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Abstract. In this paper, we consider Newton's method for solving the 

system of necessary optimality conditions of optimization problems 

with equality and inequality constraints. The principal drawbacks of 

the method are the need for a good starting point, the inability to 

distinguish between local maxima and local minima, and, when 

inequality constraints are present, the necessity to solve a quadratic 

programming problem at each iteration. We show that all these draw- 

backs can be overcome to a great extent without sacrificing the super- 

linear convergence rate by making use of exact differentiable penalty 

functions introduced by Di Pillo and Grippo (Ref. 1). We also show 

that there is a close relationship between the class of penalty functions 

of Di Pillo and Grippo and the class of Fletcher (Ref. 2), and that the 

region of convergence of a variation of Newton's method can be 

enlarged by making use of one of Fletcher's penalty functions. 

Key Words. Constrained minimization, Newton's method, differenti- 

able exact penalty functions, supeflinear convergence. 

1. IntrOduction 

We consider 

problem 

(ECP) 

Newton's  method for the constrained optimization 

minimize f(x), 

subject to h (x) = O, 

where f :  R"  -~ R, h: R n ~ R'~. It consists of the iteration 

Xk+: = Xk + Axk,  Ak+: = Ak + AAk, (:) 
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where (Axk, AAk)e R"+m is obtained by solving the system of equations 

[VLL(x ,a ) Vh(x )][Axq = 
Vh(Xk)' 0 Jl_Aak_l -1_ h(xk) .t ' (2) 

with L: R "+m ~ R being the Lagrangian function 

L(x,  ~t ) =f(x)  + ,~'h (x). (3) 

If started sufficiently close to a local minimum-Lagrange multiplier pair 

(x*, ~*) satisfying the sufficiency conditions 

VxL(x*, A*) = O, h(x*)=O, 

Vh(x*) has rank m, 

t ~ 2  ~ z  z x~L(x ,A*)z>O, V z # O ,  Vh(x*) ' z  =0,  

the method is well defined and converges to (x*, A*) superlinearly. 

Recent work has been directed toward extensions to handle inequality 

constraints and modifications aimed at enlarging the region of convergence 

of the method. The paper by Mayne and Polak (Ref. 3) is characteristic 

in this respect, while the work of Powell (Refs. 4 and 5) has similar aims 

within the context of quasi-Newton versions of iteration (1)-(2). These 

papers are based on the use of an exact but nondifferentiable penalty 

function to enforce monotonic descent and combinations with first-order 

linearization methods of the type first introduced and analyzed by Pshenich- 

nyi (Refs. 6 and 7) [a method of this type was rediscovered in weaker 

form by Han (Ref. 8), and a related method was proposed by Mayne and 

Maratos (Ref. 9)]. Inequality constraints are dealt with by solving quadratic 

programming subproblems in place of linear systems of equations as in 

Wilson (Ref. 10) and Pshenichnyi (Ref. 6). 
The purpose of this paper is to show that the region of convergence 

of Newton's method can be enlarged by making use of differentiable exact 

penalty functions. One such function, due to Di Pillo and Grippo (Ref. 1), 

is given by 

P(x,  A;c ,  a)  = L ( x ,  ,~)+(c/2) lh(x)12+(a/2)[Vxt(x ,  )t)l 2, (4) 

where c > 0 and a > 0 are scalar parameters. It has been shown in Ref. 1 

that, if c is chosen sufficiently large, then (x*, A *) is a strict local minimum 
of P. We show that, near (x*, A*), the solution of the system (2) satisfies 

an equation of the form 

AXk] = --B(Xk, Ak ; C, a )VP(xk, Ak ; c, a ), 
AAk3 
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where B( . ,  • ; c, a)  is a continuous (n + m) × (n + m) matrix satisfying, for 

all c > 0 ,  a > 0 ,  

B(x*, ,~*; c, o~) = [V2P(x *, h*;  c, o~)] -1. 

As a result, iteration (1) may be viewed as a consistent approximation (see 

Ref. 11) of Newton's method for minimizing P(.,.;c, a) with respect to 

(x, A). Based on this fact, one can introduce in iteration (1) a stepsize 

procedure based on descent of the objective function P, and combine the 

iteration with the steepest-descent method (for example) to enforce conver- 

gence from poor starting points. 

Similar results are shown for exact penalty functions of the form 

P(x, A; c, M) = L(x, A)+ (c/2)]h(x)[~+ (1/2)]M(x)VxL(x, A)] 2, (5) 

where c > 0 and M(- )  is a continuous m × n matrix such that M(x*)Th(x*) 
is invertible (Ref. 1). 

The advantage that the penalty functions (4), (5) offer over, for 

example, the penalty function (cf. Tapia, Ref. 12) 

(1/2)fh(x)12+(1/Z)lV~L(x, h)[ 2 (6) 

is that, under mild conditions, a local maximum-Lagrange multiplier pair 

is also a local minimum of (6), but not of (5) (Ref. 1). We show that the 

same is true for the penalty function (4), provided cr is chosen sufficiently 

small. Thus, use of (4) and (5) provides a built-in preference toward 

constrained local minima versus local maxima, while this is not true for 

the penalty function (6). 

Extensions to inequality constraints are also given in this paper and 

are based on the use of exact penalty functions obtained from (4) and (5) 

by converting inequality constraints to equality constraints through the use 

of squared slack variables. The resulting Newton-like methods do not 

require solution of quadratic programming subproblems, but rather employ 

systems of linear equations similar to those arising in the equality con- 

strained case and involving only the active and nearly active constraints. 

The paper is structured as follows. In Section 2, we review some 

properties of the exact penalty functions (4) and (5). The material here is 

based primarily on the Work of Refs. 1 and 13. Two new observations are 

made. First, we show that a local maximum-Lagrange multiplier pair of 

(ECP) satisfying the second-order sufficiency conditions for optimality 

cannot be a local minimum of the penalty function (4) if a is sufficiently 

small. Second, we show that an exact penalty function introduced by 

Fletcher (Refs. 2, 14, 15) and further utilized and extended by Mukai and 

Polak (Ref. 16) and Glad and Polak (Ref. 17) can be obtained from the 

penalty function (5) for a special choice of the matrix M(x). As a result, 
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it follows that the methods of Fletcher (Ref. 15) and Mukai and Polak 

(Ref. 16) may be viewed as second-order methods for minimizing the 

penalty function (5) with respect to (x, h). This suggests that the Newton-like 

methods of this paper exhibit similar convergence behavior near a solution 

as those of Refs. 15 and 16. At the same time, they are somewhat simpler 

in terms of computational burden per iteration, since they do not require 

a matrix inversion for each function evaluation. 

In Section 3, we consider the Newton iteration (1)-(2) for equality 

constrained problems and show that, asymptotically, it approaches 

Newton's method for minimizing both penalty functions (4) and (5). Con- 

sistent approximations to Newton's method for minimizing the penalty 

functions have also been suggested and tested by Di Pillo, Grippo, 

and Lampariello (Ref. 13), following related ideas of Fletcher (Ref. 15). 

These methods asymptotically approach the Newton iteration (1)-(2), 

but this close connection was apparently not recognized by the authors 

of Ref. 13. 

In Section 3, we also consider problems with inequality constraints. 

The corresponding algorithms treat ineq~aality constraints by an implicit 

active set strategy, whereby constraints perceived by the algorithm to be 

active at the solution are treated as equalities, while the remaining con- 

straints are ignored and their Lagrange multipliers are set to zero. In this 

approach, there is no need to solve a quadratic program at each iteration. 

In this connection, it is worth noting that extension of methods based on 

Fletcher's ideas to inequality constrained problems has proved to be quite 

difficult. For example, Glad and Polak (Ref. 17) require a restrictive linear 

independence assumption on the gradients of the constraint functions in 

order to prove global convergence for their method. Furthermore, the 

method requires at each iteration the solution of a system of linear equations 

involving the gradients of all the constraints. 

In Section 4, we consider a variation of the Newton iteration (1)-(2) 

and show that it represents a consistent approximation to Newton's method 

for minimizing a member of the class of Fletcher's penalty functions. 

The results of limited computational experiments conducted by the 

author, and briefly described in Section 5, are in general agreement with 

those of Ref. 13 and suggest that Newton-like methods based on the penalty 

functions (4) and (5) are useful and at least competitive with methods based 

on nondifferentiable exact penalty functions. In this connection, it is worth 

noting that the pair (xk+l, hk+l) generated by the Newton iteration (1) need 

not decrease the value of nondifferentiable exact penalty functions, even 
if (xk, hk) is arbitrarily close to a solution as observed by Maratos (Ref. 

18). While this difficulty can be overcome by means of devices such as 

those employed by Mayne and Polak (Ref. 3) and Chamberlain et al. (Ref. 
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19), it may be viewed as a rather fundamental limitation of nondifferentiable 

exact penalty functions. 

We note that it is possible to enlarge similarly the region of convergence 

of quasi-Newton versions of iteration (1)-(2) (Refs. 14, 12, 20, 21) by 

making use of the penalty functions (4) and (5), but this subject is beyond 

the scope of the present paper. A detailed account is given in Refs. 22 and 

28. 

The notation employed in the paper is as follows. All vectors are finite 

dimensional and will be considered to be column vectors. A prime denotes 

transposition. The usual norm on the Euclidean space R"  is denoted by 

['l, i.e., 

Ixl=(x'x) 1/2, for all x s R  n, 

For a mapping h: R ~ ~ R % h = (hi . . . . .  h,O', we denote by Vh (x) the n x m 

matrix with columns the gradients Vhl(x)  . . . . .  Vh,~(x). Whenever there is 

danger of confusion, we explicitly indicate the argument of differentiation: 

for example V~L(x*,A*) denotes the gradient of L with respect to x 

evaluated at the pair (x*, A*). 

2. Differentiable Exact Penalty Functions 

Equality Constraints, Consider first the equality constrained problem 

(ECP) minimize f (x) ,  

subject to h(x)=O, 

where f :  R ~ - R, h: R ~ ~ R m, and m <- n. We assume throughout that f and 

h are three times continuously differentiabIe on R n. For c > 0, a > 0, and 

M ( .  ) being a twice continuously differentiable m × n matrix, the penalty 

functions (4) and (5) can be written as 

P(x, A; c, a) = L(x, .~)+(1/2)VL(x, A)'K(c, a)VL(x, A), (7) 

P(x, ;t ; c, M )  = L(x, h) + (1/2)VL(x, A)'K[c, M(x)]VL(x,  h), (8) 

where 

[o 0] K(c,  o~) = cI ' (9) 

K[c,M(x)]=[?d(X)'oM(X) 0 ]  (10) 
clJ ' 

I is the identity matrix of appropriate dimension, and 

[V~L(x, a) ]  = [V~L(x, A)]. (11) 
VL(x, h) 

I_V~L(x,A)J k h(x) 3 
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We refer to any pair (x*, a*) satisfying the first-order necessary optimality 
condition 

VL(x*, A*) = 0 

as a K-Tpair;  and we refer to any pair (x*, A*) for which the gradient of 

P is zero as a critical point of P. 
We denote by X* the open set of points x for which Vh(x) has rank 

/'g/~ 

X* = {xlVh(x) has rank m}. (12) 

Special attention will be given to K - T  pairs (x*, a*) satisfying the 

following second-order sufficiency assumption. 

Assumption S. The K - T  pair (x*, A*) satisfies 

z'V2xL(x *, A*)z >0,  Vz ~ O, Vh(x*)'z = O, 

and the matrix Vh(x*) has rank m. 

We have, from (7)-(10), 

VP(x, A ; c, a) = {I + V2L(x, A)K(c, a)}VL(x, A), 

VP(x, A ; c, M) = {I + (1/2)V2L(x, A)K[c, M(x)] 

+ (1/2)V[K[c, M(x)]VL(x, A)]}VL(x, A), 

(13) 

(14) 

where the Hessian V2L(x, A) is given by 

[V2xL(x,h) Vh(x)] (15) 
V2L(x, A) = I. Vh(x)' 

By differentiating these relations at a K - T  pair (x*, A*)[VL(x*, A*)= 0], 

we obtain 

V2p(x *, A*; c, a) = V2L(x *, A*)+ V2L(x *, A*)K(c, a)V2L(x *, A*), (16) 

V2p(x *, h*; c, M ) =  V2L(x *, A*) + V2L(x *, h *)K[c, M(x*)]V2L(x *, A*). 

(17) 

The following proposition gives the properties of the penalty function 

(7) that are of interest for our purposes. 

Proposition 2.1. (a) Let X be a compact subset of the set X* of 
(12), and A a compact subset of R m. There exists a scalar d > 0  and, for 

each a e (0, d], a scalar g ( a ) > 0  such that, for all c, a with 

e (0, o~3, c -> e ( ~ ) ,  
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every critical point of P ( . , . ,  c, o:) belonging to X x A is a K-T pair of 

(ECP). If 2 V~,L(x, 1) is positive semidefinite for all (x, A ) s X  x A, then 

can be chosen to be any positive scalar. 

(b) If (x*, h*) is a K-T pair of (ECP) satisfying Assumption S, then 

for every o~ > 0  there exists a 6 ( a ) > 0  such that, for all c->g(a),  (x*, A*) 

is a strict local minimum of P ( . ,  .; c, a).  Furthermore, V2P(x*, A *; c, c~) is 

positive definite. 

(c) Let (x*, A*) be a K-T pair of (ECP) for which there exists z ~ R  ~ 

such that 

Vh(x*)'z=O and z'V~xL(x*,A*)z<O. 

Then, there exists 6 > 0  such that, for all a ~(0, 6) and c >0 ,  (x*, h*) is 

not an unconstrained local minimum of P ( . , .  ; c, a). 

Proof. (a) At  any critical point of P in X x A ,  we have V P = 0  

which, using (13) and (15), can be written as 

o~Vh =0.  (18) 

Let 6 > 0  be such that, for all a ~ (0, 6], the matrix (I +~V~xL) is positive 
2 

definite on X x A. If V~xL is positive semidefinite on X x A, then 6 can be 

taken to be any positive scalar. From the first equation of the system (18), 
we obtain 

VxL = -c(I  + aV~L)-lVhh. (19) 

Substitution in the second equation yields 

[c~cVh'(I + aV~L)-IVh -I]h = 0. (20) 

For any a ~ (0, 6), we can choose g ( a ) > 0  such that, for all c->6(a),  the 

matrix on the left above is positive definite on X x A. For such c and o~, 
we obtain from (20) 

and from (19) 

h = 0 ,  

V~L=O. 

Hence, for such c and o~, all critical points of P ( . ,  - ; c, c~) in X x A are K-T 
pairs of (ECP). 

(b) See Ref. 1, Theorem 1. 
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(c) A straightforward calculation using (9), (15), and (16) yields 

[VaxL(x*,a*)+cVh(x*)Vh(x*) ' Vh (oX*) ] 
V2p(x *, 2~*; c, a)  = t Vh(x*)' 

rVLL(x*, a*)q ~v 2 L'x* 
+ a [  Vh(x*)' JL ~ x  t ,a*),Vh(x*)].  

For any z ~ R ~ such that 

~V2 = -  * Vh(x*)'z=O and z ~L(x ,A*)z<O,  

we have 

O ] V 2 p ( x  * , A * ; c , a ) [ ~ ]  , 2 , = z V ~ L ( x  , a*)z + ~[VLL(x*, a*)zlL [z', 
kUJ 

Let 

r 2 , 
e~ = - z  V x ~ L ( x  , a * ) z / I V L L ( x  *, a *)z 12. 

Then, for all oz ~ (0, c~), we have 

[z', O]V2P(x *, A * ; c, oe ) [ ;] < O. 

Hence, for such a, (x*, A*) cannot be a local minimum of P ( . , .  ; c, a). [] 

Note that the proof of Proposition 2.1(a) suggests that ~ should be 

taken small enough so that (I +aV2xL) is positive definite on X × A and 

that, for small oe, one should choose c so that [acI -  (Vh'Vh) -1] is positive 

definite on X × A [cf. (19), (20)]. This suggests that a reduction in a aimed 

at avoiding a situation where a local maximum of (ECP) is also a local 

minimum of P should be accompanied by an increase in c, so as to keep 

the product ac  roughly constant. A more precise substantiation of this rule 

of thumb will be given in the next section. 

Analogous results for the penalty function (8) are given in the following 

proposition (see Refs. 1, 13, 22 for the proof). 

Proposition 2.2. Let X be a compact subset of X* and A a compact 

subset of R m, and assume that M(x)Vh(x) is a nonsingular m × rn matrix 

for all x s X. 

(a) There exists a ~ > 0 such that, for all c---~, if (x*, A*)s X x A is 

a local minimum of P( . , . ;c ,  M), then x* is a local minimum of (ECP), 

and if (x*, A * ) s X × A  is a critical point of P ( . ,  .; c,M), then (x*, A*) is a 

K-T  pair of (ECP). 



JOTA: VOL. 36, NO. 2, FEBRUARY 1982 229 

(b) If x* is the unique global minimum of f over 

X n {x l h (x )  = 0}, 

x* lies in the interior of X, h * lies in the interior of A, and 

VL(x* ,  A *) = O, 

there exists a g > 0  such that, for all c->g, (x*, A*) is the unique global 

minimum of P ( . , .  ; c, M)  over X x A. 

(c) Let (x*, A*) be a K - T  pair of (ECP) satisfying Assumption S. 

Then, there exists a g > 0  such that, for all c->g, (x*, A*) is a strict local 

minimum of P ( . ,  .; c, M) and V2P(x*,  ~*; c, M) is positive definite. 

The results of Propositions 2.1 and 2.2 might lead one to hypothesize 

that, if X* --- R ~, then all the critical points of P are K - T  pairs of (ECP). 

This is not true, however. Even under quite favorable circumstances, both 

P ( . , -  ; c, ~) and P ( . ,  • ; c, M)  can have, for an infinite set of values of c 

and a, critical points that are unrelated to K - T  pairs of (ECP). According 

to Propositions 2.1 and 2.2, these spurious critical points move toward 

infinity as c -~ m. We illustrate this situation by an example. 

Example 2.1. Let n = m = 1 and 

f ( x )  = (1/6)x 3, h(x)  = x. 

Here, X* = R ;  and, for 

M(x) 

we have 

P(x,  A; c, a)  = P(x,  A; c, M) = (1/6)x3 + Ax + (c/2)x2 + (o~/2)[x2/2 + A ]2. 

Here, {x*=0,  A* =0} is the unique K - T  pair. Critical points of P are 

obtained by solving the equations 

~TxP = x2/2+A + cx + e~x (xZ / 2 + A ) = O, 

7 ~ P =  x + a ( x 2 / 2  + A )=O.  

From the second equation, we obtain 

A = - x / a  - x 2 / 2 ;  

and substitution in the first equation yields, after a straightforward calcu- 

lation, 

x (x  - c  + 1/~)  = 0. 
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By solving these equations, we obtain that the critical points of P are 

{x* = 0, a * = 0} 

and 

{x(c, oe) = c - l / a ,  a(c,  ol) = (1 - c2o~2)/2a2}. 

It  can be seen that, for all c > 0 and ~ > 0 with ca ¢ 1, the critical point 

Ix(c, oe), a (c, a ) ]  is not a K - T  pair of (ECP). On the other  hand, for every 

o~ > 0, we have 

l i m x ( c , a ) = o o  and l im),(c ,  c 0 = - c o ,  

which is consistent with the conclusions of Propositions 2.1 and 2.2. 

The  next example  shows that, if V2xL is not positive semidefinite on 

X x A ,  then the upper  bound ~ in Propositions 2.1(a) and 2.1(c) cannot  

be chosen arbitrarily. 

Example  2.2. Let  n = 2, rn = 1 and 

f (x l ,  x2) = - ( 1 / 2 ) x  2, h(xl ,  x2) = x2. 

Here ,  

{x* =0, x* =0, a*=0} 

is the unique K - T  pair (a global maximum),  and X * = R  2. Take a = 1. 

We have, for every c > 0, 

P(x, A; c, 1 )=  - ( 1 / 2 ) x  2 +ax i+(c /2 )x~  + (1/2)x 2 + (1/2)a2 

= ax2 + (c/2)x 2 + (1/2)a  2. 

Since P is independent  of Xl, any vector  of the form 

{xl = y, x2 = 0, a = 0}, 

with y c R, is a critical point of P ;  and, of these, only the vector 

{x~* =0, x* =0, a* =0} 

is a K - T  pair of (ECP). Also, for all c -> 1, every critical point of P is a 

local minimum including the local max imum 

{Xl* =0, x¢ =0, a* = 0} 

of (ECP). 
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More general penalty functions than (7) and (8) are given by 

P~(x, a ; c, ce) = L(x,  A) + (1/2)V L(x,  A)'K,(A, c, a )V  L(x,  A), (21) 

P,(x,  A ; c, M )  = L(x ,  A) + (1 /2)VL(x ,  A)'K,(A, c, M ( x ) ) V L ( x ,  A), (22) 

where r - 0 is a scalar and 

K,(A, c, ~) = (c + r[A 12)I ' (23) 

K,(A,c,M)=[M(X)'o~(x) 0 
(c + ~[a 12)I]" (24) 

When r = 0, the functions (21) and (22) reduce to the penalty functions 

(7) and (8). For r > 0, the functions (21) and (22) contain the extra term 

(r/2)la t=lh (x)l 2, (25) 

This term guarantees that P~ is bounded below with respect to (x, A) if [(x)  

is bounded below with respect to x. It appears that this extra term results 

in better numerical stability when minimizing computationally P~ with 

respect to (x, A) by using standard descent methods, as suggested by Di 

Pillo, Grippo, and Lampariello (Ref. 13), who considered the very similar 

extra term (r/2)[A'h(x)] 2 in place of (25). This was also confirmed by the 

author's numerical experiments. It is straightforward to show that the 

results of Proposition 2.1 also hold for the penalty function P,(x,  A ; c, ~)  

for all z > 0. The results of Proposition 2.2 also hold for P,(x,  A ; c, M )  as 

shown in Ref. 13 for the slightly different penalty function mentioned 

earlier. 

Relation with Fletcher's Penalty Function. 

M (x) = [Vh (x)'Vh (x)]- lVh (x)' 

in the penalty function (8). Then, 

M ( x ) V h ( x )  = I, 

and we have 

P(x,  A ; c, M )  = f ( x )  + A 'h (x) + (c/2)]h (x)} z + (1/2)lM(x)Vf(x ) + A 12. 

For x ~ X*, let us select 

(26) 

(27) 
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Define 

P(x; c) = min{P(x, A ; c, M) IA ~ R m}. 

The minimum is attained at ~(x) satisfying 

0 = VxP[x, h(x); c, M]  = h(x)  + M ( x ) V f ( x )  + ~(x), 

or equivalently 

h(x) = - h ( x )  - [ V h ( x ) ' V h ( x ) ] - l V h ( x ) ' V f ( x ) .  

Substitution in (27), (28) yields 

/6(x; c) = / ( x ) -  ~Tf(x)'Vh (x ) [Vh(x ) 'Vh(x ) ] - lh (x )  + [(c - 1)/2]lh(x)I 2. 

It follows that 

where 

P(x; c + l ) = f ( x  ) + A (x )'h (x ) + (c/2 )[h (x)t 2, 

(28) 

A (x) = -[Vh (x)'Vh (x)]-lVh (x) 'Vf(x) .  

(29) 

(30) 

The penalty function (29), (30) was first introduced by Fletcher (Ref. 2). 

It is clear from the preceding analysis that any unconstrained method 

for the minimization of P ( x ; c  + 1) with respect to x is equivalent to a 

method for the minimization of the penalty function P(x, h ; c + 1, M )  of 

(27) with M ( x )  given by (26). This suggests that the second-order methods 

of Refs. 13, 15, 16, 17, as well as those of this paper, should exhibit quite 

similar convergence characteristics. 

Extension to Inequality Constraints. An extension of the penalty 

function (8) to inequality constraints has been given in Ref. 23 by using 

the device of converting inequalities to equalities via squared slack vari- 

ables. We provide a similar generalization for the penalty function (21). 

For simplicity, we will consider problems with inequality constraints exclus- 

ively. Obvious adjustments are needed to provide extensions to the case 

where additional equality constraints are present. 

Consider the problem 

(ICP) minimize f (x) ,  

subject to g(x)<-O, 

where f:  R "  ~ R ,  g : R n -~ R m, g = (gl, • • . ,  gr)' are three times continuously 

differentiable functions. An equivalent equality constrained problem is 
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given by 

minimize 
f(x) ,  (31) 

subject to gi(x)+z~ =0,  j =  1 . . . . .  r, 

involving the additional vector 

z = (zl,. • •, zr)'. 

Consider the penalty function (7) for this problem: 

P(x, z, Ix; c, a ) = f ( x ) +  ~ {ixi[gj(x)+ zZ]+(c/2)[gi(x)+ z~] 2} 
j = l  

+(o~/2)lV.L(x, ix)12+Zce ~ 2 2 (32) Z j i x ] ,  
i=1 

where 

L(x, Ix )=f(x)+tx 'g(x)  = f ( x ) +  i IXNj(x). 
i= l  

Minimization of P with respect to (x, z, Ix) can be carried out by minimizing 

first with respect to z and by subsequently minimizing the resulting function 

with respect to (x, ix). A straightforward calculation shows that 

P+(x, lx ; c, c~) &min P(x, z, tx ; c, a) 
2: 

=f(x)+(o~/2)lV,L(x, Ix)12+(1/2c) ~ Qj(x, Ix; c, c,), 
i= l  

(33) 

where 

Oj(x, Ix; c, a) = [max{0, Ixj + 2~/x~ + cgi(x)}] 2 

2 2 2 
- (ixi + 2 oqx i ) - 4acix j g~ (x). 

The minimum in (33) is attained at 

z~ (x, Ix; c, a) = max{0, -(ixs + 2aix~)/c - gs(x)}, j = 1 . . . . .  r. 

(34) 

Thus, minimization of P can be carried out by minimizing instead the 
function P+ of (33) which does not involve the additional variables zj. 

Properties of interest of the penalty function P+ can be obtained by 

applying Proposition 2.1 to problem (31) and the penalty function (32). In 

particular, let (x*, IX*) be a K - T  pair of (ICP) satisfying the sufficiency 
assumption below. 
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Assumption S ÷. There holds 

~7L(x*, tz*) = 0, tz*->0, tz*gi(x*)--- 0, V j = I  . . . .  ,r, 

tz* >0 ,  V f s A ( x * ) = { i [ g i ( x * )  =0}, 

p 2 
z VxxL(x , tz*)z > O, Vz  ~ O, with Vgi(x*)'z  = O, j ~ A(x*) .  

It is easy to show using Proposition 2.1 that, given any a > 0, there 

exists 6 ( a ) >  0 such that (x*, tz*) is a strict local minimum of P÷( . ,  .; c, a)  

for all c ->6(a), and ~72p+(x*, tz*; c, a)  is positive definite. Furthermore, 

if (x*, Ix*) is a local maximum-Lagrange multiplier pair satisfying second- 

order sufficiency conditions analogous to Assumption S*, then there exists 

6 > 0  such that, for all o~s(0, ff) and c > 0 ,  (x*,Iz*) cannot be a local 

minimum of P÷( . ,  • ; c, a).  This establishes the validity of a solution method 

based on unconstrained minimization of P÷. 

A similar procedure may be used to obtain an inequality constrained 

version of the penalty function P~ of (21) for z > 0. It has the form 

P+ (x, tx ; c, a)  = f i x )  + (c42)lGL(x, tz )l 

+[1/2(c+~-ttzl2)] Z 0i(x, tz;c,a,~'), (35) 
i=1 

where 

Or(x, tz ; c, a, r) = [max{0, tz, + 2atz~ + (c + ritz 12)gi(x)}]2 

- (m + 2atz ~) 2- 4a (c + ~'ltz ]2)tz ~gj(x), f = l , . . . , r .  

It is also possible to obtain in a similar manner an inequality constrained 

version of the penalty function P~(., • ; c, M )  of (22). As shown by Di Pillo 

and Grippo (Ref. 23), a special choice of M used in conjunction with 

problem (31) yields the penalty function 

P7 (x, be ; c, rl) = f ( x )  + tz 'g(x)  + [(c + ritz 12)/2][g(x)l 2 

+ (n/2)lVg(x) 'VxL(x,  tz)]2 

_ ~ [min{0, (c + ritz ]2)g,(x) + tzi + 4rltziVgi(x)'~7*L(x, tz)}]2 

,=1 2(c + ritz [ 2 + 16ntz~) ' 
(36) 

where 

c > 0 ,  ~-~0, r l > 0  

are scalar parameters. 
Penalty functions for problems like (ICP), but with the additional 

constraint x -> 0, are given in Bertsekas (Ref. 22). 
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3. Newton's Method for Solving the Necessary Optimality Conditions as 

a Method for Minimizing the Exact Penalty Functions 

Consider first the equality constrained problem (ECP). Denote, for 

every k, 

Zk 
Ak ' 

and write P(zk;c, cO[P(zk;c,M)] in place of P(Xk, Ak;C,a)[P(xk, 
hk ; C, M)]. Newton's method for solving the system of necessary conditions 

consists of the iteration 

where 

VL(xk, Ak) = 0 

Zk+l = Zk + dk, (37) 

dk = --[V2L(Xk, Ak)]-lVL(Xk,  Ak). (38) 

It is well known [see, e.g., Poljak (Ref. 24)] that, if (x*, ;t*) is a K - T  pair 

satisfying Assumption S, then "¢2L(x*, A*) is invertible. As a result, iteration 

(37)-(38) is well defined in a neighborhood of (x*, A*). By well-known 

results on Newton's method (see, e.g., Ref. 11), (x*, h*) is a point of 

attraction of the iteration and the rate of convergence is at least quadratic 

(recall that f and h are assumed three times continuously differentiable). 

By using (16) and Proposition 2.1(b), we have that, for any K - T  pair 

(x*, h*) satisfying Assumption S and any a > 0, there exists ~(a)> 0 such 
that, for all c - g(a), the matrix 

V2P(x *, A*; c, a ) =  V2L(x *, A*)+ V2L(x *, A*)K(c, a)V2L(x *, A*) 

= [I + ~72L(x *, A *)K(c, a)]V2L(x *, A *) (39) 

is positive definite. Since V2L(x *, h*) is invertible, it follows that [ I+  
V2L(x *, h*)K(c, a)] is also invertible for c >~(a) .  Hence, for such c and 

(xk, Ak) sufficiently close to (x*, A*), the matrix 

B(Xk, hk; C, Or) = [V2L(xk, Ak)]-l{/+V2L(Xk, Ak)K(c , a)} -1 (40) 

is well defined. By using (13), (38), (40), we obtain that the Newton direction 
dk can also be written as 

dk = --B(Xk, Ak; c, cr)VP(xk, Ak; c, ot). (41) 

From (39) and (40), it follows that 

B(x*, A*; c, a) = V2p(x *, A*; c, o~) -1. (42) 
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In view of (41), (42), it follows that 

lim lIB (Xk, ,~k;C, a)--V2P(x *, ~ *; c, a ) - I]VP(Xk,  ),k; C, Ol )1= 0. 
(xk,x~)-,(x*a*) [VP(Xk, Ak; C, a) I 

(43) 

This shows that the Newton direction (38) approaches asymptotically the 

direction used by Newton's method as applied to minimization of 

P ( . , . ; c , a ) .  
We now consider an algorithm which combines the Newton iteration 

(37)-(38), a scaled steepest-descent method with a positive-definite scaling 

matrix D, and the Armijo stepsize rule with parameters o- e (0, ½),/3 e (0, 1), 

and unity initial stepsize. The algorithm consists of the iteration 

zk +l = zk + flmkpk, (44) 

where mk is the first nonnegative integer m for which 

e(zk;  c, a) - P ( z k  +flmpk; c, a) >-- -o'flmp~VP(zk; c, a). (45) 

The direction pk is the Newton direction (38) 

Pk = dk (46) 

if V2L(xk, )tk) is invertible and 3 

--d'kVP(zk; C, a)>--ylVP(zk ; c, ce)l 3, (47) 

where 3' is a positive scalar (with typically very small value). Otherwise, 

pk is the scaled steepest-descent direction 

Pk = - D V P ( z k ; c ,  a ). (48) 

The algorithm (44)-(48) is not necessarily the most efficient for any given 

problem, but rather represents an example of how the preceding analysis 

can be used to enlarge the region of convergence of Newton's method. 

Additional algorithms are given in Ref. 22. 

It is a routine matter to show, based on the analysis given thus far [cf. 

(43)] and standard results of unconstrained minimization methods [see, 

e.g., Ortega and Rheinboldt (Ref. 11), Dennis and Mor~ (Ref. 25)], that 

the following proposition holds true. 

Proposition 3.1. (a) Every limit point of a sequence {zk} generated 

by iteration (44) is a critical point of P ( . ,  .; c, a). 
(b) Let z* = (x*,/~*) be a K - T  pair of (ECP) satisfying Assumption 

3 We are using the third power of IVpt in (47), instead of the usual second power, in order 
to avoid assuming that 3' is sufficiently small in proving superlinear convergence. 
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S, and assume that c ~ G where g is as in Proposition 2.1(b). If z* is a limit 

point of a sequence {Zk} generated by iteration (44), then {Zk} actually 

converges to z*. Furthermore,  the rate of convergence is at least Q- 

quadratic, i.e., 

lim sup Izk+l - z *l k k _ z , i  2 <oo. 

In addition, there exists an integer/~ such that, for all k->/~, Pk is given 

by the Newton direction dk and the stepsize equals unity [rnk = 0 in (44)]. 

If z0 is SUfficiently close to z*, then the same is true for all k. 

Analogous results can be shown for the.Newton iteration (37)-(38) in 

connection with the penalty functions P ( . ,  .; c , M ) , P , ( . ,  .; c, a), and 

P~(-, • ; c, M) .  Take, for example, the latter. We have from (22), (24) 

VP,(x, h; c, M)  = {I + (1/2 )V2L(x, h)Kt[/t, c, M(x)]  

+ (1/2)V[K,[A, c, M(x)]VL(x,  A)]}VL(x, a), 

while, for any K - T  pair (x*, ;t*), we have 

V2p,(x *, A*; c, M)  = V2L(x *, h*) 

+V2L(x *, A*)K,[A*, c, ~TvI(x*)]VZL(x *, ~*), (49) 

Consider the matrix 

At(x ,  A; c, M)  = I + (1/2 )VEL(x, h )Kt[ A, c, m (x ) ] 

+ (1/2)V[Kt[A, c, M(x)]VL(x,  A)]. (50) 

We have, for a K - T  pair (x*, h*), 

A t ( x * , h * ; c , M ) = I + V Z L ( x * , h * ) K t [ h * , c , M ( x * ) ] ,  (51) 

and it follows from (49), (51) that 

~72pt (x *, h * ; c, M ) = A,  (x *, h * ; c, M)V 2L (x *, h *). (52 ) 

If (x*, h*) satisfies Assumption S, then by Proposition 2.2(c) there exists 

a ~ > 0 such that, for all c -> G V2p, (x*, h *; c, M )  is positive definite. Since 

V2L(x*,A *) is invertible, it follows from (52) that, for all c -  > 

G A t ( x * , h * ; c , M )  is also invertible, Hence,  for each c---G there is a 
neighborhood of (x*, h*) within which both V2L(x, h) and At(x ,  h ; c, M)  
are invertible. For all (Xk, Ak) in this neighborhood, the matrix 

B,(Xk, Ak ; c, M )  = [V2L(xk, Ag)]-I[A,(Xk, Ag; c, M)]  -1 (53) 

is well defined; and, in view of (38), (48), (50), we have 

dk = --B~(Xk, hk ; C, M)V  Pt(Xk, Ak ; C, M).  (54) 
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We also have from (52), (53) 

By(x*, A*; c, M) = V2P,(x *, A*; c, M)  -1. (55) 

It follows as earlier from (54), (55) that the Newton direction dk approaches 

asymptotically the direction used by Newton's method as applied to 

minimization of P , ( . , .  ; c, M).  

Similarly as earlier, we can combine the Newton iteration (37)-(38) 

with a scaled steepest-descent method and the Armijo rule to obtain a 

method for minimizing P~( . , .  ; c, M).  The statement of this algorithm is 

exactly the same as (44)-(48), except that P ( . , . ; c , a )  is replaced by 

P,(.,  .; c,M). The convergence results of Proposition 3.1 hold for this 

algorithm as well. 

Extension to Inequality Constraints. We first consider an extension 

of the Newton iteration (37)-(38) to the inequality constrained problem 

(ICP) which does not involve solution of a quadratic programming problem 

as in Wilson (Ref. 10) and Robinson (Ref. 26). Fix 

c>O,  ~'->0, a > O ,  

and define, for each (x,/~) ~ R n+', 

A+(x,~)= . 2 .. {i t~ j+2apD +(c+'cllzl2)gi(x)>O,j= l, .,r}, (56) 

A-(x, lz)={jllxj+2o~tz~ +(c+~-itzl=)gj(x)<_O,j=l,...,r}. (57) 

For a given (x, Ix), assume (by reordering indices if necessary) that A+(x, ~z) 
contains the first p indices where p is an integer with 0 -< p - r. Define 

1 io+ ,,l = v - _ x  = 

g+(x) Lg~ix)J L g, ix) J 

' "- LLJ' 

(58) 

(59) 

L+(x,/~) = f(x) + I~'+g+(x). (60) 

We note that p, g+, g_,/~+,/~_, L+ depend on (x,/~), but to simplify notation 

we do not show explicitly this dependence. 
In the extension of Newton's method that we consider, given (x,/~), 

we denote the next iterate by (f,/2), where 
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We also write 

/ -~1 p + l  

12+ = , / 2 _  = " . ( 6 1 )  

p L. 12, J 

The iteration, roughly speaking, consists of setting the multipliers of the 
inactive constraints [] ~ A-(x,/x)] to zero, and by treating the remaining 
constraints as equalities. More precisely, we set 

t£- = 0, (62) 

and obtain £, 12+ by solving the system 

[ V2~L+(x, tx) Vg+(x)][2-x  ]=_[V~L+(x,/x)] (63) 

Vg+(x)' 0 JL/x+-~+j  k g+(x) J' 

assuming, of course, that the matrix on the left above is invertible. 
We consider the following combination of the Newton iteration (62), 

(63) with the Armijo rule and a scaled steepest-descent method for minimiz- 
ing the penalty function P+ (., ,; c, ~) of (35). Let 

c,~(0,½), ~ ( 0 ,  1), ~,>0, 

and let D be a positive-definite matrix. Given (x,/~), the next iterate (~, t2) 
is given by 

[ ; ]  = [~ ]  +/3"q[2 ] , (64) 

where n~ is the first nonnegative integer m for which 

p~(x,~;C,O~)--p+(x+~'npx, lX+~mp~;c,o~)>_--O-[lm ' 4" pVP,(x,~;C,C~). 

(65) 

The direction 

P=(Px, P.) 

is given by the Newton direction obtained from (62), (63): 

P =  p ,  L12--/XJ' (66) 

if the matrix on the left of (63) is invertible and 

A t 4- ~ .4- 
- ( x - x )  VxP. (x,u; c,~)-(12 -U) V.~P~ (x, Ix; c,e~) 

- + ~ ) I  3 .  ( 6 7 )  > ~IVP.  (x, u ;  c, 
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Otherwise, 

p = -DVP+~ (x, tz ; c, ol). (68) 

Based on known results for unconstrained minimization methods, it 

can be shown that any limit point of a sequence generated by the method 

described above is a critical point of P~. There remains to show, similarly 

as for equality constrained problems, that the direction generated by the 

Newton iteration (62), (63) approaches asymptotically the Newton direction 

for minimizing P~ as (x,/x) approaches a K - T  pair (x*,/z*) satisfying 

Assumption S ÷ [cf. (43)]. A quadratic convergence rate result analogous 

to the one of Proposition 3.1 (b) then follows. 

Consider a K - T  pair (x*,/x*) of (ICP) satisfying Assumption S ÷. In 

view of the strict complementarity assumption [/z* > 0, if gj(x*) = 0], for 

each 

c > 0 ,  r---0, c~>0, 

there exists a neighborhood of (x*,/z*) within which we have 

A÷(x,  tz) = A ( x * )  = {]lgj(x*) = 0,/' = 1 . . . . .  r}. (69) 

Within this neighborhood, the Newton iteration (62), (63) reduces to the 

Newton iteration for solving the system of necessary conditions 

VxL+(x,/z) = 0, g÷(x) = O, 

corresponding to the equality constrained problem 

minimize f ( x  ), 

subject to g÷(x)=O. 

Based on this fact, it is easy to see that (x*,/z*) is a point of attraction of 

the iteration (62), (63) and the rate of convergence is at least quadratic. 

Let c, ~-, a be such that V2P~ (x*,/z*; c, a) is positive definite. We will show 

that, in a neighborhood of (x*, /z*)  within which (69) holds, we have 

I - x  =-[H~.(x, tx, c, a)] VP7 (x,/~, c, a),  (70) 
- #  

where H , ( . ,  • ; c, o~) is a continuous matrix satisfying 

H.~(x*, /z *; c, ol) = V2p~ + (x*,/x*; c, a). (71) 

We show this fact for r = O. 
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Consider the (n + r) x (n + r) matrix 

" 2 t 2 2 , ~ 2 ~ 2 t~7 Q_ Vx~L++cVg+Vg++aVx~L+V~L+ , Vg+ , aV~L+Vg+, aV~xL g~ c~E'] 
H= Vg+ +aVg+V~L+ , aVg+Vg+ , a g+Vg_ ~l' (72) . . . . . . . . . . . .  ;--g . . . . . . . . . . .  - . . . . . . .  ; . . . . . . .  : . . . . .  ; . . . . . . . .  

a~Vg_V,:~L , ~Vg_Vg+ , e~Vg_Vg++F j 

where all derivatives are evaluated at a point (x, tx) in a neighborhood of 

(x*,/x*) within which (69) holds, the (r - p )  x (r - p )  diagonal matrix F is 

given by 

--(1 + 4a.ap+l)(1 + 2cq~,+l)/c-4agp+l 0 "] 
F 

A 
, (73) 

'""-(1 + 4a#,)(1 + 2c~tz~)/c - 4c~g, o 

and the n x (r - p )  matrix E is given by 

E=[-V2gp+lVxL-21-tp+lVgp+~ i " "  ! -V2grVxL-21xrVg,] • (74) 

The function P+ of (33), (34) can also be written as 

e+ (x, ix ; c, c~) = L+(x, ix) + (c/2 )lg+(x)l 2 + (o~/2)lVxL(x, ix )l 2 

- i [(ixi+Zo~ix~)2/2c +2alxZgi(x)]. (75) 
] = p + l  

By differentiating this expression, we obtain 

IV~L++cVg+g++o~Vx~L 
~L-2c~ i ix1 g~l 

2 2 • ,  

/ = p + i  

VP+(x, t~; c, a ) =  g++olVg~+V~L , 

c~Vg' V~L + Fix_ 

(76). 

where F is given by (73). We now observe that the solution (~ - x ,  t2+ -ix+) 

of the system (63) also satisfies 

[ V L L + + c V g + V g ' + a V L L + % L +  : V g + + a % L + V g + ] [  ~ - x  ] 

[ Vg+ c~Vg+V~xL+ , ~Vg+Vg+ J I / x+ -  Ix+J 

+ 2 
_ [VxL+ cVg+g++aVxxL+VxL+] (77) 

[ g++aVg+VxL+ J 

By using (72)-(74) and (76), (77), it is straightforward to verify that 

H = VP+(x, ix; c, a) ,  
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and hence the vector (£,/2) generated by (62), (63) satisfies [cf. Eq. (70)] 

[ 2 - x ] = - H - 1 V P + ( x ,  ix.,c,o~). 
~ - tz 

Denote by H* the matrix H of (72) evaluated at (x*, ix*). Taking into 

account the fact that 

VxL(x*, tz*)=0 and i x * = 0 ,  j = p + l  . . . . .  r, 

it is easy to verify that 

H*  ---- V2p+(x *, b6*; c, a ) .  

We have shown therefore that, for r = 0 ,  (70) and (71) hold with 

H~.(x, ix ; c, a) being the matrix (72). The proof for the case where r > 0 is 

similar but very tedious, as the reader may surmise from the analysis of 

the case where r = 0. We will omit the details. 

It is also possible to construct an algorithm analogous to (64)-(68) in 

connection with the penalty function P + ( . , . ; c ,  rl) of (36), and to show 

similar convergence results. The detailed analysis is again very tedious and 

wilt be omitted. 

It is worth noting that, if the algorithm (64)-(68) is modified at the 

expense of a slight loss in reliability so that the test (67) is replaced by 

A r + 

- ( x - x ) V ~ e ~ ( x ,  i x ; c , ~ ) - ( / 2  ' + - ix )  V,P~ (x, ix; c, a ) > 0 ,  

then, near a K - T  pair (x*, ix*) satisfying Assumption S +, it is not necessary 
to compute the gradient matrix Vg_(x) corresponding to the inactive con- 

straints. 
To see this, note that computation of the Newton direction [cf. (62), 

(63)] does not require knowledge of Vg_(x). Next, with the aid of (76), 

observe that, if ix- = 0 [and hence also (/2_ - ~_) = 0], then computation of 

the inner products in (65) and (67) also does not require knowledge of 

Vg_(x). If the algorithm converges to a K - T  pair (x*, ix*) satisfying 

Assumption S +, then the Newton iteration will be accepted and the set of 

inactive constraints will remain the same for all iterations after some index. 

After this index, we will have /~_ = 0, and there will be no need for 

computing Vg_(x), with potentially significant computational savings 

resulting. 

Choice of Parameters. The choice of the parameters c and ~ in the 

penalty function P ( . ,  • ; c, a)  and c in the penalty function P ( . , .  ; c, M) is 

crucial for the success of the overall method. The function P( . ,  . ;  c, M) 
seems more attractive in this regard, since only one parameter choice is 
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necessary. On the other hand, the function P ( . , .  ; c, o~) is simpler and, if 

a is chosen properly, just as effective. Basically, a should be chosen 

sufficiently small in order for the method to avoid spurious critical points 

of P or local maxima of (ECP) [cf. Proposition 2,1(a) and 2.1(c)]. The 

parameter  c should be chosen sufficiently large to ensure that a K - T  pair 

(x*, A*) satisfying Assumption S will be a strict local minimum of P and 

spurious critical points of P are avoided [cf. Proposition 3.1(a) and 3.1(b)]. 

We can gain some insight regarding the proper  range of values for c by 

considering a problem with quadratic objective function and linear con- 

straints: 

~x Hx ,  minimize f (x)  = 1 , 

subject to N ' x  =0 ,  

where we assume that f ( x ) >  0 for all x ¢ 0 with N ' x  = 0, and that N has 

rank in. This corresponds to the case where the K - T  pair {x* = 0, ~* = 0} 

satisfies Assumption S. 

Consider the penalty function 

P(x,  .~ ; c, M )  = ( 1 / 2 ) x ' H x  + A ' N ' x  

+ (c/2)tU'x t 2 + (1/2)]M(Hx + X~)]2 

where M is a p x n matrix with m - p -< n and such that M N  has rank m° 

We are interested in conditions on c and M that guarantee that ~72P is 

positive definite. Consider the function 

/~(x ; c, M)  = min P(x,  ~ ; c, M ) .  

Since P is positive definite quadratic in A for every x, the minimization 

above can be carried out explicitly, and the minimizing vector is given by 

(x) = - ( N ' M ' M N ) -  1 (N '  + N ' M ' M H ) x .  

Substitution in the expression for t6 yields 

P(x  ; c, M )  t , ' cNN,  - ( N  + H M ' M N )  = gx  [ H  + H M  M H  + ' 

x ( N ' M ' M N ) -  1 (N '  + N ' M ' M H ) ] x .  

It is clear that V2P is positive definite iff 

V2/;(x ; c, M)  > 0. 

Consider the matrices 

EM = M ' M N ( N ' M ' M N ) - I N  ', F-.M = I - EM. (78) 
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A straightforward calculation shows that P may also be written as 

# ( x ; c , M )  ~ ' ~ '  " = ~x [E'mHEM - E ' ~ H E m  + c N N ' - N ( N ' M ' M N ) - I N ' ] x  

+ ½(MHx)'[I - M N ( N ' M ' M N ) - I N ' M ' ] ( M H x ) .  

The matrix [I  - M N ( N ' M ' M N ) - I N ' M  '] is a projection matrix and is there- 

fore positive semidefinite. Hence, the second term in the right side above 

is nonnegative, and it follows that, in order that V2ff(x; c, M ) >  0, it is 

sufficient that 

x ' [ E ' m H J ~ M - E m H E M + c N N ' - N ( N ' M ' M N ) - ~ N ' ] x > O ,  Vx#O.  (79) 

Consider the subspaces 

~e = {~ I N ' x  = o } ,  

For any x ~ R ~, we have, using (78), 

Hence, 

We have also 

where E is given by 

~± = {N¢ l ~ c R"'}.  

N'Emx = N'x,  N'#MX = N ' ( I  - Em)x = O. 

#MX e C¢, Vx e R n. (80) 

N' x = N'Ex ,  

E = N ( N ' N ) - I N  '. 

In view of (78), this implies that 

EMx = EMEx. 

By using the above two equations, we can write (79) as 

( fi_.~x ) 'H (EMx ) + (Ex ) ' [cNN' -  E'MHEM - N ( N ' M ' M N  )-1N'](Ex ) > O, 

Vx #0. 

In view of the fact #MX e ~ [cf. (80)] and the hypothesis z 'Hz  > 0, Vz # 0, 

with z ~ c~, the first term above is nonnegative. Hence, the relation above 

will hold iff 

c > m a x {  z'[E'~HEM+~'MN)-IN']zz'NN z Izl= l ' z ~ - L } "  (81) 

This in turn implies that the matrix V2P will be positive definite if c satisfies 

(81). 
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Consider now the case 

M =  4;5, 

for which we have 

P(x ,  ;t ; c , M )  = P(x ,  A; c, a) .  

Since every vector z e ~_L can be represented as 

z =N~, 

where 

e R "  and EM = N ( N ' N ) - t N  ', 

relation (8t)  is easily shown to be equivalent to 

co~ ( N ' N )  2 - a N ' H N  - N ' N  > 0, (82) 

or, by right and left multiplication with ( N ' N )  -1, 

ccxI - c~ ( N ' N )  - 1 ( N ' H N )  ( N ' N )  - 1 _ ( N ' N )  - 1 > O. 

This relation suggests rules for the selection of the parameters c and o~. 

Given o~, one should select c sufficiently large so that (82) holds. If the 

value of o~ is not sufficiently small to the extent that unconstrained minimiz- 

ation yields critical points of P which are not local minima of (ECP), then 

a must be reduced, but this reduction mus t  be accompanied  by a correspond- 

ing increase o f  c so that  (82) holds. A good rule o f  thumb is therefore to 

increase c so as to keep the product  co~ roughly constant. 

In some cases, it may be desirable to have an automatic scheme for 

increasing c while the method is in progress. Such a scheme is given in 

Refs. 13 and 22 in the spirit of the one in Ref. 16. It may be desirable to 

also have a similar scheme for decreasing c~ automatically. There  are severaI 

possibilities along these lines, but their investigation is beyond the scope 
of the present paper. 

As a final remark, we mention that it may be advantageous to exploit 

the a priori knowledge that Lagrange multipliers corresponding to 

inequality constraints are nonnegative. Thus, instead of minimizing P,+ 

subject to no constraints on (x, tz), it is possible to use special methods 

that can handle efficiently simple constraints in order  to minimize P~ subject 

t o / z  - 0. This eases the problem of selection of an appropriate value for 

the parameter  a, since by enforcing the constraint tx -> 0 we preclude the 

possibility that the method will converge to a K - T  pair with a negative 

Lagrange multiplier such as the usual type of local maximum. When f and 

gi are convex functions, then for all x and/x - 0 the matrix V~Z~L is positive 

semidefinite and the appropriate extension of Proposition 2. l(a) shows that 
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any positive value of a is suitable. Thus, for convex programming problems, 

the selection of the parameter a presents no difficulties as long as minimization 

of P+~ is carried out subject to the constraint I~ >- O. 

4. A Variation of Newton's  Method as a Method  for Minimizing a Penalty 

Function of Fletcher 

Define, in connection with (ECP), for x ~ X*  

h(x) = [Vh (x)'Vh (x)]-l[h (x) - Vh (x)'Vf(x)]; (83) 

and, for c > 0, consider the penalty function 

P(x;  c) --- f(x) + X(x)'h (x) + (c/2)[h (x)l 2, (84) 

belonging to the class introduced by Fletcher (Ref. 2). 

Note that /5 can also be written as 

/5(x; c) = f ( x )  + A (x)'h (x) + (1/2)h (x)'(cI + ~Th (x)'Vh (x)]-l)h (x), 

where h (x) is given by (30), so it is slightly different from the function (29) 

considered earlier. We mention also that the penalty function (85) can be 

derived from the penalty function 

L(x, .~ )+(1 /2 )h (x ) ' ( c I - [Vh(x ) 'Vh(x ) ] -~ )h (x )+(1 /2 ) lM(x )V~L(x , /~  )[2, 

where 

M ( x )  = [Vh (x)'Vh (x)]-I/2Vh (x)', 

in the same way as /6 ( . ;  c) was derived from the penalty function (8) [el. 

(26)-(28)]. 
For xk ~ X*,  consider the iteration (Refs. 7 and 27) 

xk+l = Xk -- {E(x~) + [I  - E(Xk)]V2xL[xk, h(xk)]}-lV,,L[xk, ](Xk)], (85) 

where, for all x ~ X* ,  E (x )  is defined by 

E(x )  = Vh(x)[Vh(x) 'Vh(x)] -xVh(x)  '. (86) 

It is shown in Pshenichnyi and Danilin (Ref. 7, pp. 208, 209) that, if (x*, A *) 

is a K - T  pair of (ECP) satisfying Assumption S, then 

~(x*) = ,~* 

and 

E(x  *) + [ I -  E(x*)]V~xL(x *, A*) = Vp(x*)', (87) 

where the function p: X *  -~ R "  is defined by 

p(x)  = VxL[x, ~(x)]. 
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Furthermore, the matrix Vp(x*) is invertible. As a result, iteration (85) is 

well defined for Xk SUfficiently close to x* and may be viewed as a consistent 

approximation of Newton's method, 

xk+l = xk - [7p(xk)']-lp(Xk), 

for solving the nonlinear system 

p(x) =0 .  

The vector x* is easily seen to be a solution of this system. 

Actually, iteration (85) is closely related to the Newton iteration 

(1)-(2). In fact, we will show that, for every vector ,~k s R m, xk+l as given 

by (85) satisfies, together with some vector ,~k+i, the system of equations 

Vh(xk) 0 J [;tk+t--AkJ 1_ h(xk) J" (88) 

The similarity of this system with system (2) is evident. In fact, if the 

constraints are all linear, the two systems are identical. Note that we can 

also write (88) as 

V~xL[xk, ~t(Xk)](Xk+l--Xk)+Vh(xk)2tk+1 = --Vf(Xk), (89) 

Vh (Xk)'(Xk+l -- Xk) = - h  (xk), (90) 

so Xk+l and Ak+l are entirely independent of ,tk. From (90), we have 

Vh (xk)[Vh (xk)Vh (xk)']-lVh (Xk)'(Xk+l -- Xk) 

= -Vh(xk)[Vh(xk)'Vh(xk)]-lh(xk),  (91) 

while from (99) we obtain 

-Vh  (xk)[Vh (xk)'Vh (xk)]-lVh (xk)'VZ~r[x, X(xk)](xk+~ - Xk) -- Vh (Xk);~k+l 

= Vh (xk)[Vh (Xk)'Vh (xk)]-lVh (Xk)'Vf(Xk). (92) 

By adding (89), (91), (92), and by making use of (83), we obtain 

{E(Xk) + [I-- E(xt,)]V~L[xk, X(Xk)]}(Xk+I -- Xk) = -V~L[Xk, X(xk)], (93) 

where E( .  ) is defined by (86). It can be seen that (85) and (93) are identical, 

so it follows that xk+~ can alternatively be obtained by solving the Newton- 

like system (88). 

In view of (87), we can write 

E(xk)+[I-E(xk)]V~, ,L[xk,  Yt(Xk)]=Vp(Xk)'+A(xk), (94) 

where A( .  ) is a continuous matrix such that 

lira A(x) = 0.  ( 9 5 )  X_~X*  J 
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We also have 

Vp (x)' = V[Vf(x) + Vh (x)~(x)]' 

2 = V xxL[x, ~(x)] + Vh (x)V~(x)'; (96) 

and from (93)-(96), we obtain 

{V2~L[x, ~(Xk)]+Vh(xk)V[(Xk)'+A(xk)}(Xk+a--Xk)=-VxL[Xk, ~(xk)]. 

(97) 

From (84), by differentiation we obtain 

V/5(xk ; c) = VxL[xk, ~(xk)]+V~.(xk)h(xk)+cVh(xk)h(xk), (98) 

which in view of (90) yields 

V/5(xk ; C) = VxL[xk, [(xk)]-  [V3.(xk)Vh (Xk)' + cVh (xk)Vh (Xk)t](Xk+l - -  Xk). 
(99) 

From (97) and (99), it follows that (85) can be written as 

H(xk;c)(xk+l--xk) =-V/5(xk ; c), (100) 

where 

V~L[xk, ~(Xk)] + Vh (Xk)V~(Xk)' + V~.(x~)Vh (Xk)' H ( x k ; c ) =  2 

+ cVh(xk)Vh(xk)' +A(xk). (101) 

Now, by using (95), (101) and by differentiating (98), we obtain 

H(x*; c)= V2/5(x*; c). 

Thus, we see that iteration (100), which is equivalent to iteration (85), can 

be viewed as a consistent approximation to Newton's method for minimizing 

the penalty funct ion/5( . ;  c) of (84). Similarly as in the previous section, 

we can construct a descent method with global convergence properties for 

minimizing/5(.;  c), which near x* has the form (85) and attains a quadratic 

rate of convergence. A superlinearly convergent variable metric version of 

iteration (85) using line search based on descent of the penalty function 

(84) is described in Ref. 28. 

5. Computational Experience 

The method described by (64)-(68) and its version corresponding to 
the penalty function P~+ (. ,  • ; c, ~/) of (36) was implemented and tested with 
a few example problems. For inequality constrained problems, local maxima 

typically have negative Lagrange multipliers associated with active con- 
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straints. Now, the Newton iteration (63) ignores all constraints j for which 

Ix i + 2atx 2 + (c + ritz ]2)gj(x) <- O. (102) 

This means that, if a is sufficiently small, then within a neighborhood of 

a local-maximum Lagrange multiplier pair (x*, Ix*) for which strict com- 

plementarity holds ( / ~  < 0 if gi(x*) = 0), all constraints are ignored by the 

Newton iteration (63) which then becomes an iteration of Newton's method 

for unconstrained minimization of f (x) .  Thus, even though the method 

may be initially attracted to a local-maximum Lagrange multiplier pair and 

may approach it during several iterations while it attempts to reach the 

feasible region, it has the ability to eventually recognize such local maxima 

and to take large steps away from them. This behavior was confirmed in 

our experiments. Similar observations hold for the method corresponding 

to the penalty function (36). 

For illustration purposes, we provide some results for a problem in 

which the scaling matrix D for the steepest-descent iteration was chosen 

to be diagonal, with the terms on the diagonal chosen by experimentation 

on the basis of the diagonal terms of the Hessian matrix V2p~ +. We did not 

experiment with any schemes for the automatic adjustment of c and a. 

The problem is 

minimize x l ,  

subject to x~+xaz<-l .  

It has two K - T  pairs, 

and 

{x* = 1, x* = 0, ~* = -½} (global maximum) 

{x* = - 1 ,  x* = 0,/.~* = ½} (global minimum). 

For oz = 0.01, c = 100, and a broad range of starting points and values of 

% the method (64)-(68) each time converged to the global minimum. Similar 

results were also obtained for a = 0.1, c = 10, and other values of a, c such 

that a < 1 and ~c = 1 (compare with (82) and the note following the proof 

of Proposition 2.1). For ~ > 1, the method converged sometimes to the 

global maximum and sometimes to the global minimum [cf. (102) and the 

subsequent discussion]. For c = 10 and c~ = 0.01, the method sometimes 

did not converge to a point which is a K - T  pair, indicating that a larger 

value of c is necessary. We list in Table 1 the number of Newton and 

steepest-descent iterations needed to obtain convergence to the global 

minimum within at least five significant digits for each coordinate for the 

case where o~ = 0.01, c = 100, and for a variety of starting points. The 
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Table 1. Numerical results, c = 100, o~ = 0.01. 

Number of 
Number of steepest descent Total number 

Starting point r Newton iterations iterations of iterations 

(-100, -100, 50) 0 1I 0 11 
(100, 100, -50) 0 12 3 15 
(-0.2, -0.2, I0) 0 3 7 10 
(1.1, 0.1, -0.5) 0 5 2 7 
(-1.1, -0.1, 0.5) 0 2 0 2 

(-100, -100, 50) 10 11 0 11 
(100, 100, -50) 10 12 3 15 
(-0.2, -0.2, 10) 10 5 7 12 
(I.1, 0.1, -0.5) t0 4 3 7 
(-1.1, -0.1, 0.5) 10 2 0 2 

n u m b e r  of  i terat ions for  o ther  values of c and a, such that  c < 1 0 0 ,  

0.01 < a < 1, ac = 1, was roughly  comparable .  As  one would  expect,  lower  

values of c tend to have a beneficial effect on the pe r fo rmance  of the 

me thod ,  part icularly when the start ing point  is near  the constraint  b o u n d a r y  

but  far  f rom the solution. This can be a t t r ibuted to i l l -condit ioning associ- 

a ted with large values of  c. 
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