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Abstract

Background: High-throughput sequencing data are dramatically increasing in volume. Thus, there is urgent need

for efficient tools to perform fast and integrative analysis of multiple data types. Enriched heatmap is a specific form

of heatmap that visualizes how genomic signals are enriched over specific target regions. It is commonly used and

efficient at revealing enrichment patterns especially for high dimensional genomic and epigenomic datasets.

Results: We present a new R package named EnrichedHeatmap that efficiently visualizes genomic signal

enrichment. It provides advanced solutions for normalizing genomic signals within target regions as well as offering

highly customizable visualizations. The major advantage of EnrichedHeatmap is the ability to conveniently generate

parallel heatmaps as well as complex annotations, which makes it easy to integrate and visualize comprehensive

overviews of the patterns and associations within and between complex datasets.

Conclusions: EnrichedHeatmap facilitates comprehensive understanding of high dimensional genomic and epigenomic

data. The power of EnrichedHeatmap is demonstrated by visualization of the complex associations between DNA

methylation, gene expression and various histone modifications.
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Background
With increasing accessibility and application of high

throughput sequencing methods, there is a rise in the

number of complex genomic and epigenomics studies.

Thus, methods for integrative analysis are urgently

required to provide comprehensive overviews of high

dimensional multi-omics dataset to better understand

biological systems [1]. Among them, effective visualization

methods are of special importance as it helps to give an

intuitive interpretation of the underlying data.

A common task for integrative visualization is to study

how various genomic signals are enriched over specific

genomic targets. Genomic signals can be represented as

numeric values associating genomic locations, e.g. reads

coverage in windows from whole genome sequencing

data, DNA methylation rates for CpG sites from whole

genome bisulfite sequencing data, or the intensities of

histone modification in peak regions from ChIP sequencing

data. The associated genomic signal values can also be

binary to represent the existence of genomic features in the

genome. While genomic targets are also genomic regions

where the enrichment patterns are visualized. In many

cases, genomic targets are gene-related features such as

transcription start sites (TSS) or gene body. Generally, it

can be any type of genomic features of interest, e.g. CpG

islands (CGIs) if the aim is to study the methylation change

at CGI borders. Current tools such as deeptools [2] and

ngs.plot [3] are broadly used and successful at revealing

potential enrichment patterns. However, they are limited at

handling more complex cases without using external

software, e.g. to summarize enrichment of signals difference

of histone modifications between two subgroups of

samples, or to visualize the correlation pattern between

DNA methylation and expression of associated genes

around TSS. Additionally, as stand-alone software tools,
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they are restricted to their built-in functionalities. For

example, deeptools only supports to order rows by simple

statistics such as row means in the heatmap, while it

depends on external software to calculate more specific

row orderings. Genomation [4] is an R package which

visualizes enrichment for multiple types of signals simul-

taneously, but the functionality is very limited and difficult

for more complex visualizations.

Here we present a new R package named EnrichedHeatmap

that provides advanced and extensible solutions for

summarizing and organizing enrichment heatmaps.

Compared to available tools, the major advantages of

EnrichedHeatmap are: 1) it is built on the framework

of ComplexHeatmap package [5], thus enriched heatmaps

can be flexibly combined with normal heatmaps and row

annotation graphics, which makes it easy to integrate

additional information to build complete overviews of the

associations in complex datasets; 2) ordering and sub-

grouping rows in heatmaps are important for highlighting

and comparing enrichment patterns. EnrichedHeatmap

supports ordering methods such as pre-calculated

orderings or flexible hierarchical clustering methods.

EnrichedHeatmap also proposes new methods based on

the closeness of signals regions relative to genomic targets

to visualize how consistently close the signals are enriched

to target regions. Also EnrichedHeatmap supports

splitting of rows in heatmaps into groups by broad

partitioning methods in R such as k-means or k-medoid

clustering, or simply by a pre-defined category variable; 3)

EnrichedHeatmap supports several methods to summarize

mean signals for different types of genomic signals,

depending on whether they are single point position-

based signals or region-based signals. It also supports row

smoothing to enhance the visual effect of the enrichment;

4) EnrichedHeatmap is capable of visualizing discrete

signals such as chromatin state segmentations from

ChromHMM [6]; 5) EnrichedHeatmap utilizes the GRanges

data structure [7] which is the base data structure for

handling genomic data in R and thus it can be seamlessly

integrated into Bioconductor workflows; The power of

EnrichedHeatmap is demonstrated by comprehensive

visualization of various epigenomic signals over gene TSS

to show the complex transcriptional regulation patterns.

Implementation
Generally, the visualization of the signal enrichment over

genomic targets can be standardized into two major

steps where associations between genomic signals and

target regions are firstly normalized into matrices and

secondly the matrices are visualized as heatmaps with

methods specifically for ordering rows to strengthen the

pattern of enrichment. In this section, we describe the

implementation of EnrichedHeatmap in detail and highlight

the advantages and uniqueness of EnrichedHeatmap

compared to other available tools.

Normalize the associations

For a specific type of genomic signal (e.g. DNA methyla-

tion at CpG sites), associations to target regions are firstly

normalized into a matrix where rows correspond to target

regions e.g. gene-related regions and columns correspond

to genomic windows around the targets. Target regions

are extended upstream and/or downstream and the

flanking regions are split into small windows of equal size.

Each target is split into k windows as well with

k ¼ n1 þ n2ð Þ∙r= 1−rð Þ

where n1 is the number of upstream windows, n2 is the

number of downstream windows and r is the ratio of

target columns presented in the matrix. Note, due to the

unequal widths of target regions, widths of the windows

inside targets are different for different targets as well.

The default value of r is set as follows to ensures the

mean width of target windows is the same as the width

of upstream/downstream windows:

r ¼ μL= μL þ L1 þ L2ð Þ

where μL is the mean width of target regions. L1 and L2
are extensions of target regions in upstream and

downstream.

It is highly possible that multiple genomic signals

overlap to one single window e.g. multiple CpG sites

locating in one window, or one genomic signal spanning

multiple windows. To summarize mean signal in every

window, EnrichedHeatmap provides four averaging

methods to summarize the signals for the window

depending on whether the averaging is applied with

background or not. As illustrated in Fig. 1a, for a given

window (marked as red line), denote n as the number of

signal regions which overlap to the window (it is 5 in

Fig. 1a), wi as the width of the intersected segment

(black thick lines) for the ith signal region, and xi as

the value associated with the signal region. If there

is no value associated with the signal regions,

EnrichedHeatmap sets xi = 1 by default.

The “absolute” method denoted as va simply calculates

the mean value from all signal regions regardless of their

width:

va ¼

Pn
i¼1xi

n

The “weighted” method denoted as vw calculates the

mean value from all signal regions weighted by the width

of their intersections:
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vw ¼

Pn
i¼1xiwi

Pn
i¼1wi

“Absolute” and “weighted” methods are applied when

background values should not be taken into consideration.

For example, when summarizing mean DNA methylation

in a window, non-CpG background should always be

ignored, because methylation is only associated with

CpG sites.

The “w0” method denote as vw0 calculates the

weighted mean between the intersected segments and

un-intersected parts:

vw0 ¼

Pn
i¼1xiwi

W þW 0

where W is the sum of width of all intersected segments

(W ¼
Pn

i¼1wi ) and W′ is the sum of width of the non-

intersected parts. For example, the “w0” method can be

applied to summarize mean histone modification inten-

sity or mean CG content in a given window.

The “coverage” method denoted as vc is defined as the

mean signal averaged by the width of the window:

vc ¼

Pn
i xiwi

L

where L is the width of the window itself. Note when

xi = 1, vc is the mean base pair coverage for the signal

regions overlapped in the window. Since signal regions

may overlap to each other, thus L ≤ W +W′. When

signal regions do not overlap to each other, “w0”

method and “coverage” method are identical.

EnrichedHeatmap is capable of visualizing discrete

signals. For a list of signals with n levels, internally n

normalized matrices with “coverage” method are generated

where each matrix corresponds to the enrichment of signal

regions with one single signal level. When summarizing

from n matrices into one final matrix, the signal levels are

recoded with their numeric level orders, and for a single

window, the numeric order of the signal level which shows

maximum coverage is assigned to it. If none of the signal

region overlaps to this window, zero value is assigned.

EnrichedHeatmap has special visualization designed for

discrete signal enrichment and since the final matrix is

numeric, rows can be reordered by hierarchical clustering

or partitioned by k-means clustering. Examples of visualizing

discrete signals can be found in vignettes of the package.

a b c

Fig. 1 Implementation of EnrichedHeatmap. a Averaging model. The red line represents one window in the target regions or in the flanking regions

when normalizing genomic signals to target regions. Black lines represent genomic signals that overlap to the given window. b Comparison between

original methylation values and smoothed values. Grey color means no available methylation value associated for the window. Methylation data is

from lung tissue in Roadmap dataset. Only data on chromosome 21 is used. Note the two heatmaps are independent and have different orderings.

c Comparison between different row ordering methods. The three heatmaps correspond to ordering by enriched scores, by hierarchical clustering

with Euclidean distance and by hierarchical clustering with closeness distance. The genomic signals are regions showing significant negative

correlation between DNA methylation and expression of target genes
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EnrichedHeatmap supports smoothing of the average

signals in the normalized matrix by local regression [8]

or loess regression. It also imputes missing values by

smoothing when no background value is provided.

These functionalities particularly improve visualization

for genomic signals that might be sparse in some parts

of the genome, e.g. DNA methylation signals distal from

CpG islands. On the other hand, a lot of other methods

can be used to enhance EnrichedHeatmap only with a

complete matrix without missing values, e.g. hierarchical

clustering for row orderings. Figure 1b compares

original methylation and smoothed methylation signals

around gene TSS where rows are ordered by enriched

scores (The definition of enriched scores will be intro-

duced in a later section). It clearly shows smoothing

dramatically improves the row ordering and the visual

effect of the methylation heatmap. Since it can be

possible that no CpG site exists in certain windows

(window size is 50 bp in the two heatmaps in Fig. 1b)

thus with no methylation values associated, it results in

many grey grids in the first heatmap which represent

missing values, which significantly disturbs the visualization.

As a comparison, after smoothing and missing value

imputation, it gives a clean and continuous methylation

pattern in the heatmap. Although it might not be

biologically correct to assign methylation values to non-

CpG windows, it greatly improves the exploratory interpret-

ability of the data.

EnrichedHeatmap additionally supports a special

scenario which associates signals to targets by mappings

if the connections between signals and targets have

already been constructed. By default, EnrichedHeatmap

tries to overlap every signal region to every target region.

However, there can be prior knowledge of the relations

between signals and targets. In the example in Fig. 2

(this example will be discussed in detail in later section),

we have defined a type of region named “correlated

region” where it shows significant correlations between

DNA methylation and expression of the host gene, in

other words, there is already a gene associated to each

correlated region. When normalizing correlated regions

to gene TSS, it is possible that TSS of two genes are very

close, and thus, correlated regions can be wrongly

assigned to multiple genes if ignoring mappings between

correlated regions and genes.

Heatmap visualization

The normalized matrix is essentially a normal matrix

with extra enrichment parameters attached. EnrichedHeatmap

inherits and extends the ComplexHeatmap package, thus it

Fig. 2 Comprehensive visualization of associations between gene expression, DNA methylation and four histone modifications from Roadmap

dataset. In both top and bottom heatmap lists, rows correspond to same genes with different signals associated. Detailed explanation of data

processing and R code for the plot can be found in Additional file 1
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provides great flexibility to arrange heatmaps as well as

complex annotations, which is unique compared to other

tools. On top of enriched heatmaps is a special type of annota-

tion graphic which summarizes the enrichment across targets

and can be directly corresponded to the patterns in the

heatmap. An important feature of this annotation is it

supports to summarize the positive and negative signals

separately if signals to visualize are correlations or difference

between subgroups (e.g. heatmap “meth_corr” in Fig. 2).

Enrichment patterns are summarized separately if heatmaps

are split by rows by k-means clustering or any pre-defined par-

titioning variables. With the framework of ComplexHeatmap,

the enriched heatmaps can be concatenated with normal

heatmaps as well as row annotations simply by “+” operator:

EnrichedHeatmap(…) + Heatmap(…) + rowAn-

notation(…) + …

where the rows in all heatmaps and row annotations

correspond and the main heatmap can be chosen to globally

control the row ordering and subgrouping of all heatmaps.

Row ordering for the normalized matrix is crucial to

enhance the patterns of enrichment. Rows can be

ordered by certain types of scores calculated by rows (e.g.

row means) or by clustering methods implemented in

base or extended packages in R. EnrichedHeatmap

provides two additional row ordering methods:

1. Rows are ordered by enriched scores. For each row

in the normalized matrix, denote the vector for the

associated values as x and it is split into x1, x2 and

x3 which correspond to values in upstream of the

target, target itself and downstream of the target.

The corresponding lengths of the three sub-vectors

are denoted as n1, n2 and n3. The enriched score

denoted as se is calculated as the sum of x weighted

by the distance to target.

se ¼
Xn1

i¼1
x1i∙

i

n1
þ
Xn2

k¼1
x2k ∙ n2=2− k−n2=2j jj j

þ
Xn3

j¼1
x3 j∙

n3− jþ 1

n3

Generally, when there is more signal centred on the

target region, it has a higher enriched score.

2. Rows are ordered by hierarchical clustering with

closeness distance. The column order in the

normalized matrix represents the spatial order of

windows located from upstream to downstream of

the target. EnrichedHeatmap defines the closeness

distance to measure how spatially close the signal

regions of two different targets are based on the

relative distance to targets. For any two rows in the

normalized matrix where the associated values are

denoted as x and y, the distance based on closeness

of signal regions in the two rows is defined as:

dcloseness ¼

Pn
i¼1

Pn
j¼1 i− jj j∙I i; jð Þ

Pn
i¼1

Pn
j¼1I i; jð Þ

I i; jð Þ ¼
1; xi≠0 and y j≠0

0; else

�

Figure 1c compares row ordering by enriched scores,

hierarchical clustering with Euclidean distance and

hierarchical clustering with closeness distance. Note

dendrograms generated by hierarchical clustering for

rows in the latter two heatmaps are additionally

reordered by the enriched scores to place enrichment

patterns that are close to targets to the top of the

heatmap as much as possible. Generally, when the top

annotation which summarises mean enrichment across

targets is added to the heatmap as well, ordering rows

merely by enriched scores is not recommended because

it provides redundant information as the top enriched

annotation (left heatmap in Fig. 1c), and on the other

hand, it fails to reveal spatial clusters as the other two

methods. While hierarchal clustering with Euclidean

distance is good at clustering enrichment patterns, it

does not take column order into account, thus, it still

can be possible that two spatially close clusters are

separated in the heatmap (middle heatmap in Fig. 1c).

By using closeness distance, it clearly sorts and clusters

the enrichment patterns (right heatmap in Fig. 1c).

Results
Figure 2 visualizes complex associations between gene

expression, DNA methylation, and four histone modifi-

cations over gene TSS through a list of heatmaps by

using Roadmap dataset [9]. In the analysis, 27 samples

are separated into two subgroups that correspond to

embryonic cells and mature cells. Rows are split according

to differential expression and methylation pattern into

three clusters. In each row cluster, rows are clustered

based on the closeness of regions showing significant

negative correlation between methylation and gene

expression (we term them as “negCR”). For methylation

and each histone modification, three heatmaps are used to

illustrate the correlation to gene expression as well as the

distribution of the signal among samples (by mean signals

across all samples and mean signal differences between

two subgroups). All heatmaps and annotations are

arranged into two lines and rows in all heatmaps

correspond to same genes. The top 10 most significantly

differentially expressed genes between embryonic and

mature cells are marked on left of the expression heatmap.
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A detailed explanation of data processing and step-by-step

explanation of the R code can be found in Additional file 1.

Generally, genes in cluster 1 and 2 have high expression,

long gene length (annotation “Gene length”) and low

methylation over TSS (heatmap “meth_mean”) which

correspond well with the enrichment of CpG islands over

TSS (heatmap “CGI”), while genes in cluster 3 have low

expression, short gene length, and intermediate mean

methylation with almost no CGIs overlapping TSS. There

is enrichment for significant negative CRs (negCRs) down-

stream of TSS in cluster 1 and 2 (solid and dashed green

lines in annotation of “meth_corr” heatmap, the peaks of

the enrichment locate at approximately + 2 kb of TSS.)

while for cluster 3 genes, the enrichment of negCRs is

very close to TSS. By associating the heatmap “CGI”,

“meth_corr”, “meth_mean” and “meth_diff” together, we

can make the conclusion that for genes in cluster 1 and 2,

negCRs are enriched at the downstream border of CGI

over TSS with high methylation variability, and even for

cluster 3 genes there is also a trend that the negCRs are

enriched at close downstream of TSS. This gives rise to

the hypothesis that transcription factors can bind to chro-

matin in the gene body (in the lowly methylated negCRs)

and are prevented to bind or move further into the gene

body by DNA methylation after the negCRs.

H3K4me3 is a histone mark which is enriched at active

TSS or promoters. Heatmap “H3K4me3_mean” shows

strong enrichment of the mean signal over TSS for

cluster 1 and cluster 2 genes with high expression. Such

enrichment corresponds very well to the low TSS DNA-

methylation. Interestingly, strong positive correlation to

expression dominates in cluster 1 and the signals are

significantly higher in embryonic cells (heatmap

“H3K4me3_diff”). The peak for the enrichment of

correlation signals in cluster 1 (solid red line in

annotation of heatmap “H3K4me3_corr”) is broader than

the mean signals while it is very similar as the enrich-

ment peak for negCRs. For cluster 2 genes, the regions

showing positive correlations are enriched at down-

stream border of H3K4me3 peaks while directly at the

H3K4me3 peaks shows negative correlation although the

correlation signals are weak and signal difference is small.

Surprisingly, strong positive correlations dominate cluster

3 although the mean signals are very weak.

H3K4me1 is an active mark enriched at enhancers and

promoter flanking regions. Nevertheless, it shows negative

correlation at the TSS (solid and dashed green lines in anno-

tation of heatmap “H3K4me1_corr”), especially strong for

cluster 1. The peak for the negative correlation enrichment

correlates well with CGI and low TSS-methylation, however

the signals are low at TSS (heatmap “H3K4me1_mean”).

Flanking TSS is dominated by positive correlations and the

signal difference is comparably large in cluster 1 (solid

brown line in annotation of heatmap “H3K4me1_diff”).

H3K27ac is also an active mark enriched in both active

enhancers and promoters, and it generally shows

positive correlations to expression in all three clusters

(heatmap “H3K27ac_corr”). Interestingly the mean

signals are the strongest in cluster 2 and mature cells

have significantly higher signal intensity than embryonic

cells (dashed blue line in annotation of heatmap

“H3K27ac_diff”). The peak for the correlation signal

enrichment is comparably broader than other marks.

H3K27me3 is a repressive mark and it generally shows

negative correlation around TSS at relatively low level,

excluding cluster 1 where there are no dominant

correlation patterns (heatmap “H3K27me3_corr”). The

signals are lower and sparser compared to other marks.

Discussion
The heatmap visualization provides an intuitive way of

showing the spatial associations between genomic

signals and target regions. Here we have developed

the EnrichedHeatmap package which facilitates the

discovery of enrichment pattern of such associations.

EnrichedHeatmap is capable of processing continuous

signals, binary signals and discrete signals, and it provides

different normalization methods for different types of

genomic signals. More importantly, EnrichedHeatmap

allows associating multiple sources of information through

parallel heatmaps and annotations in an easy and modular

way, which greatly facilitates the integrative analysis with

multiple omic datasets.

The parallel heatmap visualization brings difficulty of

setting proper row orders to discover patterns in all

heatmaps simultaneously. Most of the available tools

simply order rows based on the row means of the

normalized matrix, which actually loses the information

of how spatially similar the signal regions distribute in

different target regions. Here we recommend ordering

rows by hierarchical clustering on the normalized matrix

as it highlights similar patterns for the signal regions

that locate in spatially similar neighborhood of their

associated target regions. Another difficulty raised is

since there are multiple heatmaps that contain different

data types, selecting a main heatmap to perform

hierarchical clustering is also crucial for better displaying

the association patterns. The solution to this problem

depends on what key message users want to present. In

Fig. 2, the hierarchical clustering is applied on the

negCR matrix because the key message of the

visualization is to show the association pattern between

DNA methylation and gene expression around gene

TSS. Moreover, since columns in the normalized matrix

correspond to spatial distance to target regions, only

clustering rows on subset of matrix which shows strong

enrichment patterns helps to give a clearer view of the

underlying pattern. E.g. in the vignette along with the
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package where the association between chromatin states

and gene TSS is visualized, the row clustering is only

applied to the subset of matrix which corresponds to 1 kb

upstream and downstream of gene TSS because we observe

there are very strong and consistent enrichment of active

and bivalent TSS states in it while in flanking regions the

chromatin states are more diverse and inconsistent.

Splitting rows in heatmaps helps to enhance the

distinct patterns in different categories of target regions.

EnrichedHeatmap allows splitting rows either by

categorical variables or by k-means clustering. Generally

speaking, the choice of how to split rows should be

biological meaningful. In Fig. 2, rows of all heatmaps are

split according to the methylation in 1 kb upstream and

2 kb downstream of gene TSS because we observe the

methylation shows distinct difference and in the content

of the analysis, methylation difference at gene TSS is

always a dominant mark of transcription regulation.

Conclusions
The EnrichedHeatmap package provides a flexible and

powerful way to simultaneously visualize enrichment of

various genomic signals over target regions. We believe

it will be a useful tool for R/Bioconductor workflows to

allow for more comprehensive understanding of high

dimensional genomic and epigenomic data.

Availability and requirements
Project name: EnrichedHeatmap

Project home page: http://bioconductor.org/packages/

EnrichedHeatmap/, https://github.com/jokergoo/Enriched

Heatmap

Operation systems: Platform independent

Programming language: R (> = 3.3.0)

License: GPL (> = 2)

Restrictions to use by non-academics: None

Additional files

Additional file 1: Data and source code for producing Figs. 1 and 2.

(GZ 45195 kb)

Abbreviations

CGI: CpG islands; CR: Correlated regions; negCR: Significantly negatively

correlated regions; TSS: Transcription start sites

Acknowledgements

Not applicable.

Funding

This work was supported by the German Cancer Research Center-Heidelberg

Center for Personalized Oncology (DKFZ-HIPO) and the BMBF-funded de.NBI

HD-HuB network (#031A537A, #031A537C).

Availability of data and materials

The whole genome bisulfite sequencing data for lung tissue from Roadmap

project (http://egg2.wustl.edu/roadmap/web_portal/) was used to produce

Fig. 1 and the complete Roadmap dataset was used to produce Fig. 2.

Detailed explanation of data processing and R code for the analysis can be

found in Additional file 1.

Authors’ contributions

ZG implemented the package and drafted the manuscript. ZG and NI

interpreted data. RE, MS and NI supervised the project and critically revised

the manuscript. All authors conceived the project, have read and approved

the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Division of Theoretical Bioinformatics (B080), German Cancer Research

Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
2Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer

Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,

Germany. 3Department for Bioinformatics and Functional Genomics, Institute

for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant Center,

Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg,

Germany.

Received: 24 November 2017 Accepted: 27 March 2018

References

1. Stricker SH, Köferle A, Beck S. From profiles to function in epigenomics. Nat

Rev Genet. 2016;18:51–66.

2. Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible

platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42:

W187–91.

3. Shen L, Shao N, Liu X, Nestler E. ngs.plot: Quick mining and visualization of

next-generation sequencing data by integrating genomic databases. BMC

Genomics. 2014;15:284. BioMed Central Ltd

4. Akalin A, Franke V, Vlahovi ek K, Mason CE, Schubeler D. Genomation: a

toolkit to summarize, annotate and visualize genomic intervals.

Bioinformatics. 2015;31:1127–9.

5. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations

in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.

6. Ernst J, Kellis M. Chromatin-state discovery and genome annotation with

ChromHMM. Nat Protoc. 2017;12:2478–92.

7. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al.

Software for computing and annotating genomic ranges. PLoS Comput

Biol. 2013;9:e1003118. Prlic A, editor. Public Library of Science

8. Loader C. locfit: local regression, likelihood and density estimation. 2013.

https://cran.r-project.org/package=locfit

9. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al.

Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:

317–30. Nature Research

Gu et al. BMC Genomics  (2018) 19:234 Page 7 of 7

http://bioconductor.org/packages/EnrichedHeatmap/
http://bioconductor.org/packages/EnrichedHeatmap/
https://github.com/jokergoo/EnrichedHeatmap
https://github.com/jokergoo/EnrichedHeatmap
https://doi.org/10.1186/s12864-018-4625-x
http://egg2.wustl.edu/roadmap/web_portal/
https://cran.r-project.org/package=locfit

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Normalize the associations
	Heatmap visualization

	Results
	Discussion
	Conclusions
	Availability and requirements
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

