qi is one of the
following type:

Enc A chooses an arbitrary value s and runs algorithm Enc.
Thereby,A encrypts s with key di∗ for i∗ = 1, . . . , n−
1. (He knows the keys d1, . . . , dn−1 of all compro-
mised users.) Although he does not know key dn, he
can also encrypt an arbitrary value with key dn as he
can compute

Token(di∗ , dn)di∗ = (G
dn
di∗ )d

∗
i = Gdn (22)

given a Token(di∗ , dn) and a key di∗ to encrypt a cho-
sen value s under the uncompromised key dn as Gmdn .

Pre A runs algorithm Pre to proxy re-encrypt a ciphertext

C = Gdim with a token Token(di, dj) = G
dj
di as

Pre(C,T ) = e(Gdim, G
dj
di ) = e(Gdim, G

dj
di )

= e(G,G)
dim

dj
di = e(G,G)djm = gdjm.

(23)

Challenge. A chooses a key d and sends it to C. C picks a random
value r and encrypts it with key dn as Grdn . It sends Grdn

to A and asks him to proxy re-encrypt C = Grdn to key d



as Cd.

Phase 2. A performs further actions qm+1, . . . , qn of the types de-
scribed above.

Guess. A outputs its guess C′d and wins the security game if and
only if Cd = C′d.

The advantage of A in the security game is defined as

Pr[Cd = C′d] = ǫ.

We proof the security of DETPRE in the Appendix. The remain-
ing of this section presents the proxy re-encryption and rewriting
strategies to execute the relational operations count distinct, set dif-

ference, and equi-join.
Count Distinct The aggregate function count distinct

βγCountDistinct(Ai)(R)

on a relation R issued by Alice is executed on the encrypted virtual
relations κr_a(RA) and κr_ab(RAB). As these virtual relations are
encrypted with different keys, it is not possible to apply a count
distinct. So, we adjust the key of both virtual relations to key c. It
is

χc(κr_a(RA)) = RA(χc(κr_a(A1)), . . . , χc(κr_a(An)))

= RA(κc(A1), . . . , κc(An)) = κc(RA)
(24)

and χc(κr_ab(RAB)) = κc(RAB) respectively. The aggregate
function count distinct is then computed as

(βγCountDistinct(Ai)(R),Alice)

=κc(β)γCountDistinct(κc(Ai))(κc(RA) ∪ κc(RAB)).
(25)

It counts the number of different attribute values of attribute Ai for
all virtual relations accessible by user Alice.
Set Difference. Let relations R and S have the same set of at-
tributes. A set difference R\S of relation S in relation R issued
by Alice is executed on the encrypted virtual relations κr_a(RA),
κr_ab(RAB), κs_a(SA), and κs_ab(SAB). As these virtual rela-
tions are encrypted with different keys, it is not possible to apply a
set difference. Therefore, we adjust the keys of all virtual relations
to key c. It is

χc(κr_a(RA)) = RA(χc(κr_a(A1)), . . . , χc(κr_a(An)))

= RA(κc(A1), . . . , κc(An)) = κc(RA)
(26)

and κc(RAB), κc(SA), and κc(SAB) respectively. Then, we apply
the set difference on the proxy re-encrypted virtual relations. It is

R\S = {κc(t)|t ∈ (RA ∨RAB) ∧ t /∈ (SA ∨ SAB)}. (27)

Equi-Join. An equi-join issued by user Alice between two rela-
tions R = R(A1, . . . , An) and S = S(B1, . . . , Bm) on their re-
spective attributes Ai and Bj is executed on the encrypted virtual
relations κr_a(RA), κr_ab(RAB), κs_a(SA), and κs_ab(SAB).
However, the attributesAi and Bj are encrypted with different keys
within the relations (Ai is encrypted with key r_a in relation RA

and with key r_ab in relation RAB and Bj is encrypted with key
s_a in relation SA and with key s_ab in relation SAB). To apply
the condition Ai = Bj on the accessible subsets of R and S, we
have to proxy re-encrypt all virtual relations and encrypt the condi-
tion with a shared encryption key. It is

χc(κr_a(RA)) = κc(RA). (28)

and κc(RAB), κc(SA), and κc(SAB) respectively.
We encrypt the condition Ai = Bj as κc(Ai) = κc(Bj) and exe-
cute the equi-join as

(R ⊲⊳Ai=Bj S,Alice) ={κc(r)κc(s)|r ∈ (RA ∨RAB)

∧ s ∈ (SA ∨ SAB) ∧ κc(ri)θκc(sj)}.
(29)

The computational complexity to proxy re-encrypt a query for the
multi user mode depends on the computational complexity of our
introduced proxy re-encryption scheme and on the cardinality j of
the involved k virtual relations. The computational complexity of
DETPRE is the computation of one pairing operation for each of the
j×k attribute values. The computational effort increases compared
to the operations applied in the single user mode as the pairing op-
eration is more expensive [22, 25]. In addition, optimization strate-
gies can minimize the number of attribute values that have to be
re-encrypted in the single user mode [17]. These are not feasible in
the multi user mode.

4.3 Client-Server Split
Aggregate functions count, count distinct, group by, sum, av-

erage, maximum, minimum, and sort compute key figures over a
whole relation. The encrypted processing of aggregation results is
supported on the server in the single user mode [25]. In Subsection
4.1 and Subsection 4.2, we introduced the server-side execution of
count and count distinct in the multi user mode.
Now, we explain the execution of the rest of these aggregate func-
tions. Introducing virtual relations to specify access restrictions,
aggregate functions cannot be executed on the whole relation as
this relation is split into different virtual relations encrypted with
different keys. In order to evaluate an aggregate function, a user
has to process the aggregate function over all virtual relations she
is allowed to access. These virtual relations are encrypted with
different keys. Typically, the evaluation of aggregation results re-
quires that all invoked virtual relations are encrypted with a shared
encryption key.
One possible solution is a proxy re-encryption on the server to com-
pute the aggregation results. Such proxy re-encryption schemes
must be suitable for the encryption scheme required by the aggre-
gate function. Unfortunately, some can be hard to construct [25]
while others require notable computational effort and execution
time [13].
Another naive solution processes the aggregate functions on the
client. This generates significant data traffic and increases storage
capacity as all data has to be transferred to and stored on the client.
In addition, the client needs sufficient computational capacity to
evaluate the aggregate function.
This in mind, we opt for a client-server split where a significant
amount of computational effort is executed on encrypted data and
small encrypted partial result sets are issued to the client where
they are decrypted and further processed to receive the final result.
Therefore, we split the execution of these aggregate functions be-
tween server and client as follows:

• On the server: Computation of the encrypted results for each
virtual relation. These are the partial results.

• On the client: Decryption of the partial results and computa-
tion of a function FAgg which takes as input the unencrypted
partial results and computes the final result depending on the
underlying aggregate function.

To illustrate this approach, consider an aggregate function F (Ai)
which computes maximum, minimum, average, sum, or sort over



an attribute Ai. Let β = (A1, . . . , Ak) be an attribute list to
group the results. If β = ∅, then there is no group-by function
defined. An aggregate function βγF (Ai)(R) on a relation R issued
by Alice is executed on the encrypted virtual relations κr_a(RA)
and κr_ab(RAB). Therefore, the attribute list β is encrypted with
key r_a as κr_a(β) and with key r_ab as κr_ab(β). The function
F (Ai) is also encrypted with key r_a as F (κr_a(Ai)) and with
key r_ab as F (κr_ab(Ai)). We compute the partial result for vir-
tual relation RA on the server as

κr_a(Res(RA)) =κr_a(β) γF (κr_a(Ai))κr_a(RA) (30)

and the partial result for virtual relation RAB as

κr_ab(Res(RAB)) =κr_ab(β) γF (κr_ab(Ai))κr_ab(RAB). (31)

The partial results κr_a(Res(RA)) and κr_ab(Res(RAB)) are sent
to the client where they are decrypted. On the client, we compute
the function FAgg which takes as input the unencrypted partial re-
sults. It is

FAgg = Agg(Res(RA), Res(RAB)) (32)

the final result. Depending on the underlying aggregate function,
the definition of FAgg varies.
The rest of this subsection shows how to compute the partial and
final result sets.
Maximum/Minimum. We compute the partial results on the
server and decrypt them on the client. It is

Res(RA) = Max(RA) and Res(RAB) = Max(RAB). (33)

On the client, we compute the final result FAgg = FMax as

FMax = Max(Max(RA),Max(RAB)). (34)

This also holds for the computation of the minimum.
Sum. We compute the partial results on the server and decrypt them
on the client such that Res(RA) = Sum(RA) and Res(RAB) =
Sum(RAB). We compute FAgg = FSum as

FSum = Sum(RA) + Sum(RAB) (35)

on the client.
Average. During the query rewriting, the aggregate function av-

erage is replaced by the aggregate functions sum and count. This
provides the partial results

Res(RA) = {Sum(RA), Count(RA)}

Res(RAB) = {Sum(RAB), Count(RAB)}.
(36)

We compute FAgg = FAvg on the client as

FAvg =
Sum(RA) + Sum(RAB)

Count(RA) + Count(RAB)
. (37)

Sort. The server-side computation and client-side decryption re-
sults in the partial results Res(RA) = Sort(RA) and Res(RAB) =
Sort(RAB). Both are sorted lists. On the client, we compute
FAgg = FSort as

FSort = Merge_sorted_lists(Sort(RA), Sort(RAB)). (38)

Group By. The aggregate function group by provides as partial
results the grouped results for virtual relations RA and RAB . There
are

Res(RA) = {Agg(RA) grouped by RA.Ai}

Res(RAB) = {Agg(RAB) grouped by RAB .Ai}.
(39)

On the client, we process the partial results Res(RA) and Res(RAB)
as follows. If RA.Ai = RAB .Ai, we merge these groups of RA

and RAB and include it in the final result. If RA.Ai 6= RAB .Ai,
we overtake the partial result in the final result.
The client-server split does not increase the computational com-
plexity of a query as this technique only distributes the computa-
tions between client and server. However, the data traffic increases
the communication complexity.

4.4 Multi User Algorithm
We apply these introduced techniques and present a multi user

algorithm allowing a user to execute a query over a set of access
restricted relations.
It takes as input a user id and an unencrypted query and returns
the final result of the query as output. The user id is an identifier
unique for each user. A query is a combination of relational oper-
ations over one or more relations. The final result is the decrypted
result of the query.
Consider a relation R with attributes A1, . . . , An and a relation
S with attributes B1, . . . , Bm. The data owner splits the rela-
tion R in virtual relations R1, . . . , Rk and encrypts them with keys
v1, . . . , vk. She also splits the relationS in virtual relations S1, . . . , Sl

and encrypts them with keys w1, . . . , wl respectively.
The data owner handles n user. Each user is equipped with a
user id. The data owner defines the user group mapping where
each user id is related to its user groups. She also defines the
virtual relation mapping where each pair of user group and rela-
tion is assigned to a virtual relation. Here, we focus on a user
which is member of i + j different user groups. For relation R,
the user is member of user groups which are assigned to the vir-
tual relations κv1(R1), . . . , κvi(Ri) and for relation S, the user is
member of user groups which are assigned to the virtual relations
κw1(S1), . . . , κwj (Sj).
With respect to the specific query, the multi user algorithm requires
six steps:

1. Look Up: Determine the required virtual relations given query
and user id and check if the required attributes are encrypted
with the necessary encryption layer.

2. Proxy Re-Encryption: Initiate a proxy re-encryption if the
query contains count distinct, equi join, or set difference.

3. Query Encryption: Encrypt all elements of the rewritten query
like attributes, conditions, attribute lists.

4. Query Rewriting: Run the query rewriting algorithm pre-
sented in Algorithm 1 to adapt the query to multi user mode.

5. Server-side Execution: Process the rewritten query over en-
crypted data and return the encrypted results to the client.

6. Client-side Execution: Decrypt the returned results and do
further processing if required.

We now explain the details of these steps given an arbitrary query
and a user id.
Look Up. ENKI Query Adapter checks the user group mapping to
identify all user groups containing this user id. Given these user
groups and the relation(s) contained in the query, it determines all
virtual relations for each pair of user group and relation(s) in the
virtual relation mapping.
Proxy Re-Encryption. If the query contains equi-join, set differ-

ence, or count distinct, an UDF adjusts the keys of all involved
virtual relations to a temporary key c.
Query Encryption. ENKI Query Adapter encrypts all attributes. If
there exists a condition aθb with a, b attributes, then it encrypts the
attributes a and b of relations accessible by this user with the same
key c. If a is an attribute and b is a constant, it encrypts aθb with all



keys v1, . . . , vi. The attribute list β = Ai(1) , . . . , Ai(k)
of a pro-

jection or an aggregate function is encrypted with keys v1, . . . , vi
of the virtual relations R1, . . . , Ri accessible by this user. This step
also encrypts the aggregate function F (Ai) with keys v1, . . . , vi.
Query Rewriting. ENKI Query Adapter includes a query rewrit-
ing algorithm that modifies the original query to be executable over
the required virtual relations

κv1(R1), . . . , κvi(Ri) and κw1(S1), . . . , κwj (Sj).

We describe the details of this algorithm in Algorithm 1. It takes as
input the query Q which can contain one or more unary or binary
operations over relation R (and relation S). It returns a rewritten
query sQ to be executed on the server and in some cases also a
rewritten query cQ to be executed on the client.
Server-side Execution. The server executes the rewritten, encrypted
query sQ and returns the encrypted results to the client. If client-
side processing is necessary, the server also returns a query cQ
Client-side Execution. The client receives the encrypted results
and decrypts them. If the client does not receive a query cQ, the
query processing is finished. If the client receives a query cQ, it
executes the query over the decrypted partial results receiving the
final result.

Algorithm 1 Query Rewriting Algorithm
Require: κv1 (R1), . . . , κvi

Ri , (κw1 (S1), . . . , κwj
(Sj)): virtual relations

Q: query containing one or more relational operations ∆
1: for all avg ∈ Q do

2: rewrite βγAvg(Ai)
(R) as Qk =β γSum,Count(Ai)

(R)

3: generate cQ

4: end for

5: for all ρ ∈ Q do

6: rewrite ρ(R) as Qt = ρ(κvk
(Rk)) for all k, t = 1, . . . , i

7: end for

8: for all unary σ ∈ Q do

9: rewrite Qt = σ(R) as Qt = σ(κvk
(Rk)) for all k, t = 1, . . . , i

10: end for

11: for all π ∈ Q do

12: rewrite π(R) as Qt = π(Rk) for all k, t = 1, . . . , i
13: end for

14: for all max ∨ min ∨ sum ∈ Q do

15: rewrite γF (R.Ai)
∆R as

Qt = γF (Rk.Ai)
∆(κvk

(Rk)) for all k, t = 1, . . . , i

16: if ∃cQ then

17: modify cQ

18: else

19: generate cQ

20: end if

21: end for

22: for all ∪ ∨ \ ∨ ×∨ ⊲⊳∈ Q do

23: rewrite ∆(R, S) as Qt = ∆(Rk, Sl) for all k = 1, . . . , i, l = 1, . . . , j, and t =
1, . . . , i ∗ j

24: end for

25: for all sort ∨ group ∈ Q do

26: rewrite βγF (R.Ai)
∆(Qt) as βγF (Rk.Ai)

∆(Qt)

for all t = 1, . . . , i in case Q unary or t = 1, . . . , i ∗ j in case Q binary

27: if ∃cQ then

28: modify cQ

29: else

30: generate cQ

31: end if

32: end for

33: if Q unary then

34: rewrite ∆R as sQ =
⋃
t=1,...,i Qt

35: end if

36: if Q binary then

37: rewrite ∆(R, S) as sQ =
⋃
t=1,...,i∗j Qt

38: end if

39: for all count distinct ∨ count ∈ Q do

40: rewrite βγF (Rk.Ai)
(sQ) as sQ =β γF (Rk.Ai)

sQ

41: end for

42: return sQ, (cQ)

5. KEY MANAGEMENT AND DYNAMIC AC-

CESS CONTROL POLICIES
ENKI enforces access policies through selective encryption lead-

ing to different keys for each user. However, access policies (and
thereby keys) might change: a data owner grants access rights to
new users or revokes access rights from others. Adding or delet-

ing users of a user group can be formalized as changes in a user
hierarchy.

Definition 6. Given the set of users S = {s1, . . . , sn} a user
hierarchy U is a pair (P∗(S),≺) where P∗(S) is the powerset
without the empty set of S and ≺ is a partial order such that for all
sets of users pi, pj ∈ P

∗(S), pi ≺ pj if pj ⊆ pi for all i, j =
{1, . . . 2n−1}.

All user groups pi ∈ P
∗(S) with a non-empty object set such that

O(pi) = {o|o ∈ O ∧QSo = pi} 6= ∅ (40)

are called busy user groups. These are user groups granted access
to a set of objects specified by an access policy. These busy user
groups might also change when adding or deleting users.
Adding a new user sn+1 changes the original user hierarchy U by
adding sets of users. These are a set with only one element sn+1

and sets pi ∪ sn+1 for all i = {1, . . . 2n − 1}. The result is a new
user hierarchy.
Consider all busy user groups porigi in the original user hierarchy.

Then for each user group porigi , the new hierarchy contains a user

group pnew
i = porigi and a user group porigi ∪ sn+1. Consider two

cases: First, a busy user group porigi evolves to a non busy user

group pnew
i in the new user hierarchy and user group porigi ∪ sn+1

is busy in the new user hierarchy. Thereby, the new user sn+1 has
access to all objects accessible by user group porigi . It is

O(porigi ) = O(porigi ∪ sn+1). (41)

The data owner shares the key of user group porigi with user sn+1.

Second, a busy user group porigi of the original hierarchy is still
a busy user group pnew

i in the new user hierarchy and user group
porigi ∪ sn+1 is also busy. Thereby, the new user sn+1 has access

to a subset of objects accessible for user group porigi . The object

set O(porigi ) is split such that

O(porigi ) = O(pnew
i ) ∪O(porigi ∪ sn+1) (42)

with

O(pnew
i ) ∩O(porigi ∪ sn+1) = ∅. (43)

The data owner downloads the object set O(porigi ∪ sn+1) and re-
encrypts it with a new key.
We differentiate three scenarios where access rights are revoked
from a user. First, a user is revoked from all access rights. Second,
a user is revoked from a user group. Third, a user is revoked from
certain objects of a user group.
Consider the first scenario where all access rights of a user are re-
voked. The original user hierarchy changes as the set of users S is
reduced by one element sn. This is to reduce

P∗(S) = P∗(S\sn) ∪ (P(S\sn) ∪ sn) (44)

to P∗(S\sn) resulting in a new user hierarchy.
Consider all busy user groups porigi ∪ sn in the original user hier-
archy. These user groups are deleted from the new hierarchy. Their
object sets are then accessible by the user groups pnew

i = porigi and
merged with the respective object sets as

O(pnew
i ) = O(porigi ∪ sn) ∪ O(porigi ). (45)

The data owner downloads all object sets O(porigi ∪ sn) and re-

encrypts them with the respective keys of user groups porigi .
Consider the second scenario where the user is revoked from a user
group. This does not change the user hierarchy, but changes the
busy user groups. Consider the respective busy user group porigi ∪



sn in the original user hierarchy. It is non busy in the new hierarchy.
Its object set is then accessible by user group pnew

i = porigi and
merged with the respective object set as

O(pnew
i ) = O(porigi ∪ sn) ∪O(porigi ). (46)

The data owner downloads object set O(porigi ∪sn) and re-encrypts

it with the key of user group porigi .
Consider the third scenario where the user is revoked from access of
certain objects accessible by a user group. Consider the respective
busy user group porigi ∪sn in the original hierarchy. Revoking user

sn from accessing certain objects requires to split O(porigi ∪sn) as

O(porigi ∪ sn) = O(pnew
i ∪ sn) ∪O(pnew

i ) (47)

with

O(pnew
i ∪ sn) ∩O(pnew

i ) 6= ∅. (48)

Thereby, the user sn has access to the object set O(pnew
i ∪ sn) but

cannot access the object set O(pnew
i ). This results in two busy user

groups (pnew
i ∪ sn) and pnew

i . The data owner downloads object
set O(pnew

i ) and re-encrypts it with the key of user group porigi .
The data owner updates the user group and virtual relation mapping
according to the changes of user hierarchy and busy user groups
to keep track of the changing users, user groups, and virtual re-
lations. She also distributes the encryption keys to the respective
users while updating their key stores when they are logged in.
In most cases, changing keys implies that the data has to be down-
loaded and re-encrypted in a trusted environment. In particular,
each onion layer of the adjustable encryption has to be removed
and re-encrypted using a new key. This is time-consuming and in-
creases the data traffic. A proxy re-encryption on the server would
save this overhead but has to prevent the untrusted service provider
from learning the new encryption keys, computing arbitrary proxy
re-encryptions, or gaining information about the onion layers. Cur-
rently no solution exists, particularly for order-preserving encryp-
tion.

6. EXPERIMENTAL EVALUATION
We implemented ENKI as the extension of an existing single user

solution to support the multi user setting. We use a modified JDBC
driver for the single user mode which receives unencrypted SQL
queries, modifies their operator tree, performs the onion selection,
and encrypts the results [15]. As described in Figure 1, ENKI is
an additional modification of the JDBC driver to perform query
rewriting for the multi user mode and provides a client add-on to
execute the post-processing. Our experimental setup consists of a
server and a client. The server is a HANA database server with
252 GByte RAM and 8-core 2.6 GHz processor. It hosts an un-
modified SAP HANA database. The client has 16 GB RAM and
2-core 2.8GH processor. It hosts a modified JDBC proxy and an
ENKI Query Adapter as well as a SQL-lite database. The queries
are executed on the unmodified SAP HANA database [10] where
UDFs execute cryptographic operations. We implemented DETPRE

in C using pbc and gmp libraries providing the mathematical oper-
ations underlying pairing based encryption [20, 14]. We evaluate
functionality and performance of ENKI on the TPC-C benchmark
and three real world use cases described in Subsection 6.1. In Sub-
section 6.2, we analyze which types of queries and access policies
can be supported. In Subsection 6.3, we evaluate the performance
overhead consumed by the necessary modifications of ENKI.

6.1 Use Cases
IS-H. IS-H is the healthcare management solution of SAP for

patient management. In our observed query trace, we see 7 tables

!

"

#

$

%

&!

&"

&#

!
"
#$
%&
'
(
)"
*+
,
-
%.
+/

(
%+
-
%/

0%

.1232%

'()*+,-./,0

12+3(-./,0

Figure 4: TPC-C: Query Execution Time for Single and Multi User Mode

Table 1: Overview of the query types in the use cases

Query Type IS-H LSM TPC-C SFIN

Equal x x x x
Range x x x

Equal Join (binary) x x x x
Equal Join (tertiary) x

Range Join
Aggregate x x x x

with 477 columns in total. As all tables contain personal informa-
tion, we assume that all tables must be treated confidential. The
users accessing this application are typically associated to differ-
ent roles which are sets of organizational units. Patient information
is associated with the organizational units of her encounters. To
protect sensitive patient information, access policies prevent users
from accessing medical details of patients if they are not associated
to the set of organizational units of the patient.
LSM. LSM is an internal SAP solution which supports facility
management to plan resources. Peers on a certain SAP manage-
ment level include confidential planning information for their area.
The peers are only allowed to access the data they committed them-
selves but not the data of other peers. Facility management has ac-
cess to all data and calculates figures for future resource planning
which are sensitive. Focusing on our evaluation, we use the access
policy specified for the facility management such that a user parti-
cipates in n user groups given n users. The application contains of
25 tables and 173 columns.
TPC-C. TPC-C is an OLTP benchmark consisting of 9 tables and
92 columns. We assume that all tables and columns are sensitive
and define an access policy for a two user scenario where each user
has certain private data and other data is shared.
SFIN. Simplified Financials (SFIN) is part of SAP ERP application
relying on SAP HANA as a database backend. In our use case, this
application analyzes consumers’ data sets consisting of 9 tables and
741 columns. We assume that all tables and columns are sensitive
and define an access policy for a two user scenario where each user
has certain private data and other data is shared.

6.2 Functional Evaluation
We analyzed the applications described in Subsection 6.1 to eval-

uate which queries and access policies ENKI can support.
Queries. Table 1 shows the issued query types for each applica-
tion. ENKI supports all observed queries including equal and order



!

"!

#!

$!

%!

&!

'!

(!

)!

" &! **

!
"
#
$%
&'
#
(
$)
*)
+
,
&-
).

#
&)
+
&.

/&
012&

"+,-./0123

#+,-./01234

$+,-./01234

Figure 5: LSM: Query Rewriting for unary,
binary, and tertiary relation(s) given n =

5, . . . , 100 user groups

!

"!!

#!!

$!!

%!!

&!!!

&"!!

&#!!

&$!!

'! &!! &'! "!! "'! (!! ('! #!!

!
"
#
$
%
&
'(
)
*+
',

#
*'
)
*,

-
*

./0*

)*+,-./01.2

34-5*/01.2
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Figure 7: LSM: Post-Processing for Multi
User Mode given n = 50, . . . , 400 user groups

selections, equal joins, aggregations and combinations of these. In
addition, ENKI also supports update, insert, and delete statements.
Therefore, ENKI provides enhanced functionalities compared to
existing solutions [30, 25, 24].
ENKI cannot support the execution of range joins on the database
server if a range join includes columns of different virtual rela-
tions encrypted with different keys. To our knowledge, there is no
proxy re-encryption scheme for OPE encryption available. There-
fore, ENKI would execute range joins only on client-side. However,
we consider this as acceptable as we did not observe a range join in
any of our four applications.
Access Policies. ENKI supports the access policies specified for
the IS-H and LSM application as its tuple-wise access restrictions
on tables match well with the described requirements. This tuple-
wise access enables the implementation of most of the access poli-
cies specified by authorization views [26]. An exception are those
policies which only allow aggregated views on columns e.g. a user
is only allowed to see the average of all attribute values of a column
but not the unaggregated attribute values.

6.3 Performance Evaluation
We investigate two questions in order to evaluate the perfor-

mance of ENKI:

• What is the performance penalty of our algorithm for the
multi user mode compared to the single user mode?

• What is the performance impact of our proxy re-encryption
scheme?

In the experiments to answer the first question we assume that the
proxy re-encryption has already taken place.
Compared to the single user mode where an encrypted query is exe-
cuted on encrypted data, our algorithm rewrites, executes, and post
processes an encrypted query for the multi user mode. We ana-
lyze the time consumed by query rewriting, query execution, and
post processing to better understand the performance penalty of the
multi user mode.
Figure 5 shows the time consumption to rewrite unary, binary, and
tertiary relational operations given the LSM access policy such that
the number of involved virtual relations accessed by one user in-
creases linearly with the number of additional users n. Figure 5
illustrates that the effort is O(n) for unary operations, O(n2) for
binary operations, and O(n3) for tertiary operations.
Changing the access policy might increase the number of virtual re-
lations assigned to a user such that she participates in more than n
user groups. However, we did not observe such a worst case access
policy in one of our use cases. In addition, we studied the litera-
ture, but did not find any case referring to this requirement [19]. In

accordance with current literature, we even assume that the num-
ber of actual user groups is smaller than the number of users [19].
This implies that the evaluation of the LSM access policy with a
linearly increasing number of user groups per user represents an
upper boundary of the time consumption to rewrite unary, binary,
and tertiary relational operations.
We further analyze the execution time for a mix of relational opera-
tions given the LSM access policy where the number of user groups
linearly increases with the number of users. Figure 6 presents
the consumed execution time given an increasing number of user
groups n = 50, . . . , 400. In the multi user mode, each additional
user adds one more user group. Hence the query expands by an
additional subquery for each additional virtual relation. This effort
is reflected by the execution time ranging from 0.196 s for 50 user
groups to 1.5s for 400 user groups. The query execution time in
single user mode is nearly constant as the same query set is exe-
cuted on a growing amount of data.
Figure 7 shows the effort to post-process unary relational opera-
tions including aggregation functions over an increasing number of
user groups n = 50, . . . , 400. These numbers contain the com-
putational time for the client-server split as well as the necessary
merge of the result sets on the client. Although the client-server
split does not increase the computational complexity, we observe
an overhead for post-processing which is moderately growing given
an increasing number of user groups. On the client, the computa-
tions of maximum, minimum, and sum require n−1 operations and
the computation of average requires 2n − 1 operations. The time
to compute sort depends on the number of virtual relations n, but
also on the maximum cardinality of all invoked virtual relations. It
is O(m log n) to merge n sorted lists with a total of m attribute
values. The time to post-process the group by operation is also
O(m log n), a merge of m groups of n virtual relations. In addi-
tion, it isO(m−1) to aggregate the partial results if similar groups
exist.
Figure 4 shows the time consumption to rewrite, execute, and post
process a mix of 20 select queries seen in the TPC-C benchmark
and compares them to their execution time in the single user mode.
Table 1 shows the query types of TPC-C. For the single user mode
we execute the encrypted queries according to [25], i.e. without any
access policy. For the multi user mode we use the same access po-
licy as in the examples in this paper: there are two users and three
user groups. Each user has access to his private data and both user
have access to shared data. In order to execute a multi user mode
query, we need to rewrite, execute, and post-process. We measure
the time of these steps and compare their total to the execution time
of the single user mode. Figure 4 presents the results for the 20
TPC-C queries. The multi user mode incurs an average overhead



Table 2: Microbenchmark of Encryption, Token Computation, and
Proxy Re-Encryption of DETPRE and JOIN-ADJ [25] over 10.000
Iterations

DetPre JOIN-ADJ

Encrypt 1.585956 ms 1.6058 ms
Token 0.0331148 ms 0.0014051 ms
PRE 1.019126 ms 0.000347 ms

of 36.98% (median overhead of 33.797%) compared to the single
user mode. This is an absolute performance penalty of 0.6181 ms
on average.
Figure 4 illustrates that Query 18 (including sum operator) and
Query 20 (including range condition) both consume a significant
larger amount of execution time compared to all other unary and
binary relational operations in the single as well as in the multi
user mode. This is caused by our implementation of the respective
encryption schemes, but their performance could be further opti-
mized [25].
For the second performance question we conduct another experi-

ment.
We measure the execution time of our new encryption scheme DET-

PRE used to process count distinct, set difference, and join securely
over data encrypted with different keys in the multi user mode and
compare it to the encryption scheme Join-Adj used in the single
user mode [25].
We present a micro benchmark in Table 2 which contains the time
to compute the three algorithms of the scheme: encryption, token
computation, and proxy re-encryption. The time to encrypt data is
almost equal in both schemes with DETPRE consuming 1.5860 ms
and Join-Adj consuming 1.6058 ms. The computation of the token
consumes 0.03311 ms compared to Join-Adj with 0.0014 ms. The
proxy re-encryption consumes 1.0191 ms in DETPRE and 0.0003
ms in Join-Adj. This proxy re-encryption time multiplies with the
cardinalities of all columns which have to be proxy re-encrypted.
It is possible to perform some computations in advance i.e. during
the user logs in saving time during the execution. However, it is not
possible to substitute DETPRE with Join-Adj in the multi user case
as proxy re-encryption in multi user mode which privacy-preserves
data must be non-symmetric and non-transitive.
We see roughly a 40% increase on average per user group in multi-
user mode for query rewriting, query execution, and post process-
ing. We know from the literature that the total number of user
groups scales linearly with the total number of users. In our experi-
ments the absolute increase per user group was on average roughly
0.6 ms. If we assume that a user is not willing to wait longer than
say 1 sec, we can accommodate 1500 user groups per query. This
is sufficient for many practical examples as in our experiments.
The total execution time in multi user mode consists of 4% for
query rewriting, 82% for query execution, and 14% for post pro-
cessing. As the percentage of query execution is most significant,
we will focus on its optimization strategies in future work.
If a query requires proxy re-encryption, our experiments show an
absolute increase of roughly 1 ms per proxy re-encryption for one
item. This number needs to be multiplied by the number of non-
null rows, i.e. 100 sec for 100.000 items and 16.5 min for 1.000.000
items. We propose to perform the proxy re-encryption in advance
saving time during the query execution. While the user is logged
in, these DETPRE values can be easily cached, but will not neces-
sarily be persisted after the user logs out. Another option is to pre-

compute the DETPRE values based on an expected set of queries.
In conclusion, our system scales well to a realistic number of user
groups, but for large-sized databases proxy re-encryption should be
persisted.

7. RELATED WORK
Queries over encrypted data. Encryption schemes supporting

certain relational operations include key word search [28] or range
queries [2, 5, 23, 18]. Some works provide data confidentiality
using tuple-wise encryption and execute queries using indexes or-
ganized in buckets [16, 8]. Ciriani et al. satisfy privacy-constraints
by (partial) encryption and fragmentation of data and rely on the
application logic to process a query [6]. Popa et al. introduce ad-
justable query-based symmetric encryption to process queries on
server-side [25]. Tu et al. propose an extension of this system
to execute complex queries e.g. nested subqueries as seen in the
TPC-C Benchmark by partitioning the query execution between
server and client. We see no obstacle to combine this technique
with the client-server split introduced by ENKI. Query processing
with multiple keys without sharing data is presented in [25] and us-
ing searchable encryption in [30, 24, 3]. Ferretti et al. introduce a
proxy concept to handle multiple users in the CryptDB setting, but
do not present an experimental evaluation or a security analysis to
proof their claims [11].
Joins over encrypted data. Deterministic encryption schemes
that offer symmetric and transitive proxy re-encryption are pre-
sented in [22, 25]. Hacigumus et al. require extensive query rewrit-
ing to compute joins [16]. Agrawal et al. propose an interactive
approach [1]. Furukawa et al. provide a non-transitive and non-
symmetric approach to compute a join such that a probabilistic en-
cryption is degraded to be deterministic in the single user mode
[12]. The encryption scheme presented in [3] also handles join op-
erations, but no confidentiality guarantees are provided.
Access Control. A system for encryption enforced access control
for outsourced data is proposed in [9], but this solution does not
support query execution on encrypted data. Rizvi et al. introduce
authorization views that enable the specification of access policies
using SQL queries on the application level [26]. This restricts the
access of users but does not prevent a service provider or an in-
truder from learning the data stored on the database.
Key Management. The key management strategies introduced in
[4, 7] can be combined with our access control model. ENKI can
benefit from these strategies by a reduced number of keys a user
has to store.

8. CONCLUSION
This paper presented ENKI, a system for securely executing re-

lational operations on encrypted, access restricted data. ENKI in-
troduces an encryption based access control model to enforce ac-
cess restrictions on encrypted data using different encryption keys.
ENKI uses query rewriting and post-processing to process rela-
tional operations over data encrypted with different encryption keys.
It applies a newly introduced encryption scheme to execute the
relational operations count distinct, set difference, and join while
protecting data confidentiality. Our evaluation shows that its per-
formance depends on the specified access policies and on the type
of relational operation. It achieves modest overhead for the select
queries of the TPC-C benchmark and the LSM use case.
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APPENDIX

Definition 7. DETPRE is secure if for a probabilistic time adver-
sary A

Pr[A wins the Security Game of DETPRE]

is negligible in λ.

ASSUMPTION 1. The l-Bilinear Diffie-Hellman Inversion As-

sumption (l-BDHI) holds if for any probabilistic polynomial time

(PPT) adversary A the probability that A on input

Ga, Ga2

, Ga3

, . . . , Gal

outputs W such that W = g
1
a is negligible in a security parameter

λ [29].

THEOREM 1. If the L-BDHI assumption holds, then our proxy

re-encryption is secure.



PROOF. Assuming that an adversary can solve the described se-
curity game correctly, we construct a polynomial time algorithm
which can solve the underlying problem of the l-Bilinear Diffie-
Hellman Inversion assumption. This algorithm receives an instance
of the l-BDHI problem with

Ga, Ga2

, . . . , Gal

∈ G1

and has to compute e(G,G)
1
a = g

1
a ∈ G2.

Setup. Receive an instance of the l-BDHI problem as

p, e,G1,G2, G, g,Ga, Ga2

, . . . , Gal

Choose di ∈ Zp uniformly at random. Run algorithm Token to
compute Token(di, dj) with i, j = 1, . . . , n. Send system param-
eters p,G1,G2, e,G, g, encryption keys d1, . . . , dn−1, and tokens
Token(di∗ , di) with i∗ = 1, . . . , n− 1 and i = 1, . . . , n to A.
Phase 1. A performs the following actions:
Enc A runs algorithm Enc to encrypt arbitrary messages m with
keys d1, . . . , dn−1. To encrypt message m with encryption key dn,
which is not known to A, the adversary exploits its knowledge of
encryption keys d1, . . . , dn−1 and tokens Token(di∗ , dn) to com-
pute

G
dn
di∗

di∗ = Gdn . (49)

Using this result, A computes Gmdn .
Pre Adv runs algorithm Pre to proxy re-encrypt ciphertext C en-
crypted with key di∗ with i∗ = 1, . . . , n− 1 to be encrypted with
key di with i = 1, . . . , n.
Challenge. A chooses a key d /∈ {d1, . . . , dn} and sends it to C.
C picks a valid ciphertext as

C = Enc(m,k) = Gm̃a = Gr
(50)

and sends C = Gr to A. C asks him to guess the proxy re-
encryption of C to key d as

V = g
r
a
d. (51)

Phase 2. A performs further actions as described above.
Guess. A returns its guess for V as V ′ to C. C computes

W = V
1
rd (52)

to solve the instance of the l-BDHI problem as

W = V
1
rd = (g

r
a
d)

1
rd = g

1
a . (53)

The probability that this algorithm solves the l-BDHI problem is
the same as the advantage of the adversary in the security game. It
is Pr[V = V ′] = ǫ.
If the l-BDHI assumption holds, this advantage can only be negli-
gible. Therefore, the adversary can only achieve this attack with a
negligible advantage.


