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�e ENMTools software package was introduced in 2008 as a platform for making 
measurements on environmental niche models (ENMs, frequently referred to as spe-
cies distribution models or SDMs), and for using those measurements in the context 
of newly developed Monte Carlo tests to evaluate hypotheses regarding niche evo-
lution. Additional functionality was later added for model selection and simulation 
from ENMs, and the software package has been quite widely used. ENMTools was 
initially implemented as a Perl script, which was also compiled into an executable �le 
for various platforms. However, the package had a number of signi�cant limitations; 
it was only designed to �t models using Maxent, it relied on a speci�c Perl distribu-
tion to function, and its internal structure made it di�cult to maintain and expand. 
Subsequently, the R programming language became the platform of choice for most 
ENM studies, making ENMTools less usable for many practitioners. Here we intro-
duce a new R version of ENMTools that implements much of the functionality of its 
predecessor as well as numerous additions that simplify the construction, comparison 
and evaluation of niche models. �ese additions include new metrics for model �t, 
methods of measuring ENM overlap, and methods for testing evolutionary hypoth-
eses. �e new version of ENMTools is also designed to work within the expanding 
universe of R tools for ecological biogeography, and as such includes greatly simpli�ed 

interfaces for analyses from several other R packages.
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Introduction

Here we describe the new ENMTools R package ver. 1.0, 
which reproduces the core functionality of the original 
ENMTools (Warren  et  al. 2010), but adds signi�cant new 
functionality. It interfaces with many more modeling algo-
rithms, performs several new statistical tests, and provides a 
uni�ed interface for many di�erent model types with auto-
matic data processing, model construction, model evaluation 
and visualization. It provides new data structures designed 
speci�cally to simplify the addition of new modeling algo-
rithms, and provides streamlined interfaces for some exist-
ing R packages including ecospat (Di Cola et al. 2017), vip 
(Greenwell and Boehmke 2020), CalibratR (Schwarz and 
Heider 2019) and phyloclim (Heibl et al. 2018).

Functionality

Species and clade objects

One of ENMTools’ primary functions is to test hypotheses 
about similarity between environmental niche estimates for 
groups of organisms. To simplify this process, we have cre-
ated data structures that contain the information needed to 
build an ENM for a species. �e �rst of these structures is 
an enmtools.species object, which contains a species name, 
species occurrence data and optional range data and back-
ground points. �ey are created by using the enmtools.species 
function, and formatting is checked using the check.species 
function. An enmtools.clade object contains a list of enmtools.
species objects and a phylogeny imported with the R pack-
age ape (Paradis and Schliep 2018). �ese objects are created 
using the enmtools.clade function, and can be checked for for-
matting by using the check.clade function.

Building and refining niche and distribution models

�e use of enmtools.species objects permits ENMTools to 
implement a uniform interface for many of the most popular 
ENM algorithms, and allows for detailed informative visual-
izations and model validation tests with minimal additional 
user input. For example, the construction of a generalized 
additive model (GAM) for species myspecies using environ-
mental rasters stored in a stack called env requires only one 
command:

enmtools.gam myspecies, env)(   

�is single command extracts and formats the environ-
mental data, constructs a GAM, projects it across the study 
area, and evaluates model �t to training data. It returns an 
enmtools.model object that contains a suitability raster, plots 
of response curves for environmental variables, and objects 
of class evaluate from the R package dismo (Hijmans et al. 
2017). �ese evaluate objects contain a number of widely 
used metrics for measuring discrimination accuracy including 

AUC, kappa and summary statistics from a confusion matrix 
that can be used to calculate many other discrimination sta-
tistics (Hijmans et al. 2017). Providing additional arguments 
activates extended functionality including subsampling data 
sets for model evaluation (random or spatially structured), 
Monte Carlo tests to construct null distributions for model 
signi�cance as in Raes and ter Steege (2007), and manually 
providing model formulas for algorithms that accept them. 
Example outputs are shown in Fig. 1. Converting this analysis 
to use another algorithm is simply a matter of changing the 
function name; the remaining syntax is identical. Currently 
implemented algorithms include Bioclim, Domain, maxi-
mum entropy (using dismo’s interface for the standalone 
Maxent software), generalized additive models, generalized 
linear models, Poisson point process models and random for-
ests via both randomForest and ranger R packages (Nix and 
Busby 1986, Carpenter et al. 1993, Wood 2001, Liaw et al. 
2002, Phillips et al. 2006, Renner and Renner 2015, Wright 
and Ziegler 2015, Hijmans et al. 2017). Although this imple-
mentation allows easy access to all of these algorithms using 
default settings, all user-facing options from the underlying 
modeling algorithms may also be included as arguments to 
the ENMTools modeling functions, allowing full control 
over the modeling process while minimizing many of the 
repetitive steps that typically accompany ENM/SDM con-
struction in R. In addition, we note that models for multiple 
species can be generated by using the lapply function on a 
list of enmtools.model objects (for details <https://enmtools.
blogspot.com/2019/01/fun-fact-you-can-run-whole-bunch-
of.html>).

Measures of �t o�ered by ENMTools include traditional 
measures of discrimination accuracy on training and test 
occurrences in both geographic space. ENMTools also intro-
duces methods for measuring discrimination accuracy in an 
N-dimensional environment space. �is method evaluates 
model performance using latin hypercube sampling of all 
environmental conditions within the minima and maxima 
for each predictor in the training region, in a manner similar 
to the measures of niche breadth and overlap developed in 
Warren et al. (2019). ENMTools also automatically generates 
plots of response curves, which show the marginal estimate 
of habitat suitability in the context of the frequency of occur-
rence of di�erent environmental conditions in the occurrence 
data and background points. Further visualization of model 
predictions can be done in 2D environmental space using 
any pair of layers from the predictor raster stack (Fig. 1D–E).

ENMTools provides additional support for model re�ne-
ment by implementing a simpli�ed interface for variable selec-
tion using the vip package (Greenwell and Boehmke 2020) 
and visualization of correlations between predictors (Fig. 2). 
Two visualizations are available: a cluster plot, which does mul-
tidimensional scaling (MDS) on the correlation matrix and 
then plots the results in a two dimensional space so that more 
correlated predictors are closer to each other (Fig. 2B), and a 
heatmap, where colors represent the Pearson correlation coef-
�cient between predictors (Fig. 2C). ENMTools also provides 
methods to measure model calibration using continuous Boyce 
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Figure 1. Sample model outputs from an enmtools.model object. Panel (a) shows a screen capture of an interactive plot that can be called on 
any enmtools.model object using the interactive.plot function. �ese visualizations can be panned and zoomed, with various layers being 
turned on and o� to facilitate model and data exploration. Panel (b) shows the partial output of a randomization test based on Raes and ter 
Steege (2007), indicating that the predictive power of the model far exceeds that expected under the null hypothesis. Response curves (panel 
c) are presented in the context of the density distribution of each environmental variable in the species’ occurrences as well as in the back-
ground data. Panels (d) and (e) show bivariate heat maps depicting the same information. Occurrence data points are represented by white 
points.
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index (Hirzel et al. 2006) as well as expected and maximum 
calibration error, and allows recalibration via the CalibratR, 
caret and ecospat packages, along with automated conversion 
of recalibrated models to suitability rasters (Kuhn 2008, Di 
Cola et al. 2017, Schwarz and Heider 2019). We note here that 
expected and maximum calibration error are highly sensitive to 
prevalence, and should be used with caution.

Metrics of ENM breadth and overlap

�e initial version of ENMTools (Warren et al. 2010) intro-
duced metrics of niche breadth and niche overlap on ENMs. 
Breadth metrics (B1 and B2, Levins 1968) measure the uni-
formity of the geographic distribution of suitability scores for 
a model, while niche overlap metrics (D, Schoener 1968; I, 
Warren et al. 2008) measure the similarity of the distribution 
of suitable habitat for a pair of models. �e new ENMTools 

adds the use of the rank correlation coe�cient rho (Spearman 
1904) to measure niche overlap from ENMs. �is addition 
is intended to supplement, rather than replace, the existing 
metrics and the choice of metric is intended to be driven by 
the goals of a given study. D and I will emphasize the poten-
tial for a pair of species (or lineages) to interact in a given 
geographic space, while rho will emphasize di�erences in the 
estimated physiological response to the predictor variables. 
Statistically, this is due to the fact D and I measure the simi-
larity in the numerical value of suitability in a given set of 
conditions, while rho emphasizes the direction of response 
to the environmental gradient (for details <https://enmtools.
blogspot.com/2018/10/why-add-correlations-for-suitability.
html>). �e new ENMTools further extends these metrics 
by allowing users to measure them in the N-dimensional 
environment space de�ned by the predictors used in model 
construction (Warren et al. 2019).

Figure 2. Variable selection and model recalibration in ENMTools. ENMTools implements a simpli�ed interface for conducting tests of 
variable importance using several di�erent methods, and plotting those results (panel a) using the enmtools.vip function. In order to explore 
multicollinearity of predictors, the raster.cor.plot function also provides visualizations of correlation matrices using MDS scaling to group 
correlated variables as well as pairwise heatmaps (panels b–c). Panel (d) shows the output of the enmtools.calibrate function, which allows 
users to measure model calibration and recalibrate models using a wide array of di�erent methods.
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Hypothesis testing for species pairs

�e primary purpose of the ENMTools R package is, as with 
previous versions, to test hypotheses regarding the evolution 
of di�erences between species, populations and other groups 
of organisms using ENMs. Many of these tests are conducted 
by comparing the overlap between empirical species distri-
bution models to a null distribution. �ese distributions 
are estimated using Monte Carlo methods, in which species 
occurrences are chosen randomly in a manner consistent 
with the chosen null hypothesis. While older versions only 
implemented these tests using Maxent models, the new R 
version allows users to conduct tests using any method that 
has an accompanying ENMTools modeling function (above).  
A brief description of each test follows.

Identity test

�e identity (also called equivalency) test was �rst devel-
oped in Warren  et  al. (2008) to address whether a pair of 
closely related species are e�ectively identical in their real-
ized environmental distributions. In this test, models are 
built using the empirical data for each species, and overlap is 
measured between them. �e null distribution is constructed 
by repeatedly randomizing the group identity (e.g. species or 
lineage) of each data point, keeping the sample size for each 
group consistent with the empirical data. Models are built 
for each replicate, and overlap between them is measured. 
�e distribution of overlaps constructed in this way re�ects 
the expected similarity between groups if their environmen-
tal distributions represent repeated draws from the same 
underlying distribution. By comparing the empirical value 
to this distribution (Fig. 3), we can reject (or fail to reject) 
this hypothesis at a given level of con�dence (e.g. p < 0.05).

Background test

In many cases, groups that are partially or fully allopatric will 
have di�erent suites of environments available to them. As 
such they will often be found to have di�erent environmental 
distributions for reasons that may not re�ect any underlying 
divergence in ecological tolerances or preferences. To correct 
for the di�erential availability of habitat for allopatric groups, 
Warren  et  al. (2008) developed the ‘background test’, also 
known as the ‘similarity test’. �is method is broadly similar 
to the identity test, but the null distribution is constructed 
by building ENMs using randomly chosen points from the 
broad region where each group lives, rather than points 
where the species has actually been detected. �e ENMs thus 
constructed represent the distributions of available habitat in 
each geographic region, rather than the environmental associ-
ations of either group. �e null distribution therefore re�ects 
the expected similarity between groups based on the available 
environments, and rejecting the null hypothesis therefore 
implies that species are more (or less) similar in their envi-
ronmental distributions than expected given their respective 
ranges. As originally implemented, this test was conducted 
by randomizing occurrences for each group one at a time; the 
null distribution was constructed by comparing randomized 

points from one species’ range to the empirical points for the 
other species’ range. �e ENMTools R package allows users 
to choose between this method (an ‘asymmetric’ background 
test) and one in which both groups’ points are chosen ran-
domly in each replicate (a ‘symmetric’ background test). �is 
latter approach mirrors one implemented for kernel density 
niche estimates in ecospat (Di Cola et al. 2017).

Ecospat tests

Broennimann et al. (2012) developed methods for construct-
ing kernel density estimates of species’ environmental distri-
butions and the distributions of available environments to 
quantify niche overlap in a two-dimensional environment 
space, and used these to conduct hypothesis tests similar to 
those implemented in ENMTools (Warren et al. 2010). �e 
R version of ENMTools provides a greatly simpli�ed user 
interface for ecospat hypothesis tests via the use of enmtools.
species objects. �is includes automatically conducting prin-
cipal components analysis when more than two predictor lay-
ers are provided, in order to reduce the predictors to a two 
dimensional environment space. �e new ENMTools also 
implements identity and background tests in N-dimensional 
environment space without PCA using the new environment 
space overlap metrics introduced in Warren et al. (2019).

Rangebreak tests

Glor and Warren (2011) introduced Monte Carlo tests using 
ENMs to explore the environmental and historical signi�-
cance of biogeographic boundaries. In these tests, the overlap 
between the ENMs for two allopatric groups is compared to 
a null distribution that is constructed by randomizing the 
location and shape of the biogeographic boundary that sepa-
rates them. �e null distribution in this case represents the 
expected overlap between a pair of groups (typically species) 
that are allopatric for reasons uncorrelated with the distribu-
tion of environmental variables in the study region. Rejection 
of this null supports the alternative hypothesis that the loca-
tion of the boundary between the species’ distributions in 
the empirical data partitions the two sets of occurrences into 
environmental distributions that are unusually disjunct.

MOSES tests

Finally, ENMTools provides basic functionality for a new 
variety of test that goes by the acronym MOSES (MOdel 
Selection for Ecological Similarity). �is method represents 
a parametric approach to the question of similarity between 
species. Using the Akaike information criterion (Burnham 
and Anderson 2002), MOSES treats the question of ecologi-
cal similarity as a model-partitioning problem. By comparing 
the combined AIC of models built for two lineages separately 
to a model built for the combined presence/background data 
for both lineages, MOSES e�ectively determines whether the 
two lineages are su�ciently di�erent in their environmental 
associations to justify the additional parameters needed to 
estimate separate models for each of them. �is method is 
currently in development and is intended only for experimen-
tal use; simulation studies to test its e�cacy are underway.
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Hypothesis testing for clades

Measurements of similarity between species (e.g. range overlap) 
are di�cult to analyze in the context of traditional phyloge-
netic comparative methods, as measurements are made across 
nodes of the phylogeny (i.e. comparisons between two or more 

species) rather than at the tips. Age-overlap correlation (AOC) 
is a generalization of age-range correlation methods (ARC), 
which allow the analysis of overlap- and distance-style metrics 
in a phylogenetic context (Barraclough et al. 2000, Fitzpatrick 
and Turelli 2006, Grossenbacher and Whittall 2011, Cardillo 
and Warren 2016). In an AOC analysis, the average overlap 

Figure 3. Sample output for identity test for all three implemented niche overlap metrics. Histograms represent the distribution of overlaps 
for each metric from the null distribution, while the dashed vertical line represents the overlap between the models built using the empirical 
data.
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across each internal node is calculated using an algorithm that 
accounts for tree topology, and this average overlap is regressed 
against node age. As overlap metrics are often bounded [0,1] 
and any given species’ range will be used to calculate average 
overlaps across multiple internal nodes, residuals from these 

regressions are not expected to be independent or normally dis-
tributed. Statistical signi�cance is therefore estimated by using 
a Monte Carlo test. Each replicate randomizes the identity of 
the tips of the phylogeny, recalculates overlap at each internal 
node, and performs a linear regression. �e slope and inter-
cept from the regression on empirical data are compared to 
the null distribution of slopes and intercepts from the Monte 
Carlo replicates, allowing users to test 1) whether there is more 
or less overlap between recently diverged species than expected 
and 2) whether overlap between tips increases or decreases over 
evolutionary time.

ENMTools streamlines age-overlap correlation analyses, 
allowing users to simply use the function enmtools.aoc on an 
enmtools.clade object (Fig. 4). For range overlap, point pat-
tern similarity and ENM overlap in both geographic and 
environment space, ENMTools can automatically calculate 
overlaps, including automated model construction for mea-
surements that require ENMs. Alternatively, users can sup-
ply their own overlap matrix containing any measurement of 
ecological similarity.

Training resources

ENMTools contains an extensive vignette introducing much 
of the core functionality of the package. Additionally, a set 
of video introductions to many of the concepts and func-
tions implemented in ENMTools are available at <https://
www.youtube.com/playlist?list=PLw-jIvFxpgIBgNzIbfh52-
TQyTEbcSvSH> and in-depth training scripts are available 
at <https://github.com/danlwarren/ENMTools-Tutorials>. 
�ese materials are continuously being updated and new 
content added as new functionality is implemented.

Conclusions

�is new version of ENMTools provides a toolkit of both 
novel and now-standard methods that will be accessible to 
end users at all skill levels, thereby contributing to further 
development of comparative ecological biogeography. �is 
release also signals the coming end of support for older ver-
sions of ENMTools (Warren et al. 2010), which have become 
increasingly di�cult to maintain and troubleshoot. Further, 
we hope that the deployment of the ENMTools R package on 
GitHub helps to encourage community contributions to this 
toolkit, and that the species- and clade-oriented approach 
developed here serves to encourage further e�orts to make 
sophisticated biogeographic analyses more widely accessible.

To cite ENMTools 1.0 or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘version 0’: Warren, D. L. et al. 2020. 
ENMTools 1.0: an R package for comparative ecological bio-
geography. – Ecography 43: 000–000 (ver. 0).
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Figure 4. Sample output for age-overlap correlation test. �e top 
panel shows the distribution of topologically averaged overlaps in 
the empirical data (black line and points), as well as the distribution 
of linear regressions from the Monte Carlo replicates (grey lines). 
�e middle and bottom panels show the distribution of slopes and 
intercepts separately, with pink histograms representing the values 
from Monte Carlo replicates and vertical dashed lines representing 
the values from the empirical data.
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