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Abstract 

Continental flood basalts (CFBs) represent large-scale melting events in the Earth’s upper mantle 

and show considerable geochemical heterogeneity that is typically linked to substantial 

contribution from underlying continental lithosphere. Large-scale partial melting of the cold 

subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by 

traditional binary mixing or assimilation-fractional crystallization models are difficult to 

reconcile with the thermal and compositional characteristics of continental lithosphere, however. 

The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the 

Jurassic Karoo large igneous province and provide a prime locality to quantify mass 

contributions of lithospheric and sublithospheric sources for two reasons: 1) recently discovered 

CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to 

constrain asthenospheric parental melt compositions, and 2) the well-exposed basaltic lavas have 

been divided into four different geochemical magma types that exhibit considerable trace 

element and radiogenic isotope heterogeneity (e.g., initial εNd from -16 to +2 at 180 Ma). We 

simulate the geochemical evolution of Vestfjella CFBs using 1) energy-constrained assimilation-

fractional crystallization equations that account for heating and partial melting of crustal 

wallrock and 2) assimilation-fractional crystallization equations for lithospheric mantle 

contamination by using highly alkaline continental volcanic rocks (i.e. partial melts of mantle 

lithosphere) as contaminants. Calculations indicate that the different magma types can be 

produced by just minor (1–15 wt. %) contamination of asthenospheric parental magmas by melts 

from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as 

a CFB source component or contaminant may have been overestimated in many cases. Thus, 

CFBs may represent major juvenile crustal growth events rather than just recycling of old 

lithospheric materials. 
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Introduction 
 

The massive outpourings of flood basalts represent very large-scale planetary melting events 

often attributed to thermal anomalies in the convective upper mantle. They are frequently linked 

to the opening of new ocean basins and have contributed to global climate change and 

extinctions of terrestrial and marine life (e.g., Black et al. 2014; Ganino and Arndt 2009).  

The origin of continental flood basalt (CFB) provinces is controversial. Most CFBs do 

not represent primary melts, but have differentiated in large magma chambers within the 

lithosphere (e.g., Cox 1980; Farnetani et al. 1996). They generally exhibit strong geochemical 

affinities to continental rock types and many studies favor significant contributions from 

geochemically enriched subcontinental lithospheric mantle (SCLM; e.g., Lightfoot et al. 1993; 

Gibson et al. 1995; Jourdan et al. 2007a; Xu et al. 2007). In addition, the widely-used 

assimilation-fractional crystallization (AFC; e.g., DePaolo 1981b) models typically require high 

degrees (up to 60 wt. %) of (subsequent) crustal contamination to explain the most extreme 

enrichments in incompatible trace element and isotopic compositions (e.g., Carlson et al. 1981; 

Arndt et al. 1993; Molzahn et al. 1996; Ewart et al. 1998; Larsen and Pedersen 2009). Both of 

these scenarios are problematic, however. First, the capability of the cold, dry, and infertile 

(dominantly harzburgitic) cratonic SCLM to produce large quantities of melt is questionable 

(e.g., Arndt and Christensen 1992; Menzies 1992; Arndt et al. 1993) and would require that the 

SCLM is extensively hydrated (Gallagher and Hawkesworth 1992) and/or metasomatized (Harry 

and Leeman 1995). Second, high amounts of contamination with Si-rich crustal materials would 

result in silica-rich magma compositions not shown by the CFBs, and would require amounts of 

latent heat energy much greater than what is likely to be available (Spera and Bohrson 2001). 

The parental melt compositions in many of the lithosphere-dominated CFB models are 

not well constrained. In addition, no allowance is generally made for progressive partial melting 

of crustal wallrock, despite excellent documentation of partial melting processes at the contacts 

of mafic intrusive rocks (e.g., Johnson et al. 2003; Hersum et al. 2007). Instead, most crustal 

contamination models mix a compositionally fixed bulk contaminant into a fractionating magma. 

These limitations may significantly impact the mass balance of lithospheric and sublithospheric 

sources in the generation of CFBs.  

Energy-constrained AFC (EC-AFC) equations that account for energy and mass 

exchange between magma and wallrock (Bohrson and Spera 2001, 2003; Spera and Bohrson 

2001, 2002, 2004), permit quantitative evaluation of the role of continental crust in CFB magma 

genesis. They account for energy and mass exchange in a system, in which a crystallizing 

magma body heats and partially melts crustal wallrock. In the case of contamination with SCLM, 

the poor knowledge of its bulk composition and thermodynamic parameters (e.g., solidus 

temperature) limits the applicability of EC-AFC equations. Partial melting of fertile SCLM can 

be mimicked, however, by using alkaline and ultrapotassic rocks (i.e. low-degree melts of 

metasomatized SCLM) as contaminants using traditional binary mixing or AFC equations (e.g., 

Ellam and Cox 1991; Hergt et al. 1991; Riley et al., 2005; Jourdan et al. 2007a). 

The Karoo CFBs (Fig. 1) exposed at Vestfjella mountain range in western Dronning 

Maud Land, Antarctica (Fig. 2a), are ideal candidates for contamination modeling for two 

reasons. First, a group of basaltic dikes described from the area have Sr, Nd, Pb, and Os isotopic 

compositions akin to those of Southwest Indian Ridge mid-ocean ridge basalts (SWIR MORBs), 

and have been derived from depleted mantle (DM) sources at high pressures beneath the 
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Gondwanan lithosphere (Fig. 3; Luttinen and Furnes 2000; Heinonen et al. 2010; Luttinen et al. 

2015). These dikes are rare but provide invaluable insight into the compositions of CFB magmas 

not influenced by the lithosphere, and therefore provide compositional estimates of 

uncontaminated, asthenosphere-derived parental magmas. Second, the detailed mapping of the 

well-exposed Vestfjella CFBs (~flow-by-flow sampling of ~1 km thick succession) have 

revealed four distinct CFB magma types that show a wide range of lithosphere-affinity trace 

element and isotopic compositions (εNd(t)
1 from -16 to +2; Luttinen et al. 1998; Luttinen and 

Furnes 2000) nearly representing the whole degree of variation shown by the Karoo CFBs (Figs. 

3b and 4). Previously presented AFC models implied that large crustal contributions (>20 wt. %) 

are needed to explain the most enriched geochemical signatures, and favored distinct parental 

magmas and mantle sources for the dominant magma types (Luttinen et al. 1998; Luttinen and 

Furnes 2000). 

 

 
 
Fig. 1. Reconstruction of Africa and Antarctica at 180 Ma showing the present-day distribution of Karoo 
CFBs and related intrusive rocks (Luttinen and Siivola 1997; Jourdan et al. 2007b) and the 
Archean/Paleoproterozoic core complex of Kalahari (Jacobs et al. 2008). The line segment x–x’ marks 
the approximate location of the schematic cross-section presented in Fig. 2b. Division into rift- and 
plateau-assemblage CFBs after Luttinen et al. (2015). 

 

Our aim is to re-examine whether the exceptionally wide range of compositions described 

from enriched Karoo CFBs of Vestfjella can be explained by diversification of broadly uniform 

DM-sourced primary magmas due to contamination. We tackle this issue using quantitative EC-

AFC and AFC modeling. The compositionally variable crustal rocks of the area and SCLM-

                                                 
1 Here, and hereafter, εNd(t) refers to the value calculated at 180 Ma, unless otherwise mentioned 
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derived alkaline and ultrapotassic rocks are used as contaminants. Our findings have important 

implications on the generation of CFBs and their geochemical characteristics. 

 

 
 
Fig. 2. (a) Distribution of Jurassic CFBs in western Dronning Maud Land. Lithospheric boundary 
reconstructed after Corner (1994). H.U.S. = H.U. Sverdrupfjella. (b) A schematic cross-section across line 
segment x–x’ (Fig. 1 and 2a) during Karoo magmatism. AUC = Archean upper crust; ALC = Archean 
lower crust; PUC = Proterozoic upper crust; PLC = Proterozoic lower crust; SCLM = Subcontinental 
lithospheric mantle with metasomatized (veined) portions. Permian sedimentary rocks are known to exist 
between the Karoo CFBs and the Precambrian basement, but they are not shown in the cross-section. 

 

Geological setting 
 

The Karoo CFBs were generated during the initial stages of the breakup of the Gondwana 

supercontinent at ~190–180 Ma ago (e.g., Jourdan et al. 2005; Luttinen et al. 2015). The majority 

of the CFBs erupted in the continental interior of present-day southern Africa, but their remnants 

are also found in western Dronning Maud Land, Antarctica (Fig. 1).  

The Karoo CFBs have highly heterogeneous trace element and isotopic compositions 

(e.g., εNd(t) from -16 to +3; Fig. 3b) generally ascribed to significant contribution from the 

underlying Precambrian basement and SCLM (e.g., Ellam 2006; Ellam and Cox 1989, 1991; 



 
Heinonen, J.S., Luttinen, A.V., Bohrson, W.A. 2016. Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric 

contamination of Karoo lavas from Antarctica. Contributions to Mineralogy and Petrology 171:9. http://dx.doi.org/10.1007/s00410-015-1214-8 

(Author’s postprint) 
 

 

Harris et al. 1990; Hawkesworth et al. 1984; Jourdan et al. 2007a; Luttinen and Furnes 2000; 

Luttinen et al. 1998, Sweeney et al. 1991, 1994; Neumann et al. 2011). They have traditionally 

been divided into low-Ti and high-Ti provinces (e.g., Cox 1988; Sweeney et al. 1994), but the 

geochemical and geochronological data are more compatible with a division into 1) ~182 Ma 

plateau-assemblage CFBs composed of relatively monotonous and widespread low-Ti tholeiites 

and 2) ~190–174 Ma rift-assemblage CFBs composed of diverse low-Ti and high-Ti basalts and 

picrites sandwiched between nephelinites and felsic volcanic rocks in the main triple rift (Fig. 1; 

Luttinen et al. 2010, 2015). Comparison of incompatible element and isotopic compositions (Fig 

3b) of these two sub-provinces indicates development in distinct magmatic systems (Luttinen et 

al. 2010, 2015). 

 

 
Fig. 3. a) Primitive-mantle-normalized (Sun and McDonough 1989) incompatible trace element patterns 
shown for the uncontaminated MORB-like Low-Nb dikes (n = 9; highlighting sample P27-AVL that is used 
to reconstruct the parental melt compositions; Luttinen and Furnes 2000; Heinonen et al. 2010) and 
average N-MORB (Sun and McDonough 1989). Note the effect of residual garnet (present at high 
pressures beneath the thick continental lithosphere) in the mantle source, responsible for the relatively 
lower Y, Yb, and Lu concentrations in the Low-Nb dikes relative to average MORB. b) Initial Sr and Nd 
isotopic characteristics of the Vestfjella lavas and Low-Nb dikes (Luttinen et al. 1998, 2015; Luttinen and 
Furnes 2000). “Lithosphere-signatured” Karoo rift- and plateau-assemblage CFBs (Hawkesworth et al. 
1984; Ellam and Cox 1989, 1991; Harris et al. 1990; Sweeney et al. 1994; Riley et al. 2005, 2006; 
Jourdan et al. 2007a; Luttinen et al. 2010; Neumann et al. 2011), SWIR MORB (le Roex et al. 1983, 
1992; Mahoney et al. 1992), and depleted MORB mantle (DMM; Workman and Hart 2005) also 
presented. The isotopic compositions of SWIR MORB sources and DMM were back-calculated at 180 Ma 
using DMM isotopic ratios after Workman and Hart (2005). Tentative lithospheric contamination trends 
after Heinonen et al. (2010).  
 

The Antarctic Karoo CFBs are found in Vestfjella, Heimefrontfjella, and Kirwanveggen 

mountain ranges of western Dronning Maud Land, Antarctica (Fig. 2a). The CFBs are crosscut 

by related intrusive rocks that are additionally found crosscutting the Precambrian basement at 

Ahlmannryggen, Borgmassivet, H.U. Sverdrupfjella, and Mannefallknausane (Fig. 2a). The 

CFBs are underlain by Permian sedimentary rocks (e.g., Lindström 1995) and a heterogeneous 

Precambrian basement complex, which consists of two major units (Fig. 2): the Archean 

Grunehogna craton and the Mesoproterozoic Maud Belt that are related to the Kaapvaal craton 
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and the Namaqua-Natal metamorphic belts in southern Africa, respectively (Jacobs et al. 1993, 

1998, 2003, 2008; Groenewald et al. 1995). The ≥ 3 Ga Grunehogna craton is exposed only in 

Annandagstoppane (Marschall et al. 2010) and is largely overlain by ~1100 Ma Ritscherflya 

sedimentary-volcanogenic rocks and intrusive ~1000 Ma Borgmassivet dikes and sills (e.g., 

Moyes et al. 1995). The Maud Belt is predominantly composed of high-grade metamorphic 

gneisses formed in the reworking of volcanic arc successions during the Grenvillean age orogeny 

~1100 Ma ago (e.g., Groenewald et al. 1995; Grosch et al. 2007; Jacobs et al. 2003). Subsequent 

reworking during the Pan-African orogeny at ~600–500 Ma resulted in variable degree of 

magmatic and metamorphic overprinting of the Maud Belt (Jacobs et al. 1998, 2003). 

 

 
 
Fig. 4. Primitive-mantle-normalized (Sun and McDonough 1989) incompatible trace element patterns and 
Nd isotopic compositions shown for the different Vestfjella CT magma types (Luttinen and Siivola 1997; 
Luttinen et al. 1998; Luttinen and Furnes 2000).  
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Vestfjella CFBs 

 

The Vestfjella mountain range is composed of a ~130 km long NE-SW trending discontinuous 

chain of nunataks close to the Weddell Sea shoreline at western Dronning Maud Land (Fig. 2a). 

The nunataks are almost exclusively composed of tholeiitic rift-assemblage Karoo CFBs that 

have a stratigraphic thickness in excess of 1 km (e.g., Furnes et al. 1987; Luttinen and Furnes 

2000). On the basis of U-Pb and 40Ar/39Ar dating of the crosscutting dikes, the CFBs are older 

than 182 Ma, possibly >187 Ma, i.e. they may represent the earliest eruptions related to the 

emplacement of the Karoo province (Luttinen et al. 2015). The base of the CFB succession is not 

exposed at Vestfjella, but the lithospheric boundary between Maud Belt and Grunehogna craton 

has been interpreted to underlie the study area (Fig. 2; Corner 1994).   

The Vestfjella CFBs show a wide range of trace element and Nd isotopic variation (εNd(t) 

from -16 to +2) that is nearly equal to that of the Karoo CFBs as a whole (Figs. 3b and 4). On the 

basis of Ti-Zr-P systematics and Nd isotopic composition, they can be divided into four chemical 

types (CT) that represent geochemically distinct magma types: high-εNd CT1, low-εNd CT1, CT2, 

and CT3 (Luttinen and Siivola 1997; Luttinen et al. 1998; Luttinen and Furnes 2000).  

CT1 lavas dominate the northern parts of Vestfjella, show low Ti/Zr (< 80) and Ti/P (≤ 
13): the high-εNd CT1 lavas (εNd(t) from -4 to -2) exhibit low Th/Ta (1–2), whereas the low-εNd 

CT1 lavas (εNd(t) from -16 to -11) exhibit high Th/Ta (3–7). CT2 lavas, a volumetrically minor 

component mainly found in northern Vestfjella, show high Ti/Zr (80–120), Ti/P (13–20) and 

Th/Ta (3–5), and εNd(t) from -7 to 0. CT3 lavas dominate southern Vestfjella and exhibit high 

Ti/Zr (80–180), low Ti/P (7–14) and Th/Ta (1–3), and εNd(t) from -2 to +2. These and other 

geochemical differences between the different magma types are readily illustrated in Figs. 3b and 

4. 

The intrusive rocks of Vestfjella include gabbros (Vuori and Luttinen 2003), ferropicrite 

dikes (Heinonen and Luttinen 2008, 2010; Heinonen et al. 2010), and lamproite dikes (Luttinen 

et al. 2002). Most of the intrusive rocks, however, are tholeiitic dikes that exhibit large 

geochemical variations, from incompatible element-enriched CT1-type (εNd(t) = -18) to dikes 

relatively depleted in the most incompatible elements (the so-called “Low-Nb” magma type; 

εNd(t) from +7 to +8; Fig. 3) (Furnes et al. 1982; Luttinen et al. 1998, 2015; Luttinen and Furnes 

2000). The MORB-like Low-Nb magma type is of fundamental importance as it has been 

interpreted to represent high-pressure melts from depleted sublithospheric mantle sources akin to 

those that produce the modern SWIR MORBs (Heinonen et al. 2010; Luttinen et al. 2015) and it 

seems to correspond to a depleted end-member composition of Karoo CFBs in Sr-Nd isotopic 

space (Fig. 3b). 

Geochemical studies have ascribed the general major and trace element variability in the 

Vestfjella CFBs to fractional crystallization process and concluded that the origin of the 

distinctive magma types required either contamination, source heterogeneity, or both (Furnes et 

al. 1987; Luttinen et al. 1998; Luttinen and Furnes 2000). Luttinen and Furnes (2000) favored 

separate and variably enriched mantle sources for the lavas, largely based on the excessive 

degrees of crustal contamination (>20 wt. %) inferred from AFC models. Subsequent 

accumulation of isotopic data (Luttinen et al. 2010, 2015) has demonstrated that the geochemical 

trends of the Antarctic Karoo lavas and related dikes also tend to converge toward a DM-like 

composition, which may suggest a common source end-member.  
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Constraining the model parameters 
 

Our EC-AFC and AFC modeling focused on a wide selection of incompatible trace elements 

(Th, Nb, Ta, Ce, P, Nd, Zr, Hf, Sm, Eu, Ti, Gd, Tb, Y, Yb, and Lu) and Nd isotopic 

compositions that are not easily modified by secondary alteration, the evidence of which has 

been observed in the Vestfjella CFBs (Furnes et al. 1987; Luttinen and Furnes 2000). They also 

suffice to define the characteristic features of the magma types. The compositions, 

thermodynamic properties, and bulk partition coefficients (D) for the parental magma and 

contaminants are discussed below and presented in Tables 1–2.  

 

Constraining the parental melt compositions 

 

We used the whole-rock geochemical data of the uncontaminated MORB-affinity Low-Nb dikes 

(Heinonen et al. 2010; Luttinen et al. 2015) to constrain the parental melt compositions. The 

dikes do not likely represent parental melts sensu stricto, however, as they mostly have basaltic 

MgO contents (7–12 wt. %; one olivine cumulate sample with MgO = 20 wt. %). Furthermore, 

they show higher (Sm/Yb)N (2.3–2.6) than the least enriched (but still lithosphere-signatured) 

Vestfjella lavas (1.9; Fig. 5). We ascribe the higher Sm/Yb of the crosscutting dikes to relatively 

lower degrees of partial mantle melting after the voluminous main flood basalt phase (see 

Luttinen et al. 2015). 

 

 
 

Fig. 5. Chondrite-normalized (McDonough and Sun 1995) Sm/Yb vs. Ce/Sm for the Low-Nb dikes, 
different Vestfjella CT magma types, and parental melts for the Low-Nb dikes (PMLN) and CT lavas (PMCT; 
reconstruction in Table 1 and Fig. 6).  

 

First, a parental major and trace element melt composition was calculated for the Low-Nb 

dikes (PMLN) by adding liquidus olivine to the most isotopically depleted Low-Nb dike sample 

(P27-AVL; εNd(t) = +7.7) until the calculated melt reached equilibrium with depleted mantle 

olivine (Fo90; Workman and Hart 2005). Fractionation of olivine does not have a significant 

effect on incompatible trace element ratios and PMLN has (Sm/Yb)N of 2.4 similar to those of 

Low-Nb dikes (Fig. 5). Degree of melting (especially in the presence of garnet), on the other 
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hand, has a significant effect on the concentrations of heavy REE in the melt. Because the Low-

Nb dikes likely represent lower degrees of mantle melting than the lavas, as noted above, the 

trace element composition of the parental melt for the lavas (PMCT) was calculated by assuming 

a degree of melting that was twice as high (F = 12 %) as that indicated by rare earth element 

(REE) modeling of the PMLN (F = 6 %; assuming modal batch melting of an E-DMM source; 

Workman and Hart 2005; Table 1; Fig. 6). The reconstructed PMCT has (Sm/Yb)N of 1.7, slightly 

lower than that of the least contaminated lavas, and thus we consider its trace element 

composition to represent a reasonable parental melt composition for the lavas (Fig. 5). We 

emphasize that the degrees of melting (6 and 12 %) are based on simple modal batch melting 

modeling and should thus not be considered as absolute values; they are only used to estimate the 

effect of variable partial melting on the geochemistry of the primary magmas. Thermodynamic 

parameters for the high-degree parental melt were constrained by using major element 

composition of a very Mg-rich CFB-related melt reported by Thompson and Gibson (2000). 

 

Constraining the lithospheric contaminant compositions 

 

Crustal contaminants were chosen to represent the Precambrian basement of southern 

Gondwana in cases where sufficient geochemical data were available. We performed simple 

AFC modeling (not presented here) to test the suitability of the different rock types as 

contaminants for the Vestfjella lavas. The compositions of the best-fit contaminants are listed in 

Table 2 and were chosen based on comparison between the preliminary model results and 

observed trace element characteristics. 

The preliminary upper crust dataset included Archean tonalite–trondhjemite–granodiorite 

(TTG) gneisses and metasedimentary rocks from Africa (Kreissig et al. 2000), Proterozoic 

Ritscherflya metasedimentary rocks (Moyes et al. 1995; Perritt 2001) and Borgmassivet 

intrusions (Riley and Millar 2014) that overlie the Archean craton in western Dronning Maud 

Land, Proterozoic and Paleozoic gneisses related to the Maud Belt (Wareham et al. 1998; Will et 

al. 2010; Grantham et al. 2011), and a global average upper crust composition (Rudnick and Gao 

2003).  

 Comprehensive geochemical data for lower crust of the area are not available, and thus 

our preliminary dataset included the granulites of the Ross Orogen of northern Victoria Land 

(Talarico et al. 1995; Antonini et al. 1999), granulites from the North China Craton that is 

characterized by an Archean core and is lithologically similar to the basement of the study area 

(Yu et al. 2003; Ying et al. 2010; Jiang et al. 2011), and a global average lower crust 

composition (Rudnick and Gao 2003). 

 Local ~160 Ma lamproites from Vestfjella (Luttinen et al. 2002), carbonatites, 

nephelinites, and ijolites related to Kaapvaal SCLM and its surroundings (Harmer et al. 1998; 

Harmer 1999), and average lamproite (Bergman 1987) were selected to represent partial melt 

compositions of the local fertile SCLM for AFC modeling. 
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Table 1 Details of the parental melt modeling 
a) Major and trace element composition for the parental melt of the MORB-like low-Nb dikes 

       
Majors: addition (33 wt. % in total) of equilibrium olivine (Kd(Fe-Mg)ol-liq = 0.35; Fe3+/FeT = 0.1) to sample  

 
P27-AVL (Luttinen and Furnes 2000) in 1 wt.% steps until in equilibrium with MORB source olivine (Fo90; Workman and Hart 2005): 

  

 
SiO2 TiO2 Al2O3 FeOtot MnO MgO CaO Na2O K2O P2O5 

       
PMLN 47.85 1.33 10.56 11.22 0.19 17.63 9.31 1.62 0.17 0.11 [wt. %] 

      
                  
Traces: addition of 33 wt.% of olivine to MORB-like dike sample P27-AVL (Luttinen and Furnes 2000) using Kd compilation after Boudreau (1999): 

 

 
Th Nb Ta La Ce P Nd Zr Hf Sm Eu Ti Gd Tb Y Yb Lu  

Kd 0.0003 0.0010 0.0010 0.0003 0.0003 0.0003 0.0002 0.0010 0.0029 0.0002 0.0002 0.0020 0.0003 0.0005 0.0010 0.0052 0.0085 

PMLN 0.172 2.35 0.127 3.73 9.17 491 7.90 64.5 1.85 2.89 1.07 7970 3.26 0.593 16.5 1.30 0.195 [ppm] 

                 
b) Approximating the degree of partial modal batch melting of the parental melt of Low-Nb dikes on the basis of REE composition (Fig. 6): 

 
E-DMM# source of Workman and Hart (2005): 

           

 
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  
E-DMM 0.253 0.726 

 
0.703 0.273 

  
0.076 

    
0.382 0.060 [ppm] 

 
                 
Bulk partition coefficients for the mantle source (57% olivine, 28% opx, 12% cpx, and 3% garnet) calculated following the compilation of Adam and Green (2006): 

 
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  
D1 0.0049 0.0090 

 
0.0214 0.0412 

  
0.0924 

    
0.2310 0.2543 

  
                 
Best fit to Low-Nb parental melt attained when degree of modal batch melting of the E-DMM source using D1 values is 6% (see Fig. 6): 

 
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  
PMLN 3.73 9.17 

 
7.90 2.89 1.07 3.26 0.593 

    
1.30 0.195 [ppm] 

 
Model 3.92 10.61 

 
8.77 2.77 

  
0.518 

    
1.38 0.201 [ppm] 

 
                 
Inferred bulk partition coefficients for the mantle source of PMLN composed of E-DMM peridotite (Workman and Hart 2005) at F=6%: 

 
Th Nb Ta La Ce P Nd Zr Hf Sm Eu Ti Gd Tb Y Yb Lu  

E-DMM 0.016 0.246 0.016 0.253 0.726 - 0.703 6.09 0.186 0.273 0.108 792 0.397 0.076 3.55 0.382 0.060 [ppm] 

D2 0.0330 0.0477 0.0688 0.0084 0.0204 - 0.0309 0.0365 0.0433 0.0367 0.0433 0.0419 0.0659 0.0726 0.1649 0.2489 0.2627 

                 
c) Major and trace element composition for the CT parental melt (twice the degree of melting (12%) compared to Low-Nb parental melt): 

  
 

Majors: representative CFB-related high-Mg magma (Thompson and Gibson 2000; only used to provide rough estimates for the thermal parameters): 
  

 
SiO2 TiO2 Al2O3 FeOtot MnO MgO CaO Na2O K2O P2O5 

       
 

PMCT 46.30 0.70 9.00 12.00 0.20 24.00 6.50 1.10 0.10 0.10 [wt. %] 
      

 

 
                 

 
Traces: composition of the E-DMM modal batch partial melt at F=12% using D2 values: 

        
 

 

 
Th Nb Ta La Ce P* Nd Zr Hf Sm Eu Ti Gd Tb Y Yb Lu  

PMCT 0.105 1.52 0.088 1.99 5.26 290 4.78 40.0 1.18 1.79 0.683 5049 2.23 0.413 13.4 1.13 0.171 [ppm] 
# E-DMM was chosen instead of average DMM, because some incompatible trace elements (e.g., Th and Ce) are slightly enriched in Low-Nb dikes relative to N-

MORB (Fig. 3). * P assumed to be depleted in PMCT as in PMLN relative to Ce and Nd 
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Table 2 Details of the thermodynamical constraints, contaminant compositions, and bulk partition 
coefficients 

Variable PMCT
(1) Lower Archean SCLM-1(4) SCLM-2(5) 

    crust(2) TTG(3)     

Model - EC-AFC EC-AFC AFC (r=0.07) AFC (r=0.2) 

Magma liquidus T (initial T) [°C] 1500 - - - - 

Assimilant liquidus T [°C] - 1100 1000 - - 

Assimilant initial T [°C] - 800 700 - - 

Solidus T [°C] - 950 850 - - 

Equilibration T [°C] - 1080 980 - - 

Isobaric specific heat [J/kg K] 1650 1388 1370 - - 

Crystallization enthalpy [J/Kg] 450000 - - - - 

Fusion enthalpy [J/Kg] - 350000 270000 - - 

Th [ppm] 0.105 0.11 3.6 46 0.80 

D (Th) 0.0003 0.1/0.5 0.1/0.5 - - 

Nb [ppm] 1.52 11.7 5 95 8.5 

D (Nb) 0.001 0.1/0.5 0.1/0.5 - - 

Ta [ppm] 0.088 0.43 0.3 4.7 0.5 

D (Ta) 0.001 0.1/0.5 0.1/0.5 - - 

Ce [ppm] 5.26 88.73 64 400 45.35 

D (Ce) 0.0003 0.1/0.5 0.1/0.5 - - 

P [ppm] 290 2255 698 3098 4535 

D (P) 0.0003 0.1/0.5 0.1/0.5 - - 

Nd [ppm] 4.78 47.73 22 207 22.97 

D (Nd) 0.0002 0.1/0.5 0.1/0.5 - - 

Zr [ppm] 40 357 132 922 72 

D (Zr) 0.001 0.1/0.5 0.1/0.5 - - 

Hf [ppm] 1.18 8.31 3.04 39 1.57 

D (Hf) 0.0029 0.1/0.5 0.1/0.5 - - 

Sm [ppm] 1.79 9.53 3.52 24 4.09 

D (Sm) 0.0002 0.1/0.5 0.1/0.5 - - 

Eu [ppm] 0.683 2.66 1.01 4.8 1.32 

D (Eu) 0.0002 0.1/0.5 0.1/0.5 - - 

Ti [ppm] 5049 8153 1737 17985 6295 

D (Ti) 0.002 0.1/0.5 0.1/0.5 - - 

Gd [ppm] 2.23 7.39 3.8 13 4.11 

D (Gd) 0.0003 0.1/0.5 0.1/0.5 - - 

Tb [ppm] 0.413 1.02 0.4 1.4 0.56 

D (Tb) 0.0005 0.1/0.5 0.1/0.5 - - 

Y [ppm] 13.4 23.7 10 27 15 

D (Y) 0.001 0.1/0.5 0.1/0.5 - - 

Yb [ppm] 1.13 2.44 0.5 1.7 0.26 

D (Yb) 0.0052 0.1/0.5 0.1/0.5 - - 

Lu [ppm] 0.171 0.36 0.1 0.23 0.04 

D (Lu) 0.0085 0.1/0.5 0.1/0.5 - - 

(143Nd/144Nd)180 Ma
MAX 0.512829 - 0.5109 0.512129* 0.512129* 

(143Nd/144Nd)180 Ma
MIN 0.512829 - 0.51026 0.511326# 0.511326# 



 
Heinonen, J.S., Luttinen, A.V., Bohrson, W.A. 2016. Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric 

contamination of Karoo lavas from Antarctica. Contributions to Mineralogy and Petrology 171:9. http://dx.doi.org/10.1007/s00410-015-1214-8 

(Author’s postprint) 
 

 

(1) Sources for the parental melt (PMCT) parameters: For the estimation of magma liquidus T, see text; Isobaric 

specific heat calculated on the basis of major element composition presented in Table 1 using the partial molar 

isobaric heat capacities listed by Spera and Bohrson (2001); Crystallization enthalpy estimated using equilibrium 

crystallization model for the major element composition presented in Table 1 at 2 kbar (with Cr2O3 = 0.3 wt. %) in 

PELE software (Boudreau 1999). The D values for the fractionation of olivine from the parental magmas are based 

on those used in the PELE modeling software of Boudreau (1999). 
(2) Sources for the lower crust composition: Thermodynamical parameters represent the standard lower crustal values 

of Bohrson and Spera (2001), except for the initial temperatures that represent values compatible with active 

continental rift environment (see Bohrson and Spera 2001; Chapman 1986); Trace element composition after 

average of granulite samples 05LG10, 05LG16, and 05LG17 from the North China craton (Ying et al. 2010); Nd 

isotopic data not available. 
(3) Sources for the Archean TTG composition: Thermodynamical parameters represent the standard upper crustal 

values of Bohrson and Spera (2001), except for the initial temperatures that represent values compatible with active 

continental rift environment (see Bohrson and Spera 2001; Chapman 1986); Trace element composition after TTG 

sample 96/203 from the Kaapvaal craton (Kreissig et al. 2000; Ta and Hf estimated relative to Nb and Zr, 

respectively, using ratios of Lana et al. 2004); Nd isotopic composition after the range reported for the TTGs of the 

area (Kreissig et al. 2000). 
(4) Sources for the SCLM-1 partial melt composition: Trace element composition after average lamproite of 

Bergman (1987); Nd isotopic composition after the range reported for the alkaline rocks described in Harmer et al. 

(1998) and Luttinen et al. (2002); * back-calculated at 159 Ma (Luttinen et al. 2002); # back-calculated at 190 Ma 

(Harmer et al. 1998) 
(5) Sources for the SCLM-2 partial melt composition: Trace element composition after a representative Spitskop 

ijolite (S115; Harmer 1999) with Ta and Hf estimated using Nb/Ta = 17 and Zr/Hf = 46 (Chakhmouradian 2006), Th 

estimated using Nb/Th = 10.64 (after Buhera ijolites; Harmer et al. 1998), and Tb estimated relative to other REE; 

Nd isotopic composition after the range reported for the alkaline rocks described in Harmer et al. (1998) and 

Luttinen et al. (2002);  

* back-calculated at 159 Ma (Luttinen et al. 2002); # back-calculated at 190 Ma (Harmer et al. 1998) 

 

 
 

Fig. 6. (a) Reconstruction of the parental melt composition for the CT lavas presented in chondrite-
normalized (McDonough and Sun 1995) REE diagram: Parental melt for the Vestfjella lavas (PMCT) has 
been calculated by assuming 12% of melting of E-DMM source (Workman and Hart 2005) using D values 
that were constrained so that the parental melt of Low-Nb dikes (PMLN; calculated by adding 33 wt.% of 
equilibrium olivine to sample P27-AVL) represents a 6% partial melt of the E-DMM source, as indicated 



 
Heinonen, J.S., Luttinen, A.V., Bohrson, W.A. 2016. Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric 

contamination of Karoo lavas from Antarctica. Contributions to Mineralogy and Petrology 171:9. http://dx.doi.org/10.1007/s00410-015-1214-8 

(Author’s postprint) 
 

 

by the best-fit melting model (Table 1). (b) Primitive-mantle normalized (Sun and McDonough 1989) 
incompatible trace element patterns of the Low-Nb dike sample P27-AVL, PMLN, and PMCT (Table 1).  

 

Constraining the thermodynamic parameters 

 

Conventional thermometers based on olivine-liquid equilibrium yield extremely high liquidus 

temperatures of >1600 °C for the most magnesian magmas of the Karoo province (Heinonen and 

Luttinen 2010). The recently developed of Al-in-olivine thermometer is independent of pressure 

and melt composition, and indicates that the conventional thermometers may overestimate the 

actual temperatures by ~100 °C (Heinonen et al. 2015). Accordingly, we have used a liquidus T 

of 1500 °C for the parental melt in the model (Table 2). The isobaric specific heat was 

constrained using the partial molar isobaric heat capacities listed by Spera and Bohrson (2001) 

and the crystallization enthalpy was constrained by equilibrium crystallization modeling in PELE 

software (Boudreau 1999) using the approximated parental magma major element composition 

(Table 2). 

The thermodynamic properties of the crustal contaminants represent the standard upper 

and lower crustal cases of Bohrson and Spera (2001), except for the initial temperatures that take 

into account the heating effect of mafic underplating in a continental rift environment (Chapman 

1986; Table 2). Equilibration temperature (i.e. the natural variable describing the approach to 

equilibrium during heat exchange; Spera and Bohrson 2001) was chosen to be 20°C below the 

wallrock liquidus (Table 2; Bohrson and Spera 2001). These temperatures (1080 °C for the lower 

crustal contaminant and 980 °C for the upper crustal contaminant) are slightly lower than the 

estimated eruption temperature of ~1100 °C that we calculated for the most evolved Vestfjella 

CFB magma composition (CT2 sample B408-AVL; Luttinen and Furnes 2000) on the basis of 

MELTS algorithms (Ghiorso and Sack 1995). The lack of more evolved compositions in the 

Vestfjella lava succession indicates that the heat exchange in the system was limited to the close 

vicinity of the fractionating magma chambers (see Spera and Bohrson 2001). 

Due to lack of data regarding the thermodynamic properties of the lithospheric mantle, 

subcontinental mantle contamination was modeled as an AFC process using the equations of 

DePaolo (1981b), which do not conserve energy or mass. We approximated the partial melting of 

such wallrock by using rock compositions that represent the partial melts of local metasomatized 

SCLM as contaminants (see previous section).  

 

Constraining the partition coefficients 

 

The D values for the fractionation of olivine from the parental magmas are based on those used 

in the PELE modeling software of Boudreau (1999) and are listed in Table 2. The D values for 

the crustal contaminants (Dc) are difficult to estimate in detail given the possible variation in 

source mineralogy and the dependence of element partitioning on melting conditions. All the 

modeled elements are likely to behave incompatibly during crustal anatexis in general, however 

(e.g., Bea 1996; Nash and Crecraft 1985), and thus we used constant Dc values of 0.1 and 0.5 for 

all the elements in two separate model runs (Table 2). We consider that the feasible Dc values for 

the modeled elements are likely to be bracketed within this range. Using constant Dc values leads 

to underestimation of inter-element fractionation during wall-rock melting, but we favored such 

an approach over aforementioned uncertainties.  
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Modeling of the contamination of the Vestfjella CFBs 
 

We emphasize that the intent of the models is to examine limits for mass balance between 

an asthenosphere-derived parental melt and the variety of lithospheric sources exposed in or 

estimated for the area, and thus the effect of, e.g., magma recharge is not used in the modeling. 

We only considered the most promising contaminants (chosen on the basis of geochemical 

comparison and preliminary AFC modeling, see previous section; Table 2).  

The EC-AFC and AFC models do not directly track major element and phase equilibria 

evolution, but the amount of precipitated cumulates in the models (~10–40 wt. %; Table 3) 

indicates picritic to basaltic magma compositions. Mild variations in the degree of melting of the 

mantle source (and the contaminant) and fractional crystallization of olivine (± pyroxene and 

plagioclase) from the melt have significant influence on the absolute concentrations of trace 

elements included in the models, but have a small effect on their relative abundances. Therefore, 

it is the shapes of the observed vs. modeled trace element patterns that are more important than 

the absolute values in comparing them to the measured CFB compositions.  

We have rated the results by comparing the modeled compositions to the average 

compositions of each CT magma type. The differences were quantified using a double-

normalization procedure (Table 3; Figs. 7–10): First, we calculated primitive mantle-normalized 

trace element values for each of the modeled element compositions (insets a and b in Figs. 7–9, 

inset a in Fig. 10). Second, these values were normalized to the primitive mantle-normalized 

compositions of the average CT magma types assuming a double-normalized value of 1 for 

moderately incompatible Sm (insets c and d in Figs. 7–9, inset b in Fig. 10). Finally, the best-fit 

model results were identified on the basis of the lowest sum of residuals (Table 3). Such a 

procedure enables us to identify the results that provide the best match to the characteristic 

shapes of the trace element patterns of the magma types rather than the trace element 

concentrations. Three best-fit model results are highlighted for EC-AFC models with Dc(x) = 0.1 

and for AFC models with r = 0.07, and five best-fit model results are highlighted for EC-AFC 

models with Dc(x) = 0.5 and for AFC model with r = 0.2. The (Sm/Yb)N vs. (Ce/Sm)N diagram 

(Fig. 11) is utilized to illustrate the effects of degree of melting in the source and Nd vs. εNd(t) 

diagram (Fig. 12) is utilized to illustrate the isotopic variation of the models.  

 

Contamination of high-εNd CT1 basalts by Proterozoic Lower Crust 

 

The high-εNd CT1 lavas exhibit a combination of relatively low Nb, Ta, P, and Ti contents (Fig. 

4a) that can be attributed to interaction with crustal materials. Furthermore, relatively low Th is 

suggestive of the contaminant being lower rather than upper continental crust (e.g., Rudnick and 

Gao 2003). Our EC-AFC modeling suggests that 1–8 wt. % contamination (percent is relative to 

initial mass of magma body) of the parental magma with a lower crustal granulite (xenoliths 

from the North China Craton (Ying et al., 2010) gave the best-fit results) yields trace element 

patterns that are quite similar to that of the high-εNd CT1, especially among elements from Ce to 

Lu (Figs. 7 and 11). The relatively high deviation at Th and Ta imply that the lower crustal 

contaminant of the high-εNd CT1 basalts was more enriched in these elements than the 

composition used in the model, however.   

The degrees of contamination suggested by the trace element modeling infer that the 

contaminant should have εNd(t) from -13 to -7 to match the εNd(t) values of the high-εNd CT1 lavas 
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(from -4 to -2; Fig. 12a). Such Nd isotopic compositions correspond to TDM model ages of 1.39–
2.07 Ga, which were calculated using average Sm/Nd of the xenoliths (0.1997) and DM 

evolution models of DePaolo (1981a) and Goldstein et al. (1984). The model ages suggest that 

the potential contaminant was Proterozoic rather than Archean in age.  

 

 
 
Fig. 7. Best-fit EC-AFC contamination (lower crust) model results for the high-εNd CT1 lavas (see Tables 2 
and 3). Percentages indicate the mass of the assimilated material relative to mass of the original melt 
(Ma). a) Primitive-mantle-normalized (Sun and McDonough 1989) contamination models with Dc(x) = 0.1; 
2% model not shown to preserve clarity, but it would plot between the 1% and 3% patterns. Parental melt 
(PMCT) and high-εNd CT1 lavas (anomalous compositions indicated with stippled lines) also shown. b) 
Primitive-mantle-normalized (Sun and McDonough 1989) contamination models with Dc(x) = 0.5; 5–7% 
models not shown to preserve clarity, but they would plot between the 4% and 8% patterns. Parental melt 
(PMCT) and high-εNd CT1 lavas (anomalous compositions indicated with stippled lines) also shown. c) 
Double-normalized trace element patterns of the 1% and 3% models (Dc(x) = 0.1); the model 
compositions were first normalized to primitive mantle, and then to primitive-mantle-normalized average 
magma type composition (calculated on the basis of representative samples) so that model SmNN = 1. d) 
Double-normalized trace element patterns of the 4% and 8% models (Dc(x) = 0.5). 

 

Contamination of low-εNd CT1 basalts by Archean TTGs 

 

The combination of relatively high Th and low Nb, Ta, P, and Ti of the low-εNd CT1 lavas (Fig. 

4b) is compatible with interaction of the parental magmas with upper continental crust (see, e.g., 

Rudnick and Gao 2003). The notably low initial εNd(t) of the basalts (-16 to -11) indicates that the 

crustal component was of Archean age. EC-AFC models with 2–15 wt. % (Dc(x) = 0.1–0.5) 
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contributions from Archean TTG gneiss from the associated Kaapvaal craton (Kreissig et al. 

2000) result in trace element patterns that are notably similar to that of the basalts (Fig. 8; Table 

3). Using the range of Kaapvaal TTG Nd isotopic compositions reported by Kreissig et al. (2000) 

in the model yields a range of εNd(t) values (-23 to -10) that encompasses those measured from the 

basalts (Figs. 8 and 12b).  

 

 
 
Fig. 8. Best-fit EC-AFC contamination (Archean TTG) model results for the low-εNd CT1 lavas (see Tables 
2 and 3). Percentages indicate the mass of the assimilated material relative to mass of the original melt 
(Ma). a) Primitive-mantle-normalized (Sun and McDonough 1989) contamination models with Dc(x) = 0.1; 
3% model not shown to preserve clarity, but it would plot between the 2% and 4% patterns. Parental melt 
(PMCT) and low-εNd CT1 lavas (anomalous compositions indicated with stippled lines) also shown. b) 
Primitive-mantle-normalized (Sun and McDonough 1989) contamination models with Dc(x) = 0.5; 12–14% 
models not shown to preserve clarity, but they would plot between the 11% and 15% patterns. Parental 
melt (PMCT) and low-εNd CT1 lavas (anomalous compositions indicated with stippled lines) also shown. c) 
Double-normalized trace element patterns of the 2% and 4% models (Dc(x) = 0.1); the model 
compositions were first normalized to primitive mantle, and then to primitive-mantle-normalized average 
magma type composition (calculated on the basis of representative samples) so that model SmNN = 1. d) 
Double-normalized trace element patterns of the 11% and 15% models (Dc(x) = 0.5). 
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Contamination of CT2 basalts by metasomatized SCLM 

 

The trace element characteristics of the CT2 lavas (relatively low Nb, Ta, and P, but no negative 

Ti anomaly; Fig. 4c) indicate interaction with either a crustal contaminant having relatively high 

Ti or SCLM.  

Our models indicate that incorporation of 1–3 wt. % of lamproite (average of Bergman 

1987) produces daughter magmas that exhibit trace element patterns and isotopic compositions 

that are quite similar to those of the CT2 lavas, although the modeled Sm/Yb are lower and Th 

contents higher (at high degrees of contamination) than in CT2 (Figs. 9a, c, 11c, and 12c; Table 

3). The difference in Sm/Yb suggests that parental magma or the contaminant was more depleted 

in heavy REE. For example, using the parental melt of the Low-Nb dikes (PMLN; Table 1) as the 

starting composition the models yield better match for CT2 lavas having higher Sm/Yb (Fig. 

11c) and also a better fit in terms of trace element ratios and their concentrations (Figs. 9b, d, and 

11c; Table 3).  It is possible that the wide range of Sm/Yb in the CT2 lavas results from variable 

degrees of melting and that their parental melts extended to higher Sm/Yb (i.e. lower degree of 

melting) than the one used in the other models (PMCT; Fig. 11). In fact, CT2 represents a 

volumetrically minor magma type and the lavas may well have originated from isolated and 

compositionally distinct melt batches that are not related to each other by fractional 

crystallization (see Luttinen and Furnes 2000).  

 

 
 
Fig. 9. Best-fit AFC contamination (SCLM1) model results for the CT2 lavas (see Tables 2 and 3). 
Percentages indicate the mass of the assimilated material relative to mass of the original melt (Ma). a) 
Primitive-mantle-normalized (Sun and McDonough 1989) contamination models with PMCT; 2% model not 
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shown to preserve clarity, but it would plot between the 1% and 3% patterns. Parental melt (PMCT) and 
CT2 lavas (anomalous compositions indicated with stippled lines) also shown. b) Primitive-mantle-
normalized (Sun and McDonough 1989) contamination models with PMLN; 2% model not shown to 
preserve clarity, but it would plot between the 1% and 3% patterns. Parental melt (PMLN) and low-εNd CT1 
lavas (anomalous compositions indicated with stippled lines) also shown. c) Double-normalized trace 
element patterns of the 1% and 3% models (PMCT); the model compositions were first normalized to 
primitive mantle, and then to primitive-mantle-normalized average magma type composition (calculated 
on the basis of representative samples) so that model SmNN = 1. d) Double-normalized trace element 
patterns of the 1% and 3% models (PMLN). 

  

Contamination of CT3 basalts by metasomatized SCLM  

 

The CT3 basalts are notably different from the other Vestfjella basalts by showing a much 

smoother trace element pattern with a diagnostic enrichment in P and relatively high εNd(t) (-2 to 

+2) (Fig. 4d). The incompatible trace element characteristics preclude significant interaction with 

crust and instead could indicate contamination by SCLM components. Specifically, the high P 

contents can be associated with portions of metasomatized lower SCLM (see Harmer et al. 1998; 

Harmer, 1999). 

Our best-fit models involve an ijolitic contaminant from the metasomatized Kaapvaal 

SCLM (Harmer 1999). The notably close match between the observed and modeled trace 

element patterns indicates that 6–10 wt. % contamination with such material provides a feasible 

explanation for the characteristic features of CT3 (Fig. 10; Table 3). Using the range of Nd 

isotopic compositions reported for the metasomatized SCLM of the area (Harmer et al. 1998; 

Luttinen et al. 2002) the modeling produces εNd(t) values from -1 to +5 which overlap those of 

CT3 and lend further support to this contamination scenario (Figs. 10 and 12d). Some anomalous 

CT3 samples have relatively high Sm/Yb, however, and their incompatible trace element 

concentrations are also clearly higher than in the models (Figs. 10, 11d and 12d). We propose 

that, as in the case of CT2, some of the parental melts of CT3 may have shown higher Sm/Yb 

due to lower degrees of melting (Fig. 11c). Alternatively, the contaminant could also have been 

more enriched in light REE than the ijolites used in our models because of lower degree of 

melting of the SCLM. 
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Fig. 10. Best-fit AFC contamination (SCLM2) model results for the CT3 lavas (see Tables 2 and 3). 
Percentages indicate the mass of the assimilated material relative to mass of the original melt (Ma). a) 
Primitive-mantle-normalized (Sun and McDonough 1989) contamination models; 7–9% models not shown 
to preserve clarity, but they would plot between the 6% and 10% patterns. Parental melt (PMCT) and CT3 
lavas (anomalous compositions indicated with stippled lines) also shown. b) Double-normalized trace 
element patterns of the 6% and 10% models; the model compositions were first normalized to primitive 
mantle, and then to primitive-mantle-normalized average magma type composition (calculated on the 
basis of representative samples) so that model SmNN = 1. 

 

 
Table 3 Selected results of the contamination modeling (see Figs. 7–10 for illustration).  

Magma type model contaminant PM Dc(x) Ma Mc erroravg residuals2 εNd(i) 

              (SmNN = 1) (SmNN = 1)   

high-εNd CT1 EC-AFC Lower crust PMCT 0.1 1 % 18 % 11.32 % 0.61 ? 

εNd(i) = 
 

  
 

2 % 21 % 13.62 % 0.72 ? 

-4 to -2 
 

  
 

3 % 23 % 17.92 % 0.94 ? 

  
  

 
4 % 25 % 20.93 % 1.15 ? 

  
  

 
5 % 27 % 22.96 % 1.33 ? 

  
  

 
6 % 29 % 24.32 % 1.46 ? 

  
  

 
7 % 30 % 25.56 % 1.58 ? 

  
  

 
8 % 31 % 26.36 % 1.66 ? 
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9 % 33 % 27.28 % 1.75 ? 

 
        10 % 34 % 27.88 % 1.82 ? 

 
EC-AFC Lower crust PMCT 0.5 1 % 18 % 22.25 % 1.07 ? 

     
2 % 21 % 18.64 % 0.85 ? 

     
3 % 23 % 15.60 % 0.71 ? 

     
4 % 25 % 12.93 % 0.64 ? 

     
5 % 27 % 11.24 % 0.61 ? 

     
6 % 29 % 10.48 % 0.62 ? 

    
 

7 % 30 % 10.52 % 0.63 ? 

    
 

8 % 31 % 11.47 % 0.66 ? 

    
 

9 % 33 % 13.00 % 0.70 ? 

          10 % 34 % 14.00 % 0.74 ? 

low-εNd CT1 EC-AFC 
Archean 
TTG 

PMCT 0.1 1 % 29 % 20.82 % 0.41 -7 to -3 

εNd(i) = 
    

2 % 25 % 11.92 % 0.41 -15 to -10 

-16 to -11 
 

  
 

3 % 28 % 11.86 % 0.34 -20 to -13 

  
  

 
4 % 30 % 12.60 % 0.45 -23 to -15 

  
  

 
5 % 31 % 14.18 % 0.69 -25 to -17 

  
  

 
6 % 33 % 16.12 % 0.95 -27 to -18 

  
  

 
7 % 34 % 17.60 % 1.19 -28 to -19 

  
  

 
8 % 36 % 19.40 % 1.43 -30 to -20 

  
  

 
9 % 37 % 21.06 % 1.68 -30 to -21 

 

        10 % 39 % 22.61 % 1.93 -31 to -21 

 
EC-AFC 

Archean 
TTG 

PMCT 0.5 1 % 22 % 30.92 % 2.21 +4 to +5 

     
2 % 25 % 28.00 % 1.79 0 to +2 

     
3 % 28 % 25.47 % 1.46 -3 to 0 

     
4 % 30 % 23.24 % 1.21 -5 to -2 

     
5 % 31 % 20.78 % 0.97 -7 to -3 

     
6 % 33 % 18.61 % 0.79 -9 to -5 

     
7 % 34 % 16.82 % 0.66 -11 to -6 

     
8 % 36 % 15.01 % 0.55 -13 to -7 

     
9 % 37 % 13.19 % 0.47 -14 to -9 

     
10 % 39 % 11.88 % 0.40 -16 to -10 

     
11 % 40 % 11.72 % 0.37 -17 to -10 

     
12 % 41 % 11.74 % 0.34 -17 to -11 

     
13 % 42 % 11.79 % 0.33 -19 to -12 

    
 

14 % 43 % 11.82 % 0.33 -20 to -13 

    
 

15 % 44 % 11.86 % 0.34 -20 to -13 

    
 

16 % 46 % 12.02 % 0.36 -21 to -14 

    
 

17 % 46 % 12.18 % 0.38 -22 to -14 

    
 

18 % 47 % 12.40 % 0.42 -22 to -15 

    
 

19 % 49 % 12.62 % 0.46 -23 to -15 
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          20 % 49 % 12.85 % 0.49 -24 to -16 

CT2 AFC SCLM1 PMCT - 1 % 13 % 8.98 % 0.27 -1 to +4 

εNd(i) = 
 

  
 

2 % 27 % 16.04 % 0.98 -5 to +2 

-7 to 0 
 

  
 

3 % 40 % 25.32 % 2.59 -8 to +1 

  
  

 
4 % 53 % 34.15 % 4.63 -10 to 0 

 

        5 % 67 % 42.66 % 6.85 -12 to -1 

 
AFC SCLM1 PMLN - 1 % 13 % 7.43 % 0.17 +2 to +5 

     
2 % 27 % 8.24 % 0.18 -2 to +4 

     
3 % 40 % 15.75 % 0.73 -5 to +2 

     
4 % 53 % 23.17 % 1.62 -7 to +1 

          5 % 67 % 29.76 % 2.74 -8 to +1 

CT3 AFC SCLM2 PMCT - 1 % 4 % 13.86 % 0.44 +7 to +8 

εNd(i) = 
    

2 % 8 % 11.90 % 0.32 +6 to +7 

-2 to +2 
    

3 % 12 % 10.02 % 0.22 +5 to +7 

     
4 % 16 % 8.21 % 0.16 +4 to +6 

     
5 % 20 % 6.75 % 0.11 +3 to +6 

     
6 % 24 % 5.92 % 0.08 +2 to +5 

 
 

  
 

7 % 28 % 5.12 % 0.08 +1 to +5 

 
 

  
 

8 % 32 % 4.62 % 0.08 0 to +4 

     
9 % 36 % 4.58 % 0.10 -1 to +4 

     
10 % 40 % 5.19 % 0.14 -1 to +4 

     
11 % 44 % 6.01 % 0.18 -2 to +4 

     
12 % 48 % 6.84 % 0.24 -2 to +3 

     
13 % 52 % 7.80 % 0.30 -3 to +3 

     
14 % 56 % 9.00 % 0.37 -4 to +3 

      15 % 60 % 10.17 % 0.45 -4 to +3 

Best-fit results shown in Figs. 7–10 are shown in bold. 

PM = Parental melt (see Tables 1 and 2). Dc(x) = Partition coefficient for all of the elements in the crustal 

contaminant. Ma = Mass of the assimilated material relative to mass of the original melt. Mc = Mass of crystallized 

material relative to the mass of the original melt. erroravg (SmNN = 1) = Average error of double-normalized (first to 

primitive mantle, then to primitive-mantle-normalized average magma type composition (calculated on the basis of 

representative samples) so that model SmNN = 1) trace element pattern of the model result relative to that of the 

average magma type. Calculated as an average of errors of all the elements, for Sm the error is 0%. residuals2 

(SmNN = 1) = Squared residuals of the double-normalized model results relative to the average magma type trace 

element pattern, for Sm residual is 0. 
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Fig. 11. Chondrite-normalized (McDonough and Sun, 1995) Sm/Yb vs. Ce/Sm for the different CT magma 
types and contamination models (Figs. 7–10). Filled circles have been drawn in intervals that represent 
1% of contamination relative to the original parental melt (PMCT or PMLN). Only EC-AFC models with Dc(x) 
= 0.1 are shown for clarity in a) and b); models with Dc(x) = 0.5 would roughly follow the same trajectories, 
but show higher degree of contamination at a given Sm/Yb or Ce/Sm.  
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Fig. 12. Nd [ppm] vs. εNd(t) for the Low-Nb dikes, Vestfjella CT magma types (different groups highlighted 
in insets), and respective EC-AFC and AFC contamination models (Table 2). The two separate model 
lines represent the isotopic variation of the contaminants (Table 2; εNd(t) from -13 to -7 assumed for the 
lower crustal contaminant, see text) and the vertical stippled lines indicate the amount of contamination 
relative to the original parental melt (PMCT). Only EC-AFC models with Dc(x) = 0.1 are shown for clarity in 
a) and b); models with Dc(x) = 0.5 would broadly follow the same trajectories, but show higher degree of 
contamination at a given Nd or εNd. Models using PMLN are not shown for CT2, but they would not be 
drastically different from the models using PMCT in this case, although would begin at a higher Nd content 
(7.9 ppm). FC indicates fractional crystallization. 
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Discussion 
 

Limitations of the presented models 

 

Our modeling of the highly diverse CFB succession of Vestfjella involves numerous 

simplifications, e.g. regarding the compositional variability of the different magma types. In 

reality, each magma type, including the DM-sourced parental Low-Nb type, exhibit some 

variations in incompatible trace element and isotopic ratios (Figs. 5 and 12; Luttinen and Furnes 

2000). Such variations cannot be explained by a simple two-component model. Technically, the 

presented models are also limited by uncertainties related to parameters required for modeling 

the partial melting of the lithospheric rock types.  

The convergence of the geochemical trends of the lavas in, e.g., Sm/Yb vs. Ce/Sm space 

(Fig. 5), is compatible with a hypothesis of broadly similar DM-sourced parental magma 

compositions for the different magma types with some variance in the degree of source melting. 

Nevertheless, earlier studies have suggested that the sublithospheric sources of the Antarctic 

CFBs are heterogeneous by entraining recycled components (Heinonen et al. 2010; 2014) and 

being variably enriched in large-ion lithophile elements (Luttinen and Furnes 2000). Partial 

melting processes in such heterogeneous mantle and melting of heterogeneous wall-rocks during 

the ascent of the magmas likely produced variability in Vestfjella CFB magma compositions as 

well. The magmas were also likely to evolve within dynamic magma chambers that were 

characterized by refilling and mixing of distinct magma batches, similar to reported for CFBs of 

North Atlantic Igneous Province (Fowler et al. 2004).  Consequently, the observed chemical 

trends represent overlapping of several unique liquid lines of descent, i.e. they reveal tendencies 

of differentiation processes. In the case of CT2 and CT3, assimilation may have taken place in 

the deep SCLM before significant fractionation of the magma (Fig. 13), and thus the selected r 

values (r = rate of assimilation divided by rate of fractional crystallization) for the respective 

AFC models should not be considered definitive (Table 2). Overall, we consider the variations in 

the source and wallrock composition, degree and pressure of melting, and differentiation 

processes to be of second-order importance and regard that possible fine-tunings of the best-fit 

models would not significantly strengthen or weaken the main arguments.  

It is important to note that the presented EC-AFC models have equilibration temperatures 

close to the wallrock solidus and incorporate all partial melts from the wallrock to the magma 

(Table 2), and SCLM contaminants (i.e. lamproites and ijolites; Table 2) used in the AFC models 

represent relatively low degrees of SCLM melting. The degrees of contamination suggested by 

the AFC models and EC-AFC models with Dc(x) = 0.1 (Fig. 7–10; Table 3) may thus be 

considered to correspond to near-minimum estimates. Importantly, the limited variation in major 

element composition of the Vestfjella CFBs (Luttinen and Furnes 2000) indicates that mixing 

with compositionally anomalous components (e.g., Si-rich crust) cannot have been 

volumetrically significant. For example, if the slightly higher SiO2 contents of the low-εNd CT1 

lavas (52.6 wt. % at MgO = 8 wt. %) compared to MORB-like dikes (50.5 wt. % at MgO = 8 wt. 

%) are attributed only to crustal contamination of the former, the input of Archean TTG material 

would be ~9 wt. % (assuming leucosome, i.e., TTG partial melt composition, SiO2 = 74 wt. %; 

Kreissig et al. 2000). Such calculations are compatible with our trace element and isotopic 

modeling (Fig. 8) and provide support for the presented contamination scenarios. 
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Fig. 13. A schematic cross-section across line segment x–x’ (Figs. 1–2) during Karoo CFB magmatism 
with percentages indicating the degrees of lithospheric contamination (relative to the mass of the parental 
magma) required for the generation of each Vestfjella CFB magma type as suggested by our modeling 
(Fig. 7). Primary magma source (85–99% of the Vestfjella CFB material, depending on the magma type) 
is the sublithospheric mantle (black blobs represent partial melts). If CT2 and CT3 magmas avoided 
crustal contamination as suggested by the modeling, the fractionation (RTF) of the magmas may have 
taken place in magma chambers in refractory SCLM just below the Moho. AUC = Archean upper crust; 
ALC = Archean lower crust; PUC = Proterozoic upper crust; PLC = Proterozoic lower crust; SCLM = 
Subcontinental lithospheric mantle with metasomatized (veined) portions. 

 

Implications 

 

The key result of the presented modeling is that the diversification of relatively uniform DM-

sourced magmas, akin to those sampled by the low-Nb dike suite, by incorporation of minor 

quantities of highly enriched partial melts from Gondwanan lithospheric mantle and crust can 

provide a geologically sound and geochemically and thermodynamically feasible petrogenetic 

explanation for the diagnostic compositional features of the Vestfjella CFBs (Fig. 13).  

The implications of this finding range from local to global: mixing processes in a natural 

magma system are very likely to generate diverse compositions between the end-members. 

Grouping of the Vestfjella CFBs into distinctive chemical types strongly argues for effective 

homogenization of variably contaminated magma batches prior to eruption. Bearing in mind the 

scale and long duration (up to >5 Ma; Luttinen et al. 2015) of the voluminous low-εNd CT1 and 

CT3 eruptions in Vestfjella, these magma types have probably been tapped from distinct long-

lived and relatively large magma chambers. The quasi steady-state compositions of the lavas 

(Luttinen and Furnes 2000) are compatible with a RTF-type (periodically replenished and 

tapped, continuously fractionating; O’Hara and Mathews 1981; see Cox 1972) system that can 
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effectively buffer the compositions of magmas generated by mixing of highly contrasting 

components.  

On the scale of the Karoo province, our modelling supports the view that DM-sources 

may have been significant despite the rarity and crosscutting relation of MORB-affinity rock 

types relative to the CFB lavas (see also Fig. 3b). More than ~90 wt. % of the Vestfjella CFB 

magmas have likely been derived from this DM-like mantle source (Fig. 13). High-precision 

trace element data are sparse for the low-Ti CFBs at the conjugate African margin (Fig. 1), but 

preliminary comparisons indicate similarity between the southern rift-assemblage basalt 

sequences of the Lebombo Monocline and low-εNd CT1 (and CT2) (Luttinen and Furnes 2000). 

It is conceivable if not probable that models similar to those presented here could be successfully 

applied to the southern Lebombo CFBs. Importantly, previous geochemical models of the high-

Ti rift-assemblage basalts and picrites (Ellam and Cox 1991; Luttinen et al. 2015) have 

envisaged a similar MORB-lamproite mixing process as we have proposed for the Vestfjella 

CT3 lavas. It must be emphasized that the geochemically different plateau-assemblage CFBs 

found outside the central rift zone were probably generated within different magma systems (Fig. 

1; e.g., Duncan et al. 1984; Jourdan et al. 2007a; Luttinen et al. 2010, 2015; Neumann et al. 

2011) and our models are not directly applicable to them. The chondritic Sm/Yb of the plateau-

assemblage CFBs are indicative of magma generation at low pressures and it is difficult to 

constrain the feasible parental magma compositions due to lack of Mg-rich and high-εNd(t) lava 

compositions.  

On a global scale, the presented models suggest that the importance of lithospheric CFB 

magma sources may have been overestimated in many CFB provinces (see also, e.g., Ewart et al. 

2004; Kieffer et al. 2004): a CFB geochemical signature with strong lithospheric affinity is not 

necessarily a strong argument for a predominantly lithospheric magma source (Figs. 7–10). The 

models provide numerical support for the view that convective mantle is the principal magma 

source of terrestrial mafic magmatism in continental settings (Arndt and Christensen 1992; Arndt 

et al. 1993; Anderson 1994) and that CFBs represent major juvenile crustal growth events rather 

than just recycling of old lithospheric materials. Low-degree melting of crustal contaminants, as 

suggested by the modeling, could also explain the general rarity of coeval felsic volcanic rocks in 

CFB provinces.   

At Vestfjella, the primitive uncontaminated MORB-like dikes provide key constraints for 

asthenospheric parental melt compositions (Fig. 6), but they comprise only a tiny portion of the 

well-exposed CFB successions. Their presence was revealed only after detailed mapping of the 

extremely well-exposed outcrops of Vestfjella during several Antarctic expeditions. Weathering, 

thick soil cover, and vegetation may hamper the discovery of such rare rock types and 

construction of contamination models in many other CFB provinces. The general applicability of 

high-pressure MORB- or oceanic island basalt-like parental melts and EC-AFC and AFC 

modeling in explaining the geochemical characteristics of “lithosphere-signatured” CFBs in 

detail remains to be tested, but the presented example from the Vestfjella mountain range 

provides a good basis for further research on this matter. Any such models should be based on 

characteristic trace elements patterns and isotopic compositions (Figs. 7–10; Table 3), not only 

on few selected trace element ratios. 
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Conclusions 
 

Our case study on Karoo CFBs from Vestfjella, Antarctica, suggests that the longstanding 

thermodynamic ambiguities related to melting tens of percent of bulk crust or mantle lithosphere 

to produce CFB geochemical characteristics may be solved by using 1) EC-AFC equations for 

modeling of crustal contamination, 2) fertile SCLM partial melt compositions as contaminants in 

AFC modeling, and 3) reasonable estimates of asthenosphere-derived melts as parental magma 

compositions. Our calculations show that most of the geochemically diverse Vestfjella CFB 

magma types can be produced by just minor (1‒15%) contamination of a depleted high-Mg 

parental magma, constrained on the basis of rare MORB-affinity dikes found in the area, with 

local or representative lithospheric components. Our modeling implies that CFBs may represent 

major juvenile crust forming events rather than recycling of lithospheric materials. 
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