642

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

Enriched View Synchrony:
A Programming Paradigm for Partitionable
Asynchronous Distributed Systems

Ozalp Babaoglu, Alberto Bartoli, and Gianluca Dini

Abstract —Distributed systems constructed using off-the-shelf communication infrastructures are becoming common vehicles for
doing business in many important application domains. Large geographic extent due to increased globalization, increased
probability of failures, and highly dynamic loads all contribute toward a partitionable and asynchronous characterization for these
systems. In this paper, we consider the problem of developing reliable applications to be deployed in partitionable asynchronous
distributed systems. What makes this task difficult is guaranteeing the consistency of shared state despite asynchrony, failures, and
recoveries, including the formation and merging of partitions. While view synchrony within process groups is a powerful paradigm
that can significantly simplify reasoning about asynchrony and failures, it is insufficient for coping with recoveries and merging of
partitions after repairs. We first give an abstract characterization for shared state management in partitionable asynchronous
distributed systems and then show how views can be enriched to convey structural and historical information relevant to the group’s
activity. The resulting paradigm, called enriched view synchrony, can be implemented efficiently and leads to a simple programming
methodology for solving shared state management in the presence of partitions.

Index Terms —Large-scale distributed systems, group communication, fault tolerance, reliable network applications, shared state

management.

1 INTRODUCTION

ISTRIBUTED computing is rapidly becoming the princi-
D pal paradigm for providing critical services in every-
day life and the deployment of future networking tech-
nologies will only accelerate this trend. Large geographic
extent due to increased globalization and unpredictability
of loads imposed by users contribute towards an asynchro-
nous characterization for these systems in the sense that
communication delays and relative computing speeds can-
not be bounded with certainty. Banking, finance, com-
merce, medical systems, telecommunications, industrial
process control, and collaborative work are just some of the
many sectors that will increasingly rely on large-scale asyn-
chronous distributed systems as their computing infra-
structure. Distributed applications to be deployed in such
systems are difficult to reason about and to develop. The
principal difficulty stems from the fact that in asynchro-
nous distributed systems subject to failures, inability to
communicate cannot be attributed to its real cause—the
destination may have crashed, it may be overloaded and
thus slow, the communication path may have been discon-
nected, or it may be experiencing long delays [1].
An abstraction that can simplify both reasoning about
and implementation of distributed applications is view syn-

« 0. Babaoglu is with the Department of Computer Science, University of
Bologna, Mura Anteo Zamboni 7, 40127 Bologna, Italy.
E-mail: 0zalp@CS.UniBO.IT.

e A. Bartoli and G. Dini are with the Dipartimento di Ingegneria
dell’Informazione, University of Pisa, Via Diotisalvi 2, 56126 Pisa, Italy.
E-mail: {alberto, gianluca}@iet.unipi.it.

For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number 104649.0.

chronyl in the context of process groups [3], [4], [5], [6]. Two
aspects of view synchrony enable it to hide most of the com-
plexities due to failures and asynchrony. On the one hand, it
cleanly transforms failures into group membership changes
through views that are agreed upon by all connected mem-
bers of the group. On the other hand, view synchrony pro-
vides guarantees about the set of messages delivered globally
as a function of the view changes that a process observes lo-
cally. As such, it permits components of a group to reason
globally based solely on local information.

Partitions that may result from communication failures
are an insidious characteristic of large-scale distributed
systems. Furthermore, inability to bound delays due to
asynchrony may lead to the formation of virtual partitions
that are indistinguishable from real ones [7]. Partitions,
whether real or virtual, tend to become more frequent and
last longer as the geographic extent of the system grows.
Informally, we define a partitionable system as one admitting
multiple views of the same group to exist concurrently. In
such systems, membership of a group may change dynami-
cally, not only due to individual process failures and recov-
eries, but also due to subsets of correct processes becoming
disconnected and later reconnecting. Each collection of
mutually-communicating processes may install their own
view of the group without waiting for the failures that
caused the partition to be repaired. This is in contrast to the
primary-partition group membership model where there can
be at most one view of the group active at any time [2], [8].

1. The abstraction was first introduced in the Isis system where it is
known as virtual synchrony [2]. We prefer not to use this term since it is
associated with the primary-partition model of group membership that
excludes the possibility of progress in multiple concurrent partitions.

0018-9340/97/$10.00 © 1997 IEEE

BABAOGLU ET AL.: ENRICHED VIEW SYNCHRONY: A PROGRAMMING PARADIGM FOR PARTITIONABLE ASYNCHRONOUS DISTRIBUTED SYSTEMS 643

For certain application classes, including mobile comput-
ing, loose-consistency data sharing, collaborative work, and
scientific computing, progress may indeed be possible in
multiple concurrent partitions. To minimize latency in such
applications, a partitionable group membership service installs
views (perhaps concurrent ones) at all correct processes
without undue delays and lets the application itself decide
if it can make progress.

In this paper, we consider programming reliable appli-
cations in partitionable asynchronous distributed systems
based on process groups and view synchrony. Group
members have to maintain state information that is distrib-
uted and/or replicated among them. Although view syn-
chrony can be a great aid towards guaranteeing the consis-
tency of this information, many technical problems remain
that need to be solved by the application programmer. We
first give a characterization of these shared state problems in
terms of system events provoking them: Processes joining a
group give rise to the state transfer problem; recovery from
total failures leads to the state creation problem; unification
of two or more concurrent partitions after repairs has to
solve the state merging problem. We show that view syn-
chrony alone is not sufficient in coping with these problems
in that scenarios provoking them usually do not permit
global reasoning with local information alone. Thus, most
of the burden in solving shared state problems falls on the
application programmer and detracts from the simplicity
and elegance of view synchrony. We then propose an ex-
tension to the basic model by including structural and his-
torical information within views in the form of subviews and
subview sets that are manipulated by processes to reflect the
application state and are preserved automatically across
view changes by the system. Our extension is called en-
riched view synchrony and offers a simple programming
methodology for solving shared state problems that are
encountered when programming reliable services in parti-
tionable asynchronous systems. We illustrate this method-
ology through detailed examples. Finally, we sketch how
enriched view synchrony can be implemented efficiently
through simple extensions to a typical view synchrony
service.

2 SYSTEM MODEL AND VIEW SYNCHRONY

The system is a collection of processes executing at poten-
tially remote sites that communicate through a network. As a
result of failures, processes may crash and the communica-
tion network may partition. Crashes cause processes to halt
prematurely. Crashed processes may rejoin the computation
after recovery and partitions may merge after repairs. We
consider an asynchronous system in that it is not possible to
place bounds on communication delays or relative speeds of
processes. This is a realistic way of taking into account delays
due to transient failures, unknown scheduling strategies, and
dynamic load on the computing and communication re-
sources of most practical distributed systems.

In any distributed system, whether a remote process has
crashed or not can be inferred by a local failure detector only
indirectly, through messages received from that process. In
an asynchronous system, information provided by any failure

detection mechanism has to be considered as hints since
unbounded delays may lead to false suspicions. Despite
this fact, failure detectors have proven to be powerful ab-
stractions for classifying asynchronous systems with re-
spect to the consensus problem [9]. If the system is parti-
tionable in addition to being asynchronous, then failure
detection has to be based on the notion of reachability in
order to establish if a remote process is not only up but that
effective communication with it is possible. We assume that
the system being considered is such that it admits a reach-
ability detector with weak properties that have been shown
to be sufficient to solve view synchrony [6]. We further as-
sume that despite process and communication failures, re-
coveries are such that pairs of processes do not remain dis-
connected indefinitely.

View synchrony implements the notion of a process group
and provides reliable multicast as the basic communication
primitive [3], [4], [5], [6]. Processes that want to participate
in a common computation join a named group. They termi-
nate their participation by leaving the group. While a mem-
ber of the group, processes communicate with each other
through reliable multicasts. For the multicast primitive to
be terminating in an asynchronous system despite failures,
view synchrony includes a membership service that pro-
vides consistent information in the form of views regarding
the components of the group that are currently up and that
can mutually communicate. View synchrony abstracts
away process and communication failures, both real and
due to false suspicions, by transforming reachability de-
tector outputs into view change events that are collectively
agreed upon.

With the events mcast(m), divr(m), and vchg(v), we denote
the multicast of message m, delivery of message m, and
view change to v, respectively. At each process, view syn-
chrony installs new views through vchg(v) events that de-
fine a totally-ordered sequence. The last view to be installed
in this sequence at a process is called the current view of the
process. Events are said to occur in the view that happens to
be current at the time. Views v and w are called consecutive
if there exists some process common to both views for
which w is the next view to be installed after v. View w is
called a successor of v if there exists a sequence of views
leading from v to w such that each adjacent pair of the se-
quence are consecutive views. It is possible for two views
installed at two different processes to be incomparable with
respect to the successor relation, in which case they are
called concurrent. Concurrent views allow us to model di-
verging views of the group membership due to partitions.

View synchrony can be specified formally as a set of
properties on view installations and message deliveries [6].
For completeness, we give such a specification in Appendix 1.
The essence of view synchrony, however, can be captured
informally by the following property that states how the
group membership and reliable multicast services interact:

All processes that survive from view v into the same con-
secutive view w must have delivered the same set of mes-
sages in view v.

Note that view synchrony does not place requirements on
the relative order in which messages are delivered between

644

two consecutive views. We will assume, however, that
messages multicast by the same process are delivered, if at
all, in the order in which they were sent. As it turns out,
message ordering guarantees stronger than this FIFO prop-
erty may only help in solving but not preventing shared state
problems.

3 THE APPLICATION MODEL

An application is a distributed computation performed by a
group of processes that run on top of view synchrony.
Without loss of generality, we consider applications that are
structured as a single group. The involvement of a process
in the application begins when it joins the corresponding
group and ends when it leaves the group through the view
synchrony primitives join() and leave(), respectively. Each
process has a local state, part of which may be permanent
and survive across crashes. Including a permanent compo-
nent for the local state allows us to model applications that
may recover after crashes.

We consider the class of applications that implement
group objects. According to the object-oriented paradigm, a
group object is an instance of an abstract data type, encap-
sulating some internal state and exporting to its clients an
interface defined through a set of external operations. Infor-
mally, semantics of an abstract data type may be defined
through invariants over the internal state. Thus, the imple-
mentation of a group object for a certain type can be seen as
simulating the logical internal state through a global state
distributed over the group members. This in turn requires
correct and coordinated interaction among the processes in
the group such that invariants remain valid over the global
state. How one actually determines the invariants for an
abstract data type and implements the group object opera-
tions that satisfy them are beyond the scope of this paper.
We assume that these tasks have already been achieved for
a group object with static membership. In other words, if
the group implementing the object does not experience any
view changes, then the external operations transform the
global state such that the invariants continue to be satisfied.
What complicates the programming task is the possibility
of view changes during external operations due to events
such as failures, recoveries, joins, and leaves. We concen-
trate on this aspect of programming correct group objects.
Clearly, for the group object to remain correct despite view
changes during its operations, the implementation has to
restore the truth of invariants over the global state when-
ever they are violated. To achieve this, the application relies
on a set of internal operations that are visible only to the
group object implementor and are not part of the external
interface.

In order to concentrate on the problems associated with
shared state management using view synchrony within a
group object, we abstract greatly the application computa-
tion as follows. At any time, a process of the group object
can be in one of three modes: NORMAL, ReEDUCED, and
SETTLING (N-mode, R-mode, and S-mode, for short). In N-
mode, a process performs all of the external operations de-
fined for the object; in R-mode, it performs only a (possibly
empty) subset of the external operations; finally, in S-mode,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

it performs internal operations only. The possible modes
and transitions between them are shown in Fig. 1. An ap-
plication may be structured such that only a subset of these
modes or transitions are relevant.

Reconfigure

Reconcile

@ FTTLING

Reconfigure

Failure

Failure

Repair

REDUCED

Fig. 1. Possible execution modes for a group object process. Each
transition is labeled by its cause.

A transition from N-mode to R-mode is caused by any
event that results in a new view that is not conducive to
satisfying external operations without the risk of violating
some invariant. We generically call this a Failure transition
corresponding to a view change resulting from a process
crash, communication failure, or false suspicion as dis-
cussed in Section 2. A view change that restores the condi-
tions related to connectivity for performing all of the exter-
nal operations results in a Repair transition. These typically
correspond to recovery of crashed processes or the repair of
communication failures that result in reestablishing con-
nectivity between partitions. To return to N-mode, a process
must first pass through S-mode. Given the possibility of
concurrent views, while one process is in R-mode, others
could remain in N-mode and continue to serve external op-
erations, thus modifying the global state. S-mode models the
state reconstruction that is required before a process in R-
mode can return to N-mode through a Reconcile transition
and resume serving external operations. Obviously, Failure
transitions could occur while a process is in S-mode, causing
it to return to R-mode. Finally, a process may switch to S-
mode from N-mode through a Reconfigure transition without
entering R-mode. This transition typically corresponds to
events such as repairs or joins that cause an expansion of a
process’ view. Reconfigure transitions model the need to
reconstruct the global state reflecting the new view compo-
sition before a process can resume serving external opera-
tions. For this reason, a Reconfigure transition may also oc-
cur while a process is already in S-mode. Reconfigure transi-
tions from S-mode to S-mode may occur upon view changes
delivered while an internal operation is being executed.

Two simple examples will serve to clarify most of the
above discussion. First, consider a group object imple-
menting a file with the two external operations read and
write. For increased availability and reduced latency, the file
is partially or fully replicated within the group. Informally,
the correctness criteria for this object could be stated as

BABAOGLU ET AL.: ENRICHED VIEW SYNCHRONY: A PROGRAMMING PARADIGM FOR PARTITIONABLE ASYNCHRONOUS DISTRIBUTED SYSTEMS 645

follows: With respect to write operations, the group object
should behave exactly as if there were only one copy of the
file; with respect to read operations, it is acceptable to re-
turn any available data, even though it may be stale
(missing some of the more recent writes). One possible im-
plementation of this group object is to associate with each
replica of the file a vote and to define a quorum as a collec-
tion of votes that can be obtained in at most one concurrent
view. For this example, it is possible to determine execution
modes of processes based on the structure of the current
view as follows. A process is in N-mode (and thus can serve
both read and write operations) if the current view defines
a quorum and all of the copies of the file held by processes
in the view are up-to-date. If the current view is not a quo-
rum, then all processes in the view that have a local copy of
the file are in R-mode and they can service reads but not
writes. Finally, a process is in S-mode if the current view
defines a quorum but some processes in the view could
have a copy that is not up-to-date. Processes in S-mode must
first obtain an up-to-date copy of the file before returning to
N-mode.

Next, consider a group object implementing a database
with a single look-up query interface. For performance rea-
sons, the database is fully replicated within the group and the
query is performed in parallel by the group members, each
being responsible for a portion of the database. The correct-
ness criterion requires that look-ups against the replicated
database return exactly the same results as the non-replicated
case. In particular, the entire database must be searched be-
fore reporting that the value being looked up does not exist.
For this example, the only external operation (look-up) can be
performed in any view. Thus, R-mode does not exist. Any
event causing a view change, however, results in a transition
to S-mode in order to redefine the division of responsibility
for portions of the database to be searched by members of the
group. An inconsistency in this global state information
could result either in some portion of the database being
searched multiple times (reducing efficiency) or not being
searched at all (compromising correctness).

We define the history of a process p, denoted by hy, as a
(possibly infinite) sequence of dlvr and vchg events. Let h"j

denote an initial prefix of h, containing the first k events.
We assume that the first event of process p’s history is a
vchg event corresponding to p joining the group object. In
general, the mode of a process can depend on an arbitrary
number of past delivery events from the time it has joined
the group. In other words, after k events, the mode of proc-
ess p is defined by JVI(h:j), where M is called the mode func-

tion. A process determines its current mode by evaluating
M each time view synchrony delivers it a new event. The
actual mode function ‘M associated with a group object
depends on both the invariants of the application and on
the implementation technique used to attain them. The
problem of deriving M for a specific object group is beyond
the scope of this paper. We assume that the mode function
depends only on the current view composition and on the
messages that are delivered during the current view. In
other words, it is independent of the process’ local history

earlier than the last view change event. Furthermore, we
assume that all processes in an object group share the same
mode function.

4 THE SHARED STATE PROBLEM

Whatever the reason for switching to S-mode, the activity of
a process in this mode consists of checking the current
global state and, if necessary, reconstructing a new one
where the invariants are satisfied. We call the reconciliation
that is necessary the shared state problem. A process makes
the Reconcile transition into N-mode only upon the success-
ful completion of the shared state problem. This transition
distinguishes itself from the others since it is synchronous
with respect to the computation. As discussed in the previ-
ous section, the other transitions in general are triggered by
external events such as failures, recoveries, joins, leaves,
network partitions, or partition mergers. These events, by
their nature, are asynchronous with respect to the com-
putation performed by an application. On the contrary,
the Reconcile transition can take place only when the global
state has been successfully reconstructed, which is applica-
tion defined.

In the following, we shall present three conditions that
give an abstract characterization for the shared state problem.
These are necessary conditions and classify the shared state
problem according to possible group reconfigurations re-
sulting from failures, recoveries, joins, leaves, partitions, and
repairs. Proving that a given condition actually provokes an
instance of the corresponding shared state problem depends
strongly on the application semantics. We believe, however,
that this characterization is rather general and provides in-
sight for building partition-aware applications.

Consider the event vchg(v) delivering a new view v at
process p. Moreover, let ¢, be any consistent cut of the com-
putation that includes the vchg(v) events for each process p
in v. When p delivers view v, it first evaluates M(v) to com-
pute its next mode. Without loss of generality, we assume
that the mode function evaluation is instantaneous. So, the
evaluation of the new mode by all processes in v coincides
with the cut c,. Since we assume that the mode function
depends only on the current view composition, all proc-
esses in v evaluate the same next mode along c,. In other
words, when a new view v is installed, every process in this
view either eventually switches to the same mode or
crashes.

Let us focus on the Repair and Reconfigure transitions that
lead to S-mode and bring about the shared state problem.
Consider the event vchg(v) that causes a switch to S-mode
along cut c,. Processes in v may reach this mode through
different histories: some of them might have been in R-
mode, whereas others might have been in N-mode before
switching to S-mode.” Therefore, we can split v in two dis-
joint subsets denoted RS(v) and NS(v) containing, respec-
tively, those processes that were in R-mode and those proc-
esses that were in N-mode before switching to S-mode. Since
the view synchrony model allows concurrent views, proc-
esses in NS(v) could even have belonged to different views

2. We assume that a process joining the group for the first time was ini-
tially in R-mode.

646

when they were in N-mode.? Thus, we further decompose
NS(v) into disjoint subsets called clusters such that processes
in the same cluster belonged to the same view, whereas
processes in different clusters belonged to different views
when they were N-mode.

We concentrate on three incarnations of the shared state
problem as described below. The common scenario for all
of them is the occurrence of a vchg(v) event for which the
new mode is S-mode.

State Transfer. This problem arises if the application is not
able to tolerate processes that may join the computation
at arbitrary times (which is a very common situation).
We have a state transfer problem when processes that
were in R-mode before switching into S-mode happen to
merge together with processes that were instead in N-
mode. Thus, a necessary condition for the state transfer
problem is that neither NS(v) nor RS(v) are empty. In
general, state transfer is handled by having each process
in RS(v) compare its local state to the state of at least one
process in NS(v) and possibly modify it as a consequence
of this comparison.

State Creation. This problem arises whenever the global state
must be reconstructed from scratch, for example, after a
total failure scenario. A necessary condition for the state
creation problem is that NS(v) is empty but RS(v) is not.
State creation requires each process p in v to compare its
local state with that of all other processes in v and possi-
bly modify it as a result of this comparison. Identifying
which local state is to be used for recreation of the others
may require determining the last process to fail [10].

State Merging. This problem arises whenever processes in
concurrent partitions may continue serving external op-
erations independently. When the conditions leading to
the partition are repaired, an application-specific deci-
sion has to be taken in defining a new global state that
reconciles the divergence that may have taken place. The
necessary condition for this situation is that NS(v) is not
empty and is composed of at least two clusters.

The state merging problem does not exclude the possi-
bility that the set RS(v) is also nonempty. In this case, the
state merging and state transfer problems present them-
selves together. Moreover, in applications that are struc-
tured around the primary partition paradigm, state merg-
ing can never arise since primary partitions are totally or-
dered and, therefore, there can never be more than one
cluster in NS(v).

At each view change, a process has to first determine if a
shared state problem needs to be solved, and if so, which one.
Occurrence of a shared state problem can be deduced locally
by the mode function evaluating to S-mode. Classifying the
problem, on the other hand, is more difficult. The only local
information relevant towards classifying the shared state
problem is the new view composition as provided by view
synchrony. Unfortunately, this information alone is typically
not sufficient for classification since views as defined by view
synchrony are flat structures and do not contain information
regarding RS(v), NS(v), and possible clusters.

3. The same reasoning holds for processes in RS. However, this case is
not meaningful for our discussion.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

Suppose, for example, that some process p makes the
transition from R-mode to S-mode upon delivery of vchg(v).
By reasoning on the composition of view v, the only conclu-
sion p can draw is that RS(v) is not empty4 but it is not able
to distinguish between a state transfer or a state creation
problem since it has no information about NS(v). The other
aspect of this problem is that p is not able to determine the
role that other processes in v will have with respect to the
shared state problem. Processes can obtain this information
only through additional protocols that are typically com-
plex and costly [10].

Moreover, by their nature, Repair and Reconfigure transi-
tions may occur asynchronously with respect to the execu-
tion of group object operations. This stems from the fact
that an application has no control over the next event to be
delivered by the view synchrony layer. So, an instance of a
shared state problem may interrupt the execution of an ex-
ternal operation or overlap with another instance of the
shared state problem (i.e., interrupt an internal operation).
Clearly, this asynchrony is a source of significant complex-
ity that may obscure the conceptual simplicity and elegance
of view synchrony. Effectively attacking these problems
depends mostly on the semantics of the application and
programming skills [11].

5 DISCUSSION

Analysis of view synchrony in terms of shared state prob-
lems allows us to better understand certain design deci-
sions that have been made in various implementations of
the abstraction. Isis, for example, provides a state transfer
tool that permits a process joining the group to bring itself
up-to-date automatically [2]. The programmer only has to
define what constitutes the shared state (and thus needs to
be transferred before the new process is allowed to partici-
pate actively in the computation) in terms of program vari-
ables. The actual details of the state transfer itself (e.g., from
which process to obtain the state, handling view changes
during transfer, etc.) are handled automatically by the sys-
tem. In Isis, a state transfer is performed before installing a
new view that includes the joining process. This is an im-
portant point since it guarantees that all processes in the
current view have an up-to-date state, thus simplifying the
structure of the entire application and not just that of the
view change handlers. A consequence of this feature is the
requirement for additional synchrony between the applica-
tion and the external environment—a new view including
the joining process cannot be delivered until the state trans-
fer is complete, which is an application-specified action.
This, in turn, requires a significantly more complex run-
time support for Isis than what is needed for implementing
the view synchrony model as described in this paper.
Another feature of Isis that is quite relevant with respect
to shared state problems is the fact that two consecutive
views of a group may expand by at most one member at a
time. This seemingly minor detail has a substantial impact on
the ability to reason globally with local information upon
view changes. To illustrate the point, consider a process p

4. The set RS(v) contains at least process p itself.

BABAOGLU ET AL.: ENRICHED VIEW SYNCHRONY: A PROGRAMMING PARADIGM FOR PARTITIONABLE ASYNCHRONOUS DISTRIBUTED SYSTEMS 647

that has just joined the group resulting in a new view V.
Given the property just stated, p can immediately conclude
that it is the only process in RS(v) and that all other processes
in its view are in NS(v). Similarly, p may easily deduce
whether there is an instance of the state transfer or state
creation problems; the latter being the case if p is alone in
the view. Implementation of the Isis state transfer tool has
probably benefited greatly from this feature. Instead, sys-
tems such as Relacs [12], Horus [13], and Transis [5] adopt a
model similar to ours, where two consecutive views may
differ by an arbitrary number of members due to partitions
or mergers. In these systems, global reasoning on behalf of
shared state problems after view changes is much more
complex.

Based on the above observations, one might argue that
limiting an expanding view to include exactly one more
member than its predecessor is a desirable feature for a
group communication system. Unfortunately, this is highly
impractical in large-scale systems. Given that such systems
may be prone to frequent partitions (real or virtual) and
thus frequent mergers, the restriction that views grow one
process at a time will result in an inordinate number of
view change events. For example, consider two partitions
of n members each that merge after repairs. This event will
result in n view changes in each of the two partitions, ad-
mitting one new process at a time into the view when, in
fact, a single view change is all that is really required. Fur-
thermore, the limitation in question may lead to ambiguous
semantics for the reliable multicast primitive under certain
failure patterns [14].

Given that Isis implements the primary partition (or linear
membership) model of group communication, concurrent
views are not possible. In other words, for this system, the
state merger problem does not exist by definition. The price
to pay for this simplification is the inability to support par-
tition-aware applications with weak consistency require-
ments that could make progress in multiple concurrent
partitions.

It is highly desirable for systems implementing view
synchrony to include support for solving shared state
problems systematically rather than having the burden fall
entirely on the application programmer. It is difficult, how-
ever, to provide a generic support layer (or a suite of layers)
that is appropriate for all possible application classes. For
example, if the application involved very large amounts of
data, as might be the case for file systems or databases, the
strategy of blocking view installations while state transfer is
in progress might be infeasible. In such a situation, it will be
desirable to split the state into two parts: A (large) piece
transferred concurrently with application activity in the
new view; a (small) piece that needs to be transferred while
the servicing of external operations in the new view is sus-
pended [11]. Moreover, one might want to avoid transfer-
ring the entire state “blindly” and might prefer a solution
where the two parties—the joining process and those in
NS—negotiate parts of the shared state to transfer, de-
pending on the context of the join event. The search for a
generic support layer becomes even more difficult when we
consider state merger and state creation problems in addi-
tion to state transfer.

As another example, consider the Consistent Object
Replication Layer (COReL) of the Transis system [15]. Tran-
sis implements view synchrony and allows concurrent
views of the same group to exist [16]. COReL simplifies the
development of applications based on replicated objects by
providing primitives that (eventually) totally order mul-
ticast messages within a group. Any connected subset of
processes defining a quorum can make progress, even after
recovery from total failures. In particular, if some process p
enters the quorum view after having been isolated for some
time, COReL relays to p a copy of all messages exchanged
within the quorum view during p’s absence. By processing
these messages and applying the relevant updates to its
local replica in sequence, p brings itself up-to-date. Al-
though this functionality is clearly of great help for the pro-
grammer, the strategy may not be practical in large-scale
systems where partitions may last for a long time. In such
systems, it may be preferable to send directly the relevant
portions of the up-to-date state rather than buffering, re-
laying, and processing all update messages in sequence.
Moreover, there would be no point in relaying messages
that do not alter the shared state.

Further confirmation of the difficulties presented by
shared state problems in the context of view synchrony can
be found in the group communication primitives of the
Amoeba distributed operating system [17]. Informally,
Amoeba guarantees that all processes in a given group see
all events concerning that group (i.e., delivery of messages
and view changes) in the same order. In particular, view
changes are totally ordered with respect to message deliv-
eries, which is the property that is essential for our entire
discussion. Designers of Amoeba initially believed that de-
veloping group-based reliable applications would be a
fairly simple task based solely on the Amoeba primitives.
They later discovered that they had underestimated the
technical problems related to state creation and state trans-
fer. It turned out that state creation and state transfer re-
quired, in practice, a toolkit library built on top of the
Amoeba services. Since Amoeba provides only totally-
ordered multicasts, this example also corroborates our
claim that problems of shared state maintenance are essen-
tially independent of multicast ordering issues.

To summarize, programming real applications based on
view synchrony, even when augmented with “toolkits,” may
prove to be too difficult. Rather than approaching the prob-
lem by constructing more toolkit layers on top of view syn-
chrony, it might be worthwhile to question the suitability of
the model itself. The enriched view synchrony extension we
propose in the next section is an attempt in this direction.

6 ENRICHED VIEW SYNCHRONY

In this section, we present a novel extension to view syn-
chrony that is aimed at simplifying reasoning about shared
state problems. This extension, called Enriched View Syn-
chrony (EVS), requires minor modifications to the view
synchrony run-time support and can be implemented
efficiently. Appendix 2 contains a formal description of
EVS and Appendix 3 contains a sketch of how it can be
implemented.

648

6.1 Basic Properties of Enriched View Synchrony

Our proposed extension to view synchrony is based on the
notions of subviews and subview sets (sv-sets for short). Just
like views, subviews are sets of process names that exist
within a given view. Each view is constructed out of at least
one subview. Each process belongs to exactly one subview.
In other words, subviews do not overlap and they do not
span across view boundaries. Subviews in the same view
can be grouped together as sv-sets. Each subview belongs to
exactly one sv-set. Within a given view, subviews and sv-
sets never split and they merge only under application
control, as described below. Given two consecutive views u
and v, processes that are common to u and v and that were
in the same subview or sv-set in u remain in the same sub-
view or sv-set also after the installation of v. The example
depicted in Fig. 2 illustrates these properties. First, a parti-
tion causes view v, to split into two concurrent views v,
and v;. When the partition is repaired, the two concurrent
views merge to form a single view v,. Note that while the
partition divides the black processes of v; between views v,
and v;, within each, black processes remain together in a
single subview. The merged view v, maintains the structure
of the two previous views with respect to subviews and sv-
sets. Informally, subviews permit reasoning about which
processes belonged to the same view before the installation
of a new view. Subview sets, on the other hand, are used by
applications to mark those processes involved in some
global activity at the time of a view change and that should
not be interrupted by new processes entering the view.

e [
=

U1 Uy

Fig. 2. Basic features of the enriched view synchrony model. Views,
subviews, and sv-sets are indicated, respectively, through thick, thin,
and dashed frames.

Sv-sets, subviews, and process names within a given
view form a tree structure corresponding to properly
nested sets: The view contains sv-sets, sv-sets contain sub-
views, and subviews contain process names. The case
where there is a single sv-set containing a single subview
containing all of the processes degenerates to the traditional
view abstraction. The system attaches no meaning to sub-
views and sv-sets. It simply maintains the structuring in-
formation on behalf of applications.

What distinguishes subviews and sv-sets from views is
the fact that their composition can grow only at the will of
the application, and not at arbitrary times. For example, a
process cannot simply appear in a subview after recovery
or the merger of a partition. It will first have to appear in a
subview by itself, and only when the application decides it
may be admitted into an existing subview. As with views,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

failures may cause subview and sv-set compositions to
shrink asynchronously with respect to the application at
times of view changes. In Fig. 2, the partition causes the
subview of black processes to shrink in each of views v, and
v, with respect to v,. After the merge, however, processes
that were in different subviews or sv-sets in v, and v; con-
tinue to belong to different subviews or sv-sets also in v,.
This is because subviews and sv-sets may merge only in
response to application-invoked primitives as described
below. It is this aspect of EVS, where subviews and sv-sets
expand synchronously with respect to the application, that
distinguishes it from traditional view synchrony.

Our extended view synchrony service delivers processes,
messages, and enriched views (e-views for short) that include
the sv-set and subview structure within the view. Tradi-
tional view changes correspond to e-view changes where
there is a change in the set of processes making up the
view. Even when the view membership remains unaltered,
e-view change events may be provoked by applications
requesting mergers of subviews or sv-sets. When a process
first joins a group, it appears within the new view in a new
sv-set containing a new subview containing only the proc-
ess itself. After their initial creation, subviews and sv-sets
may be modified by the application through the following
calls, which augment the usual view synchrony interface:

SV-SetMerge(sv-set-list). Create a new sv-set that is the union
of the sv-sets given in sv-set-list. Any sv-set in sv-set-list
that does not belong to the current view is ignored.

SubviewMerge(sv-list). Create a new subview that is the union
of the subviews given in sv-list. The resulting subview
belongs to the sv-set of the invoking process. Any sub-
view in sv-list that does not belong to the sv-set of the
invoking process is ignored.

Fig. 3 illustrates a sequence of e-view changes provoked
by the above calls. Dashed arrows indicate e-view changes
that are not view changes (i.e., the composition of the view
as a set of processes remains unchanged). The first e-view
change is due to an SV-SetMerge() call merging three sv-
sets, each containing a single subview consisting of white
processes. The second e-view change is due to a Subview-
Merge() call merging the top two subviews of the newly
created sv-set. Note that the example depicts a scenario
where no failures occur; thus, the composition of view v
remains unchanged; only the structure of subviews and sv-
sets within the view change in response to application in-
voked calls.

This extended service maintains the semantics of view
synchrony regarding view changes and message deliveries,

@
oo
[S)
° o

[

<
<

Fig. 3. The figure illustrates two e-view changes within a single view v.
For simplicity, sv-sets that contain a single subview are not traced out
as dashed frames.

BABAOGLU ET AL.: ENRICHED VIEW SYNCHRONY: A PROGRAMMING PARADIGM FOR PARTITIONABLE ASYNCHRONOUS DISTRIBUTED SYSTEMS 649

exactly as described in Appendix 1. With respect to e-view
changes, the following additional properties are guaran-
teed, which we state informally:

PROPERTY 6.1 (Total Order). E-view change events within a
given view (i.e., between two consecutive view change
events) are totally ordered by all processes in the view.

PROPERTY 6.2 (Causal Order). E-view change events define
consistent cuts of the computation. In other words, causal-
ity relations between message multicasts and e-view
changes are preserved.

PROPERTY 6.3 (Structure). Subview and sv-set structures are
preserved across view changes. In other words, processes
that belong to the same subview (sv-set) in a given view
remain in the same subview (sv-set) also in the successor
view. Moreover, processes that do not belong to the same
subview (sv-set) in a given view remain in different sub-
views (sv-sets) also in the successor view.

6.2 Structuring Applications Based on Enriched
View Synchrony

Our proposed extension to view synchrony presents an
opportunity for systematic and simplified solutions to
shared state problems. It enhances the global reasoning that
can be achieved based on local information after view
changes and simplifies handling of the asynchrony between
view synchrony run-time support and the application.

In terms of the application model used in this paper,
we structure an application according to the following
methodology:

1) External operations are performed within a single
subview and not across different subviews.

2) Internal operations are performed across subviews
belonging to the same sv-set. Upon successful com-
pletion of the internal operation, all subviews within
this sv-set are merged into a single one.

It follows that the existence of multiple sv-sets within a
view signals the necessity for solving a certain instance of
the shared state problem. Moreover, the existence of multi-
ple subviews within a given sv-set signals that a shared
state problem instance is in progress within this sv-set.

This methodology is illustrated in Fig. 4. Initially, some
process in v, creates an sv-set containing all three subviews,
signaling that some internal operation is in progress. The
resulting e-view change is indicated with the dashed arrow
between two instances of view v;. After the partition
merges and view v; is installed, the black processes that
were in v, can conclude, based solely on local information,
that all of the white processes were together in a partition
(v4) and were engaged in an internal operation before the
merge, and thus should not be disturbed.

This methodology greatly simplifies reasoning about
shared state problems using only information that is locally
available to processes. Note that processes entering an ex-
panding view are not permitted to participate in the com-
putation that might be in progress at the time of the view
change because they will appear in a different subview (or
sv-set) than the one carrying out external or internal opera-
tions. Rather, they have to be “let in” explicitly by the other

U1 U1 U3
[— — I |- ——— -
[| !
oo - == T oo l**TOO |
o | |
e
° o | | ©0of | ‘Oo ‘

U2

Fig. 4. Example of structuring of an application based on enriched view
synchrony.

members in order that the appropriate subviews and sv-
sets expand. The Structure Property guarantees that proc-
esses remain in the relevant subview (sv-set) across view
changes, thus, all surviving processes will continue to par-
ticipate in the computation and have the same notion of
shared state.

As an example, consider the file object introduced in
Section 3, and suppose that the implementation of the ex-
ternal operations involves the management of a mutually-
exclusive write lock within a quorum view. The shared
global state will thus include the identities of the lock man-
ager and the current lock holder (if any). Suppose some
process p installs a view v consecutive to u such that v de-
fines a quorum whereas u does not (i.e., p switches from R-
mode to S-mode). In traditional view synchrony, upon in-
stalling view v, the only conclusion p can draw based only
on local information is the fact that v indeed defines a quo-
rum. It cannot distinguish between the following scenarios:

1) A quorum already existed in one of the views prior to
v (i.e., a state transfer problem exists since NS and RS
are both nonempty);

2) The shared state was being reconstructed at the time v
was installed (i.e., a creation problem exists since NS
is empty but RS is not and an instance of the related
internal operation has been interrupted);

3) A quorum is reborn after it had disappeared tempo-
rarily (i.e., a creation problem exists since NS is empty
and RS is not).

With our proposed extensions, process p can draw sev-
eral relevant conclusions through local reasoning on the
view composition and structure. If the new view v contains
a subview that defines a quorum, such a subview consti-
tutes the set NS and thus contains processes whose notion
of shared state is up-to-date. Notice that this is a major ad-
vantage since v may contain processes other than p that
have just joined v and thus do not know how to obtain an
up-to-date shared state. If, on the contrary, v does not con-
tain any subview that by itself defines a quorum, then cases 2
and 3 can be distinguished by controlling if v contains an
sv-set defining a quorum.

As for the asynchrony between application and run-time
support, note that while an operation is being executed, the
set of processes participating in it may only shrink—a new
view may be delivered by view synchrony at arbitrary

650

times but the composition of subviews and sv-sets may grow
only at the will of the application. Therefore, algorithms can
be easily designed to run undisturbed across view changes.
For instance, in case 2 above, process p can decide locally to
wait for the processes running the creation protocol to com-
plete their task before disturbing them for a copy.

As a further example, suppose that the availability of the
replicated object file is further increased by allowing writes
in any view. Informally, a write that takes place in a view
defining a quorum has a permanent effect. The effects of a
write performed in a non-quorum view are tentatively ac-
cepted but remain pending. They will become permanent if
no write occurred in a concurrent view. Otherwise, they
will be discarded. One can read up-to-date and permanent
values only in a view defining a quorum.

One possible implementation of this scheme consists of
letting a tentative write create a tentative copy, and associat-
ing with each tentative copy information reflecting the partial
ordering among writes. Version vectors are an example of
this information [18]. A tentative write becomes permanent
by promoting the tentative copies to plain copies and dis-
seminating them to a quorum of processes. A tentative write
is rolled back by deleting the tentative copies it produced.
When two or more views merge to form a single view, all
version vectors in the resulting view are compared in order
to detect concurrent writes. Any tentative write that is dis-
covered to have been concurrent with respect to another
write is rolled back. Then, the most recent write, if any, is
propagated to all members of the view (and the version vec-
tors updated accordingly). If the resulting view defines a
quorum, this write is also made permanent.

In this example, the external operations read and write
can be performed in any view, and it follows that processes
in a view composed of a single subview are in N-mode while
R-mode does not exist. Moreover, any view change that noti-
fies the merging of two or more views produces a transition
from N-mode to S-mode. Processes in S-mode compare their
version vectors and propagate their copies, if necessary,
before returning to N-mode. Since the only transitions that
can occur are Reconfigure and Reconcile, processes have to
confront only the state merging problem.

Suppose that a process p installs a view v consecutive to
two or more views. As stated earlier, with traditional view
synchrony, the only conclusion that process p can draw
based on local information is whether v defines a quorum
or not. With EVS, instead, p may also determine the
grouping of v in clusters (e.g., subviews) and the clusters
that are already involved in a state merging (e.g., sv-sets
composed of multiple subviews).

7 PROGRAMMING EXAMPLE

In this section, we present details of the file object implemen-
tation described in Section 3 and in the previous section. The
exercise is useful in that it will illustrate the programming
methodology we introduced in previous Section 6.2.

7.1 Overview

Let a quorum sv-set and a quorum subview be, respectively,
an sv-set and subview that include enough processes to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

define a quorum. Based on these definitions and the repli-
cated file specification, the mode of a process can be deter-
mined as follows. A process is in

1) N-mode iff it belongs to a quorum view composed of
only one subview;

2) S-mode iff it belongs to a quorum view composed of
multiple subviews; and

3) R-mode iff it does not belong to the quorum view.

Furthermore, the shared state problems that may occur are
the creation problem (when a quorum subview disappears
for some time) and the state transfer problem (when one or
more subviews appear in a view together with a quorum
subview).

According to the programming methodology, external
operations are executed within subviews. In particular,
writes can be executed only in a quorum view composed of
only one subview, whereas reads can be executed in any
subview, thus returning possibly stale data. Reads are
guaranteed to return the current contents of the file only if
they are executed in the quorum subview. Internal opera-
tions for solving both creation and state transfer problem
and reestablishing the consistency of the file contents after
the joining of some processes are carried out within a quo-
rum sv-set.

Developing the application based on our methodology
requires the implementation of five components:

1) external operations;

2) internal operations;

3) computing the process mode;

4) detecting the shared state problem instances; and

5) deciding whether an internal operation has been
interrupted.

We achieve this by splitting up each process into two com-
ponents: the low-level event manager (LLEM) and the high-
level event manager (HLEM). LLEM implements items 3-5 by
analyzing e-views delivered to the process by the EVS run-
time support. LLEM then passes the e-view event, enriched
by the outcome of this analysis, to HLEM, that implements
land 2.

LLEM collects the results of its analysis into a data structure
called Analysis that is a triple (mode, problem, phase) of enumer-
ated types. The mode variable contains the current mode of the
process and it may be any one of N-mode, R-mode, or S-mode.
The problem variable describes which shared state problem
needs to be solved and it may be any one of STATETRANSFER,
CREATION, or NoNE. Finally, the phase variable describes if the
process is involved in an internal operation or if an internal
operation is necessary but has not started yet. The value
INPROGRESS specifies the former case, whereas the value
RECORDED the latter. If no shared state problem needs to be
solved, then both problem and phase are set to NONE. A crucial
point to observe is that LLEM constructs Analysis on the basis
of local reasoning only. It is straightforward to deduce from
our methodology that the Analysis produced by LLEM when
analyzing a given e-view is identical at all processes that belong
to the same subview in that e-view.

HLEM starts an internal operation when it receives an e-
view event from LLEM augmented by a triple whose fields
mode and phase are equal to S-mode and RECORDED, respec-

BABAOGLU ET AL.: ENRICHED VIEW SYNCHRONY: A PROGRAMMING PARADIGM FOR PARTITIONABLE ASYNCHRONOUS DISTRIBUTED SYSTEMS 651

tively (this point will be clarified further below). The value
of field problem determines which internal operation has to
be executed. In general, upon delivery of an e-view event,
HLEM forwards this event to the in-progress operations
and then, if necessary, starts an internal operation.

Internal operations begin by creating an sv-set that in-
cludes the relevant processes. Upon delivery of the corre-
sponding e-view, the phase field of Analysis switches to
INPROGRESS. Internal operations can proceed across view
changes as long as the field phase continues to be IN-
PROGRESS, that is, as long as the composition of the sv-set
continues to define a quorum. Otherwise, the operation
aborts.

Our algorithms are expressed in a simple pseudo pro-
gramming language that supports multi-threaded proc-
esses. Indentation levels implicitly delimit blocks. The
statement wait-for(condition) synchronizes a thread with
the delivery of an event that renders the specified condition
true. Upon delivery of an event, the thread executes an un-
interruptible code segment called a handler that is specified
through an upon(event) statement. Within a handler, we
use the notation “Abort wait-for” as a shorthand for the
forcible termination of the procedure containing the wait-
for(condition) statement that synchronized the executing
thread with the current event.

7.2 Implementation

Each process is composed of two initial threads, corre-
sponding to LLEM and HLEM. In the following, we give the
details for LLEM and the internal operations carried out by
HLEM towards solving the state transfer and state creation
problems. As will become clear later, these algorithms are
quite general and are applicable to a large class of applica-
tions following the quorum model. HLEM starts an internal
operation by spawning a new thread. For the sake of brev-
ity, we omit the pseudo-code for external operations per-
formed by HLEM since it does not contribute to this discus-
sion. For the same reason, we omit details concerning inter-
thread communication.

Several ancillary functions are defined. Function
SetOfSV-Set() takes an e-view as argument and returns the
set of sv-sets contained in that e-view. Function SetOfSV()
takes either an e-view or an sv-set and returns the set of
subviews contained in its argument. Function comp() takes
either an e-view, an sv-set, or a subview as argument and
returns the set of processes contained in its argument.
Function quorum() also takes an e-view, an sv-set, or a sub-
view as argument and returns the Boolean value TRUE iff
the corresponding set of processes defines a quorum.
MySV, MySV-Set, and MyPid denote the current subview,
the sv-set, and the name of the invoking process. Finally,
function elect() returns a process chosen deterministically
from the set specified as its argument.

The pseudocode for LLEM is given in Fig. 5. Let p denote
the executing process. The cases in which p is either R-mode
or N-mode are straightforward (lines 4-8). If p is S-mode, its
reasoning depends primarily on whether it belongs to a
quorum subview (lines 11-16) or not (lines 17-26). In the
former case, p reasons on the set of processes that belong to
its sv-set but not to its subview (variable in, line 12). If this

set is not empty, p’s sv-set contains multiple subviews. It
follows that p is participating in the execution of a state
transfer (line 14). Otherwise, the need for a state transfer is
recorded (line 16). When p is not in a quorum subview, in-
stead, it first determines whether there is a quorum sv-set
(line 18). If there is no quorum sv-set, then a creation algo-
rithm shall be started (line 26). Otherwise, p’s reasoning
depends on whether it belongs to the quorum sv-set or not.
The former implies that p is participating in the execution of
an internal operation (lines 19 and 21-24). The latter implies
that an internal operation is being executed but p is not
participating in it (lines 19-20).

1 procedure LLEM()

2

3 upon vchg(ev)

4 if (not quorum(ev)) then

5 Analysis := (R-mode, NONE, NONE);

6 else

7 if (comp(MySV) = comp(ev)) then

8 Analysis := (N-mode, NONE, NONE);

9 else

10 % S-mode

11 if (quorum(MySV)) then

12 = {p | p € comp(MySV-Set) Ap # comp(MySV)};

13 if (in # 0) then

14 Analysis := (S-mode, STATETRANSFER, INPROGRESS);

15 else

16 Analysis := (S-mode, STATETRANSFER, RECORDED);

17 else

18 if (3ss € SetOfSV-Set(ev) | quorum(ss)) then

19 if (MySV-Set # ss) then

20 Analysis := (S-mode, STATETRANSFER, RECORDED);

21 else

22 if (3sv € SetOfSV(ev) | quorum(sv)) then

23 Analysis := (S-mode, STATETRANSFER,
INPROGRESS);

24 else Analysis := (S-mode, CREATION, INPROGRESS);

25 else

26 Analysis := (S-mode, CREATION, RECORDED);

27 pass vchg(ev) event up to HLEM;

Fig. 5. Structure of low-level event management.

The pseudocode for the part of HLEM that implements
creation is given in Fig. 6. HLEM spawns a thread for exe-
cuting procedure Creation() upon receiving the triple
(S-mode, CREATION, RECORDED) from LLEM. In summary,
state creation is performed as follows. Processes in the quo-
rum view elect a coordinator that:

1) creates an sv-set encompassing the entire view;

2) collects local states from all processes in the sv-set;

3) decides on a new state and multicasts it within the sv-
set;

4) merges the entire sv-set into a single (Qquorum) sub-
view.

The correspondence between these steps and the pseudo-
code in Fig. 6 is straightforward. In particular, note that the
primitives for subview and sv-set merging are invoked by
the coordinator (lines 4-5 and 11-16). Changes in the view
composition during execution of the algorithm are handled
simply (lines 22-29). In particular, the algorithm is aborted
only if the relevant sv-set does not constitute a quorum any
more or if the coordinator leaves the quorum view before
creating the sv-set (lines 24-25). In the latter case, another
instance of the creation algorithm will be spawned by

652

1 procedure Creation()

2 s := comp(ev);

3 coord := elect(s);

4 if (MyPid = coord) then

5 SV-SetMerge(SetOfSV-Set(ev));

6 wait-for (vchg(ev) | Analysis.phase = INPROGRESS);
7 core-Creation();

8

9 procedure core-Creation()

10 Transfer local state to coord;

11 if (MyPid = coord) then

12 wait-for (receipt of local state from all in s);

13 Select new state among received local states;

14 Transfer new state to all processes in s;

15 wait-for (ack from every process € s, except for myself);
16 SubviewMerge (SetOfSV(MySV-Set));

17 else

18 wait-for (new state from coord);

19 Send ack to coord;

20 wait-for (vchg(ev) | comp(MySV) = comp(MySV-Set));
21

22 upon vchg(ev)

23 if (Analysis.mode # N-mode) then

24 if (Analysis.mode = R-mode or
Analysis.phase # INPROGREsS) then
25 Abort thread;
26 s := s N comp(ev);
27 if (coord ¢ s) then
28 coord := elect(s);
29 Abort wait-for and call core-Creation();

Fig. 6. State creation algorithm.

HLEM. If, instead, the coordinator leaves the quorum view
after creating the sv-set, it is taken over by another process
(lines 26-29). It can be shown that if the number of view
changes is finite and the view continues to define a quo-
rum, then the quorum subview will eventually be created.

We make the following observations. Let ev and ev’ be the
e-views corresponding, respectively, to the formation of the
sv-set and its merging into a single subview. The Causal Prop-
erty of EVS guarantees that a process in the quorum subview
will not be delivered a message pertinent to external opera-
tions before vchg(ev’). Similarly, for instance, the coordinator
will not be delivered local states before the delivery of vchg(ev).

The pseudocode for the part of HLEM that implements
state transfer is given in Fig. 7. This operation is started
upon receiving the triple (S-mode, STATETRANSFER, RE-
CORDED) from LLEM. In particular, processes in the quorum
subview execute procedure State-Transfer-Active() whereas
the others execute State-Transfer-Passive(). Processes in the
quorum subview elect a coordinator that:

1) creates an sv-set encompassing the entire view;

2) transfers state to processes that are in the sv-set but
not in the quorum subview;

3) merges the sv-set into a single subview.

Processes that are not in the quorum subview simply wait for
the up-to-date state and for their admission in the quorum
subview. Observe that processes joining the quorum view
while an internal operation is in progress (either creation or
state transfer) will simply wait for the up-to-date state and
for their admission in the quorum subview (line 28 of Fig. 7
and lines 18-20 of Fig. 5).

The algorithm exhibits many similarities with the crea-
tion algorithm. Primitives for subviews and sv-set merging

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

1 procedure State-Transfer-Active()

2 out := {sv| sv € SetOfSV(ev) A sv & SetOfSV(MySV-Set)};
3 coord := elect(comp(MySV));

4 if (MyPid = coord) then

5 SV-SetMerge(MySV, out);

6 wait-for (vchg(ev) | Analysis.phase = INPROGRESS);

7 core-Active();

8

9 procedure core-Active()

10 if (MyPid = coord) then

11 Transfer state to all processes in out;
12 wait-for (ack from every process in out);
13 SubviewMerge(Set OfSV(MySV-Set));

14 wait-for (vchg(ev) | comp(MySV) = comp(MySV-Set));
15

16 upon vchg(ev)

17 if (Analysis.mode # N-mode) then

18 if (Analysis.mode = R-mode or
Analysis.phase # INPROGRESS) then
19 abort thread;
20 if (Analysis.problem = STATETRANSFER) then
21 out := out N SetOfSV(MySV-Set);
22 if (coord & comp(MySV)) then
23 coord := elect(comp(MySV));
24 abort wait-for and call core-Active()
25 else abort wait-for and call Creation();
26

27 procedure State-Transfer-Passive()

28 wait-for (vchg(ev) | Analysis.phase = INPROGRESS);
29 Receive state;

30 Send ack;

31 wait-for (vchg(ev) | Analysis.mode = N-mode);

32

33 upon vchg(ev)

34 if (Analysis.mode # N-mode) then

35 if (Analysis.mode = R-mode or
Analysis.phase # INPROGRESs) then
36 abort thread;
37 if (Analysis.problem # STATETRANSFER) then
38 abort wait-for and call Creation();

Fig. 7. State transfer algorithm. The upper part is executed by proc-
esses in the quorum subview, the lower part by processes not in the
guorum subview.

are invoked by the coordinator (lines 4-5 and 10-13); state
transfer is aborted only if the coordinator leaves before en-
larging the quorum sv-set or if the quorum sv-set disap-
pears (lines 18-19 and 35-36)5; and the coordinator’s leaving
of the quorum view is managed by electing a new one
(lines 22-24). Let p be a process executing the state transfer
algorithm from outside the quorum subview. It can be shown
that if the number of view changes is finite, then p will
eventually belong to the quorum subview or its view will not
define a quorum. Moreover, let ev denote the e-view corre-
sponding to the end of state transfer. The delivery of ev lets
processes in the quorum view switch to N-mode and thus
resume servicing external operations. The Causal Property of
EVS guarantees that no messages related to new external
operations may be delivered before ev.

So far we have assumed that a process’ local state may
be sent to others as a single multicast message. This may
not be realistic if the local state is very large, for instance,
containing an entire file system volume or a database. In
such cases, the transfer of the new state could require a long
sequence of messages. Moreover, it might be useful if state

5. Lines 25 and 37-38 handle the case in which the quorum subview dis-
appears but the sv-set in which state transfer was being executed still de-
fines a quorum.

BABAOGLU ET AL.: ENRICHED VIEW SYNCHRONY: A PROGRAMMING PARADIGM FOR PARTITIONABLE ASYNCHRONOUS DISTRIBUTED SYSTEMS

transfer were preceded by a phase in which the two parties
negotiated the part of the state that actually needs to be
transferred. We do not show the required changes to the
algorithm for sake of brevity. We do observe, however, that
these aspects make the possibility of running algorithms
across view changes even more valuable, which is facili-
tated by EVS.

We have stated above that HLEM starts a state transfer
when it receives the triple (S-mode, STATETRANSFER,
RecorpDeD) from LLEM. We discuss this point in more de-
tail in the sequel. Consider a process that joins the quorum
view while state transfer is in progress and remains in that
view until completion. Processes in the quorum subview
will produce, at the end of state transfer, a triple (S-mode,
STATETRANSFER, RECORDED), which causes HLEM to start a
further instance of this internal operation. It is easy to see
that an inopportune sequence of failures and repairs may
indefinitely prevent the resuming of external operations. In
practice, HLEM may be structured so that, after a prede-
fined number of “consecutive” state transfers, processes in
the quorum subview resume servicing external operations
“for a while.”®

Moreover, let the current value of Analysis be (N-mode,
NoONE, NoONE) and let its value switch to (S-mode,
STATETRANSFER, RECORDED) as a result of a view expansion
notified by event vchg(ev). Upon delivery of such an event,
an external operation might have been in progress. What
actually happens in this case is application dependent and
depends on the policy encoded in HLEM. A reasonable
policy might consist of servicing the state transfer immedi-
ately, after aborting in-progress external operations. The
approach of aborting in-progress operations is also com-
monly adopted [19], [20] probably because it is by far the
simplest to implement in programming paradigms other
than EVS. We believe that such a policy is motivated more by
the lack of expressiveness of the programming model than by
real application needs. Moreover, it may result in poor per-
formance particularly in large-scale systems where commu-
nication between remote sites may be very unreliable.

A different policy consists of completing in-progress ex-
ternal operations and then servicing the state transfer. We
have (implicitly) structured our example this way, which is
easy in EVS. Moreover, our proposed methodology allows
implementing widely differing policies. For instance, one
could easily implement overlapping state transfers with the
servicing of external operations, which is highly desirable
when the state to be transferred is very large [11]. After
creating the sv-set including the quorum subview and the
just-joined processes, state transfer would occur in two
phases. During the first phase, processes in the quorum
subview keep on servicing external operations, and in
background, transfer the large amount of state to the others.
Then, in the second phase, the servicing of external opera-
tions is suspended while a small amount of state is trans-
ferred (for propagating the updates that might have oc-
curred meanwhile) and, finally, the new quorum subview
is created.

6. In this case, one shall assume that a process in the quorum subview
may execute external operations also when LLEM delivers a triple with the
mode field set to S-mode.

653

1 procedure LLEM()

2

3 upon vchg(ev)

4 if (comp(MySV) = comp(ev)) then

5 Analysis := (N-mode, NONE, NONE);

6 else

7 if (comp(MySV) # comp(MySV-Set)) then

8 Analysis := (S-mode, STATEMERGING, INPROGRESS);
9 else

10 Analysis := (S-mode, STATEMERGING, RECORDED);
11 pass vchg(ev) event up to HLEM;

12

13 procedure Merging()

14 s:={p|p € comp(ev) A comp(SV(p)) = comp(SV-Set(p))};
15 coord := elect(s);

16 if (MyPid = coord) then

17 s'i={sv|pEsAsv=5V(p)};

18 SV-SetMerge(s');

19 wait-for (vchg(ev) | Analysis.phase = INPROGRESS);

20 core-Merging();

Fig. 8. Example of low-level event management (top part) and state
merging (bottom part) when processes in concurrent views may be N-
mode. SV(p) and SV-Set(p) denote, respectively, the subview and sv-
set of process p. The remaining parts of the merging algorithm
(procedure core-Merging() and handler of vchg(ev)) are identical to
those of Fig. 6.

To complete the discussion, we present an example in
which concurrent views may be in N-mode. In particular, we
shall assume that external operations may be executed in
any view composed of a single subview. It follows from
this assumption that R-mode mode does not exist and that
merging is the only internal operation required.

The pseudocode for LLEM is given in Fig. 8 (top) and is
self-explanatory.7 Portion of HLEM that implements merg-
ing may be obtained, for instance, by modifying the crea-
tion code in Fig. 6 as shown in the bottom part of Fig. 8. The
only essential difference is the initialization of variable s,
that contains the set of processes participating in the execu-
tion of the internal operation. This variable is now initial-
ized to contain all processes in the current view that are not
already executing the operation. Observations that were
made for the creation algorithm can be easily reformulated
for this example.

It is important to point out that merging operations may
be executed in parallel, that is, there may be multiple merg-
ing operations in progress within the same view. Consider,
for example, the delivery of a view containing three sv-sets
ssl, ss2, ss3, where ss1 is composed of multiple subviews
while ss2 and ss3 are composed of a single subview each.
Processes in ss2 and ss3 start an internal operation among
themselves without waiting for the completion of the state
merging that is in progress within ss1. The subview result-
ing from the merging of ss2 and ss3 will participate in a
further instance of the merging algorithm with the subview
resulting from the merging in ssl. This scenario cannot
happen in the creation algorithm because creation requires
a quorum of participants.

In traditional view synchrony, programming parallel
state merging operations within the same view is very
complex. In contrast, it is practically straightforward in

7. The mode variable of Analysis is now allowed to assume the value
STATEMERGING.

654

EVS: The set of processes that participates in the algorithm
is built based on simple local reasoning and, once built, it
never expands even in the presence of view changes. Apart
from the potential performance improvements (for in-
stance, when the state to be compared could require a long
sequence of messages), what needs to be emphasized is the
significant simplification of the programming task.

8 RELATED WORK

View synchrony was originally proposed for local-area
distributed systems where partitions were considered un-
likely [4]. In this so-called primary-partition model, only a
single view of a group may be active. While this model is
limited in its expressiveness, the lack of concurrent views
simplifies the implementation issues. For example, a proc-
ess that is about to leave the view may be delivered mes-
sages in an order that is inconsistent with respect to other
processes that remain in the view. This apparent inconsis-
tency is not a problem since each process that leaves the
primary view is declared as having crashed and it may re-
enter the view only after recovery as a new process.

The original primary-partition model has later been ex-
tended to permit multiple views to exist concurrently [3],
[5], [21], [16], [6]. However, none of the proposed exten-
sions to view synchrony explicitly address the problems
related to shared state maintenance, which are instead cen-
tral to the utility of the abstraction. What distinguishes our
work from the numerous other proposals is the fact that
EVS permits a methodology for solving the problem over a
large class of applications. This is in contrast with solutions
that are customized for particular problem domains or en-
vironments.

Cristian considers a group of replicated servers that ex-
port updates and queries as external operations [22]. This
work introduces three different specifications of replica
consistency. Very informally, the first of these specifications
allows updates to occur in concurrent views and requires
the execution of proper reconciliation procedures when
these views merge. These procedures, which resemble our
internal operation for state merging, are assumed to be ap-
plication-dependent and are not detailed. The second speci-
fication allows updates to occur only in a majority view.
The third specification requires that each update involve all
members of the group. Each update is propagated with a
single atomic broadcast, and the cited paper presents
atomic broadcast protocols that implement each of the three
specifications.

The protocols of Cristian are such that processes in a
view do not start sending broadcasts until the local state of
each replica consistently reflects the history of updates per-
formed in the group. This property of agreement on initial
view state is achieved by means of a dedicated phase of the
protocol: upon a view change, a process in the view collects
the state of the other processes, decides on the new state
and broadcasts its decision to the others. In other words, in
our terminology, internal operations are “hard-wired” into
the atomic broadcast protocol. In contrast, we build internal
operations on top of the communication primitives and we
provide a paradigm where reasoning about the low-level

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

details of internal operations is simplified. We claim that
our choice is more modular. Moreover, it removes com-
plexity from the lowest layers of the system and, thus, it
appears to be justified by an end-to-end argument [23]. As
an aside, the fact that the protocol for atomic broadcast in-
cludes a dedicated phase for reconciling the local states,
supports our claim that shared state problems are inde-
pendent of multicast ordering issues and, in a sense, they
are more fundamental.

The work of Cristian shares with us the idea that con-
sistent membership information and total ordering of mes-
sage deliveries with respect to membership changes are not
sufficient for reasoning about agreement on initial view
state. In particular, the membership service provides addi-
tional information (e.g., the composition of the previous
majority view or the composition of the respective previous
view) about the previous view of each process in a newly-
installed view. In EVS, we explore a similar idea but in a
different way. An enriched view that notifies a view change
provides information about the respective previous views.
For instance, processes in the same subview (sv-set) come
from the same view. However, this information is pre-
sented in a form that is closer to the actual needs of appli-
cations and it may be controlled by applications them-
selves.

El Abbadi et al. present a replica control protocol for a
replicated database using the notion of views [24]. Each site
can independently decide which sites to include and when
in its current view. In particular, it is the application that
decides when a view shall expand. The correctness of the
database does not depend on this choice, but data avail-
ability and operation costs may be affected. The notion of
view is not provided by the communication layer but it is
completely implemented by the database management
system. When a site decides to change its current view, the
replica control protocol invokes the system transaction
“update” that contacts all replicas in the view to bring them
up-to-date. This approach removes all problems related to
operations interrupted by an asynchronous view expan-
sion, at the expense of some additional complexity in the
application.

A further example is reported by Howard and Katz and
proposes a “reconcile” language construct for creating a
consistent state among a set of processes that access only
the respective local variables [25]. However, this work is
more concerned with the semantics and use of the pro-
posed construct than with how to actually support it. Our
work is placed at a lower level of abstraction and it is cast
in terms of view synchrony and partitionable membership.
A similar comparison can be made with respect to the work
of Evangelist et al. where it is argued that multicast is not
an appropriate high-level language construct for synchro-
nizing multiple processes [26]. Even in this case, the level of
abstraction is quite different from ours. This work takes
into account the possibility of process failures and allows a
so-called “multiparty synchronization” to complete with
only a quorum of the processes involved. However, process
failures are assumed to be reliably detected and failed proc-
esses never reenter the computation.

BABAOGLU ET AL.: ENRICHED VIEW SYNCHRONY: A PROGRAMMING PARADIGM FOR PARTITIONABLE ASYNCHRONOUS DISTRIBUTED SYSTEMS 655

9 CONCLUSIONS

Shared state problems such as state transfer, creation, and
merging, are likely to be an issue in many future applica-
tions that have reliability constraints. This is particularly
true in partitionable systems such as the Internet, where
multiple views of a group may exist concurrently. Even
though view synchrony has the potential for being a clean
and elegant programming abstraction, this elegance can
easily be lost in practice, unless special provisions are made
for supporting shared state maintenance.

We have given a characterization for shared state prob-
lems in terms of necessary conditions and presented an
analysis of related problems that arise in practical applica-
tions. We have then presented an extension to view syn-
chrony, called enriched view synchrony, explicitly conceived
to simplify the task of shared state maintenance in parti-
tion-aware applications. Group views delivered to proc-
esses are enriched by structural and historical information
relevant to the group’s activity. Such information is defined
by the application and maintained by the run-time support.

In conjunction with a simple programming methodol-
ogy, local reasoning that is possible upon view changes is
greatly improved with enriched view synchrony, even in
the case of expanding views. Among others, a process is
able to infer whether an algorithm for shared state mainte-
nance shall be run or if it was already in progress before the
view change. In the former case, a process can also infer the
type of shared state problem and which other processes
need to be involved. Moreover, asynchrony between run-
time support and application may now be controlled in the
sense that shared state problems cannot occur at instants
that are inopportune for the application. This in turn sim-
plifies the entire application and not just those parts re-
sponsible for handling events that trigger shared state
problems. The methodology has been illustrated through a
simple example that can be extended to a large class of ap-
plications based on the quorum model.

APPENDIX
Al VIEW SYNCHRONY

For completeness, we give a specification for view syn-
chrony in terms of properties on view installations and
message deliveries. A more detailed discussion along with
considerations for the implementability of the specification
can be found elsewhere [6].

PROPERTY A.1 (View Order). Two processes that install the
same two views install them in the same order.

PROPERTY A.2 (View Agreement). If a correct process p installs
view v, then for every process g included in v, either

1) qalso installs v, or
2) p eventually installs consecutive view w that excludes g.

PROPERTY A.3 (View Integrity). Every view installed by a proc-
ess includes itself.

PROPERTY A.4 (View Nontriviality). If process p is continu-
ously able (unable) to communicate with some other correct
process g, then the current view of p will eventually include
(exclude) q.

PrROPERTY A.5 (View Intersection). Concurrent views have no
common members in their intersection.

PROPERTY A.6 (Message Agreement). If a correct process p
delivers message m in view v, then for every process q in-
cluded in v either

1) qalso delivers m, or
2) p eventually installs consecutive view w that excludes g.

PROPERTY A.7 (Message Uniqueness). Each multicast message,
if delivered at all, is delivered in exactly one view.

PROPERTY A.8 (Message Integrity). Each process delivers a
message at most once and only if some process actually
multicast it earlier.

PROPERTY A.9 (Message Termination). A correct process al-
ways delivers its own multicast messages.

A2 FORMAL SPECIFICATION OF ENRICHED VIEW
SYNCHRONY

A2.1 Definitions and Notation

Recall that e-view changes may be provoked either by fail-
ures and recoveries, or by the application through the
primitives SV-SetMerge() and SubviewMerge() as described
in Section 6.1. Let event prvk() denote the invocation of one
of these primitives. As with normal view changes, e-view
changes are delivered through vchg() events. We model the
execution of a process through its local history that is a se-
quence of events occurring at the process. Let h, denote the
local history of process p. We extend the consecutive rela-
tion, originally defined between views, to e-views. An e-
view is described by its name, the set of processes included
in the view and their structuring in terms of subviews and
sv-sets. With comp(ev) we denote the composition of e-view
ev as the set of processes included in the view. We maintain
the traditional notion of “view change” as follows. Given
two consecutive e-views ev and ev’, the event vchg(ev’) cor-
responds to a view change if comp(ev’) # comp(ev). View
changes satisfy the properties of view synchrony as de-
scribed in Appendix 1.

Let ev;)(v) denote the ith e-view to be delivered at process
p in a given view v. By definition, evg(v) corresponds to the
view change installing view v and comp(ev;)(v)) = comp(v) for

alli=0,1, ..., € until the next view change. In other words,
the superscript denotes the position of an e-view delivered at
a process relative to the last view change (see Fig. 9). Let

evg(v) denote the last e-view to be delivered at process p in

view v. Let ev:J denote the ith e-view to be delivered at proc-

ess p since the beginning of the computation, irrespective of
the view. Finally, the predicate SAMESUBVIEW(p, q, ev) is de-
fined to be true if processes p and g belong to the same sub-
view in e-view ev.

A2.2 Properties of Enriched View Synchrony

We now give a formal specification for enriched view syn-
chrony that was described informally in Section 6.1. The
specification is given as a set of properties on e-views, mes-
sage deliveries, and related system events. It is intended

656

v v

Fig. 9. Example of notation. Solid cuts indicate e-view changes corre-
sponding to a modification in the composition of the view (i.e., a tradi-
tional view change), while dashed cuts indicate e-view changes where
the view composition remains unchanged.

that these properties are satisfied in addition to those of
view synchrony as defined in Appendix Al.

PROPERTY B.1 (Uniqueness). E-views identified by their names
are unique. In other words, Vp,i = j : ev, = ev).
PROPERTY B.2 (Total Order). Within any given view, e-view

changes are totally ordered by processes in the view. In
other words,

Vp, q € comp(V) :
(vchg(ev:)(v)) € hp) A (vchg(ev;(v)) € hq) =
evip(v) = ev;(v)

Upon delivery of e-view ev, process p cannot conclude
that all other processes in comp(ev) will also eventually de-
liver ev. What is guaranteed, however, is that processes that
survive a view change will have delivered the same set of e-
view events in the previous view. This is formalized by the
following property.

PROPERTY B.3 (E-view Agreement). Given two consecutive
views v and v/,

Vvp, q € comp(v) N comp(v’) :
vchg(ev:)(v)) eh, = vchg(ev;(v)) e h,
The next set of properties specify what we have infor-
mally called the Structure Property in Section 6.1.

PROPERTY B.4 (Initialization). The first e-view delivered at a
process is such that the process appears in a new subview
by itself. In other words,

Vp : SAMESUBVIEW(p.q, evg) =p=q

PROPERTY B.5 (Not Overlap). Subviews do not overlap. In other
words,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

vp,q,r .
SAMESUBVIEW(P, g, ev) A SAMESUBVIEW(p, I, ev)

= SAMESUBVIEW((, I, eV)

PROPERTY B.6 (Structure 1). A view change may split subviews
only if their components result in different views. In other
words, given two consecutive views v and V',

Vp, g € comp(v) N comp(v”):
SAMESUBVIEW(p, a, evﬁ(v))
= SAMESUBVIEW(p, q.ev, (v’))

PROPERTY B.7 (Structure 2). A view change never merges sub-
views. In other words, given two consecutive views v and v/,

Vp e comp(v) (N comp(v’), q € comp(Vv”):
—SAMESUBVIEW(p, q, evg (v))

= —.SAMESUBVIEW(p, q, evg(v’))

Properties B.4-B.7 defined for subviews also hold for sv-
sets. The following property states that delivery events for a
given e-view at different processes define a consistent cut of
the computation.

PrROPERTY B.8 (Causal Order). Causal precedence relations be-
tween message multicasts and e-view deliveries are pre-
served. In other words, if the delivery of an e-view ev and
the multicast of message m both occur in view v and the
former event causally precedes the latter, then any process
that delivers m must have first delivered ev.

Note that with respect to view changes, sets of delivered
messages are totally ordered by all processes common to
both views. With respect to e-view changes, however, the
ordering guarantee preserves only causal precedence. Ex-
tending the total ordering of messages with respect to e-
view changes as well would require more expensive proto-
cols that would make our extensions less suitable to a large-
scale system.

Finally we give properties for the primitives Subview-
Merge() and SV-SetMerge() described in Section 6.1. Recall
that prvk() denotes the event corresponding to the invoca-
tion of these primitives.

PROPERTY B.9 (Provoked E-views).

1) Multiple prvk() requests executed by the same process
are serviced in FIFO order,

2) Each prvk() event generates at most one vchg() event,

3) Each vchg() event corresponds to at most one prvk()
event,

4) A vchg() event without a corresponding prvk() event
must be a view change.

Consider a prvk() event issued by process p in e-view ev.
Let the predicate LEGAL(prvk()) be true if and only if the
parameters of SubviewMerge() (SV-SetMerge()) contain at
least two subviews (sv-sets) defined in ev. In case the
primitive is SubviewMerge(), the subviews defined in ev
must all belong to the same sv-set as the process invoking
the primitive.

BABAOGLU ET AL.: ENRICHED VIEW SYNCHRONY: A PROGRAMMING PARADIGM FOR PARTITIONABLE ASYNCHRONOUS DISTRIBUTED SYSTEMS 657

PrROPERTY B.10 (Nontriviality). If the predicate LEGAL(prvk())
holds when some process p issues prvk() in e-view ev, then
eventually either p will crash or it will be delivered the
vchg(ev’) event in ev that is provoked by prvk(). If the
predicate LEGAL(prvk()) does not hold when p issues
prvk(), then p will never be delivered the vchg(ev’) event.

A3 IMPLEMENTING ENRICHED VIEW SYNCHRONY

To implement Enriched View Synchrony, it suffices to ex-
tend a run-time support for view synchrony as sketched
informally in this Appendix. We assume that the reader is
familiar with the basic mechanisms required to implement
view synchrony [2], [12], [3].

Each process is associated with two identifiers (in addi-
tion to its name), one for subviews, the other for sv-sets.
Processes belong to the same subview (sv-set) if their corre-
sponding identifiers are identical. An e-view ev is repre-
sented by its name and, for each process in comp(ev), by the
triple (name, subview, sv-set) of identifiers. The name of ev
is constructed by coupling the name of the current view (as
constructed by view synchrony) with the number of e-view
changes delivered in that view before the delivery of ev.

Provoked e-view changes are implemented by sending a
request to a designated coordinator process in the current
view. The sending process records such a request until de-
livery of the matching e-view. The coordinator constructs a
message describing the new e-view and (reliably) mul-
ticasts it within the view using view synchrony. Upon de-
livery of this message, the run-time support updates ac-
cordingly its representation of ev and delivers to the appli-
cation the corresponding vchg(ev) event.

Requests arriving at the coordinator are queued and
processed in FIFO order, that is, in consecutive e-views.
Moreover, once the coordinator has started processing a
given request, it does not participate in any view agreement
until it has delivered the corresponding vchg(ev) event. In
other words, the sequence of steps <process request, mul-
ticast new e-view, deliver new e-view> is not interrupted
by view changes.

View agreement is augmented as follows. Processes par-
ticipating in the agreement exchange the local information
related to:

a) previous e-view; and
b) requests sent to the coordinator for which the
matching e-view has not yet been delivered.

In principle, this information may be easily piggybacked
onto the existing messages for agreement. Before installing
the e-view corresponding to the new view, existing sub-
view (sv-set) identifiers may have to be modified, otherwise
the run-time support could merge subviews (sv-sets) that
come from different views but happen to have the same
identifier, thus violating the Structure 2 property. Each
process constructs the new e-view by modifying the identi-
fiers of subviews and sv-sets so that:

1) Properties B.6-B.7 (Structure 1 and Structure 2) are
fulfilled; and

2) The new e-view has the same representation at all
processes participating in the agreement (e.g., the

identifiers of any given process are the same at all
processes).

We omit the details for sake of brevity. This step may be
performed locally, provided each process is able to figure
out, for any pair of processes in view v that is being in-
stalled, whether they are joining in v or they already be-
longed to the same view. Even this case can be handled
without introducing any additional messages. Finally,
processes elect the coordinator, that constructs a queue of
pending requests based on b and on the new view compo-
sition (e.g., it discards pending requests originated by proc-
esses that do not belong anymore to its view).

Message exchange is implemented by means of a simple
causal delivery algorithm in which all multicast events
between two consecutive e-view changes are treated as if
they were concurrent: e-views in the same view are num-
bered consecutively; each message includes an indication of
the e-view in which it was sent; a message m is delivered to
the process immediately after being received if the e-view
in which m was multicast has already been delivered, oth-
erwise m is inserted in a buffer; upon delivering an e-view
ev, all buffered messages that were multicast in ev are also
delivered. Each of these actions is atomic in the sense that it
is not interrupted by view changes, which may be achieved
easily because the related code executes in the run-time
support. Once again, this algorithm does not require addi-
tional message exchanges.

We give a very informal correctness argument for the
above implementation. Property B.1 (Uniqueness) is
straightforward. As for Property B.2 (Total Order), let m;
and m, be any two messages, each requesting to install a
new e-view, and that are delivered in view v (that is, the
last view agreement completed before their delivery is the
one that installed v). Observe that a view change cannot oc-
cur in between the sending of either message and its delivery,
because, in that interval, a coordinator does not participate in
view agreement. It immediately follows that the sender of
messages m; and m, must be the same process. Since mul-
ticasts are FIFO-ordered, any two processes that deliver m;
and m, deliver them in the same order. Property B.3 (E-view
Agreement) follows immediately from the fact that these
messages are multicast with view synchrony semantics.

Property B.5 (Not Overlap) is guaranteed because each
process is associated with a single subview (sv-set) identi-
fier, and this identifier is identical at all processes in the
view. Properties B.6 and B.7 (Structure 1 and 2) follow from
the updating of identifiers during view agreement, that we
have omitted. The same consideration applies to Property
B.4. Property B.8 (Causal Order) is guaranteed by the algo-
rithm that implements message exchange. The fact that this
algorithm does not interfere with the semantics of view
synchrony, that is, that processes surviving a view change
have delivered the same set of messages in the previous
view, follows from:

1) Property B.3 (E-view Agreement); and
2) the handling of buffered messages is not interrupted
by view changes.

As for the primitives for provoking e-view changes,
Property B.9 (Provoked E-views) follows from:

658

1) there is a single coordinator in each view;

2) the coordinator sends messages instructing to deliver
e-view events (that are not view changes) only upon
receiving requests issued by other processes in the
view;

3) the coordinator sends at most one such message for
each request;

4) the coordinator processes requests in FIFO order.

Moreover, in each e-view, the coordinator evaluates the

next request and, if the request may be satisfied, it delivers
the corresponding e-view event before analyzing the next
request. The proof of Property B.10 (Nontriviality) may be
obtained by combining this observation with Property B.2
(Total Order).

ACKNOWLEDGMENTS

This work has been supported in part by the Commission of
European Communities under ESPRIT Programme Basic
Research Project 6360 (BROADCAST), the Italian National
Research Council and the Italian Ministry of University, Re-
search and Technology (MURST 40%). We are grateful to
Ken Birman and the anonymous referees for their comments
and suggestions leading to an improved presentation.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” J. ACM, vol. 32,
no. 2, pp. 374-382, Apr. 1985.

K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K.
Kane, F. Schmuck, and M. Wood, The ISIS—System Manual, Ver-
sion 2.1, Dept. of Computer Science, Cornell Univ., Sept. 1993.

A. Schiper and A. Ricciardi, “Virtually-Synchronous Communi-
cation Based on a Weak Failure Suspector,” Proc. 23rd Int’l Symp.
Fault-Tolerant Computing, pp. 534-543, June 1993.

K.P. Birman, Reliable Distributed Computing with the Isis Toolkit, chapter
“Virtual Synchrony.” Los Alamitos, Calif.: IEEE CS Press, 1994.

D. Malki, Y. Amir, D. Dolev, and S. Kramer, “The Transis Ap-
proach to High Availability Cluster Communication,” Technical
Report CS94-14, Inst. Computer Science, The Hebrew Univ. of Je-
rusalem, 1994.

0. Babaoglu, R. Davoli, and A. Montresor, “Group Membership
and View Synchrony in Partitionable Asynchronous Systems:
Specifications,” Technical Report UBLCS-95-18, Dept. of Com-
puter Science, Univ. of Bologna, Sept. 1996.

A. Schiper, A. Ricciardi, and K. Birman, “Understanding Partitions
and the “No Partition” Assumption,” Proc. Fourth IEEE Workshop
Future Trends of Distributed Systems, pp. 354-360, Sept. 1993.

A. Schiper and A. Sandoz, “Primary Partition Virtually Synchro-
nous Communication Harder Than Consensus,” Distributed Algo-
rithms, G. Tel and P. Vitanyi, eds., Lecture Notes in Computer Sci-
ence, pp. 39-52. Springer-Verlag, 1994.

T.D. Chandra and S. Toueg, “Unreliable Failure Detectors for
Asynchronous Systems,” Proc. 10th ACM Symp. Principles of Dis-
tributed Computing, pp. 325-340, Aug. 1991.

D. Skeen, “Determining the Last Process to Fail,” ACM Trans.
Computer Systems, vol. 3, no. 1, pp. 15-30, Feb. 1985.

0. Babaoglu, A. Bartoli, and G. Dini, “Replicated File Manage-
ment in Large-Scale Distributed Systems,” Distributed Algorithms,
G. Tel and P. Vitanyi, eds., Lecture Notes in Computer Science, pp. 1-
16. Springer-Verlag, 1994.

0. Babaoglu, R. Davoli, L.A. Giachini, and M.G. Baker, “Relacs: A
Communications Infrastructure for Constructing Reliable Appli-
cations in Large-Scale Distributed Systems,” Proc. 28th Hawaii Int’|
Conf. System Sciences, pp. 612-621, Jan. 1995.

R. van Renesse, K.P. Birman, and S. Maffeis, “Horus: A Flexible
Group Communication System,” Comm. ACM, vol. 39, no. 4, pp. 76-
83, Apr. 1996.

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 6, JUNE 1997

A. Schiper and A. Sandoz, “Uniform Reliable Multicast in a Vir-
tually Synchronous Environment,” Proc. 13th Int’l Conf. Distrib-
uted Computing Systems, pp. 561-568, May 1993.

I. Keidar, “A Highly Available Paradigm for Consistent Object
Replication,” MS thesis, Inst. of Computer Science, The Hebrew
Univ. of Jerusalem, 1994, Also available as Technical Report CS95-5.
D. Dolev, D. Malki, and R. Strong, “A Framework for Partition-
able Membership Service,” Technical Report CS95-4, Inst. of
Computer Science, The Hebrew Univ. of Jerusalem, 1995.

F.M. Kaashoek and A.S. Tanenbaum, “An Evaluation of the
Amoeba Group Communication System,” Proc. 16th Int’l Conf.
Distributed Computing Systems, pp. 436-447, May 1996.

M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H.
Siegel, and D.C. Steere, “Coda: A Highly Available File System
for a Distributed Workstation Environment,” IEEE Trans. Comput-
ers, vol. 39, no. 4, pp. 447-459, Apr. 1990.

A. El Abbadi, D. Skeen, and F. Cristian, “An Efficient, Fault-
Tolerant Protocol for Replicated Data Management,” Proc. Fourth
ACM Symp. Principles of Database Systems, pp. 215-229, 1985.

I. Keidar and D. Dolev, “Increasing the Resilience of Atomic
Commit at No Additional Cost,” Proc. 14th ACM Symp. Principles
of Database Systems, pp. 245-254, May 1995.

L.E. Moser, Y. Amir, P.M. Melliar-Smith, and D.A. Agarwal,
“Extended Virtual Synchrony,” Proc. 14th Int’l Conf. Distributed
Computing Systems, pp. 56-65, June 1994.

F. Cristian, “Group, Majority, and Strict Agreement in Timed
Asynchronous Distributed Systems,” Proc. 26th Int’l Symp. Fault-
Tolerant Computing, June 1996.

J.H. Saltzer, D.P. Reed, and D.D. Clark, “End-to-End Arguments
in System Design,” ACM Trans. Computer Systems, vol. 2, no. 4,
pp. 277-288, Nov. 1984.

A. El Abbadi and S. Toueg, “Maintaining Availability in Parti-
tioned Replicated Databases,” ACM Trans. Databases Systems, vol. 14,
no. 2, pp. 264-290, June 1989.

J. Howard and S. Katz, “Reconciliations,” Proc. 13th ACM Symp.
Principles of Distributed Computing, pp. 14-21, 1994.

M. Evangelist, N. Francez, and S. Katz, “Multiparty Interactions
for Interprocess Communication and Synchronization,” IEEE
Trans. Software Eng., vol. 15, no. 11, pp. 1,417-1,426, Nov. 1989.

Ozalp Babaoglu received a PhD in 1981 from
the University of California at Berkeley where he
was one of the principal designers of BSD Unix.
He is a professor of computer science at the
University of Bologna, Italy. Before moving to
Bologna in 1988, Dr. Babaoglu was an associate
professor in the Department of Computer Sci-
ence at Cornell University. He is active in several
European research projects exploring issues
related to fault tolerance and large scale in dis-
tributed systems. Dr. Babaoglu serves on the

editorial boards for ACM Transactions on Computer Systems and
Springer-Verlag Distributed Computing.

Alberto Bartoli received a degree in electrical
engineering, cum laude, in 1989, and a doctorate
in computer engineering in 1994, both from the
University of Pisa. He is an assistant professor in
the Dipartimento di Ingegneria dell’'Informazione
of the University of Pisa, Italy. His research in-
terests include large scale distributed systems,
group-based computing, and mobile computing.

Gianluca Dini received a degree in electrical
engineering from the University of Pisa in 1990,
and a doctorate in computer science from the
Scuola Superiore S. Anna, Pisa, in 1995. He is
an assistant professor of computer science at
the University of Pisa, Italy. His research inter-
ests are in distributed systems with special
emphasis on large scale distributed systems,
distributed programming, distributed systems
architecture.

