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ABSTRACT

Although the random forest classification procedure works well in
datasets with many features, when the number of features is huge
and the percentage of truly informative features is small, such as with
DNA microarray data, its performance tends to decline significantly.
In such instances, the procedure can be improved by reducing the
contribution of trees whose nodes are populated by non-informative
features. To some extent, this can be achieved by prefiltering, but
we propose a novel, yet simple, adjustment that has demonstrably
superior performance: choose the eligible subsets at each node by
weighted random sampling instead of simple random sampling, with
the weights tilted in favor of the informative features. This results in
an ‘enriched random forest’. We illustrate the superior performance
of this procedure in several actual microarray datasets.
Contact: damaratu@prdus.jnj.com

1 INTRODUCTION
The random forest is a popular classification technique whose
classifier is an ensemble of classification trees. It has developed
an excellent reputation amongst the statistics and machine learning
communities as a versatile method that produces accurate classifiers
for many types of data. It is considered particularly well suited
to situations characterized by a large number of features, a
circumstance that is becoming more prevalent as the ability to collect
and store vast amounts of data becomes easier and increasingly
common. In such instances, classical classification approaches tend
to become overwhelmed by the number of features and fail. Yet
random forest continues to do well. For instance, with DNA
microarray data, work by Dudoit et al. (2002), Lee et al. (2005)
and Díaz-Uriarte and de Andrés (2006) shows that random forest
outperforms most of the other classification techniques.

However, when, in addition to having a large number of features,
the proportion of truly informative features is small, its performance
too tends to decline. An example that illustrates this point, in fact the
case that motivated us to look into this problem, is an experiment
conducted to study whether mice whose Slc17A5 gene had been
knocked out could be distinguished from wild-type mice at the gene
expression level (Moechars et al., 2005; Raghavan et al., 2007).
Gene expression measurements were taken on newborn (0-day-old)
mice as well as on 18-day-old mice using Affymetrix Mouse430_2
GeneChips. The day 0 time point preceded the occurrence of any
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obvious phenotypic variations in the knockout mice but subtle
effects would already have begun at the cellular level. By day
18 phenotypic variations in the knockout mice are evident with
observable morphological alterations such as defects in myelination.
Thus separation of the 18-day-old mice is straightforward both
physiologically and with gene expression data; in fact random forest
does this with an out-of-bag error rate of <10%. On the other
hand, the newborn mice are a challenge to separate: impossible
physiologically and difficult even with gene expression data; the
out-of-bag error rate for random forest is over 50%.

We shall show that, in situations like this, the basic random
forest procedure can be considerably enhanced by reducing the
contribution of trees whose nodes are populated by less informative
features, resulting in a procedure which we refer to as the enriched
random forest procedure. Doing this shrinks the out-of-bag error
rates for both the Slc17A5 datasets to 0%, a tremendous achievement
particularly with the newborn mice. Our ability to detect a gene
expression signal at day 0, despite the lack of any obvious external
signs, connotes the presence of early genomic effects and is
important biological information.

In the following sections, we will describe random forest and the
novel modifications we are proposing and then we will assess the
performance of the standard and enriched procedures via several
microarray datasets. We consider only microarray data in this
article, although the methods are also potentially applicable to other
megavariate situations such as mass spectrometry and molecular
imaging as well.

2 METHODS

2.1 Random forest
We begin with a brief outline of the random forest algorithm; Breiman (2001)
and Breiman and Cutler (2003) provide further details.

Given a training set X comprised of N cases, which belong to two classes,
and G features, a classification tree can be constructed as follows. First, a
feature x and a threshold t that splits X into two subsets that are maximally
distinct according to a specified criterion are selected from all features of x
and all possible values of t. The training set is then split into the two buckets
XL and XR depending on whether or not x< t. This procedure is repeated
with each of XL and XR using another (x, t) combination. This process is
repeated until no further splitting is possible.

In a random forest, a tree, rather than being trained on the entirety of
the training set, is trained only on a sample of N cases drawn at random
with replacement from the complete set of N cases. This is the bagging
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(Breiman, 1996) step and the selected samples are called the in-bag cases;
the rest are set aside as out-of-bag cases. Additionally, when determining
which feature to split on at each node, only a subset of g of the G features
(usually g=G1/2) are considered eligible; this subset is drawn at random
without replacement independently for each node from the complete set of
G features.

A random forest is an ensemble of some number R of such trees, where
each tree is called a base classifier. Classes are assigned to test cases by
majority vote: when given a test case, each tree assigns it a class according
to its classifier; this information is collated and overall the forest assigns it
the most frequent class. The out-of-bag cases in any tree can be regarded as
test cases for that tree as they were not used to build it and thus they can be
used to assess the performance of the forest as a whole; this is done via the
out-of-bag error rate, which is the proportion of times an out-of-bag case is
misclassified.

Most classification procedures when faced with a situation in which there
are a large number of features exhibit a tendency to overfit. However, a major
advantage of random forests is that they are able to keep the likelihood of
overfitting low by using different subsets of the training data and different
subsets of features for training the different base classifiers. Thus only
patterns truly present in the data would be detected consistently by a majority
of the base classifiers and the majority votes turn out to be good indicators
of class.

In general, for the random forest classifier to be effective, each base
classifier must have reasonably good classification performance and the trees
must be diverse and only weakly correlated. The first of these, individual
performance, is obtained by using strong performing tree classifiers and
the second, diversity, is obtained by randomly choosing cases on which
to train each tree and by randomly choosing attributes at each node of
each tree.

2.2 Enriched random forest
When the number of possible features is huge and the percentage of truly
informative features is small, a problem arises. The performance of the base
classifiers degrades. This is because, if simple random sampling is used for
selecting the subset of g eligible features at each node, almost all these subsets
are likely to contain a preponderance of non-informative features. Consider
a situation with G features, of which only H are informative. Then, if at any
node g features are selected by resampling randomly with equal weights,
the probability distribution of the number of informative features selected is
binomial with g trials and probability π=H/G, so that the mean number of
informative features selected at each iteration is µ=πg. Since π is typically
tiny, so will µ be. For example, if H= 100, G=10 000 and g=G1/2= 100,
the resulting µ is only one informative feature per node. The base classifiers
built using such nodes will have low accuracies and overall, the performance
of the ensemble will suffer.

This can be remedied by using weighted random sampling instead
of simple random sampling [an analogous issue arising in unsupervised
classification is addressed similarly by Amaratunga et al. (2008)]. By tilting
the random sampling of genes so that less informative genes are less likely
to get selected, the odds of trees containing more informative features being
included in the forest increases. Consequently, the resultant random forest,
which we call the ‘enriched random forest’ (ERF), will be comprised of a
higher number of better base classifiers, resulting in a better fit. Due to the
enormous choice of features available, the diversity of the ensemble is not
compromised and can be controlled to be more diverse than prefiltering.
The value of doing the weighting is amply demonstrated in the performance
improvement over both non-filtering and prefiltering reported in Section 3.

Weighting can be done by scoring each gene based on its ability to separate
the groups, e.g. via a t-test, and using these scores to assign weights, {wi},
so that the genes that most separate the groups are the only ones assigned
high weights. Once the weights have been determined, the algorithm as
described earlier is run with the only modification being that when, at any
node, the subset of g eligible features is selected, it is selected from the

Fig. 1. Plot of p-values and q-values for the two Slc17A5 datasets.

G features using weighted random sampling with weights {wi} rather than
simple random sampling.

2.3 Weighting the genes
The key to the modified algorithm is to score each feature based on how well
it separates the two groups. Such a score can be generated by testing each
feature for a group mean effect using a two-sample t-test and calculating
the p-value, small p-values indicating greater separation and large p-values
indicating less separation. However, to weight using the t-test p-values
themselves would be inappropriate due to (i) the multiplicity of tests being
performed and (ii) the small sample sizes typical of microarray experiments.

To adjust for (i), we base the weights on q-values (Storey and
Tibshirani, 2003), which are calculated from the p-values as: qi=
mink≥1{min((G/k)p(k),1)}, where p(i) and q(i) are the p-value and q-value
associated with the feature with the i-th smallest p-value. The q-values
provide false discovery rate (FDR)-adjusted measures of significance for
the features and are in the same order as the p-values.

The q-value distributions for the two Slc17A5 datasets (Fig. 1) display
the difference between them. On day 0, very few genes show differential
expression, indicating that most of a random forest’s base classifiers would
be comprised almost entirely of genes with little separability information and,
as a result, it would performs poorly. On day 18, with many genes showing
differential expression, random forest would have no problem. On the other
hand, the two p-value distributions are similar to each other and notably
the day 0 p-value distribution fails to highlight the few genes that separate
the groups on that day. Thus, assigning weights inversely proportional to the
q-values is likely to emphasize the separating genes and strengthen the
likelihood of an enriched procedure detecting the separation in both datasets
but assigning weights inversely proportional to the p-values is unlikely to be
productive for the day 0 data.

The use of q-values rather than p-values also helps to lessen the likelihood
of overfitting in situations with no separation of the data into groups. In
that case, p ∼ unif(0,1) approximately, implying that p(k) ∼= k/G and q(k) ∼= 1
for all k. If p-value-based weights were used, some genes would by chance
have small p-values and would wrongly be assigned high weights and as a
result ERF could mistakenly imply a separation. If q-value-based weights
were used, all genes would be assigned equal weights and ERF should not
find a separation.

Thus it is reasonable to use the q-values to assign weights: wi
′ =

(1/qi)−1. Based on this weighting, features with less separability (which
will have both pi ∼=1 and qi ∼=1) will get almost zero weight and features
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with high separability will get large weights as desired. We make two small
modifications to these potential weights.

First, to prevent a large fraction of features getting essentially zero weight
and reducing too much the diversity of features across the eligible subsets, we
threshold the lower weights to a small positive value, amin This is particularly
important in instances where there is no separation in the data. In such a
situation it is possible that by chance a few genes could have a few non-unit
q-values; in that case, if all the unit q-values are assigned zero weight, then
the few non-unit q-values will receive large weights and possibly imply a
faux separation. Alternatively it is also possible when there is no separation
for all the q-values to be 1, which would lead to an algorithmic impasse if
there was no positive threshold.

Second, to prevent a small number of features with tiny p-values from
receiving huge weights, which would also drastically reduce the diversity of
the ensemble, we threshold the high weights to amax .

Thus the weights assigned are: wi = median(amin, wi
′,amax). We set amin

= 0.01 and amax = 999, which gives a suitably wide range of variation (of
order 105) across weights.

To adjust for (ii), we use Ct or Conditional t (Amaratunga and Cabrera,
2007) in place of the usual t-test. The usual t-test is the simplest way to
assess separation for a feature, but since microarray experiments typically
have small sample sizes, the t-test has low power and thus low discriminatory
ability. Therefore, analysis methods that borrow strength across features,
such as Ct or limma (Smyth, 2004), are likely to generate a better ranking
of features.

Since error rates could be underestimated if the weights are calculated
outside the bagging loop (i.e. calculated just once based on all the samples),
they are calculated inside it, i.e. they are determined separately for each tree
based on only the in-bag samples, so that they are independent of the out-of-
bag samples. However, this does increase the computational burden and also
renders the weights somewhat less well determined than if they had been
calculated outside the loop using all the samples.

In procedure ERF-CV, a variant of ERF, balanced leave-out-one cross-
validation is used instead of bagging to lighten the computational load and
to decrease its loss of sample size when determining weights. Let J =R/N . In
ERF-CV, in J of the R trees, Case 1 is set aside as the out-of-bag test set, the
weights are calculated based on the N −1 in-bag cases and a tree is derived
based on these in-bag cases and out-of-bag prediction is done on Case 1.
This is repeated with each of the other cases. Less computation is required
for ERF-CV than for ERF since weights are calculated only N times rather
than R times.

3 RESULTS
The best way to assess the performance of the enriched random
forest procedure would be to apply it to a dataset which we
know from context has a subtle signal. After all, it is in this

situation that ERF works best and is superior to RF; if the signal
were strong or non-existent, both ERF and RF would produce
essentially the same result. Since the context needs to be known,
such datasets are hard to come by in the public domain despite
the ready availability of microarray datasets on the internet. Thus,
we will use the Slc17A5 Day 0 dataset as the primary vehicle
for our evaluation of ERF. The Slc17A5 Day 18 dataset, which
has an unequivocal separation of classes, will be used to assess
the performance of ERF when there is a strong signal in the data.
To study the other extreme, two datasets that have no signal were
created artificially by scrambling the samples of the two Slc17A5
datasets. These datasets will be used to verify that the methods
are not overfitting. If the weighting is not done carefully, it is
possible to find spurious classifications in datasets that have no true
separation. In addition, ERF was run on eight public domain DNA
microarray datasets whose sample classifications were known. The
10 datasets are listed in Table 1. All data were quality checked, log
transformed and quantile normalized as described in Amaratunga
and Cabrera (2004).

The out-of-bag error rates are shown in Table 2. Good
classification methods should show low out-of-bag error rates for
the eight original datasets and high out-of-bag error rates for the two
scrambled datasets. Besides standard random forest and enriched
random forest with t- and Ct-based weights, since prefiltering is
sometimes used to improve classifier performance in microarray
settings (Li and Yang, 2002), we also ran random forest after filtering
out any gene that was not significant at the 25% level. Another
way to improve performance in microarray settings is to increase

g, so we also ran random forest with g=G
3/4. Incidentally, there is

nothing special about the 25% level or G
3/4 but other values were

tried and none stood out as consistently superior. In addition, we
ran the VarSelRF procedure (Díaz-Uriarte and de Andrés, 2006)
as a benchmark for a recent random forest procedure designed for
microarray data analysis.

Where there is true separation between groups, it can be seen that
the enriched random forest performs consistently equally or better
than the standard random forest. ERF’s best performance over RF
is when the number of genes is huge (over 40 000), such as with
the two Slc17A5 datasets and the Prostate Cell Type dataset. When
RF detects a clear classification as with the Human Lymph Node
Sinus and Breast Cancer datasets, so does ERF. When there is no
signal, such as with the scrambled datasets, ERF, like RF, correctly
finds none.

Table 1. Datasets used in the performance assessment

Dataset name No. of genes Samples Reference

Slc17A5 Day 0 45 101 Wild type (6) versus knockout (6) Raghavan et al. (2007)
Slc17A5 Day 18 45 101 Wild type (6) versus knockout (6) Raghavan et al. (2007)
Adenocarcinoma 13 432 Metastasis (12) versus tumor (64) Ramaswamy et al. (2002)
Astrocytoma 12 625 Low grade (8) versus high grade (6) MacDonald (2001)
Breast cancer 15 926 Normal (11) versus patients (24) Chan et al. (2005)
Diabetes 22 283 Normal (17) versus diabetes (18) Mootha et al. (2003)
Epilepsy 31 099 Control (6) versus phenytoin (7) Wilson et al. (2005)
HIV Encephalitis 12 625 Reference (12) versus encephalitis (16) Masiliah et al. (2004)
Human Lymph Node Sinus 22 283 Tonsils (10) versus lymph node (10) Martens et al. (2006)
Prostate Cell Type 54 675 Endothelial (5) versus stromal (5) Oudes et al. (2006)
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Table 2. Out-of-bag error rates for random forest (RF), random forest with p-value based filtering (RF(p)), random forest with g-based filtering (RF(g)),
the VarSelRF procedure (VRF), enriched random forest with t-based weights (ERF(t) and ERF-CV(t)) and enriched random forest with Ct-based weights
(ERF(Ct) and ERF-CV(Ct))

RF RF(p) RF(g) VRF (Boot) VRF (CV) ERF (t) ERF (Ct) ERF-CV (t) ERF-CV (Ct)

Slc17A5 Day 0 0.583 0.583 0.250 0.527 0.543 0.167 0.000 0.083 0.000
Slc17A5 Day 18 0.083 0.083 0.083 0.260 0.316 0.000 0.000 0.000 0.000
Slc17A5 Day 0
(scrambled)

0.750 0.750 0.333 0.535 0.556 0.833 0.667 0.750 0.667

Slc17A5 Day 18
(scrambled)

0.583 0.667 0.583 0.494 0.496 0.667 0.667 0.417 0.583

Adenocarcinoma 0.132 0.145 0.145 0.211 0.229 0.145 0.145 0.145 0.158
Astrocytoma 0.214 0.071 0.000 0.229 0.284 0.000 0.071 0.071 0.071
Breast Cancer 0.029 0.029 0.029 0.041 0.061 0.029 0.029 0.029 0.000
Diabetes 0.543 0.514 0.286 0.387 0.422 0.457 0.543 0.486 0.571
Epilepsy 0.154 0.077 0.000 0.306 0.357 0.154 0.154 0.077 0.154
HIV Encephalitis 0.357 0.429 0.357 0.283 0.335 0.250 0.250 0.250 0.286
Human Lymph
Node Sinus

0.000 0.000 0.000 0.056 0.083 0.000 0.000 0.000 0.000

Prostate Cell Type 0.200 0.200 0.300 0.295 0.348 0.100 0.100 0.100 0.100

R=1000 trees were used throughout. The out-of-bag error rates for the scrambled datasets are italicised.

When RF fails to detect an existing separation, as with the
Slc17A5 Day 0 dataset and less starkly the Astrocytoma dataset,
prefiltering is only slightly helpful and sequential filtering as in
VarSelRF is of no help at all. Interestingly, increasing g turns out
to be a more effective option. However, in practice it is unclear
as to how much filtering would be useful or what value of g
would be the best for any given dataset. Weighted sampling as in
ERF, on the other hand, provides a softer filter and the process of
combining multiple classifiers allows the procedure to adapt to the
situation.

Both t-based and Ct-based ERF procedures gave good results.
In experiments with very small sample sizes, such as the Slc17A5
experiments, Ct gives lower error rates that we conjecture is due to
the increase in power induced by borrowing strength across genes.
An added advantage of the bootstrap-based Ct procedure is that it
is distribution-free. In contrast, for the Day 0 and Day 18 Slc17A5
datasets, the Wilcoxon test, which is also distribution-free but does
not borrow strength across genes, gives non-competitive ERF-CV
error rates of 0.583 and 0.083, respectively. Limma, which borrows
strength across genes but is not distribution-free, gives ERF-CV
rates of 0.083 and 0.000, respectively, that are close to the Ct-based
ERF-CV error rates.

Overall, both ERF and ERF-CV performed well and were
improvements over standard random forest. By and large, the ERF
and ERF-CV error rates were similar to each other. Thus, ERF-
CV may be more useful in practice since it is less computationally
intensive and less prone to small sample size problems.

The weights we use here are also useful for data displays. Principal
components analysis plots (Fig. 2) for the two Slc17A5 datasets
show no separation between the two groups at day 0 when equal
weights are used, whereas with the Ct q-value-based weights, the
separation is clear in the first principal component itself. For the day
18 data, the separation is clear without weights but far clearer with
weights. Here, the weights were incorporated into the calculation of
the covariance matrix by making the variance of each gene equal to
the corresponding weight assigned to the gene.
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Fig. 2. Principal components analysis plots for the two Slc17A5 datasets
(o = wild-type, x = knockout) using equal weights (left) and Ct-based weights
(right).

4 DISCUSSION
As technology advances, microarrays capable of interrogating an
increasingly large number of transcripts are being deployed. For
instance, currently Affymetrix’s popular Human Genome array set
contains in excess of 40 000 probesets, double that from just a
few years ago. Experiments that employ such arrays will generate
megavariate data.

It is hard to detect subtle signals in megavariate data. Yet, this
is an important practical problem as it is in these situations where
classification per se is useful. If the signal can be detected easily,
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then the interest is more in trying to find the genes, gene sets (e.g.
gene sets defined by GO terms) or signature associated with the
signal and this is best accomplished using a combination of feature
selection methods and biological information [as in Raghavan et al.
(2007) for the Slc17A5 datasets]. Using classification alone for
feature selection carries overfitting risk due to the huge number
of features and the emphasis on the given structure (Strobl et al.,
2007).

When the interest is in classification itself, we have, in this article,
offered a novel solution: a simple enhancement to the familiar
random forest procedure that greatly improves its performance
in situations in which the number of features is huge but the
proportion of informative features is small. R code for ERF is
available at the websites: http://www.geocities.com/damaratung/
and http://www.rci.rutgers.edu/∼cabrera/DNAMR/.

We have only discussed ERF in the two-group context here, but
ERF can be extended to the case of multiple (i.e. more than two)
groups. However, here the complexity grows as often the features
that separate any two groups could differ substantially from the
features that separate any two other groups. Thus, this situation calls
for a more complex solution possibly involving collation of multiple
pairwise analyses that is beyond the scope of this article.

In addition to supervised classification by random forest, the
idea of using weighted random sampling of features instead
of simple random sampling has been shown to be effective
in the unsupervised classification problem as well (Amaratunga
et al., 2008). Hence, we conjecture that this idea could be
incorporated into other ensemble and machine learning techniques
such as linear discriminant analysis, logistic regression and support
vector machines. We plan to continue developing this work in that
direction.
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