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Abstract

This paper describes a method that can significantly increase the size of a collection of motion observations by
cutting limbs from one motion sequence and attaching them to another. Not all such transplants are successful,
because correlations across the body are a significant feature of human motion. The method uses randomized
search based around a set of rules to generate transplants that are (a) likely to be successful and (b) likely to
enrich the existing motion collection. The resulting frames are annotated by a classifier to tell whether they look
like human motion or not.

We evaluate the method by obtaining motion demands from an application, synthesizing motions to meet those
demands, and then scoring the synthesized motions. Motions synthesized using transplants are generally somewhat
better than those synthesized without using transplants, because transplanting generates many frames quite close
to the original frames, so that it is easier for the motion synthesis process to find a good path in the motion graph.
Furthermore, we show classifier errors tend to have relatively little impact in practice.

Finally, we show that transplanted motion data can be used to synthesize motions of a group coordinated in space
and time without producing motions that share frames.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation

1. Introduction

Human motion is a topic of tremendous current importance:
those who build virtual worlds would like to populate them.
One part of this community is the entertainment industry;
another is simulation. Variations in rendering style alter a
viewer’s perception of motions [HOT98, HOT97], meaning
better rendering is creating an increasing demand for realis-
tic motion.

Motions are currently obtained for virtual environments
using a body of measurement techniques collectively known
as motion capture. Reviews of available techniques appear
in, for instance [BRRP97, G1e99, Men99, Moe99, SPB*98].
Motion capture data is used in very large quantities by, for
example, the movie and computer game industries. For each
title that will contain human motion, an appropriate script
of motions is produced; typically, this involves a relatively
small set of “complete” motions that can be joined up in a
variety of different ways (as in [GSKJ03]). This script is cap-
tured, and then motions are generated within the game by
attaching an appropriate set of these motion building blocks
together. Motions captured for a particular title are then usu-
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ally discarded as re-use presents both economic and legal
difficulties.

2. Background

How to build a really effective human motion synthesizer?
There are three important threads in this literature. In mo-
tion editing, one builds a system where an author can in-
teractively modify a motion path — by requiring, say, that
a hand pass through a particular spot at a particular time
(e.g. [KSGO2, LS99, PBM00a]). The motion is then up-
dated to meet such space-time constraints, and it is the au-
thor’s job to manage the constraints and the update process
such that the resulting motion looks human. This process
can be made to work satisfactorily, by seeing the update
process as obtaining the solution to a minimization prob-
lem [Gle97, GL98, Gle01] or as obtaining the solution to an
inference problem [TSKO02]. This work has produced sev-
eral important insights. The first is that it is quite dangerous
to require large changes in a motion signal; typically, the
resulting motion path does not look human (e.g. [G1e99]).
The second is that motion is the result of extremely complex
considerations; requiring that an estimate of the energy ex-
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Successful Transplant

Figure 1: Left and center are frames from motion sequences observed using motion capture equipment. Right shows a se-
quence constructed using one of our rules; the upper body from the top sequence has been attached to the lower body from
the bottom sequence. This leads to a substantial change in the qualitative structure of the motion — we have no head-butting
sequences in our original collection — but retains the human character of the motion. In this figure, the frames and colours

correspond in the natural way.

Successful Transplant

Figure 2: Left and center are frames from motion sequences observed using motion capture equipment. Right shows a se-
quence constructed using one of our rules; an arm and shoulder from the top sequence has been attached to the rest of the body
from the center sequence. As in this case, this quite commonly leads to relatively small changes in the qualitative structure of
the motion, and retains the human character of the motion. In this figure, the frames and colours correspond in the natural way.

pended in a motion be minimized does not usually produce
a human-looking motion.

In motion interpolation, one attempts to produce mo-
tions that interpolate between, or extrapolate from, ex-
isting motion-capture measurements. A natural proce-
dure is to produce a controller that can track the
measurements and then, when measurements are no
longer available, produce motions by controlling some
body parameters. Controllers that track motion data pro-
vide a useful mechanism for smoothing recorded errors
while also adjusting for disturbances not present in the
recorded motion [FP03, PBM00b, ZH99, ZHO02]. Other ap-
proaches make use of hand designed or optimized con-
trollers that operate independently from recorded motion
[FvdPTOla, FvdPTO1b, GTH98, HWBO95, PW99]. Build-
ing controllers that generate human-like motion remains an
open research problem.

Data-driven motion synthesis attempts to infer good,

new motions from an existing set of measured motions (the
origins appear to be with [MTH]). There are a series of com-
binatorial methods, which rearrange measurements to ob-
tain new motions. Different authors represent the object in
different ways, but the underlying phenomenon is a graph
whose nodes are the frames of motion in the set of mea-
surements, and whose arcs link frames of motion that can
be joined. Links are usually directed and weighted with the
“goodness” of the link. Legal motions are then paths in this
graph. Kovar et al search this graph, meaning that given
a frame of motion they concentrate on choosing the next
frame of motion [KGPO02]. Lee et al. use a search with a
longer horizon, expanding the graph into a tree of some fixed
depth rooted at the current node [LCR*02]. Local searches
can produce motions on-line, but must suffer from the tra-
ditional horizon problem that applies to such searches — if
one requires particular start and end frames, and these can
be joined only by one particular path, then it may be difficult
to find that path locally.

(© The Eurographics Association 2004.
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Arikan and Forsyth attack the problem by searching for
entire paths [AF02]. The search space has two important
qualitative features: first, motion constraints are ambiguous,
because the family of acceptable paths is usually very large.
Second, human motion generally has low entropy; if I am
walking at time #, I am probably still walking some seconds
later.

Arikan et al. exploit both properties [AFO03]. We work
within this framework, and so describe it in some detail.
Their approach allows synthesis of motions that meet quali-
tative constraints on the timeline. In particular, all frames are
annotated with annotations drawn from some fixed vocabu-
lary, and one can author motion by painting desired annota-
tions on the timeline. The author can demand that an annota-
tion be present, be absent, or specify don’t care. Start points
and end points can be specified, and the motion can be con-
strained to pass through particular example frames at spec-
ified times. The annotation constraints are met by search-
ing for a path that has the right labels at each frame. This
is too computationally expensive to solve by dynamic pro-
gramming. Instead, one can coarsely quantize the graph into
blocks of frames that form sequences and then use dynamic
programming on a random subset of these blocks. There are
then two search activities: refining blocks, and changing the
(randomly chosen) working set of blocks. This works, be-
cause ambiguity means that one doesn’t miss much structure
by random sampling and low entropy implies that a quan-
tized path represents the actual solution quite well.

Smoothing methods build new motions from exist-
ing measurements. Some approaches are quite successful.
Pullen and Bregler use a method similar to texture synthe-
sis to construct motions of the upper body conditioned on
motions of the lower body; the approach is applied to mea-
surements of dances, and is quite successful [PB02]. An al-
ternative is to build some form of statistical model from the
data set. Kovar and Gleicher time align sequences display-
ing a particular type of motion, and then build a linear com-
bination of the time aligned sequence [KGO03]. Mataric and
colleagues build local linear models of arm movements us-
ing dimension reduction methods and function approxima-
tion methods [FMJ02, IM02, JIMO03].

While many motion synthesis techniques have been pro-
posed, to our knowledge thorough evaluation methodolo-
gies have not. Such a methodology should issue a perfor-
mance guarantee, i.e. a certificate that a percentage of the
motion generated from a particular technique is acceptable.
Furthermore, it should perform this evaluation on a large-
scale in the context of real motion demands derived from rel-
evant applications. In Section 4, we describe such a method-
ology and use it to evaluate our transplantation technique.

2.1. The Poverty of the Stimulus
Both combinatorial and smoothing methods have serious

practical difficulties. Combinatorial methods can produce
only motions that have been observed — if one hasn’t seen
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a 180° turn, it isn’t possible to produce one. Smoothing
methods are currently successful solely when one ensures
that only motions of similar type — all walks, all runs, all
reaches — are smoothed. This means that the success of ei-
ther method is crucially dependent on having sufficient data.

Two phenomena guarantee that sufficient data will never
be available. First, object interaction: people reach, kick,
lift, etc. objects, creating a parametric families of mo-
tions. Measuring motion in the exact context of the ob-
jects [LCR*02] is practical only for special cases. This is
what motivates smoothing methods, but it is generally diffi-
cult to preserve fast detail in smoothed motions.

Second, human motion is compeositional: movements can
be composed across the body, so that, for example, that one
can walk and scratch one’s head. The range of available com-
positions is vast, lending a “combinatorial explosion” flavour
to the problem. No currently conceivable collection of data
will contain examples of each possible composition. As a re-
sult, a successful motion synthesis algorithm, whether rooted
in combinatorial or smoothing methods, must require some
encoding of legal motion compositions (as opposed to sim-
ply looking up all motions in a set of examples).

It is natural to attack composition by cutting and pasting
across the body. However, many of the resulting motions do
not look human, a result of cross-body correlation. Motion
at some points on the body is often correlated with motion
at other parts of the body. There are two phenomena, one
active and one passive. The active phenomenon occurs in
such movements as relaxed walking, where arms swing out
of phase with the legs for energetic reasons. This is a gait
that is chosen by the actor, and can be broken at will — for
example, to scratch or to reach. However, if a cut-and-paste
results in a motion where these correlations are, say, out of
phase, the motion will look forced and may not look human
at all. Passive correlations occur as a result of generating
large torques at some joints; other parts of the body may ex-
perience reaction torques. For example, a very fast reaching
movement of the arm, launched while walking, may result in
a passive twitch of the opposite arm. If the arm that is reach-
ing is replaced with some other arm movement, the resulting
motion will not look human because the passive twitch will
be unexplained.

2.2. Overview
The main limit on the capacity of combinatorial motion syn-

thesis and its applications is the richness of the pool of avail-
able motions. In this paper, we demonstrate that it is possi-
ble to enhance a collection of human motions substantially
by cutting and pasting across the body — a process we call
transplantation (Section 3). We also describe an assessment
method for our technique that can easily generalize to evalu-
ate other techniques (Section 4). In Section 5, we use our en-
hanced pool of motions to demonstrate that with an enriched
motion graph, we can synthesize multiple motions organized
in time and space that do not share frames.
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Unsuccessful Transplant

Figure 3: Not every transplant is successful. Left and center are frames from motion sequences observed using motion capture
equipment. Right shows a sequence constructed using one of our rules; both arms from the top sequence has been attached to
the rest of the body from the center sequence. In this case, we have produced bizarre behaviour in the arms; such frames are

usually annotated not looks human by our classifier.

3. Enriching a Motion Collection by Transplantation
Itis currently difficult to predict precisely which components

of motion are used to determine whether a motion looks hu-
man or not. However, this decision almost certainly involves
observing correlations. In turn, while we cannot currently
predict precisely whether a particular cut-and-paste will re-
sult in an acceptable motion, we can identify rules that are
likely to yield a high percentage of successful results. This
suggests using these rules to perform a randomized search
through the available cut-and-pastes, with resulting motions
accepted or rejected by a classifier. We have found this strat-
egy to be successful.

3.1. Proposing a Transplant
Our approach to transplantation is simple. We invoke one

of four rules uniformly and at random, and apply that rule
to two sequences (chosen randomly, using parameters deter-
mined by the rule). Each rule determines whether the pair of
sequences to which it is applied is acceptable. It then pre-
pares a set of new sequences obtained by transplanting vari-
ous parts of the upperbody from the first sequence to the sec-
ond, and vice versa. Our current set of rules does not trans-
plant any signals from below the waist, though additional
rules could easily be added.

The transplants are rule-dependent. For rule 1, we trans-
plant the upper body of the first motion with the lower body
of the second motion, and vice-versa. For rules 2 and 3, we
transplant:

e The right arm severed just above the shoulder from se-
quence 1 to the right arm of sequence 2.

e The left arm severed just above the shoulder from se-
quence 1 to the left arm of sequence 2.

e The shoulders and arms severed at the top torso joint from
sequence 1 to sequence 2.

e The left arm, shoulder and torso severed at the top torso
joint from sequence 1 to sequence 2 (preserving sequence
2’s right arm and shoulder joint).

e The right arm, shoulder and torso severed at the top torso
joint from sequence 1 to sequence 2 (preserving sequence
2’s left arm and shoulder joint).

e The uppercarriage (torso, shoulders and arms) from se-
quence 1 to sequence 2.

We then transpose sequences 1 and 2, and repeat the pro-
cess, resulting in twelve new sequences. For rule 4, we do
not transplant. Instead, we pick one of the two motions at
random, and select joint angles on the arms to perturb. We
generate a sequence where we perturb the selected angles
only on the right side of the body, then a sequence where
we perturb only the angles on the left, and finally a sequence
where we perturb both.

Our rules are designed to balance the goal of obtaining
successful transplants with that of searching a wide range of
possible transplants. One can reasonably believe that trans-
plantation will work best if the source sequences are similar.
However, confining transplants to similar sequences means
that one is unlikely to obtain any significantly new compo-
sitions. This suggests that one should try a broad range of
transplants. An attractive feature of randomized search is
that one can incorporate new rules as the process is better
understood, perhaps using reinforcement learning to choose
the rule applied.

Rule 1 searches for general compositions by choosing
two sequences at random; we start at the first frame of each
sequence and clip the longer sequence to the length of the
shorter. Our observed motions tend to be in phase, meaning
there is no particular advantage to be obtained by searching
for a better alignment.

Rule 2 again tries to find pairs of sequences that are likely
to work well, but now uses the criterion that sequences with
similar footplants are likely to allow successful composi-
tion. This criterion is appropriate for finding motions where
the correlation across the body is unlikely to be disturbed
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by transplantation. For some motions, one can regard cor-
relation within the motion as being governed by an inter-
nal clock (e.g. arms and legs swinging in counter phase in a
walk). The footplants are a rough guide to the internal clock;
this suggests that pairs of motions whose footplants are suf-
ficiently similar share a similar clock, and so may admit suc-
cessful transplantation. The attraction of this criterion is that,
while the footplants may be similar, the upper body may en-
gage in quite different activities, meaning that transplanta-
tion could lead to quite significantly different motions. We
implement this criterion by taking two sequences uniformly
and at random, and forming for each a string representing
whether and which foot is planted at each frame. The start
of the aligned subsequences is found by running along time
until the two sequences have a simultaneous footplant; we
then continue advancing through time until the footplants are
poorly aligned.

Rule 3 searches for transplants that are likely to work
well, by using the distance matrix of Kovar et al. [KGP02] to
obtain a joint probability matrix. The rule then uses impor-
tance sampling to choose according to these probabilities.
‘We write the distance matrix from that paper as D; now zero
the diagonal to obtain D. We then form the matrix J whose
—d;/(207)

i, j’th element is e , where d;; is the i, j’th element
of D. The joint probability matrix is obtained by normaliz-
ing J to sum to one. This rule selects sequences preferen-
tially if the sequences are “similar”. We now use Dijkstra’s
algorithm to determine a possible time alignment between
the sequences (as in [KGO3]). If this time alignment is suf-
ficiently similar to the identity (i.e. its slope is everywhere
close to 1), we accept the pair of sequences and transplant.
We choose a random start point within each sequence to be-
gin the alignment, and the endpoint is provided by the time
alignment procedure.

Rule 4 first picks one of the two motions at random, then
randomly selects whether to perturb the shoulder angles, the
elbow angles, or both. The rule then chooses an angle offset
between 20 and 90 degrees, favoring smaller angles by sam-
pling according to a skewed distribution. Note that one can
easily expand Rule 4 to include other angles (such as those
on the torso), and that it could be applied to a transplant cre-
ated by Rules 1, 2, or 3.

3.2. Determining which Motions Look Human
None of the transplants proposed by any rule is guaranteed

to look human. We must check each frame to determine
whether it does. It is infeasible to check large quantities
of motion by hand. In addition, no algorithm currently ex-
ists to check automatically. Our solution is to regard 1ooks
human as yet another annotation within the Arikan et al.
framework. As in that framework, we use a support vector
machine (SVM) to determine whether a motion appears hu-
man or not. Using a classifier to distinguish human-looking
motion is an appealing option because a classifier general-
izes its training labeling without concerning itself with the
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underlying semantics. It is also a feasible solution because
in practice motions that do not look human typically fail to
do so as a result of either fast twitches uncorrelated with the
rest of the motion (Figure 3), or self-interpenetration. These
are both phenomena relatively easily picked up on by a clas-
sifier.

We used a radial basis function kernel SVM, from the
public domain library libsvm [CLOO]. (Note that the SVM
is one of a small number of classifiers that tend to perform
well on a wide-range of problems, but one could choose
other classifiers such as logistic regression, neural nets, or
a naive Bayes classifier and expect comparable results.) Ev-
ery frame of our observed motions is annotated with 1ooks
human. We classify every frame of the transplanted motion
sequences; if the frame is accepted by the classifier it is an-
notated with 1ooks human, otherwise it is annotated with
not looks human. The classifier uses joint positions in
the frame to be classified, the 30 frames before, and the 30
frames after as a feature vector.

The classifier is trained using two pools of examples.
First, every frame of each observed human motion we pos-
sess is used as a positive example. Second, we classified a
pool of 16,127 frames of transplanted motion by hand. One
can create an accurate training set for the classifier because
humans are very skilled at discriminating human-looking
motion from other candidates. Also, as we said above, in
practice motions that appear non-human often feature uncor-
related fast twitches or self-interpenetration. Both phenom-
ena are easy for a person training the classifier to spot. One
can also create a large training set quickly because the anno-
tation flag tends to change relatively seldom for a sequence,
so that it is possible to label many frames efficiently.

3.3. Annotating Transplanted Motions
In much of what follows, we use annotations attached to mo-

tions. This means that transplanted motions must be anno-
tated. We use the annotation scheme of [AFO03], which we
sketch briefly here for the reader’s convenience. In partic-
ular, we follow Arikan et al by choosing to focus on an-
notations that describe the qualitative properties of motion,
and are using a database of 7 minutes of American football
motions. The vocabulary used to annotate this database con-
sisted of: Run, Walk, Wave, Jump, Turn Left, Turn
Right, Catch, Reach, Carry, Backwards, Crouch,
Stand, and Pick up. Any combination of annotations is
allowed, though some combinations may not be used in prac-
tice. Motions are then annotated using an active learning
method based around an SVM to set each flag (i.e. Run vs.
Not Run) independently. The classifier uses the joint posi-
tions for one second of motion centered at the frame being
classified as a feature vector. The out of margin cost for the
SVM is kept high to force a good fit within the capabilities
of the basis function approximation.

We obtained this annotated collection from Arikan et al.
The question now is to annotate transplanted motions with
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minimal extra effort. In practice, we have found it sufficient
use nearest neighbours. We take a 17 frame sequence cen-
tered around the transplanted frame to be annotated, and
find the nearest such sequence in the original annotated mo-
tions by blank search. The search cost is relatively insignifi-
cant, and is an off-line cost. The annotation sequence is then
smoothed by one pass of opening and one pass of closing (as
in [FF99]). As figure 1 suggests, our transplantation proce-
dure may result in motions that are best controlled with an
expanded annotation vocabulary (the figure might well be a
head-butt). We have not explored this point in detail.

3.4. Transplantation Results

We use a test set of transplants to establish the classifier’s
total error rate. The annotation bit supplied by the classi-
fier tends to change seldom on test sequences, too. This
means that it is difficult to check large numbers of individ-
ual frames, and our estimates of total error rate are rough. We
arrive at these estimates by looking at short runs of motion,
and count errors in terms of these runs. If the whole motion
looks human to the observer, but the classifier marks only a
quarter of the frames as human, we count a quarter motion as
true positive and three-quarters as false negative. This gives
a rough estimate of the error rates. On 102 test motions of a
total of 14,108 frames, the total error rate is approximately
13%. The false positive rate is approximately 12%.

We apply our transplant strategy in batch mode, mean-
ing that transplanted sequences are not available for re-
transplantation. We have not attempted every possible ap-
plication of the rules, but can estimate how many successful
transplants are available because the rules are applied uni-
formly at random. From 118 observed motions, we applied
the rules a total of 106 times, obtaining 234 motions and a to-
tal of 27491 frames. It is not possible to classify the first and
last 30 frames of each motion (because features are incom-
plete), and so we have 13451 annotatable frames, of which
the classifier marked 10226 frames as human.

Rule 1 is applied 29 times. Of a total of 6903 possibilities,
all applications find pairs that could be transplanted, yield-
ing 3904 new frames. Approximately 35% of the resulting
frames are (a) annotatable and (b) annotated as 1ooks hu-
man. This suggests that rule 1 could yield approximately a
quarter million good frames annotated as 1ooks human
if applied exhaustively. Rule 2 is applied 41 times. Of a to-
tal of 6903 possibilities, 19 applications found pairs of se-
quences from which motions could be transplanted, yield-
ing 12660 new frames. Approximately 44% of the resulting
frames are (a) annotatable and (b) annotated as 1ooks hu-
man. This suggests that rule 2 could yield approximately a
million new frames annotated as 1ooks human. Rule 3 is
applied 36 times. Of a total of 6903 possibilities, 18 appli-
cations found pairs of sequences from which motions could
be transplanted, yielding a total 15432 new frames. Approx-
imately 28% of the resulting frames are (a) annotatable and
(b) annotated as 1ooks human. This suggests that rule 3

could yield approximately three-quarters of a million new
frames annotated as 1ooks human. Rule 4 is applied 30
times. Of a total of 118 possibilities, all applications find
angle perturbations, yielding 2,841 new frames. Approxi-
mately 35% of the resulting frames are (a) annotatable and
(b) annotated as 1ooks human. This suggests that rule 4
could yield approximately 4000 new frames annotated as
looks human. There is no particular reason to believe that
the rules lead to sets of frames that are distinct, but it is rea-
sonable to believe that from half-a-million to a million new,
good frames are available via this route. We have no statis-
tics on multiple applications of the transplant process (i.e.
transplanting a transplant), but believe much new motion is
available this way. Comprehensive application of the rules in
this manner is currently computationally impractical, how-
ever.

These results suggest that transplants lead to many frames
that look acceptable, at least to the classifier. Figure 2 shows
a successful transplant (one that looked good to the classi-
fier). In this case, the motion has changed, but not greatly.
Figure 3 shows a transplant that has produced a poor mo-
tion that was identified as such by the classifier. Transplants
can potentially produce motions quite different in character
from those in the original collection of observations, as fig-
ure 1 indicates.

To date, we have used our technique to generate 340,596
frames of motion data accepted by the classifier as human
(from a pool of 477,362 annotatable candidate frames). At
60 frames per second, this means we have generated slightly
over an hour and a half of new data from approximately 7
minutes of original motion capture.

4. Assessing Motion Modification Strategies
One can evaluate a motion modification strategy only in the

context of motion demands. The demands should come from
a relevant application. A strategy can then be evaluated by
generating many demands, synthesizing a large quantity of
motion sequences, and scoring them. We have implemented
a system that evaluates our motion transplantation technique
in this manner, and believe it is easily extensible to evaluate
other synthesis techniques.

Creating a large, canonical set of motion demands is not
trivial. The types of demands typically needed for useful ap-
plications are not random, so we cannot simply place an-
notations randomly on a timeline. Additionally, creating de-
mands by hand is not feasible at a large scale. Instead, we use
the popular video game Unreal Tournament 2004 to generate
motion demands. At every one-fifth of a second, we query
the game state for position, velocity, rotation, and an anno-
tation supplied by the game of either running or falling for
every player. We enrich this set of annotations by examining
the velocity vector at every tick the game describes as run-
ning. We annotate the tick with standing, walking, or
running by setting thresholds on the magnitude of the ve-
locity vector. In this manner, we generated over 1200 anno-
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Figure 4: This plot shows the scores for 100 sequences gen-
erated from for the original motion graph (in dashed blue)
and the transplantation-enriched motion graph (in solid red).
This figure indicates that transplantation can create signifi-
cantly better motions for certain demands, and avoid catas-
trophes for others.

tation streams of slightly less than 300 frames apiece from
less than an hour of logging 3-person games. The streams
generated in this manner do not test all possible annotations
for our particular motion database of American football. We
created an additional 40 streams by hand that include anno-
tations from the full annotation set.

To evaluate a motion graph, we need a system that takes

a set of demands and a motion graph, and tries to gener-
ate motion sequences that meet the demands. It should also
score how well the generated motion sequence meets its de-
mand. We use the system described by Arikan ez al. to per-
form these tasks.

For each demand, the system generates two motion se-

quences. It generates the first using our original motion cap-
ture database as the motion graph, and the second using our
transplantation-enriched database. The system is permitted
to perform 300 iterations of search to solve for each demand.
Arikan et al.’s procedure assigns a score to each motion se-
quence. Though this score is not canonical, we believe it is
a reasonable proxy because it reflects how well a motion se-
quence meets its demand; and, in general, better scores tend
to indicate better motions.

We expect to see the enriched motion graph produce se-

quences whose scores are better than the original motion
graph for some demands, and it does (Figure 4). We also ex-
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pect that the motion sequences generated seldom use frames
which are labelled not human. They rarely do (of 28,800
frames synthesized to meet our 100 demands, only 980 — or
3.4% — are annotated not human). Lastly, we verify that
the motion sequences use frames that were newly generated,
and do not solely contain frames from the original motion
capture collection.

4.1. Examples and Results
To assess the impact of mislabelled frames, we need to check

all the frames by hand. We subsampled 14,108 frames from
our transplantation-enriched database, annotated them with
the classifier, and then had a human check the annotations.
Of 7988 annotatable frames, the classifier labelled 5044 of
them as human. For this experiment, we test our original
motion capture graph against one that contains all of the
original motion capture data plus the subsampled version of
our enriched graph. This gives us a total of 36,753 frames.
The original graph contains 22,645 frames.

Our set of motion demands consists of 40 annotation
streams created by hand, and 60 gathered from Unreal Tour-
nament 2004. For each graph, we generate 100 motion se-
quences from these demands. Then we compare the scores
for the motion sequences. A lower score indicates that the se-
quence met its demand better than a sequence with a higher
score.

Is the transplantation-enriched motion graph better than
the original? As Figure 4 shows, the enriched graph gen-
erates significantly improved motion sequences for some
demands. This is because adding even a small number
of frames from transplantation makes the graph easier to
search. Transplantation tends to locally explore the space
around existing examples, creating frames that are similar
to original frames. Thus, the search used in Arikan ef al.’s
system can choose between several similar frames, allow-
ing small refinements that can increase continuity between
motion blocks. The figure also illustrates that the enriched
graph avoids catastrophic synthesis results for motion de-
mands that are difficult to meet with the original graph.

Now we assess the impact of frames that do not look hu-
man. We first examine the effect of mislabelled frames —
frames that the classifier labels as human looking, but a hu-
man thinks are not. Such frames, which form about 12%
of the graph, are potentially dangerous because their inclu-
sion in a sequence can make the motion look implausible.
For each sequence generated from the enriched database,
we count the number of falsely labelled frames the motion
contains. Only 7 out of the 28,800 frames used were false-
positives. Therefore, one can safely ignore their presence.
Recall that frames that do not look human usually contain
fast twitches that are uncorrelated with the rest of the motion,
or interbody penetration. We conjecture that our success at
avoiding false-positive frames may be because such frames
are not well-connected to the rest of the motion graph.

Secondly, we determine how often we visit frames which
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the classifier labelled not human. 3.4% of the frames
used (or 980 of the 28,800 total frames in the sequences)
were classified not human. However, this percentage is con-
trollable. We left the frames labeled not human in the
database because such frames can potentially improve con-
tinuity. We demand motions in which every frame has a
looks human annotation, and we will get such motions
unless inserting frames that are not so annotated produces
a significantly smoother motion. Our experience is that the
tendency to produce smoother motions significantly out-
weighs the presense of the occasional frame — which is usu-
ally kinematically acceptable — from a problem sequence.
However, the frames labeled not human can be stripped
before synthesis if the user wishes.

Lastly, we gauge the number of times we visit frames
that were not in our original motion collection. 20.1% of the
frames (or 5,984 of 28,800) were generated from transplants.
This figure indicates that the frames generated by transplan-
tation were beneficial in meeting the motion demands.

5. Generating Multiple Unique Sequences from a Single
Motion Demand

One application of our technique is the generation of multi-
ple sequences from a single motion demand that do not share
frames in detail. This is an interesting problem in crowd syn-
thesis, for example. We concentrate on getting a small group
of actors to move in a fashion coordinated across space and
time. This means that each should engage in the same type
of motion at the same time. This creates difficulties for cur-
rent motion synthesis algorithms, because, while the actors
should engage in the same type of motion, they should not
use exactly the same motions. Doing so produces extremely
distracting effects.

In principle, Arikan et al.’s framework allows this type
of synthesis, but does so poorly in practice. This is because
the search tends to be quite efficient at finding motions that
meet the particular annotation and geometric demand: dif-
ferent actors tend to share the same motion example. In turn,
this suggests we can finesse the difficulty with shared mo-
tions by synthesizing each actor with a distinct component
of the original collection of motions. Of course, this applies
only if we have sufficient motion examples to split up the
collection safely.

We are able to significantly increase the size of our motion
collection with transplantation. Furthermore, a natural prop-
erty of our process is that it tends to generate many slightly
different examples of similar motions. All this suggests that
the result of transplantation should allow this type of syn-
thesis in Arikan et al.’s framework. This turns out to be suc-
cessful.

As a base motion collection, we use all the results of trans-
plantation whether annotated with 1ooks human or not.
As in the experiment in Section 4, we do this because such
frames can potentially improve continuity.

Figure 5: A motion synchronised in time and space. The
motion demand specifies actors run from the start point,
reach their specified end points and crouch. If one simply
synthesizes four motions with these demands, the resulting
motions are likely to share frames. By expanding, then split-
ting, the motion collection using our transplantation strategy,
we are able to produce coordinated motions that do not share
frames.

We have animated sequences involving four actors in this
way. We used only the result of transplantation — 204 se-
quences in total. For each possible annotation string, we en-
sure that each actor has at least 30 example frames with that
string, and then choose motions uniformly at random so that
each actor has approximately a quarter of the total pool of
frames. Motions are then synthesized with the techniques of
Arikan et al., resulting in sequences where actors (a) obey
start and end constraints, (b) obey frame constraints, and (c)
can be synchronised in time without sharing frames. Figure 5
shows an example of a synchronised motion.

6. Conclusion
The compositional nature of human motion means that a

spanning set of motion examples will probably never be
available. Instead, we must search for acceptable methods
for deriving good new motions from observed motions. We
have shown that good motion sequences can result from re-
moving part of one body and attaching it to another. We used
a simple randomized search to increase the size of our pool
of motion examples nine times, obtaining both more exam-
ples of existing types of motion as well as novel motions in
the process.

A motion synthesis technique, however, can only be eval-
uated in the context of relevant motion demands. We de-
scribe a methodology for evaluating our technique using de-
mands generated by hand and from a popular video game.
This methodology can also be used to evaluate other synthe-
sis strategies.

There is a substantial advantage to possessing enough

(© The Eurographics Association 2004.
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motion examples. We have demonstrated that a sufficiently
large pool of examples makes it possible to synthesize mo-
tions of groups that are qualitatively synchronized in both
space and time without obtaining motions that share frames;
if one has too small a pool of motion examples, this strategy
fails.

There remains a great deal of research to be done on
motion composition. Attractive topics include: obtaining a
(near) complete set of rules; understanding what aspects of
correlations are passive and what active; and determining
when motions should be seen as new motions and when as
composites of existing motions.
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