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Summary, The homotopy method is a frequently used technique in overcom
ing the local convergence nature of multiple shooting. In this paper sufficient 
conditions are given that guarantee the homotopy process to be feasible. The 
results are applicable to a class of two-point boundary value problems. 
Final ly, the numerical solution of two practical problems arising in physiolo
gy is described. 

Subject Classifications: A M S ( M O S ) : 65L10; C R : 5.17. 

1. Introduction 

Mult ip le shooting is a well-known method for the numerical solution of 
nonlinear two-point boundary value problems. It has been thoroughly tested in 
numerous realistic applications (see e.g. Bulirsch [2], Stoer and Bulirsch [25], 
Diekhoffeta l . [8], and Kel ler [14]). Due to the nonlinearity of the problem, 
starting values sufficiently close to the true solution have to be available in order 
to start the process. A characteristic local convergence theorem is given in Weiss 
[28]. 

The present paper deals with a frequently used way in overcoming the local 
convergence nature of the iterative process, namely with the homotopy method 
(or continuation method). This technique takes advantage of the fact that most 
of the boundary value problems arising in applications depend on a physical 
parameter in a natural way. In general, this parameter t may appear in the 
system of n ordinary differential equations 

?=f{T,x9y); xefabl r e [0,1] (l . l .a) 

and in the two-point boundary conditions 

r(T,y(a\y(b)) = 0. (1.1.b) 

Here (1.1) is chosen so that for i = l (1.1) is equivalent to the original problem. 
Mostly, (1.1) reduces to a somehow "famil iar" problem for a certain value of the 
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parameter, say T = 0. Then a solution y(0){x) of (1.1) for i = 0 is available. Starting 
with T 0 = 0, a homotopy chain of subproblems is solved taking the computed 
solution for T = T¡__Í as an initial approximation for the i t h subproblem. If T n = 1 
is reached (within a tolerable number N of homotopy steps), the original 
problem is solved. 

The general idea of using the homotopy method in actual computations of 
nonlinear equations seems to date back to the work of Lahaye [16]. Some 
authors (e.g. Roberts and Shipman [22], Wacker [26]) present theoretical 
estimates of constant stepsizes J T = T ¿ — T F _ p which guarantee the homotopy 
process to be successful. However, these estimates require the knowledge of 
computationally unavailable quantities and are by far too pessimistic in those 
parts of the t-interval where the solution depends on T in an undramatic 
manner. 

Having an efficient stepsize controlling algorithm available it is sufficient to 
prove the pure existence of a partition 0 = T 0 < i j <... < T N — 1 so that the 
computed solution of the (i — l ) t h subproblem is contained in the domain of 
attraction for the next one. For nonlinear equations in R " this has been carried 
out by Ortega and Rheinboldt [20], A v i l a [1], Menzel and Schwetlick [19]. The 
present paper treats the homotopy method for the problem (1.1) in connection 
with multiple shooting and gives sufficient conditions for its feasibility in terms 
of the original boundary value problem. 

After some preliminaries in Sect. 2, the feasibility of the homotopy method is 
studied in Sect. 3. The results obtained there may be applied to a class of two-
point boundary value problems (Sect. 4). This class contains as a special case a 
boundary value problem, which is used in physiology to model salt and water 
transport in epithelia. It is closely related to an extensive model of the renal 
counterflow system. Both problems were solved numerically, as described in 
Sect. 5. In these computations the stepsize control due to Deuflhard [6] was used 
successfully. 

2. Preliminaries 

The multiple shooting algorithm for the numerical solution of a two-point 
boundary value problem (1.1) is described in [25, 14] and realized in the code in 
Bulirsch, Stoer, and Deuflhard [4]. Here the interval [a, 6] is suitably sub
divided 

a = x{<x2< ..• <xm__ ¡ <xm = b (m nodes). 

Let y(Tyx;xk,sk) (k = 1, . . . , m - 1) denote the solution of the initial value problem 

y ' = f ( T , X , y ), y (xk) = sk, x € [ x f c , x f c + l ] . (2.1) 
The n-vectors sk have to be determined so that the following n(m — 1) conditions 
are satisfied: 
continuity conditions (for m>2): 



Fk(^ sk,sk+1) = =y( t , xk+ ! ; xk, sk) - sk+ ! = 0, k = 1,..., m - 2; 
boundary conditions: 

i

m - i ( ^ s i ^ m - i ) : = ' - ( T , s 1 , y ( T , x m ; x m _ 1 , s m _ 1 ) ) - 0 . 

These conditions define a system of n ( m - l ) nonlinear equations 

Fl(x,sl,s2) 

f ( T ^ U , 2 < ^ J " 0 W l t h S = ( / 1 ( 1 2 ) 

If y 0 )(x) is a solution of (1.1) for x = 0 and 4 0 ) = =y ( 0 )(x J l), the n (m- l ) -vec to r s(0) 

satisfies F(0, .) = 0. Starting with this initial value, the homotopy F defines the 
following continuation process: Let the partition 

0 = T 0 < T ! < . . . < T N = 1 (2.3) 

suitably subdivide the interval [0,1]. Then for each subproblem F ( T , . , . ) = 0 M , 
Newton-iterates are computed (according to the use of Newton's method in [4, 
14], and [25]): 

sij+ i =si'J-lDsF{Ti,si'J)yl F(ThsiJ) 

j = 0,...,M-l i = l , . . . , i V - l . 

(2.4) 

The starting values for these iterations are given by 

s1>° = s<°\ s^^o = si,Mi ( 2 5 a ) 

("classical predictor") 

or 

(2.5.b) 
s » • o = s<°) - T , • [ D s F(0, s ( 0 ))] - 1 Dx F(0, s(0>) 

s ' > » - o = s « ' . " . - ( T i . + 1 - T i ) . [ D s F ( T i , s i ' A , ' ) ] - 1 ß t i ' ( t 1 - , s i ' M ' ) 

("Euler predictor"). 

(2.4) and (2.5) yield an sN' °, which is used as starting value for the final iteration 

¡¡NJ+ i =s"-J-[DsF(l,sN'Jy}-1 F(l,sN'j) 

, = 0 , 1 , 2 , . . . . ( 1 6 ) 

Obviously the following definition according to [20] and [1] is meaningful. 

Definition. If a partition (2.3) and N-l integers M1,...9MN_i exist so that the 
process (2.4), (2.5.a) ((2.5.b) respectively) is well-defined and so that (2.6) con
verges to a solution of F(1,.) = 0, then the homotopy method (2.3)-(2.6) is called 
feasible with the classical predictor (the Euler predictor respectively). 

Remark. The Euler predictor (2.5.b) represents an Euler step for the integration 
of Davidenko's differential equation (Davidenko [5]). A t a first glance, the 
simplest continuation procedure seems to be integrating this differential equa-



tion from T = 0 to T = 1. However, this approach would require the frequent 
evaluation of an explicitly not available right-hand side (cf. [6] and Feilmeier 
[11]). This argument and a comparison of the computing times in Feilmeier and 
Wacker [12] show that this method is very uneconomical. 

3. The Feasibility of the Homotopy Method 

In this section sufficient conditions for the feasibility of the homotopy method 
are given. The proof requires the following 

Lemma. Let a: [0,1] ->R" ( m ^ l ) be a continuous function with <T(0) = S ( O ) . Define 
the stripe 

S(Ö ,<T): = { ( T , 5 ) | T e [ 0 , l ] , 5 G i ? " ( w U , \\S-G(T)\\<0} 

with some norm ||. || in R n i m - l \ Assume that the homotopy F(i,s). 
F: S(<9, o) Rn<<m-^ satisfies the following conditions: 

F ( T , < X ( T ) ) = 0 for i e [ 0 , l ] . (3.1) 

The functional matrix DSF{z,s) exists on S(&,a) and is continuous there. 
DSF{T,(J(T)) is nonsingular for t e [0 ,1 ] . (3.2) 

Then the homotopy method (2.3)-(2.6) is feasible with the classical predictor. 
If additionally DTF(x,s) exists on S(<9, a) and is continuous there, then the 

homotopy method is feasible with the Euler predictor. 

The proof slightly extends that of Theorem 10.4.2 in [20] and is omitted here. 
It may be found in detail in [17]. • 

Let the functions / : [0,1 ] x [a, è ] x G -> Rn and r : [ 0 , l ] x G x G - > i ? " of the 
boundary value problem (1.1) be continuous. Here G may denote an open, 
convex and bounded subset of Rn and G its closure. Then 

g(x) = y(x) - / ( T , x, y (x)), 4 ^ 

w = r(T,y(a),y(b)) 

defines a homotopy H ( i , y) 

H: [ 0 , l ] x D - > C o [ a , f t ] x Ä w (3.4.b) 

with D: = {yeC{ [a,b~]\y(x)eG for every xe[a ,6]} . 

A s usual CY[a,b] is equipped with the norm \\y\\{- = max( | |y | | 0 , | | / | | 0 ) , where 
II. II0 is the maximum norm. 

Theorem. Suppose that in addition to the above assumptions the partial derivative 
Dyf{x,x,y) exists on [0,1] x \_a,b~] x G and is continuous there and that the same is 
valid for Du r ( i , w, v) and Dv r(r, u, v) on [0,1] x G x G. Assume that 



if y0eD is a solution of i f ( i 0 , .) = 0, then the linearized problem 

y'(x) - Dyf{z0, x, y0(x)) • y (x) = 0 

£>„ ' f ro, )>o(0), )><>(&)) * J>(*) + Dv r{T09y0(a), y0{b)) • y(b) - 0 

ftas on/y í/ie trivial solution y = 0; 

# ( T , . ) = 0 has no solution on the boundary of D for i e [ 0 , 1 ] , (3.6) 

Then, if y{0)eD is a solution of i f (0, .) = 0, there exists one and only one continuous 
function Y]\ [0,1] with j/(0) = / 0 ) and i f ( i ,*/(T)) = 0 for T E [ 0 , 1 ] . Additionally, 
the homotopy method (2.3)-(2.6) is feasible with the classical predictor and with 
s ( 0 )=(y o ,(xi),. . . ,y , o )(x B 1 . 1)) r . 

Sketch of the proof (for details see [17]). The implicit function theorem and 
(3.5) guarantee that a solution fj(z) with i f (T , Í J Í (T) ) = 0 for xe[0 ,a] ( 0 ^ a < l ) 
may be continued locally. The so-called continuation property (see Rheinboldt 
[21]) can be proved by the Arzelà-Ascoli theorem and (3.6). Then a standard 
technique along the lines of Theorem 2.4 in [21] demonstrates the first part of 
the statement. 

In order to prove the second part, the above lemma is applied. To this 
purpose the continuous function a\ [0,1] ->R n { m ~ X ) is defined by 

/ ax{x) \ / (r¡(T))(Xl) \ 

Evidently a(0) — s{0\ and a detailed investigation shows that J F ( T , S ) (see (2.2)) is 
defined on a stripe S(0,<r). (3.1) is obvious and (3.2) follows from the fact, that 
the solution of an initial value problem depends on its initial values in a smooth 
manner (e.g. Walter [27]). 

In order to demonstrate (3.3), let T = T0 and £ : =A + BGm_ i . . . Gi where 

Gk: = DSky(T0,xk+x;xk,sk) 
with sk: = ak(T0), fc = l , . . . , m - l ; 

^ ^ ^ r i T o ^ ^ T o ) , ^ ^ ) ) K ( T ) - ( ^ ( T ) ) ( f e ) ) ; 

B : = Dvr(T0,ax{z0l am{T0)). 

The chain rule yields 
E = A + B • D s i y(t0, b; a, a{(i0)) 

and this matrix is proved to be nonsingular in [28]. 
A s de t (£) = d e t ( D s F ( i 0 , ö r ( T 0 ) ) ) (see [25]), (3.3) is shown. • 

Corollary. Suppose that in addition to the hypotheses of the theorem Dzf(z,x,y) 
exists on [0,1] x [a,b] x G and is continuous there and that the same is valid for 
D t r ( i , w, v) on [0,1] x G x G. Then the conclusions of the theorem are right for the 
Euler predictor, too. 

Remark. For the sake of brevity the functions / , Dyf and DJ were assumed to 
be continuous in x. A more detailed investigation shows that in the above 
theorem and in the corollary piecewise continuity would be sufficient (see [17]). 



4. Application to a Class of Boundary Value Problems 

In order to illustrate the results of the preceding section, consider the following 
nonlinear boundary value problem, which is used in physiology to model salt 
and water transport in epithelia (see Sect. 5): 

-D-C"(x) + {v(x)-C{x))'=f(x\ 

v'{x) + 1 • J(x, C(x)) = 0, 0 < x < 1, (4.1 ) 

C'(0) = 0, C ( l ) = û, v(0) = 0. 

Here D and a are positive constants and the parameter r varies in [0,1]. The 
function f(x) is assumed to be continuous and nonnegative. J(x, C) is con
tinuous and continuously differentiable with respect to the second variable and 
J c (x , C)<0 . 

To apply the theorem, note that 

C 0 (x) = a + D 1 • \j\ (t) du v0(x) = 0, lj\ (x): = ]f(t)dt) 
x \ 0 ' 

is the only solution of (4.1) for T = 0. 
(3.5) is trivial for T o = 0 and is demonstrated in Kel logg [15] for T 0 > 0 . For 

the proof of (3.6), let C T(x), t T(x) be a solution of (4.1), where the subscript 
indicates the dependence on the parameter r. Then it may be shown analogously 
to [15] that 0 < C T ( x ) < K with a constant K , which is independent of T . A S a 
consequence, 

- T • ]j(t, 0) dt < vz(x) < - 1 • J J(u K)dt 
0 0 

and | i ? t ( x ) | < M 3 with a suitably defined constant M 3 . Finally, there exists a 
constant M 2 with \C'z(x)\<M2. To see this, integrate the first differential 
equation in (4.1) to obtain 

Q x ) = D - , . [ C t ( x ) . i ; t M - / 1 ( x ) ] . 
Defining 

G : = { y G / ? 3 | 0 < y i < K , | y 2 | < M 2 , L v 3 | < M 3 } 

(3.6) follows immediately. 

Conclusion. App ly ing the homotopy method to the boundary value problem 
(4.1), the feasibility with both the classical and the Euler predictor is guaranteed. 

5. Numerical Examples Arising in Physiology 

The following two-point boundary value problems were solved by the program 
B S H O M . This algorithm is based on the multiple shooting code in [4] and is 
equipped with an automatic control of the homotopy stepsizes due to [6]. In 



addition to the solution it computes a special norm of the matrix E (see Sect. 3). 
This norm (£) represents the sensitivity of the problem relative to the variation 
of si. The integration of the initial value problems (2.1) was performed by the 
routines D I F S Y 1 (Bulirsch and Stoer [3], stepsize control: Hussels [13]) and 
R K F 7 (Fehlberg [10]). A l l these programs were run on the computers of the 
Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften. 

Example 1. Water and Solute Transport in Epithelia 

Most epithelia absorb or secrete specific fluids, such as bile, gastric juice, sweat, 
and saliva. A t the ultrastructural level, they possess long, narrow channels open 
at one end and closed at the other. According to Diamond and Bossert [7] the 
water and solute transport in such a channel may be described by the following 
boundary value problem: 

- D • C"(x) + (v{x) • C(x))' = (2/r) • iV(x), 

v\x) + {2/r)-P-(C0-C(x)) = 09 (5.1) 

C'(0) = 0, C(L) = C 0 , v{0) = 0. 

The dependent variables C(x) and v(x) represent the concentration and the 
velocity of the fluid flow at height x in a cylindrical channel of length L and 
radius r. The concentration C 0 outside the channel, the water permeability P, 
and the diffusion coefficient D are positive constants. The rate of active solute 
transport N(x) is a nonnegative step function: 

N0 for 0 ^ x < L / 1 0 , 
0 for L / 1 0 ^ x ^ L . 

Substituting T • P for P with re[0,1] the water permeability is varied as a natural 
parameter. Considering the remark at the end of Sect. 3 (5.1) is contained in the 
class of boundary value problems that was investigated in Sect. 4. Therefore, the 
homotopy method is feasible. 

The computations were performed on a TR440 in single precision arith
metic. The physiological values for N0 and P cover the following ranges: 

l . 1 0 - l o g A r 0 ^ l . 1 0 - 5 , 1 . 1 0 - 6 ^ i ^ 2 . 1 0 - 4 . 

In [7] solutions are computed for P = 2 . 1 0 _ 5 with N 0 = l . 1 0 - 5 , C o = 0.3, D 
= l . 1 0 - 5 , L = 0.01, r = 5 . 1 0 - 6 . In the present paper P is raised to 2 . 1 0 - 4 . A s a 
result the sensitivity of the problem increases significantly as indicated in the 
table. 



Table 1. Computation of (5.1) by the 
homotopy method using the classical 
predictor 

N H S = number of homotopy steps 
^ T m a x / ^ T m i n = : r a t i 0 ° f t h e maximal to the 
minimal homotopy stepsize 

NHS ATmJAxmin n o r m ( £ ) 

2. i Q 5 5 11 8. ! 0 4 

5. j 0 - s 7 23 2. J Q6 

7 64 8 . 1 0 7 

2. J Q - 4 10 149 6 M 0 9 

Remark. Performing the shooting method in backward direction norm (£) may 
be reduced to 2 . 1 0 4 (for P = 2 . 1 0 - 4 ) , whereas the computing time remains nearly 
unchanged. 

Example 2. Kidney Model 

According zu Stephenson, Tewarson, and Mejia [24] and Stephenson, Mejia, 
and Tewarson [23] the solute and water movement in the kidney may be 
described by an extensive boundary value problem with the following differen
tial equations: 

dFJdx=-Jiv, ] , 6 

dFik/dx=-Jik, \ k = {2^ <5'2) 
Fik = Fiv-Cik~-Dik'dcik/dxJ 

where 

4 = hiv ' i(c6x-cn) + ( c 6 2 - c i 2 ) ] , 
Jik = hik ' (<",•* - c*k) + aiJ( 1 + bjcikl 

J3v = h3v ' KC0 I ~ C 3 1 ) + (C02 ~~ C32Ï]* 

J3k=h3k'(C3k-COk) + a3k/(i+bJc3k), 

k = J Ik + ^2 k + 4 it + ^5 fc * 

This problem seems to be too complicated for a rigorous application of the 
theory of Sect. 3. However, (5.1) may be regarded as a strongly reduced version 
of (5.2). So it appears reasonable to attack the kidney model with the same 
homotopy that was used in Example 1. Therefore, the three water permeability 
coefficients h l v , h3v, and h4v were chosen as natural homotopy parameters. 

The numerical solution was performed on a C D C Cyber 175 (double 
precision) using the parameter set given in Farahzad and Tewarson [9]. Taking 
advantage of some trivial parameters the number of differential equations may 
be reduced to 13 (see [17] and [18]). The problem was solved in 31 (classical) 
homotopy steps from permeabilities (0.,0.,0.) up to (10., 1., 10.). In the course of 
the computations, norm (£) increased from 3 . 1 0 7 to 4 . 1 0 , 2 indicating an extreme 
sensitivity of the problem. The homotopy stepsizes were spread by a factor of 



about 530. The prescribed relative accuracy was e p s = 1 0 - 5 for the intermediate 
subproblems and eps = 1 0 _ 1 2 for the final problem. A s the algorithm performed 
an additional Newton step, after it had reached this accuracy, the continuity and 
boundary conditions were satisfied with a precision of 1 0 . 3 i for the final results. 
A n important check is the conservation of mass which was computed to hold to 
a relative accuracy of 1 0 . 2 4 . Further details are to be found in [17] and [18]. 
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work. 
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