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Abstract.  Software vulnerabilities that enable the injection and execution of 
malicious code in pervasive Internet-connected computing devices pose serious 
threats to cyber security.  In a common type of attack, a hostile party induces a 
software buffer overflow in a susceptible computing device in order to corrupt a 
procedure return address and transfer control to malicious code.  These buffer 
overflow attacks are often employed to recruit oblivious hosts into distributed 
denial of service (DDoS) attack networks, which ultimately launch devastating 
DDoS attacks against victim networks or machines.  In spite of existing 
software countermeasures that seek to prevent buffer overflow exploits, many 
systems remain vulnerable.   

In this paper, we describe a hardware-based secure return address stack 
(SRAS), which prevents malicious code injection involving procedure return 
address corruption.  Implementing this special hardware stack only requires 
low cost modifications to the processor and operating system.  This enables the 
hardware protection to be applied to both legacy executable code and new 
programs.  Also, this hardware defense has a negligible impact on performance 
in the applications examined.  The security offered by this hardware solution 
complements rather than replaces that provided by existing static software 
techniques.  Thus, we detail how the combination of the proposed secure return 
address stack and software defenses enables comprehensive multi-layer 
protection against buffer overflow attacks and malicious code injection.   

 
 
1   Introduction   
 
As the number and networking capabilities of pervasive computing devices increase, 
built-in security for these devices becomes more critical.  Hostile parties can exploit 
any of several security vulnerabilities in Internet-enabled computing devices to inject 
malicious code that is later employed to launch large-scale attacks.  Furthermore, 
attacks involving billions of compromised pervasive computing devices can be much 
more devastating than attacks that employ thousands or millions of traditional 
desktop machines.  Malicious code is often inserted into victim computers by taking 
advantage of software vulnerabilities such as buffer overflows, which can alter the 
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control flow of the program.  In this paper, we propose a built-in hardware defense 
for processors to prevent malicious code injection due to buffer overflow attacks.  
 Buffer overflows have caused security problems since the early days of 
computing.  In 1988, the Morris Worm, which resulted in large-scale denial of 
service, spread throughout the Internet using a buffer overflow vulnerability as one of 
its means of intrusion.  The Code Red worm further exemplifies the severity of 
problems that buffer overflow vulnerabilities still cause today.  Code Red and its 
variants, which stung companies over the summer of 2001, took advantage of a 
buffer overflow problem in Microsoft IIS.  The total economic cost of these worms 
was estimated at $2.6 billion by Computer Economics [19].  

Buffer overflow vulnerabilities also play a significant role in distributed denial of 
service (DDoS) attacks.  In such attacks, an adversary compromises a large number 
of machines to set up a DDoS network that is later used to launch a massive, 
coordinated attack against a victim machine or network.  A typical DDoS network is 
shown in Figure 1.  An adversary controls one or more handler machines, which in 
turn command the agent machines (also called “zombies”) that actually carry out the 
attack.  This network structure allows an attacker to easily control a large number of 
machines and makes the attacker difficult to trace.  Furthermore, as the number of 
pervasive computing devices grows rapidly, the potential destructiveness of DDoS 
attacks greatly increases.  

Various tools are available that provide for the large-scale compromise of 
machines and the installation of DDoS attack software.  These tools scan thousands 
of hosts for the presence of known weaknesses such as buffer overflow 
vulnerabilities.  Susceptible hosts are then compromised, and attack tools are 

Fig. 1. Distributed denial of service attack network 
 

Table 1.  CERT buffer overflow advisories 
 

Year Advisories Advisories involving 
buffer overflow 

Percent buffer 
overflow 

1996 27 5 18.52 % 
1997 28 15 53.57 % 
1998 13 7 53.85 % 
1999 17 8 47.06 % 
2000 22 2 9.09 % 
2001 37 19 51.35 % 

 



installed on the oblivious handler or agent machines.  The compromised hosts can 
then be used to scan other systems, and this cycle of intrusion may be repeated 
indefinitely [11].  The tools differ in the types of attacks they execute and in the 
communication between nodes in the attack network, but all allow the attacker to 
orchestrate large-scale, distributed attacks [15, 16].  Popular attack tools include 
Trinity, trinoo, Tribal Flood Network (TFN) and TFN2K, and Stacheldraht [4].  

Defending against DDoS attacks in progress is extremely difficult.  Hence, one 
of the best countermeasures is to hinder attack networks from being established in 
the first place, and defending against buffer overflow vulnerabilities is an important 
step in this direction.  Table 1 shows the percentages of CERT advisories between 
1996 and 2001 relating to buffer overflow weaknesses.  In 2001, more than 50 
percent of CERT advisories involved buffer overflow.  Furthermore, buffer overflow 
weaknesses play a very significant role in the 20 most critical Internet security 
vulnerabilities identified by the SANS Institute and the FBI [20].   

The majority of buffer overflow exploits involve an attacker “smashing the 
stack” and changing the return address of a targeted function to point to injected 
code.  Thus, protecting return addresses from corruption prevents many attacks.  Past 
work addresses the problem through static and dynamic software methods, such as 
safe programming languages, operating system patches, compiler changes, and even 
run-time defense.  However, the examination of potential solutions at the hardware 
architecture level is justified by the frequency of this type of attack, the number of 
years it has been causing problems, the continuing emergence of such problems 
despite existing software solutions, and the explosive increase of vulnerable devices.   
 We propose a hardware-based, built-in, non-optional layer of protection to 
defend against common buffer overflow vulnerabilities in all future systems.  We 
detail how a hardware secure return address stack (SRAS) mechanism can be used to 
achieve this goal.  The mechanism preserves a correct copy of every procedure return 
address for correct program control flow, and it provides a means of detecting buffer 
overflow attacks with high probability.  Our proposal is a “hardware safety net” that 
should be applied in conjunction with safe programming techniques and compiler-
inserted checking mechanisms to provide a multi-layered defense.     
 In Section 2, we describe the problem of return address corruption caused by 
buffer overflows.  We summarize and compare past work in Section 3.  In Section 4, 
we present a multi-layer software and hardware protection mechanism for buffer 
overflow attacks in pervasive computing devices.  We describe the hardware 
architectural support for our proposal in Section 5.  In Section 6, we discuss 
performance and implementation costs, and we conclude in Section 7.     
 
2   Stack Smashing via Buffer Overflow 
 
Most buffer overflow attacks involve corruption of procedure return addresses in the 
memory stack.  During the execution of a procedure call instruction, the processor 
transfers control to code that implements the target procedure.  Upon completing the 
procedure, control is returned to the instruction following the call instruction.  This 
transfer of control occurs in a LIFO (i.e., Last In First Out) fashion, or properly 



nested fashion.  Thus, a procedure call stack, which is a LIFO data structure, is used 
to save the state between procedure calls and returns.  Compilers for different 
languages use the same stack format, and therefore a function written in one 
language can call functions written in other languages.  We describe memory stack 
behavior for the IA-32 architecture [12], but the general procedures apply to all 
conventional ISAs.   
 The memory stack is typically implemented as a contiguous block of memory 
that grows from higher addresses toward lower addresses (as shown in Figure 2).  
The stack pointer (SP) is used to keep track of the top of the stack.  When an item is 
pushed onto or popped off the stack, the SP is adjusted accordingly.  Anything 
beyond the SP is considered to be garbage.  We can reference data on the stack by 

Fig. 4.  Buffer overflow attack 
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int f() 
{ 

… 
g(s1, s2); 
… 

} 
 
int g(char *s1,  
      char *s2) 
{ 

int a; 
char buf[100];  
… 
strcpy(buf, s1); 
… 

} 

 

Fig. 3.  Code example 

Fig. 2.  Example of stack operation 

s1 

SP 

FP 

 
stack 

frame of 
f()  

s2 

saved 
FP 
a 

buf 
lower 

addresses 

higher 
addresses 

stack 
growth 

 call to  
g() 

SP 

FP 
 

stack 
frame of 

f()  

SP 

FP 
 

stack 
frame of 

f()  

 return to  
f() 

return 
address 

to code 
region 



adding an offset to the SP, and modifying the SP directly can either remove a batch 
of data or reserve space for a data such as local variables.  The stack consists of a set 
of stack frames; a single frame is allocated for each procedure that has yet to return 
control to an ancestor procedure.  The SP points to the top of the stack frame of the 
procedure that is currently executing, and the frame pointer (FP) points to the base of 
the stack frame for that procedure.  To avoid destroying the value of the current FP 
upon calling a new procedure, the FP must be saved on entry to the new procedure 
and restored on exit.  
 Figure 2 illustrates the operation of the memory stack for the example program 
in Figure 3.  The leftmost stack shows the state of the stack immediately preceding 
the call to g() .  When function f()  calls g() , a new stack frame will be pushed 
onto the stack.  This frame includes the input pointers s1  and s2 , the procedure 
return address, the frame pointer, and the local variables a and buf .  Upon 
completing g() , the program will return to the address stored in g’s stack frame; 
this address should equal the location of the instruction immediately following the 
call to g()  in the function f() .  The SP and the FP are also restored to their former 
values, and the stack frame belonging to g()  is effectively popped from the stack. 
 Figure 4 illustrates a buffer overflow attack on the code listed in Figure 3.  A 
security vulnerability exists because strcpy()  does not perform bounds checking.  
In the function g() , if the string to which s1  points exceeds the size of buf , 
strcpy()  will overwrite data located adjacent to buf  in the memory stack.  A 
malicious party can exploit this situation by strategically constructing a string that 
contains malicious code and a corrupted return address.  If s1  points to such a 
string, strcpy()  will copy malicious code into the stack and overwrite the return 
address in g() ’s stack frame with the address of the initial instruction of the 
malicious code.  Consequently, once g()  completes, the program will jump to and 
execute the malicious code instead of returning control to f() .  There are many 
variations of this form of attack, but most rely on the ability to modify the return 
address [17].  For example, rather than the attacker injecting his own exploit code, 
the return address may be modified to point to legitimate, preexisting code that can 
be used for malicious purposes.  In another variant, the malicious code 
inconspicuously installs agent software for a future DDoS attack and returns 
execution to the calling function f() .  Thus, the program appears to execute 
normally, and the user is unaware that his machine may become a DDoS zombie in a 
future attack. 
  
3   Past Work 
 
Researchers have proposed many software-based countermeasures for thwarting 
buffer overflow attacks.  These methods differ in the strength of protection provided, 
the effects on performance, and the ease with which they can be effectively 
employed.   
 One solution is to store the memory stack in non-executable pages.  This can 
prevent an attacker from executing code injected into the memory stack.  For 



example, Multics was one of the first operating systems to provide support for non-
executable data memory, i.e., memory pages with execute privilege bits [14].  
However, the return address may instead be redirected to preexisting, legitimate code 
in memory that the attacker wishes to run for malevolent reasons.  In addition, it is 
difficult to preserve compatibility with existing applications, compilers, and 
operating systems that employ executable stacks.  Linux, for instance, depends on 
executable stacks for signal handling.   
 Researchers have proposed using more secure (or safe) dialects of C and C++, 
since a high percentage of buffer overflow vulnerabilities can be attributed to features 
of the C programming language.  Cyclone is a dialect of C that focuses on general 
program safety, including prevention of stack smashing attacks [10].  Safe 
programming languages have proven to be very effective in practice.  While 
programs written in Cyclone may require less scrupulous checking for certain types 
of vulnerabilities, the downside is that programmers have to learn the numerous 
distinctions from C, and legacy application source code must be rewritten and 

Table 3. Benefit and cost comparison 
 

Technique for defending 
against procedure return 

address corruption 

Provides 
complete 

protection1 

Applies to 
many 

platforms 

Application 
code size 
increase 

Adverse 
performance 

impact 
Safe programming languages Yes3 Yes Can be high Can be high 

Static analysis techniques No Yes Varies Varies 
StackGuard No Yes Low Moderate 
StackGhost Yes No None Low 
libsafe No Yes Low Low 

libverify Yes Yes High Moderate 
Our SRAS proposal Yes Yes None2 Low 

1By “complete protection,” we mean complete protection against buffer  overflow attacks that directly 
corrupt procedure return addresses. 
2Depending on how non-LIFO procedure control flow is handled, some programs may experience a 
very small increase in code size (see Section 5). 
3Provided that programmers comply and write correct code. 

Table 2. Required system changes 
 

Required system changes Technique for defending 
against procedure return 

address corruption 
Source 
code Compiler OS Processor 

Safe programming languages Yes Yes No No 
Static analysis techniques Yes No No No 

StackGuard No Yes No No 
StackGhost No No Yes No 
libsafe No No Yes No 

libverify No No Yes No 
Our SRAS proposal No No1 Yes Yes 

1Compiler changes may be required for certain programs to operate properly depending on the 
method used to handle non-LIFO procedure control flow (see Section 5). 
 



recompiled.  In addition, safe programming dialects can cause significant 
performance degradation and executable code bloat. 

Methods for the static, automated detection of buffer overflow vulnerabilities in 
code have also been developed  [22, 23, 24].  Using such static analysis techniques, 
complex application source code can be scanned prior to compilation in order to 
discover potential buffer overflow weaknesses.  The detection mechanisms are not 
perfect: many false positives and false negatives can occur.  Also, as true with 
Cyclone, these techniques ultimately require the programmer to inspect and often 
rewrite sections of application source code.  Re-coding may also increase the total 
application code size.   
 StackGuard is a compiler-based solution involving a patch to gcc  that defends 
against buffer overflow attacks that corrupt procedure return addresses [8].  In the 
procedure prologue of a called function, a “canary” value is placed on the stack next 
to the return address, and a copy of the canary is stored in a general-purpose register.  
In the epilogue, the canary value in memory is compared to the canary register to 
determine whether a buffer overflow has occurred.  The application randomly 
generates the 32-bit or 64-bit canary values, so the application can detect improper 
modification of a canary value resulting from a buffer overflow with high probability.  
However, there exist attacks that can circumvent StackGuard’s canaries to 
successfully corrupt return addresses and defeat the security of the system [2].  

StackGhost employs the SPARC architecture’s register windows to defend 
against buffer overflow exploits [9].  Return addresses that have stack space allocated 
in register windows are partially protected from corruption.  The OS has the 
responsibility of spilling and filling register windows to and from memory, and once 
a return address is stored back in memory, it is potentially vulnerable.  Various 
methods of protecting such spilled stacks are defined.  Buffer overflow protection 
without requiring re-compilation of application source code is a benefit of 
StackGhost, but the technique is only applicable to SPARC systems. 
 Transparent run-time software defenses have also been proposed.  The 
dynamically loaded libraries libsafe  and libverify  provide run-time defenses 
against stack smashing attacks and do not require programs to be re-compiled [1].  
libsafe  intercepts unsafe C library functions and performs bounds-checking to 
protect frame pointers and return addresses.  libverify  protects programs by 
saving a copy of every function and every return address in the heap.  The first 
instruction of the original function is overwritten to execute code that stores the 
return address and jumps to the copied function code.  The return instruction for the 
copied function is replaced with a jump to code that verifies the return address before 
actually returning.   
 The downside to libsafe  is that it only defends against buffer overflow 
intrusions resulting from certain C library functions.  In addition, static linking of 
these C library functions in a particular executable precludes libsafe  from 
protecting the program.  Implementations of libverify  can double the code space 
required for each process, which is taxing for embedded devices with limited 
memory.  Also, libverify  can degrade performance by as much as 15% for some 
applications. 



 We compare past work in Tables 2 and 3.  We observe that no existing solution 
combines the features of support for legacy applications (indicated by no changes to 
source code or the compiler), wide applicability to various platforms, low 
performance overhead, and complete protection against procedure return address 
corruption.  Therefore, we propose a low-cost, hardware-based solution that enables 
built-in, transparent protection against common buffer overflow vulnerabilities 
without depending on user or application programmer effort in complying with 
software safeguards and countermeasures.  
 
4   A Multi-layer Defense 
 
We advocate a multi-layer approach to solving buffer overflow problems that lead to 
procedure return address corruption.  By “multi-layer”, we mean a combination of 
static software defenses and dynamic software or hardware defenses.  Static software 
techniques include safe programming languages, static security analysis of source 
code, and security code inserted into executables at compile-time.  Dynamic software 
security solutions include run-time defenses such as StackGhost, libsafe , and 
libverify .  We present a dynamic hardware defense in the next section.   
 We categorize programs as new software and legacy software.  With new 
software, the source code is available, so the programmer can apply static software 
techniques for defending against buffer overflows.  In addition, the platform can 
provide dynamic software or hardware defenses to supplement these static 
techniques.  Legacy software consists of compiled binary executables − the 
corresponding source code is no longer available.  Hence, the only applicable 
protection for legacy software is dynamic (i.e., run-time) software or hardware 
defense.  The dynamic software countermeasures described above may provide 
incomplete coverage (libsafe ), only apply to a certain platform (StackGhost), or 
cause performance degradation and code bloat (libverify ).  Therefore, we 
recommend using a dynamic hardware countermeasure, which is designed to 
transparently provide protection for both new and legacy software.   
 We propose low-cost enhancements to the core hardware and software of future 
programmable machines that enable the detection and prevention of return address 
corruption.  Such a processor-based mechanism would complement static software 
techniques in a multi-layered defense by overcoming some deficiencies of existing 
software solutions.  Our proposed hardware defense provides robust protection, can 
be used in all platforms, causes negligible performance degradation, and does not 
increase code size.  Since we require changes to processor hardware, our proposal is 
meant to be a longer-term solution.  In the interim, software patches and defenses 
against buffer overflow vulnerabilities should continue to be applied when available. 
 
5   The Processor-based Defense 
 
In instruction set architectures, procedure call and return instructions are clearly 
recognizable from other branch instructions.  For instance, in many RISC ISAs, a 



branch and link instruction is identified as a procedure call, and a branch to the link 
register (such as R31) is identified as a procedure return instruction [18].  
Furthermore, as explained in Section 2, procedure calls and returns occur in a 
properly nested, or LIFO, fashion.  Since the processor can clearly identify call and 
return instructions, it can maintain its own LIFO hardware stack to store the correct 
nested procedure return addresses.  The processor does not need to depend on the 
memory stack in which return addresses can be corrupted by external sources (that 
exploit software vulnerabilities such as buffer overflows).   

We propose that security-aware processors implement a secure return address 
stack (SRAS) that preserves correct values of dynamic procedure return addresses 
during program execution.  Only call and return instructions can modify the contents 
of the SRAS, and the processor can rely on the SRAS to provide the correct return 
address when executing a procedure return instruction.  If the return address given 
by the SRAS hardware differs from that stored in the memory stack, then it is highly 
likely that the return address in the memory stack has been corrupted.  In this event, 
the processor can terminate execution, continue execution using the correct address 
from the top of the SRAS, or issue a new invalid return address trap.  With the 
SRAS, we can achieve our goal of thwarting buffer overflow attacks in which hostile 
code is injected into innocent hosts.  

Our SRAS solution differs significantly in the security function it provides 
compared to the performance function provided by hardware return address stacks 
[13, 25] found in some high-performance processors like the Alpha 21164 [5] and 
the Alpha 21264 [6].  In these processors, the hardware return address stack provides 
a mechanism for branch prediction; the target address of a procedure return 
instruction is highly predictable, and thus it can be made available earlier in the 
pipeline.  The processor uses a return address stack in conjunction with other 
mechanisms such as branch target buffers to perform branch prediction.  Since 
branch prediction mechanisms are not expected to be 100% accurate, if the address 
predicted by the hardware return address stack differs from the return address saved 
in the memory stack, the processor assumes that the branch prediction is incorrect.  
It will “squash” instructions based upon the address popped from the hardware 
return address stack and start fetching instructions beginning at the return address 
stored in the memory stack.  Hence, in the event of return address corruption due to 
buffer overflow exploitation, existing processors will jump to the malicious code 
pointed to by the corrupted return address.  In contrast, our SRAS solution places 
trust in the processor’s hardware stack rather than in the memory stack, which can 
be modified by external sources. 
 
5.1   SRAS Architectural Requirements 
 
Supporting a Secure Return Address Stack mechanism in a processor requires a 
hardware return address stack (the SRAS itself), modification of the implementation 
of procedure call and return instructions to use the SRAS, and a method for securely 
spilling and filling of the contents of the SRAS to and from memory upon SRAS 
overflow or underflow.  Since we do not require re-compilation or changes to 



programming languages and application source code, both legacy and new software 
can benefit from the security provided by these enhancements.  

The hardware SRAS is simply an n-entry LIFO stack.  We transparently modify 
the execution of procedure call and return instructions to place trust in the SRAS 
rather than the memory stack as follows.  We maintain the ISA definitions and 
visible behavior of call and return instructions, but we alter the manner in which the 
processor executes call and return instructions to use the SRAS (see Figure 5).  This 
enables protection for legacy programs as well as new programs.  During the 
execution of a call instruction, the target of the procedure call is assigned to the next 
PC.  Also, the return address (i.e., PC + 4 assuming the call instruction size is 4 
bytes) is pushed onto the top of the SRAS.  When a processor fetches a return 
instruction, the return address popped from the top of the hardware SRAS is always 
assigned to the next PC.  The processor then determines whether the return address 
from the memory stack is the same as the return address popped from the SRAS.  If 
these addresses differ, return address corruption (or some other error) has occurred, 
and the processor should take appropriate action.   

A hardware SRAS structure contains a finite number of entries, which may be 
exceeded by the number of dynamically nested return addresses in the program.  
When this happens, the processor must securely spill SRAS contents to memory.  We 
define the event in which the SRAS becomes full following a call instruction as 
overflow; the event where the SRAS becomes empty following a return is defined as 
underflow.  The processor issues an OS interrupt to write or read SRAS contents to 
or from protected memory pages when SRAS overflow or underflow occurs.  To 
prevent thrashing in some programs due to SRAS spilling and filling, we only 
transfer half (instead of all) of the SRAS entries to or from memory on an SRAS 
overflow or underflow. 

This SRAS overflow space in memory is protected from corruption by external 
sources by only allowing the OS kernel to access spilled SRAS contents.  The OS 
executes code that transfers contents of the SRAS to or from these protected memory 
pages; the application does not, and cannot, participate in SRAS content transfers.  
The kernel is responsible for managing the memory structures required to store the 

Fig. 5. SRAS operation for call and return instructions 
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spilled SRAS entries for all threads running on the system.  This is achieved by 
maintaining one stack of spilled SRAS return addresses for each process.  In 
addition, the virtual memory regions that store the SRAS contents are mapped to 
physical pages that can only be accessed by the kernel.  Hence, user-level application 
threads cannot corrupt the contents of their respective spilled stacks.  Also, since the 
values popped from the SRAS must always be valid to preserve correct execution, the 
OS must transfer the SRAS contents to and from memory during context switches.   
 
5.2   Non-LIFO Procedure Control Flow 
 
If software always exhibited LIFO procedure control flow behavior, the SRAS would 
transparently provide hardware-based protection of return addresses for all programs.  
No compiler changes or recompilation of existing source code would be necessary: 
the system would provide protection for all legacy and future binary executables.  
Unfortunately, however, some existing executables use non-LIFO procedure control 
flow.  For example, some compilers seek to improve performance by allowing certain 
procedures to return to an address located deep within the stack.  The memory stack 
pointer is then set to an address of a frame buried within the stack; the frames 
located in between the former top of the stack and the reassigned stack pointer are 
effectively popped and discarded.  Exception handling in C++ is one technique that 
can lead to such non-LIFO behavior.   

Other common causes of non-LIFO control flow are the C setjmp  and 
longjmp  library functions.  These functions are employed to support software 
signal handling.  The longjmp  function may cause a program to return to an 
address that is located deep within the memory stack or to an address that is no 
longer located in the memory stack.  More specifically, a particular return address 
may be explicitly pushed onto the stack only once, but procedures may return to that 
address more than once.  Note that tail call optimizations, which seem to involve 
non-LIFO procedure control flow, do not cause problems for the SRAS.  Compilers 
typically maintain proper pairing of procedure call and return instructions when 
implementing tail call optimizations.  

Our security proposal depends on the correctness of the address popped from the 
top of the hardware SRAS.  Hence, the SRAS mechanism described so far does not 
accommodate non-LIFO procedure control flow.  We can address this issue in at 
least four ways.  The first option prohibits non-LIFO behavior in programs, 
providing the greatest security at the lowest cost but also the least flexibility.  The 
fourth and last option disables the SRAS, providing the least security but the greatest 
flexibility for programs that exhibit non-LIFO behavior.  There exist several possible 
alternatives between these two options that trade varying degrees of non-LIFO 
support for implementation cost and complexity.  We present two of these 
possibilities: the second option described below relies on re-compilation, while the 
third option described below uses only dynamic code insertions.  Both options only 
support certain non-LIFO behavior for cost and complexity reasons.   

The first option is to implement the SRAS as described above and completely 
prohibit code and compiler practices that employ non-LIFO procedure control flow.  



This provides the highest degree of security against return address corruption.  To 
support this option, we may need to rewrite or re-compile source code for certain 
legacy applications.  Legacy executables that exhibit non-LIFO procedure calling 
behavior will terminate with an error (if not recompiled). 

The second option is to permit certain types of non-LIFO procedure control flow 
such as returning to addresses located deep within the stack.  This option requires re-
compilation of some legacy programs.  During re-compilation, the compiler must 
take precautions to ensure that the top of the SRAS will always contain the correct 
target address for an executed return instruction in programs that use non-LIFO 
techniques.  We define new instructions, sras_push  and sras_pop , which 
explicitly push and pop entries from and to the SRAS without necessarily calling or 
returning from a procedure.  Compilers can employ these new instructions to return 
to an address deep within the SRAS (and to the associated frame in the memory 
stack) when using longjmp , C++ exception handling, or other non-LIFO routines.  

The third option is to provide dynamic support for common non-LIFO behavior.  
This approach does not support all instances of non-LIFO behavior that the second 
option can handle via re-compilation, but it does allow execution of some legacy 
executables (where the source code is no longer available) that exhibit non-LIFO 
procedure control flow.  First, we implement the sras_push  and sras_pop  
instructions described above.  We also need an installation-time or run-time software 
filter that strategically injects sras_push  and sras_pop  instructions (as well as 
other small blocks of code) into binaries prior to or during execution.  The software 
filter inserts these instructions in recognized routines that cause non-LIFO procedure 
control flow.  For instance, standardized functions like setjmp  and longjmp  can 
be identified at run-time via inspection of linked libraries such as libc .  This option 
only handles executables that employ known non-LIFO techniques, however.  For 
new manifestations of non-LIFO procedure control flow, the software filter may not 
identify some locations where the new instructions should be inserted. 

The fourth option is to allow the users to disable the SRAS with a new 
sras_off  instruction.  This enables the execution of code that exhibits non-LIFO 
procedure control behavior as permitted in systems without an SRAS.  In some 
situations (e.g., program debugging), a user may wish to turn off the SRAS and run 
insecure code.  In other cases, the user may disable the SRAS to execute legacy code 
with unusual non-LIFO behavior.   

Regardless of the method used to handle non-LIFO procedure control flow, we 
require that the SRAS be “turned on” by default in order to provide built-in 
protection.  Our architecture definition stipulates that the SRAS is always enabled 
unless explicitly turned off by the user, at his own risk. 
 
6   Performance Impact 
 
We now analyze the implementation costs of our proposal.  First, we investigate the 
performance degradation caused by the SRAS mechanism on typical programs.  The 
SRAS does not impact the performance of procedure call and return instructions.  
Any performance degradation is due to spilling and retrieving the contents of the 



SRAS to and from memory during program execution.  Although network-
processing software is most vulnerable to buffer overflow attacks, the SRAS provides 
transparent protection for all applications, and therefore any SRAS-induced 
performance degradations apply to all software.  Hence, we examine the performance 
impact of our SRAS solution on the SPEC2000 benchmarks [21], which are typically 
used to model a representative workload in processor performance studies. 

We gather performance data using SimpleScalar version 3.0, a cycle-accurate 
processor simulator [3].  Our base machine model closely represents an ARM11 
processor core, which is used in many network-enabled, embedded computing 
devices [7].  The ARM11 is a single-issue processor with 8 KB L1 instruction and 
data caches.  Also, the ARM11 core supports limited out-of-order execution to 
compensate for the potentially high latencies of load and store instructions.   

We simulate the execution of the first 1.5 billion instructions of 12 SPEC2000 
integer benchmarks [21].  Our performance data is based upon the last 500 million 
instructions of each 1.5 billion instruction simulation in order to capture steady-state 
behavior.  We obtain performance results for all 12 benchmarks and 6 SRAS sizes of 
8, 16, 32, 64, 128, and infinite entries.  Hence, we performed 12×6 = 72 simulations.  
To model the code executed by the OS upon SRAS overflow and underflow, we wrote 
a swapping and memory management routine in C.  All of the benchmarks and 
swapping code were compiled using cc  with -O2  optimizations.   

We find that the performance degradation caused by SRAS swapping is 
negligible (i.e., less than 1%) for all the benchmarks when using SRAS sizes of 128 
or more entries.  When using a 64-entry SRAS, the only benchmark that suffers a 
non-negligible performance penalty is parser , which experiences a small 
performance degradation of 2.11%.   

Next, we compare the implementation costs of our proposed processor-based 
solution to libverify , a dynamic software-based solution that provides robust 
security against procedure return address corruption.  We do not consider StackGhost 
and libsafe , for these solutions only function on SPARC platforms and only 
provide protection against buffer overflows in certain C functions, respectively.  
libverify  does not require any changes to processors or hardware, which is an 
advantage over our proposal.  Although our solution does require hardware 
enhancements, the necessary modifications are minor.  In addition, many processors 
already contain a return address stack that would serve as the core of the SRAS.   
 Our SRAS solution causes a negligible performance penalty in the set of 
benchmarks examined, whereas libverify  causes performance degradation as 
high as 15% in some common applications.  Furthermore, our solution requires little 
or no expansion of executable code size.  Since libverify  copies functions to the 
heap at run-time, libverify  can increase code size by a factor of two.  Such code 
bloat can be very taxing for constrained devices in pervasive computing 
environments.  Hence, our dynamic hardware-based solution is superior to dynamic 
software defenses from a performance perspective.  As future processors are designed 
to include SRAS mechanisms, our dynamic hardware defense may be used to replace 
dynamic software defenses against procedure return address corruption.   
 



7   Conclusion 
 
Malicious parties utilize buffer overflow vulnerabilities to inject and execute hostile 
code in an innocent user’s machine by corrupting procedure return addresses in the 
memory stack.  Due to the growing threat of attacks such as distributed denial of 
service that exploit the rapidly increasing number of pervasive computing devices, 
addressing such buffer overflow vulnerabilities is a high priority for network and 
computer security.  Although software-based countermeasures are available, a 
processor architecture defense is justified because major security problems stemming 
from buffer overflow vulnerabilities continue to plague computer systems.   

We propose a built-in, non-optional, secure hardware return address stack 
(SRAS) that detects corruption of procedure return addresses.  The SRAS 
mechanism only requires minor changes to the operating system and the processor, 
so legacy and new software can enjoy the security benefits without the need to modify 
application source code or re-compile the source, which may no longer be available.  
Also, the SRAS mechanism causes a negligible performance penalty in the 
applications examined.  For greatest security, we suggest that new software disallow 
non-LIFO procedure control flow techniques.  However, we describe compiler, OS, 
and hardware methods for supporting non-LIFO behavior when it is necessary.  We 
also discuss the tradeoffs between security, implementation complexity, and software 
flexibility associated with supporting non-LIFO procedure control flow.       

We describe a multi-layer software and hardware defense against buffer overflow 
attacks.  Our hardware-based solution should be applied in tandem with existing 
static software countermeasures to provide robust protection in pervasive computing 
devices.  In future work, we will explore SRAS enhancements and alternative 
techniques for preventing buffer overflow and distributed denial of service attacks.   
 
References 
 
[1] A. Baratloo, N. Singh, and T. Tsai, “Transparent Run-time Defense against 
Stack Smashing Attacks,” Proc. of the 9th USENIX Security Symposium, June 2000. 
[2] Bulba and Kil3r, “Bypassing StackGuard and StackShield,” Phrack Magazine, 
vol. 10, issue 56, May 2000. 
[3] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” 
University of Wisconsin-Madison Computer Sciences Department Technical Report, 
no. 1342, June 1997. 
[4] CERT Coordination Center, http://www.cert.org/, Nov. 2001. 
[5] Compaq Computer Corporation, Alpha 21164 Microprocessor (.28µm): 
Hardware Reference Manual, December 1998.   
[6] Compaq Computer Corporation, Alpha 21264 Microprocessor Hardware 
Reference Manual, July 1999.  
[7] D. Cormie, “The ARM11 Microarchitecture,” available at 
http://www.arm.com/support/White_Papers/, April 2002. 
[8] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. 
Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic Adaptive Detection and 



Prevention of Buffer-Overflow Attacks,” Proceedings of the 7th USENIX Security 
Symposium, Jan. 1998. 
[9] M. Frantzen and M. Shuey, “StackGhost: Hardware Facilitated Stack 
Protection,” Proceedings of the 10th USENIX Security Symposium, August 2001.   
[10] L. Hornof and T. Jim, “Certifying Compilation and Run-time Code 
Generation,” Proceedings of the ACM Conference on Partial Evaluation and 
Semantics-Based Program Manipulation, January 1999. 
[11] K. J. Houle, G. M. Weaver, N. Long, and R. Thomas, “Trends in Denial of 
Service Attack Technology,” CERT Coordination Center, October 2001. 
[12] Intel Corporation, The IA-32 Intel Architecture Software Developer’s Manual, 
Volume 2: Instruction Set Reference, Intel Corporation, 2001.  
[13] D. R. Kaeli and P. G. Emma, “Branch History Table Prediction of Moving 
Target Branches Due to Subroutine Returns,” Proceedings of the 18th International 
Symposium on Computer Architecture, pp. 34-41, May 1991. 
[14] P. A. Karger and R. R. Schell, “Thirty Years Later: Lessons from the Multics 
Security Evaluation,” Proceedings of the 2002 Annual Computer Security 
Applications Conference, pp. 119-126, December 2002. 
[15] F. Kargl, J. Maier, and M. Weber, “Protecting Web Servers from Distributed 
Denial of Service Attacks,” Proceedings of the Tenth International Conference on 
World Wide Web, pp. 514-525, April 2001. 
[16] D. Karig and R. B. Lee, “Remote Denial of Service Attacks and 
Countermeasures,” Princeton University Department of Electrical Engineering 
Technical Report CE-L2001-002, October 2001. 
[17] klog, “The Frame Pointer Overwrite,” Phrack Magazine, 9(55), Sept. 1999. 
[18] R. B. Lee, “Precision Architecture,” IEEE Computer, 22(1), pp. 78-91, Jan. 
1989. 
[19] J. McCarthy,  “Take Two Aspirin, and Patch That System – Now,” 
SecurityWatch, August 31, 2001. 
[20] The SANS Institute, “The SANS/FBI Twenty Most Critical Internet Security 
Vulnerabilities,” http://www.sans.org/top20/, October 2002. 
[21] The Standard Performance Evaluation Corporation, http://www.spec.org/, Nov. 
2001. 
[22] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw, “ITS4: A Static Vulnerability 
Scanner for C and C++ Code,” Proceedings of the 2000 Annual Computer Security 
Applications Conference, December 2000. 
[23] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,” Proceedings 
of the 2001 IEEE Symposium on Security and Privacy, pp. 156-169, 2001. 
[24] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A First Step towards 
Automated Detection of Buffer Overrun Vulnerabilities,” Network and Distributed 
System Security Symposium, Feb. 2000. 
[25] C. F. Webb, “Subroutine Call/Return Stack,” IBM Technical Disclosure 
Bulletin, 30(11), April 1988. 


