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Introduction

Convolutional neural network (CNN) has recently outperformed other neural network 

architectures, machine learning, and image processing approaches in image classifica-

tion [6, 46, 50, 56, 58] due to its independence from hand-crafted visual features and 

excellent abstract and semantic abilities [58]. CNN makes strong and mostly correct 

assumptions about the nature of images, namely, locality of pixel dependencies and 

stationarity of statistics. Therefore, in comparison with standard feed-forward neural 
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networks, CNN has much fewer connections and parameters which makes it easier to 

train.

A CNN consists of convolutional layers followed by fully-connected layers (Fig. 1). A 

convolutional layer consists of a convolution filter, followed by a pooling filter and an 

activation function. A convolution filter has a number (n) of filters, with the same win-

dow size (f), sweeping over the image with a stride of sf. Pooling summarizes the outputs 

of neighboring groups of neurons in the same kernel map. A pooling layer has a window 

with the size of p that sweeps over the image with a stride of sp. A common pooling 

function is the maximum pooling function which outputs the maximum value in the 

kernel map [25] and is utilized in our model. The last fully-connected layer in CNN has 

as many neurons as the number of classes. Among the model’s hyperparameters are n, f, 

sf, p, sp and the number of neurons in fully-connected layers.

The convolution filter and the pooling filter would slip outside the input image into 

the void, when they attempt to center themselves at bordering pixels. There are two 

strategies to solve this issue: (a) stopping the filter before it slips outside the image and 

(b) padding the input image with zero pixels. The first approach comes at the cost of 

under-scanning the bordering pixels because the filter will not get a chance to center 

itself at the bordering pixels. The second approach is referred to as padding and is the 

one applied in our model.

Since neural networks receive inputs of the same size, all images need to be resized 

to a fixed size before inputting them to the CNN [14]. The larger the fixed size, the less 

shrinking required. Less shrinking means less deformation of features and patterns 

inside the image. This will mitigate the classification accuracy degradation due to defor-

mations. However, large images not only occupy more space in the memory but also 

result in a larger neural network. Thus, increasing both the space and time complexity. 

It is obvious now that choosing this fixed size for images is a matter of tradeoff between 

computational efficiency and accuracy.

Images larger than the fixed size (in one dimension or both) could be resized down 

to the desired fixed size using two approaches: cropping their border pixels or scaling 

them down using interpolation. Both approaches are lossy. While cropping poses the 

Fig. 1 A typical architecture for CNN
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risk of missing the features or patterns that appear in border areas, scaling poses the 

risk of deforming features or patterns across the image. Since deforming patterns is less 

risky than losing them, scaling is the reasonable choice to resize larger images down to 

the desired fixed size. Resizing smaller images up to the fixed size is the focus of this 

study. Zero-padding is proposed for this purpose and compared with the conventional 

approach of scaling images up (zooming in) using interpolation.

Related works

Despite their emergence in the late 1980s, CNNs were still dormant in visual tasks until 

the mid-2000s. The increase in computing power, large amounts of labeled data, and 

algorithmic innovations brought CNNs to the forefront of visual tasks. CNNs overcome 

the formidable tasks of feature extraction and transformation, as well as pattern analysis 

and classification, by exploiting multiple layers of nonlinear information processing [15].

Krizhevsky et al. [25] used a CNN to classify 1.2 million images into 1000 classes in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012. They won this chal-

lenge with record-breaking results and marked the most significant advance for image 

classification tasks. Ever since, CNNs have dominated the image classification compo-

nent of subsequent versions of the ILSVRC [17, 39, 41, 46, 58].

Zeiler and Fergus [58] used a multilayered deconvolutional network [59] to under-

stand the intermediate feature extraction layers of the network. They used this in a diag-

nostic role to derive ways to improve CNN architecture and performance. Their model 

outperformed Krizhevsky et  al. [25] on the ImageNet classification benchmark and 

won the ILSVRC 2013 [39]. Their model also achieved the best published results on the 

CALTECH-101 [7] and CALTECH-256 data sets [13].

A CNN architecture, called Inception, was introduced by Szegedy et  al. [46]. Goog-

LeNet model consisting of 22 layers, inspired by the Inception architecture, won both 

the ImageNet classification and detection challenges in 2014 [39]. Such a large network 

with a large number of parameters is not only computationally burdensome to train, but 

also susceptible to overfitting. To overcome these challenges, they reduced the number 

of connections in their network based on Hebbian principles to create a sparsely con-

nected convolutional architecture, rather than a fully connected one. More specifically, 

they used 1 × 1 convolutions as dimension-reduction blocks prior to 3 × 3 and 5 × 5 con-

volutions. This allowed them to increase the network size without exponentially increas-

ing the computational cost. Simonyan and Zisserman [41] also used a deep CNN with 

19 layers in the ILSVRC 2014 classification contest [39]. Instead of the Inception model, 

arguing that it is too complex, they used smaller-sized convolutional filters (3 × 3) across 

the CNN and kept the parameters constant.

The winner of the ILSVRC 2015 [39] was a CNN with 152 layers, developed by He 

et al. [17]. They applied a residual learning framework to overcome the difficulty of train-

ing their deep network. To make it easier to optimize and train, they allowed errors to be 

propagated directly to the preceding units. This was realized by forcing the layers of the 

network to learn residual functions with reference to their preceding layer inputs rather 

than learning unreferenced functions. They also found that optimized residual modules 

worked more optimally than their initial residual module configurations. Table  1 lists 

other recent attempts to improve different aspects of CNNs.
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Table 1 Some recent attempts to improve different aspects of CNNs

Network architecture Convolutional layers Network in network Lin et al. [30]

Inception and improved 
Inception models

Szegedy et al. [46, 47]

Doubly convolution Zhai et al. [60]

Pooling layers Lp pooling Sermanet et al. [40]

Stochastic pooling Zeiler and Fergus [57]

Fractional max pooling Graham [11]

Mixed pooling Yu et al. [55]

Gated pooling Lee et al. [28]

Tree pooling Lee et al. [28]

Spectral pooling Rippel et al. [38]

Spatial pyramid pooling Grauman and Darrell [12], 
He et al. [18], Lazebnik 
et al. [27], Yang et al. [54]

Multiscale orderless 
pooling

Gong et al. [9]

Transformation invariant 
pooling

Laptev et al. [26]

Nonlinear activation 
functions

Rectified linear unit (ReLU) Nair and Hinton [35]

Leaky rectified linear unit 
(LReLU)

Maas et al. [32]

Parametric rectified linear 
unit (PReLU)

He et al. [19]

Adaptive piecewise linear 
(APL) activation func-
tions

Agostinelli et al. [1]

Randomized rectified 
linear unit (RReLU)

National Data Science Bowl 
|Kaggle [36]

Exponential linear unit 
(ELU)

Clevert et al. [4]

S-shaped rectified linear 
unit (SReLU)

Jin et al. [23]

Maxout activations Goodfellow et al. [10]

Probout activations Springenberg and Ried-
miller [42]

Loss function Softmax loss Liu et al. [31]

Contrastive and triplet 
losses

Liu et al. [31]

Large margin loss Liu et al. [31]

L2-SVM loss Collobert and Bengio [5], 
Nagi et al. [34]

Regularization mecha-
nisms

Dropout Hinton et al. [21], Srivastava 
et al. [43]

Fast dropout Wang and Manning [51]

Adaptive dropout Ba and Frey [2]

Multinomial dropout and 
evolutional dropout

Li et al. [29]

Spatial dropout Tompson et al. [48]

Nested dropout Rippel et al. [37]

Max pooling dropout Wu and Gu [53]

DropConnect Wan et al. [49]
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Since the emergence of CNNs and their staggering success in image classification, 

many attempts have been made by researchers to improve their accuracy and time per-

formance. These improvements have targeted different aspects of CNNs, including net-

work architecture, activation functions, regularization mechanisms, and optimization 

techniques among others. However, one aspect that has not witnessed much attention 

is the strict requirement of CNNs in receiving images of the same size. In other words, 

resizing all images to a fixed size is a prerequisite for classifying them using CNN. While 

interpolation has been widely and traditionally used to scale all the images to the same 

size, alternative options for doing so has not been sufficiently explored. Therefore, this 

study is devoted to this aspect of CNNs.

Zero‑padding vs. scaling up using interpolation

As shown in Fig. 2, there are two approaches to resize smaller images up to the fixed 

size: zero-padding and scaling them up (zooming in) using interpolation. Zero-padding 

has two advantages in comparison with scaling. The first advantage is that while scal-

ing carries the risk of deforming the patterns in the image, padding does not. The sec-

ond advantage of zero-padding is that it speeds up the calculations, in comparison with 

Table 1 (continued)

Optimization techniques Enhanced initialization 
schemes

Xavier initialization Glorot and Bengio [8]

Theoretically derived 
adaptable initialization

He et al. [19]

Standard fixed initializa-
tion

Krizhevsky et al. [25]

Layer sequential unit vari-
ance initialization

Mishkin and Matas [33]

Skip connections Highway networks Srivastava et al. [44, 45]

Residual networks He et al. [17]

Improved residual net-
works

He et al. [20]

Densely connected con-
volutional networks

Huang et al. [22]

Fig. 2 A small image (a) resized to 200 × 200 pixels using zero-padding (b) and interpolation (c)
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scaling, resulting in better computational efficiency. The reason is that neighboring zero 

input units (pixels) will not activate their corresponding convolutional unit in the next 

layer. Therefore, the synaptic weights on outgoing links from input units do not need to 

be updated if they contain a zero value. This is similar to a dropout that only concerns 

border pixels in the input layer. This advantage will be lost if smaller images are enlarged 

by increasing their resolution (scaling) rather than zero-padding.

In the following we invalidate two plausible disadvantages of zero-padding in compari-

son with scaling:

• Since smaller images are enlarged by adding zero-value pixels around their borders, 

the CNN will not sufficiently learn to extract features from the border areas, as well 

as it learns to do so in central areas. In other words, the synaptic weights on links 

from the border pixels to the first convolutional layer will not have the opportunity 

to be sufficiently trained because the input value for border pixels is zero for many 

images. This assumption is not true as the weight sharing property of CNN uses the 

same synaptic weights over all convolution windows. Figure 3 depicts the convolu-

tion window that sweeps across the image and the fact that the synaptic weights (a, 

b, c, d, e, f, g, h, and i) are the same for all convolution windows. In other words, the 

CNN’s power in extracting features from the border areas of an image is equal to its 

power in extracting features from the central areas.

• The forged zero-value pixels around smaller images will adversely disturb the optimi-

zation of synaptic weights. This assumption is not true because zero-value pixels will 

not activate during forward and backward propagation. In other words, zero-value 

input units will not contribute to the forward pass and their corresponding synaptic 

weights will not be updated during the backpropagation. Following is the mathemati-

cal proof:

Proof In the backpropagation algorithm [3, 16, 52], the architecture of the network 

is fixed and its synaptic weights (W) are computed so as to minimize a cost function 

defined as:

where N is the number of training samples and ε(i) is a function of the network’s output 

( ̂y(i) ) and the desired output (y(i)) for the i-th training sample. We can iteratively find 

the synaptic weight vectors that minimize the perceptron cost function using the gradi-

ent descent scheme [3, 16, 52]. In each iteration, the weight vector (including the thresh-

old) of the j-th node in the r-th layer ( wr
j  ) is modified through Eq. 2:

The modification term in Eq. 2 ( �w
r
j  ) is computed through Eq. 3 according to the gradi-

ent descent scheme, where α is referred to as the training rate:

(1)J (w) =

N∑

i=1

ε(i)

(2)w
r
j (new) = w

r
j (old) + �w

r
j
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By substituting the cost function from Eq. 1 in Eq. 3 and applying the chain rule in dif-

ferentiation, we obtain:

where vrj (i) is the value at the jth node in the rth layer before the activation function is 

applied to it. By defining δrj (i) =
∂ε(i)
∂vrj (i)

 in the above equation, we obtain:

(3)�w
r
j = −α

∂J (w)

∂wr
j

(4)�w
r
j = −α

∂
∑N

i=1
ε(i)

∂wr
j

= −α

N∑

i=1

∂ε(i)

∂wr
j

= −α

N∑

i=1

∂ε(i)

∂vrj (i)

∂vrj (i)

∂wr
j

Fig. 3 Synaptic weights (a, b, c, d, e, f, g, h, and i) are the same for all convolution windows in CNN
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We can calculate 
∂vrj (i)

∂wr
j

 using Eq. 6 as follows:

where kr-1 is the number of nodes in the (r − 1)th layer and ŷr−1(i) is the output vector 

of the (r − 1)th layer for the ith training sample. By substituting Eq. 6 in Eq. 5 we obtain:

Considering that wr
j  in the above equation is the weight vector of the jth node in the rth 

layer, we can calculate wr
jk , the synaptic weight from the kth node at the (r − 1)th layer to 

the jth node at the rth layer, as:

We needed to prove that the synaptic weights from a node in the first layer to another 

node in the second layer will not be updated if the value of the node in the first layer is 

zero. This is equivalent to proving that �wr
jk is zero if ŷr−1

k (i) is zero. Equation 8 proves 

this, because if we replace ŷr−1

k (i) with zero in Eq. 8, it will result in zero for �wr
jk . This 

proof is independent from the choice of  the activation functions or the cost function, 

ε(i).  �

In the next section, two experiments are conducted with publicly available datasets to 

verify the faster training of zero-padding in comparison with scaling up smaller images 

using interpolation to the desired fixed size.

Experiments

CNN setup

AlexNet [25], an 8-layer deep architecture for CNN, is applied here. This architecture 

entails 5 convolutional layers followed by 3 fully-connected layers, as shown in Fig. 4. 

The following settings are considered for the convolutional layers: f1 = 11 × 11 × 3, s1 = 4, 

n1 = 96, f2 = 5 × 5 × 96, s2 = 1, n2 = 256, f3 = 3 × 3 × 256, s3 = 1, n3 = 384, f4 = 3 × 3 × 384, 

(5)�w
r
j = −α

N∑

i=1

δrj (i)
∂vrj (i)

∂wr
j

(6)
∂vrj (i)

∂wr
j

=













∂vrj (i)

∂wr
j1

.

.

.
∂vrj (i)

∂wr
jkr−1













=







ŷr−1

1
(i)
.
.
.

ŷr−1

kr−1
(i)






= ŷr−1(i)

(7)�w
r
j = −α

N∑

i=1

δrj (i)ŷ
r−1(i)

(8)�wr
jk = −α

N∑

i=1

δrj (i)ŷ
r−1

k (i)
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s4 = 1, n4 = 384, f5 = 3 × 3 × 384, s5 = 1, n5 = 256, where fm, sm, and nm denote the size, 

stride, and number of filters of the m-th layer respectively. The first two fully-connected 

layers have 4096 neurons each and the third fully-connected layer has as many neurons 

as the number of classes.

The last fully-connected layer is followed by an n-way softmax function which pro-

duces a probability distribution over the n class labels. The softmax function in the final 

layer, softmax(zi)  = exp(zi)/Ʃj exp(zj), transforms the values (xi) to normalized exponen-

tial probabilities whose summation is one (i.e. Ʃc pc = 1). This provision (Ʃc pc = 1) is a 

prerequisite for the application of cross-entropy loss function. The cross-entropy loss 

function is computed as: − Ʃc yc log(pc), where c represents a class (or neuron) in the final 

layer, yc stands for the desired output value (0 or 1) at that neuron, and pc for the pre-

dicted probability at that neuron. The Adam optimization algorithm [24] is used to train 

the network. It is an extension to the stochastic gradient descent (SGD) approach. As 

opposed to SGD’s single and fixed learning rates for all synaptic weight updates, Adam 

continually adjusts individual adaptive learning rates for each synaptic weight based on 

estimates of first and second moments of the gradients. We initialized the learning rate 

at 0.0001 and the exponential decay rate for the first and second moment estimates at 0.9 

and 0.999 respectively. These values are suggested by Kingma and Ba [24].

Pooling function is in charge of summarizing the outputs of neighboring groups of 

neurons in the same kernel map. A size of 3 × 3 and stride of 2 are considered for pool-

ing layers, proposed by Zeiler and Fergus [57] and Krizhevsky et al. [25]. Larger pool-

ing regions are too noisy during training and smaller regions cause over-fitting [57]. The 

stride being smaller than the size of the pooling region causes the pooling regions to 

overlap. Overlapping pooling can improve the generalization accuracy by reducing over-

fitting [25]. Pooling layers in our network follow the first, second, and fifth convolutional 

layers. Maximum pooling function, which is conventionally used in AlexNet [25], out-

puts the maximum value in the kernel map. It is also applied in our model.

Rectified Linear Unit (ReLU) [21, 35], defined as the positive part of its argument: 

ReLU(z) = max(0,z), is a piecewise linear function. It is commonly used as activation 

function at all layers, except the last one, where a softmax function is preferred to pro-

duce a probability distribution over the class labels.

Fig. 4 AlexNet architecture in our application
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Datasets

Two datasets from http://www.image -net.org are used here: Tiny Imagenet (Stanford 

CS231N) and Visual Domain Decathlon (PASCAL in Detail Workshop Challenge). 

Tiny Imagenet is similar to the classification in the full ImageNet challenge (ILSVRC) 

but with a smaller dataset. Tiny Imagenet contains 200 classes. Each class has 500 train-

ing images and 50 validation images. The test set contains 10,000 images. All images are 

64 × 64 colored ones. Visual Domain Decathlon contains 1000 classes. Each class has 

1250 training images and 50 validation images. The test set contains 50,000 images. All 

images are colored and image sizes range from 72 × 72 to 72 × 1125. The average num-

ber of pixels in an image is 7155 and the median is 6912.

Results and discussion

The experiments were implemented in TensorFlow package in Python and run on a 

2.60 GHz Intel Xeon CPU E5-2670M, 20 M cash size, and 350G RAM. All images are 

resized to 224 × 224 pixels. Without extra preprocessing, the image pixels are only 

divided by 255 so that they are in the range 0 to 1. In each experiment, 20% of images 

are held out for testing. A tenfold cross validation is performed using the remaining 80% 

of labeled images to find the optimal number of training epochs. The stop epoch is the 

smallest epoch whose tenfold cross-validation accuracy falls within one standard devia-

tion of the best. After finding the optimal stop epoch, the machine is trained using the 

entire 80% of the data and then tested using the 20% of the data which were primarily 

held out of the ten-fold cross-validation.

The classification accuracy was not impacted by the choice of the approach for resizing 

small images up to the fixed size. Zero-padding reduced the training time per epoch by 

3% on average for the first dataset and 11% for the second dataset. This is an experimen-

tal endorsement of the theoretical justification presented for this approach in the previ-

ous section.

A more detail investigation showed that the reduction in training time is proportional 

to: (a) the number of images which at least one of their dimensions is smaller than the 

fixed size and (b) the amount of zero-padding required to get the smaller images up 

to the fixed size. These two factors are mainly responsible for the larger training time 

reduction in the second dataset.

Conclusions and future directions

Since the emergence of CNNs and their staggering success in image classification, many 

attempts have been made by researchers to improve their accuracy and time perfor-

mance. These improvements have targeted different aspects of CNNs, including network 

architecture, activation functions, regularization mechanisms, and optimization tech-

niques among others. However, one aspect that has not witnessed much attention is the 

strict requirement of CNNs in receiving images of the same size. In other words, resizing 

all images to a fixed size is a prerequisite for classifying them using CNN. While inter-

polation has been widely and traditionally used to scale all the images to the same size, 

alternative options for doing so has not been sufficiently explored. With that in mind, 

this study proposed zero-padding around smaller images, as opposed to interpolation, 

to resize them up to the fixed size. Zero-padding has no effect on the classification 

http://www.image-net.org
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accuracy but considerably reduces the training time. The reason is that neighboring zero 

input units (pixels) will not activate their corresponding convolutional unit in the next 

layer. Therefore, the synaptic weights on outgoing links from input units do not need to 

be updated if they contain a zero value. While zero-padding and interpolation bypass 

the problem of multi-resolution image classification by resizing smaller images to a fixed 

size, our future work focuses on classifying multi-resolution images without resizing 

them. This will require some reforms in CNN itself.
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