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Abstract: The digital transformation of agriculture is a promising necessity for tackling the increasing
nutritional needs of the population on Earth and the degradation of natural resources. Focusing
on the “hot” area of natural resource preservation, the recent appearance of more efficient and
cheaper microcontrollers, the advances in low-power and long-range radios, and the availability of
accompanying software tools are exploited in order to monitor water consumption and to detect
and report misuse events, with reduced power and network bandwidth requirements. Quite often,
large quantities of water are wasted for a variety of reasons; from broken irrigation pipes to people’s
negligence. To tackle this problem, the necessary design and implementation details are highlighted
for an experimental water usage reporting system that exhibits Edge Artificial Intelligence (Edge AI)
functionality. By combining modern technologies, such as Internet of Things (IoT), Edge Computing
(EC) and Machine Learning (ML), the deployment of a compact automated detection mechanism
can be easier than before, while the information that has to travel from the edges of the network to
the cloud and thus the corresponding energy footprint are drastically reduced. In parallel, charac-
teristic implementation challenges are discussed, and a first set of corresponding evaluation results
is presented.

Keywords: water resource preservation; Internet of Things; Edge Computing; Machine Learning;
Edge AI; Smart Sensing; Precision Agriculture; Arduino; Raspberry; Edge Impulse

1. Introduction

The degradation of natural resources in quality and quantity has a direct impact on
the global food production numbers. According to FAO [1], the agricultural sector should
increase its productivity by 60 per cent to counterbalance the depletion of natural resources
and the population growth on Earth. The utilization of innovative technologies seems
to be a key factor for addressing these issues. In this regard, toward a successful digital
transformation of agriculture, it is promising that the rapid development of the electronics
industry has managed to increase the production numbers and the quality of several
components, such as microcontroller units (MCUs), single board computers, sensors, and
radio transceivers, at very affordable cost levels. More specifically, the recently appeared
new generation of microcontrollers, apart from orchestrating typical sensing and acting
tasks, can support composite operations at reduced execution times, as they have faster and
more efficient processors and larger memory. In parallel, the advances in radio technology
deliver low-power modules capable of long-range communication at reduced energy levels.
These high-end components are not only widely available but are also accompanied by
very fluent documentation and software tools that facilitate their programming, leading
to improved implementations. These characteristics can lead to a more efficient approach
regarding serious problems, such as the preservation of natural resources. Nevertheless,
any fusion of software and hardware elements has first to address potential implementation
bottlenecks, prior to the delivery of any effective solution.
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Indeed, as the world will be populated by billions of connected devices [2] of limited
resources, interacting with the surrounding environment and users, the bottleneck will be
the increased amount of data traffic that could congest the network and generate several
latency, reliability and privacy problems [3,4]. The deployment of enhanced processing
features on Internet of Things (IoT) devices, for example Machine Learning (ML), reduces
the network congestion by allowing computations to be performed close to the data sources,
and thus it preserves privacy in uploading data, and reduces power consumption for wire-
less transmission to gateways or cloud servers [4]. In this regard, one of the options is to run
the intelligent algorithms locally on the end devices (e.g., on the sensor nodes hardware).
If the tasks are performed by smaller devices, less power will be required to keep them
running and more flexible energy management will be applied, compared with the typical
central system case. Small devices can operate on batteries for months or even for years,
while a diverse set of energy harvesting options is offered for elongated operation duration.
Thankfully, the recent technological advances delivered end devices with improved hard-
ware characteristics (i.e., processing capabilities and memory size), thus making it possible
for these devices to execute machine learning algorithms in an efficient and cost-effective
manner. Not only do the microcontrollers become better performing, but the application
of machine learning techniques on them, such as the artificial neural networks (ANNs),
have also become more efficient, due to the improvement of the corresponding software
platforms and tools.

In greater detail, the execution/utilization phase of an ANN requires less computa-
tional power than its training phase. In fact, during the training, a large amount of data
is used to calculate the weights and biases of the network, and thus a quite powerful ma-
chine is needed. Once the learning has been completed and the network has been trained,
the model can be used for inference actions with lower computational requirements [4].
Consequently, the AI algorithms can more likely be run on devices with less resources, as
microcontrollers, allowing local data processing. Nevertheless, as the trained models may
still remain comparatively heavy for the in situ MCUs, tools such as TensorFlow Lite [5], in
the context of TinyML [6], make possible the creation of trimmed-down versions that can
be fit safely in the improved generation of MCUs, but still of limited computational and
memory capacity.

Finally, the improved transmission range characteristics of the low power wide area
network (LPWAN) technologies, such as LoRa, perfectly fit to the reduced network traffic
profiles [7]. The balanced utilization of the discussed technological innovations can deliver
applications that can be very helpful for solving real-world problems, e.g., the preservation
of water resources.

Water is one of the most critical resources on the Earth as, apart from humans, both
plants and animals depend on it, while many processes from irrigation to washing or food
preparation, cannot be accomplished without it. Despite its necessity, large amounts of
water are being wasted due to a variety of reasons, from water pipe or valve failures to
human inattention. It is noteworthy that according to the World Bank [8], the non-revenue
water (NRW) level in developing countries ranges from 40% to 50% of the water pumped
into the distribution systems. Furthermore, 80 per cent of wastewater in the world flows
back into the ecosystem without being treated or reused, and 70 per cent of the world’s
natural wetland extent has been lost [9]. Sustainable Development Goal 6 (SDG 6) [9] on
water and sanitation, adopted by United Nations (UN) Member States as part of the 2030
Agenda for Sustainable Development [10], highlights in practice the importance of the
proper water resource management, from both quantitative and qualitative perspective. As
agriculture remains the largest consumer of water globally, the significance of water for
keeping the food produce to satisfactory levels is crucial.

Targeted at the preservation of water resources with emphasis on their impact on
agriculture, in this work, the pilot implementation of a smart water usage alerting system
is presented. The whole approach exploits the findings of the approach described in [11]
toward the delivery of a more compact and efficient solution with artificial intelligence (AI)
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capabilities. The latter task is addressed by utilizing recently-appeared, cost effective but
powerful microcontroller boards and software, for supporting the in situ machine learning
operations, and a low-power and long-range radio network technology based on the LoRa
protocol. The combination of these elements results in reduced power consumption and
in less network traffic and processing load for the central entities of the network, as the
water usage classification decisions are taken locally, at the edges of the network, and only
notification messages have to travel toward the end user. Response times are also reduced,
while privacy is better preserved. The water usage episodes that the smart system had
been trained to intercept were of comparatively short duration, but the methods being
used and the accuracy being achieved make the proposed arrangements, only with minor
modifications, to be applicable for supporting a wide variety of water preservation/misuse
detection scenarios.

Apart from this introductory section, in order to better highlight the main objectives of
this research, the rest of this paper is organized as follows: Section 2 highlights the motives
and the challenges behind this work and the design directions being necessary. Section 3
provides interesting implementation details. Section 4 is dedicated to evaluation results
and discussion. Finally, Section 5 contains important concluding remarks.

2. Background and Design Overview
2.1. Motives and Challenges for Agriculture

Internet of things (IoT) is an emerging technology that includes devices connected to
the Internet equipped with sensors, transducers, radio transceivers, and actuators compris-
ing a functioning of the whole that gathers, interchanges and responds to information [12].
In this regard, the IoT makes agricultural automation more efficient, and thus fosters pro-
duction [13]. Recent works emphasize the contribution of the IoT technologies in critical
agricultural operations [14,15], including precision farming, livestock, and greenhouses,
with the irrigation and water management activities to be of among the open issues of
growing interest [16].

Machine Learning (ML) is a very welcome companion for any IoT solution and
provides multiple solutions to problems that were among the most difficult to be tacked
without, some years ago. The exploitation of the ML potential by agriculture is a necessity
that follows several directions [17], even beyond Agriculture 4.0 [18]. The most significant
advantage of machine learning techniques is that they can provide generally applicable
solutions, with minor human intervention and in a way that does not require meticulous
a priori knowledge of the idiosyncracies of the system the solution is being tailored for.
This makes satisfactorily-working solutions to be generated easily and quickly by people
with less expertise in a specific area. Apparently, the role of the “experts” of the sector
cannot be overlooked, but their involvement into the whole process remains consulting
and supervising, as they do not have to inject “magic” threshold values into conventional
and difficult to maintain blocks of code.

The Edge Computing (EC) is a newcomer to the equation of tackling modern problems
more efficiently using IoT and ML. Indeed, a traditional IoT solution (a few years ago)
typically required a large amount of real-time sensor data to be destined to a central
computer entity in the cloud which in its turn had to process this increased amount of data,
to take the necessary decisions and probably had to deliver the corresponding responses
back to the appropriate nodes. This organization had to tackle high communication and
processing loads, while any potential failure of the central entity would result in total
system collapse. Furthermore, data privacy concerns were also very reasonable, as third-
party communication, storage and/or decision entities had to get involved in the whole
process. On the contrary, by increasing the intelligence at the edges of the network (i.e., on
or nearby the sensor nodes), decisions and any potential action are addressed locally, in a
faster, cheaper and more private way, thus leaving considerably less (or none at all) work
for the central entity [4,19]. Typically, only sporadic metadata information updates are
necessary toward the central entity, mainly for supervision purposes.
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The enrichment of IoT with Edge Computing and Machine Learning functionality is
often referred as Edge Artificial Intelligence (Edge AI) and tries to exploit the advantages
of these technologies, for serving a wide set of applications in a better manner, with the
agricultural sector not to be an exception [20]. In this regard, the approach being presented
is trying to highlight how these elements of innovation can be combined to ease the intense
problem of water resource waste.

Demographics continue changing and unsustainable economic practices are affecting
the quantity and quality of the water being available, thus making it an increasingly scarce
and expensive resource [9]. Inevitably, water is at the core of sustainable development
and is closely linked to poverty reduction and climate change. As agriculture remains
the largest consumer of water globally and irrigation is responsible for 70% of its use
worldwide, water is the most valuable resource for keeping the quality and the quantity of
plant and animal production to satisfactory levels. The way water is utilized for both urban
and rural use directly impacts its future availability and thus, emphasis must be placed on
water management and irrigation efficiency and make sure clean water can be provided for
all people.

Apart from the more conventional bare IoT solutions for water resource management
and utilization, mainly with focus on agriculture, there is a growing interest for the exploita-
tion of ML in order to achieve better results [21–24]. The fusion with Edge AI functionality
has yet a lot to offer. The potential exploitation of modern microcontrollers for water
usage related applications with embedded ML functionality has already started delivering
interesting outcomes [25], in neighboring scientific areas, with the selection of devices and
functions for communication between sensor appliances to remain a key challenge [26]
for success.

On the other hand, recent studies show that farmers are still facing concerns for
adopting the IoT technologies in their everyday activities. This skepticism is attributed to a
variety of reasons, from privacy concerns due the cloud-based nature of many solutions
to fears for job cuts and for high purchase and maintenance costs [27,28], while it is really
hard to find experts having the necessary set of talents at a satisfactory degree and being
available for fluent cooperation, at the same time.

Furthermore, while the machine learning methods seem to provide accurate and less
expensive solutions [23] for water misuse detection events such as leaks, there is enough
room for further improvements. Indeed, due to the very recent character of the innovative
hardware and software components supporting in situ (i.e., on-device node) machine learn-
ing techniques, in the agricultural sector for water utilization report/classification purposes,
few works combine these assets toward the delivery of a cost effective and efficient solution
with Edge AI characteristics. There are research contributions that exploit IoT infrastruc-
tures for water monitoring purposes, but without incorporating AI functionality [29] or
there are contributions that exploit machine learning methods that either require central
processing of the data being collected [30,31] or that they are not optimized to be executed
by the new low-cost and high-efficiency microcontrollers [32]. These remarks are in line
with recent review findings in agriculture [24] and reflect a problem already specified in
the wider IoT area [4,33].

Trying to bridge this gap, the proposed solution indicates that, for water usage charac-
terization/report delivery, a quite accurate model can now be trained, using flexible tools,
be executed on the end device and communicate its classification reports using almost
negligible power and bandwidth resources. Combining decentralized intelligence and
low-cost design, provision is made for reduced to null amount of information to travel
toward the cloud. These arrangements are addressing data privacy and reliability issues
as well.

2.2. Functionality Overview and Component Selection

This section reports briefly on the components being selected as well as on their role,
in order to develop a system capable of intercepting and characterizing water usage events.



Sensors 2022, 22, 4874 5 of 20

This system includes sensor nodes, placed in situ, at the edge points where the water is
actually being used, as well as the suitable sink/gateway node(s) able to collect the reports
delivered by the aforementioned peripheral nodes. The “key” point of the approach being
presented is that the edge (sensor) nodes, apart from collecting time series corresponding
to events containing the instantaneous water consumption data, are “smart” enough to
classify these events into categories of proper or improper use of water, without assistance
from external entities. Thus, via this “filtering”, only the classification reports have to travel
toward the gateway and the cloud (if the latter is necessary). The analytical (low quality and
high volume) information of the instantaneous water consumption might flood the network
infrastructures and exhaust the batteries of the edge nodes. The user can easily monitor the
operation of the whole system via their portable equipment (e.g., their tablet, smart phone,
or laptop) using conventional connectivity options (e.g., Wi-Fi or 3G/4G), either locally or
remotely (e.g., via a virtual private networking (VPN) service). The proposed architecture
is depicted in Figure 1.
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The proposed implementation exploited the experience gained during the activities
described in [11] with the excellent Arduino Nano 33 BLE Sense [34] microcontroller that
offers plenty of sensors and connectivity options, but utilized an even newer generation of
cheaper microcontroller modules that were able to host and to execute composite machine
learning algorithms, at the same price levels with the “traditional” units. For this reason,
the Raspberry Pi Pico [35] microcontroller board (that costs about 6€) was selected, which,
apart from its very attractive price, has fluent processing power and memory (due to its
new RP2040 chip). More specifically, the Raspberry Pi Pico unit, grace at its new RP2040
chip, has fluent processing power and memory, that allows for larger and faster program
execution compared to the typical Arduino Uno [36] standard, as it exhibits 64 times more
flash memory (i.e., program memory), 128 times more random access memory (RAM) and
a much faster dual-core processor. Consequently, the Raspberry Pi Pico board was able to
support, apart from the basic water consumption metering process, the necessary machine
learning functionality to invoke the corresponding water usage alert message generation.
For the final deployment, the absence of a radio interface on the Raspberry Pi Pico unit
was counterbalanced by the adoption of a cost effective microcontroller board, running at
8 MHz and equipped with a LoRa radio, namely a LoRa32u4 unit [37]. For programming
both systems, the preferred option was the well-supported Arduino IDE [38] environment.
During the implementation and testing stages, an ESP8266 based module [39], namely an
ESP-01 unit, offering Wi-Fi connectivity, was utilized.
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The water flow meter device is a Hall-effect counter sensor (YF-S201 [40] model), which
can detect the flow changes as the water passes through it and the rotor rolls. Furthermore,
the MIT App Inventor cloud-based programming environment [41] was selected for the
easy creation of a mobile application for inspecting the water usage activity, via the smart
phone/tablet device of the user.

To add machine learning functionality, it was necessary to prepare and incorporate a
trained artificial neural network (ANN) model into the software running on the Raspberry
Pi Pico. An artificial neural network is based on the operation of neurons in the human
brain. This structure has one input layer, one or more hidden layers, being interconnected,
and an output layer for delivering the results. A very simple and efficient manner to prepare
(i.e., to train and to extract/compile) a suitable ANN model was the Edge Impulse [42]
cloud environment. The latter processing environment incorporates the functionality of
the TensorFlow Lite engine for training neural networks. More specifically, it is equipped
with fluent graphical interface and network connectivity options for importing sensor data,
designing the ANN model, applying assistive processing blocks, for creating, testing and
deploying the final version of it. Finally, the coefficients describing the ANN are stored in
the memory of the Raspberry Pi Pico microcontroller, and thus the AI algorithm can be
executed on a device with comparatively low but enough capacity, in terms of processing
power and RAM. The Edge Impulse platform, from February of 2022, provides full support
from the Raspberry Pi Pico board.

The gateway node, gathers the classification decision information from the peripheral
(edge) sensor nodes, stores and makes it available for the end device (e.g., smart phone,
tablet or laptop) of the user, via common network services installed on it, or posts the
information to the cloud, for better visualization and post-processing. Details referred to
the latter choice are beyond the scope of this research work.

3. Implementation Details

In accordance with the design and functionality directions provided in Section 2.2,
Section 3 is dedicated in presenting characteristic details of the implementation process.
The analytic steps being followed for the training are illustrated in Figure 2.
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characterization solution.

More specifically, the basic water flow sensing unit connection and programming
arrangements are highlighted, in order to gather efficient data for training the ANN model
(step 1), and thus, to add machine learning capabilities to the whole system. The details for
this training are also explained (steps 2 and 3), as well as the incorporation of the trained
ANN model into the microcontroller of the flow-metering system (step 4) for enhancing its
functionality. In parallel, the corresponding network node(s) arrangements are discussed,
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as well as the characteristics of a pairing end-user mobile application, for the delivery of a
fluently working solution.

3.1. Initial Sensor Node Preparation

The Raspberry Pi Pico is a 3.3 V level unit, for this reason, the flow sensor was
connected to its 3.3 V supply pin, in order to generate 3.3 V logic compatible pulse signals
to its output. The 3.3 V level was adequate for the operation of the specific flow metering
device being selected. Furthermore, the output of the latter sensor was connected with an
interrupt (input) digital pin of the microcontroller, and the ground pins of both components
were also wired together. The sensor was connected to a testing tap via a pipe, and thus, it
could be exposed to a variety of water consumption scenarios potentially being invoked by
human, according to empirical assumptions.

The Arduino IDE environment was customized properly by downloading and in-
stalling the necessary libraries corresponding to the Raspberry Pi Pico, according to the
instructions of the its official page, for facilitating the programming process of the micro-
controller, via a computer through a USB port connection.

The pulses that the flow sensor was generating correspond to the rotations of its
blades and thus to the water flow passing through it. More specifically, according to the
basic algorithm, as the flow sensor signal generated a pulse signal any time 2.22 mL water
quantity, approximately, passed through it, the Raspberry Pi Pico intercepted these pulses
as interrupt triggers to be counted and, in turn, calculated an one-second average value
corresponding to the water flow (in mL). The sequence of these flow values was output to
the serial port of the microcontroller. After compiling the program (sketch) and uploading
it to the Raspberry Pi Pico board, the sequence of the flow measurements was acquired via
the USB cable. The latter measurements were fed into the machine learning platform, in
order to train the suitable ANN model, as the Edge Impulse environment offers options for
automated uploading of the values being measured.

3.2. Training the Neural Network

The corresponding ANN model to be generated had to be simple and lightweight
enough for the microcontroller’s potential but still precise enough. In this regard, the
system was trained to recognize three characteristic kinds of water utilization profiles: the
Normal Use or NU, Water Leak or WL and Water Waste or WW. The proper training of an
ANN requires data series corresponding to each of these categories to be collected and to be
uploaded to the Edge Impulse engine. The total data length was 5 h 55 min 47 s (148 files)
for all three cases. According to Edge Impulse platform requirements, the duration of the
data length had to be approximately the same for all categories, in order for the final model
to be more accurate. Nevertheless, the number of profiles for each case may differ (NU: 69,
WL: 44, WW: 44 profiles).

During the profile collection process, the lowest flow value that the flow sensor could
record was about 10–15 mL/s, while the maximum flow being recorded was in the range
between 250 and 280 mL/s. The network was trained using empirical data based on
human observations for classifying samples (water usage episodes) into categories. In
general, NU profiles were created so as to contain low to moderate flow values and having
duration below 180 s, making the training pattern hypothesis that a non-WL water usage
scenario would last for 3 min at maximum. Similarly, it was assumed that WL profiles
exhibited continuous flow duration of more than 180 s and that most WW profiles had
flow consumption over 160 mL/s and duration of more than 160 s, as it would be more
likable for the classification experiment, during the episodes to use water for shorter time
and at lower flow rate. Some typical profiles for each category are given in Figure 3, where
the water flow was measured in ml/s and the time was measured in seconds (s). For each
category, there is a diversification among the profiles being recorded and fed to the training
system. This diversification results in increased accuracy under real-world conditions.
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In the next stage, the water flow data (raw data) were uploaded to the Edge Impulse
cloud platform, via the Data Acquisition menu category, and were split into training and
testing data, automatically, while the data labelling was performed manually.

For training of the ANN model, the window size was set at 200,000 ms (i.e., 200 s),
according to the profiles that were fed into the training system and by taking into consider-
ation the maximum time that a person might use the tap. Similarly, the window increase
was set at 1000 ms (i.e., at 1 s) and the frequency at 1 Hz (i.e., for 1 sps sampling rate). Fur-
thermore, “Raw Data” was selected as the preferred processing block and “Classification
(Keras)” as the ANN learning block. The option “Raw Data” means that no additional
prepossessing was made (e.g., a spectral characteristics extraction) before using the original
data for the training process. This option does not reduce the number of features to be fed
to the input layer of the network, but also preserves as many characteristics of the initial
data as possible and, as it is explained right below, it fits easily in the microcontroller being
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selected. Furthermore, the number of training cycles was set to the moderate value of 50, to
avoid overfitting, and the learning rate at 0.0005, via the NN Classifier configuration section,
as the Edge Impulse suggests. The final neural network structure has an input layer with
200 features (window size), two hidden layers, with the first one to have 20 neurons and the
second one 10 neurons, and an output layer with 3 classes (NU, WL, WW). This architecture
for the NN provided an optimal combination between performance and computer resource
allocation (i.e., model accuracy versus time needed for a decision to be made and memory
size needed for hosting the program in the flash and for executing it in RAM). For the
specific model, in the quantized version, the RAM usage was 1.9 KB and the flash memory
usage was 22.5 KB, values that are far below the capacity limit of the Raspberry Pi Pico
unit. It must be noted though that during the actual operation of the microcontroller, more
memory will be needed as along with the NN model coexist several variables and code
parts dedicated to other tasks.

The Edge Impulse platform allows for easy experimentation with various candidate
settings and for saving the model with the best performance after the end of the training
process. Finally, there is the option to download the model from the Edge Impulse cloud
platform, via the “Deployment” section of Edge Impulse menu category, as code that
includes library and sketches to be compiled and uploaded to the microcontroller via the
Arduino IDE environment.

3.3. Sensor Node Software Enhancement

As explained in Section 3.2, the code generated by the Edge Impulse platform, in
the form of a generic Arduino library, provides customizable examples (sketches) for the
Arduino environment, with the Raspberry Pi Pico board to be among the models being
supported, and thus, being compatible with the generated model parameters. The selection
of the “Arduino library” option (instead of the tailored firmware output one) provides
freedom to combine the machine learning engine with further algorithmic behaviors being
necessary to be executed by the hosting microcontroller.

In this regard, the final software running on the microcontroller had to be updated so
as to be able to perform (almost simultaneously) some simple but sharp calculations/tasks
of different time granularity:

• Intercept the interrupt signals corresponding to the rotor roll pulses of the water flow
sensor module;

• Calculate the instantaneous water consumption, at a fixed and specific rate, typically
1 or 2 times per second, update the aggregate metrics, and trigger the classification
process every time the predefined number of samples (i.e., 200) was gathered;

• Deliver system status data and water usage reports via USB to the hosting computer,
or wirelessly to a gateway node or to the operator’s smart phone/tablet;

As expected, the above tasks had to be performed without blocking or delaying each
other, constraints that required meticulous programming (e.g., using timer events) to
achieve fluent operation. Optimally, the delivery of information toward the gateway had to
take place once, after the end of each classification process utilizing the 200 consecutive
samples. Nevertheless, for debugging or training purposes, all 200 values had to be
transmitted toward the gateway node. Communication with the LoRa32u4 radio module
was achieved through the serial TTL level port of the microcontroller.

3.4. Gateway Node and User-End Software

For the reception (and the inspection) of the remote alerts through Wi-Fi, an android
smart phone or a tablet device, which most modern people are familiar with, was a
satisfactory solution. The MIT App Inventor environment was utilized in order to deploy a
simple monitoring application. The necessary programming was completed using visual
blocks, based on the information provided in [43,44].

The initial deployment involved direct connection between the smart water sensor
node and the end user equipment (e.g., a tablet device), typically through a Wi-Fi connection
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link. This solution is not optimal if multiple sensors units exist and deliver water usage
reports in parallel. Furthermore, the latter sensors may be placed at comparatively long
distances from the user. These facts made necessary the development of a gateway/sink
node to gather the corresponding data and the migration to LoRa radio links.

For implementing the latter gateway node, a Raspberry Pi 3 Model A+ had been
selected [45], due to its reduced size and energy footprint and its fluent programming and
interfacing options. The Raspberry Pi Model 3 A+ unit allows for fast implementation
of code that intercepts the data reports from the peripheral smart sensor nodes, storing
them into files or a simple database, and making them available via the proper TCP/IP
based service. This request could be either asynchronous or periodic (i.e., generated by
a proper application running on the user’s mobile phone). These tasks are served using
python and Linux shell scripts, inter process communication (IPC) techniques exploiting IP
sockets, and the activation of preexisting applications such as the Apache web server, the
SSH server and/or a Virtual Private Networking (VPN) service. Furthermore, the gateway
node, properly combined with VPN networking techniques, assured monitoring functions
from distant locations, based on the availability of Wide Area Network (WAN) wired or
wireless technologies (i.e., 3G/4G, DSL, etc.).

3.5. Summary of IoT Deployment Steps

The Edge AI tasks had to be performed fluently, while deployment in open-field
environments using long-range radios, such as LoRa, was an important priority. The final
functionality being implemented can be summarized in the following steps/cases:

1. Use a Wi-Fi radio transceiver (e.g., an ESP-01 module), attached to the sensor node, to
provide communication between the sensor node and the user’s smart phone/tablet,
for testing purposes, during the initial deployment;

2. Use a Raspberry Pi Model 3 A+ and a LoRa radio module as a LoRa gateway/web
server, in conjunction with the LoRa radio transceiver modules being attached to the
(preferably more than one) smart sensor nodes;

3. Increase user-friendliness by adding services using the Raspberry Pi Model 3 A+ unit
of the gateway node and well-known web-based applications.

Case 1 was suitable for verifying the basic wireless connectivity potential of the sensor
node via the tablet/smart phone device of the user, being nearby the sensor. This arrange-
ment made easy for the user to inspect the status of the water activity characterization
system for one smart sensor and from short distances.

The need to have a more complete on-demand view of the status of more than one
water use points, at increased distance, was favoring the adoption of a local gateway
node facilitating the whole monitoring process, as explained in case 2. The sensor nodes
were sending water usage notifications toward this local gateway, over LoRa. It must be
noted though that the TCP/IP technology, as a solution for the delivery of data (i.e., the
sporadic metadata) from the sensors to the gateway, is not optimal, in terms of energy
consumption, complexity and range coverage. Indeed, in a typical application scenario, the
distance between the sensor nodes and the gateway node is limited to a hundred meters,
approximately. If willing to extend this distance to the kilometer range or beyond, without
special and expensive equipment, transceivers utilizing technologies such as LoRa are
more suitable.

In case of the LoRa solution, the LoRa32u4 board, as a transceiver, was the optimal se-
lection for both the sensor and gateway nodes, due to its low cost and its easy programming.
The RadioHead software package [46] is a very efficient library that supports several critical
LoRa protocol functions, and thus, it was adopted for adjusting the LoRa32u4 modules.
These modules were programmed easily via the Arduino IDE environment. Consequently,
the microcontroller of each sensor node was connected (typically via its hardware serial TTL
interface) with a LoRa32u4 board in order to relay the water usage information from the
machine learning engine toward the gateway node. A Lora32u4 board was also connected
via USB with the Raspberry Pi 3 Model A+ unit implementing the gateway functions. The
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necessary code was written in python to bridge the serial port of the LoRa32u4 board with
an IP socket service running on the gateway node.

Characteristic deployment arrangements are depicted in Figure 4a,b. More specifically,
Figure 4a depicts the smart water sensor node implementation using a Raspberry Pi Pico
unit and a LoRa radio, while in Figure 4b the gateway/sink node implementation is
depicted using a Raspberry Pi 3 Model A+ and a LoRa radio. The information exchanged
between the LoRa radios was packetized and encrypted using the RadioHead library
and the Arduino Cryptography Library [47], in order to hide the sensitive data from
non-authorized users.
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(b) Gateway/sink node implementation using Raspberry Pi 3 Model A+ and LoRa radio.

Initial experiments were performed using USB powering via the hosting computer
and/or power banks. Later updates included LiPo or Li-ion batteries, mainly of 18650 type
which are cheap and robust, as well as small photovoltaic panels (e.g., 2 W units). It must
be noted though that the absence of a permanent power supply source nearby is not always
the rule, and thus the operation of the alerting system was facilitated.

4. Results and Evaluation

This work is putting emphasis on intercepting water usage events and on characteriz-
ing them properly. Via fluently-working machine learning techniques, applied at the edges
of the network, the amount of information that needs to travel from the peripheral nodes
to the central node and the cloud is minimized. This fact signifies reduced communication
load and energy consumption, and better autonomy and privacy. The adoption of simple,
long-range and low-energy radios facilitates the whole process. Relevant details are given
into the following Sections 4.1–4.4.

4.1. Testing the Acuracy of the Model

For classification evaluation algorithms, accuracy is the most frequently used indicator,
and it is defined as the proportion of the correctly classified samples to the total number
of samples. After the training process, based on the testing data, the system generated
the right outcome for the NU category with 77.8% accuracy. Similarly, for the WW and
WL categories, 100% success was achieved, according to Edge Impulse cloud environment.
These performance results made the final model to have a 98.5% expected accuracy, using
the testing data set, in the Quantized (int8) version.

At next stage, actual water consumption episodes of known type (i.e., NU, WW or WL)
had to be invoked, by rotating the tap head properly, thus letting the proposed machine
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learning engine to perform classification according to the flow data being collected (i.e., in
chunks of 200 consecutive values). The corresponding results were recorded. Figure 5
depicts the proposed sensor node connected in-line with a water tap. This process was
matching the steps being followed during the training stage of the system.
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Figure 5. The proposed sensor node connected in-line with a water tap.

It must be noted that the in-parallel visual inspection of the ongoing process was
drastically facilitating the experiments. More specifically, further arrangements were made
in order for the whole sequence of the analytical flow readings to arrive to the smart
phone/tablet device, using a modified version of the application created for the end user
(as presented in Section 3.4). This application variant provided detailed real-time graphs
(into the form of histograms) reflecting the instantaneous water consumption during each
episode, for direct comparison and adjustments. Figure 6a–f illustrate indicative smart
phone screenshots reflecting typical water usage characterization decisions during the
actual testing process, corresponding to the NU, WL and WW categories, respectively.

The combination of the trained ANN model implementation with simple more con-
ventional programming techniques was improving the accuracy and the response times of
the system being presented. For instance, the in situ module logic was modified so as to
ignore the zero-flow events, as an episode (i.e., event) started being recorded only after the
arrival of the first non-zero flow value.

Table 1 contains the confusion matrix that corresponds to the testing of the real
system, after classifying 100 water consumption episodes. The processing of the data being
collected revealed that the actual accuracy was 91% (i.e., 91 over 100 samples were classified
correctly), after testing the model with user-generated water consumption profiles, using
the proposed smart flow metering system. It is important to mention that the model
could clearly recognise the undesirable WL profiles, achieving accuracy values reaching
100%. On the other hand, there were some incorrect predictions, where the neural model
was classifying an actual WW scenario as NU or WL (with percentages 5.1% and 7.7%,
respectively). In fewer cases, the model was classifying an NU as WW or WL (with
percentages equal to 2.8%). These failures can be attributed to the fact that there was a
small area where the borders of those categories were overlapped, thus confusing the
neural network classifier. An additional 0.4 certainty threshold was programmed on the
microcontroller for more reliable characterizations. This performance is close to the one
expected according to the testing of the model. The overall performance is lower than the
one achieved by other machine learning approaches [23] using more composite systems,
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but remains high and can be easily achieved by the proposed low-cost equipment. The
accuracy can be further improved by using more extensive training and samples.
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Table 1. The confusion matrix corresponding to the trained neural network model, created by
classifying 100 water consumption episodes, of specific (and known) type each.

Class NU WL WW Unknown

NU 91.7% 2.8% 2.8% 2.8%
WL 0.0% 100.0% 0.0% 0.0%
WW 5.1% 7.7% 84.6% 2.6%

4.2. Networking and Power Consumption Issues

According to the specifications of the experimental system being presented, although
200 consecutive samples had to be recorded before a classification decision to be make,
this decision was taken locally, and thus only the (final) characterization message had
to travel toward the gateway (and to the end user) instead of 200 messages containing
the corresponding analytical flow values. The packet payload information needed to
travel from the peripheral sensor nodes toward the gateway node did not exceed 10 bytes
in binary format, thus resulting in a bellow 50-byte description per episode in textual
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format, in the final log files on the Raspberry Pi Model 3 A+ unit of the gateway. The size
requirements of the analytical data would be roughly 200 times higher. In addition to that,
the cost for performing the classification at the central node was not necessary any more.

Figure 7 provides indicative details of the water flow episode/event specific infor-
mation as stored into the log files on the Raspberry Pi Model 3 A+ unit implementing the
gateway node functionality. These files were directly available through the Apache web server
and typically contained an arrival timestamp, node address, episode type (i.e., NU/WW/WL),
flow value per each sample into a specific episode (in debug mode only), total water con-
sumption per episode, as well as sensor battery voltage and RSSI indicator.
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the log files on the Raspberry Pi Model 3 A+ unit implementing the gateway node.

Some stability problems were experienced when using the highest baud rate (i.e., the
115,200 bps value) between the Raspberry Pi Pico and the LoRa32u4 module. For this
reason the data rate was set to the “safe” 38,400 bps value.

The techniques being followed for testing the effective communication range of the
proposed system were utilizing the methods presented in [7,48]. The gateway node, apart
from the water flow specific information, for each node, was collecting assistive data, such
as sensor battery status and received signal strength indicator (RSSI). The latter information
was collected for sensor nodes being at various distances from the gateway node, for both
Wi-Fi and LoRa radio cases. The left part of Figure 8 depicts a LoRa radio transceiver
during the in situ radio coverage experiments. According to results being gathered, by
using ESP-01 Wi-Fi transceivers, the maximum range coverage was at about 100 m, while by
using LoRa modules with custom wire antennas the communication distance was extended
to 300 m in free space. By using standard but still cheap antennas, the LoRa link scenario
was easily achieving communication coverage of above 1 km. These results are justified
by the fact that the receiver sensitivity limit for nodes equipped with Wi-Fi radios was
around −90 dBm, while for the LoRa, the sensitivity being achieved was reaching the
−130 dBm level.
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prototype sensor nodes.

In order to better capture and study the short-scale dynamics of the smart sensor
modes, a measuring circuit was built, according to the directions provided in [49]. More
specifically, an Arduino Uno board was utilized to calculate the voltage drops over a resistor
of known value, connected in series with the load of interest (i.e., the smart water sensor
node); the right part of Figure 8 depicts the corresponding experimental setup. The actual
measuring process was performed via a separate ADC module (namely an ADS1015 unit)
capable of true differential measurements, of satisfactory resolution (i.e., of 12 bits) and of
adjustable gain. The communication of this module with the hosting Arduino board was
completed using an I2C interface. The presence of the Arduino Uno unit allowed for the
additional processing of data and quick graphical inspection. Consequently, for the system
under testing, amperage consumption traces could be easily captured, at a typical time
resolution of 100 sps and at an approximate amperage resolution of 1 mA, via the Serial
Monitor or the Serial Plotter component of the Arduino IDE environment. By using the
specific measuring setup, several results were collected. The behavior of the sensor nodes
was on the focus of this study, as, typically, the gateway node was considered of having
fixed power supply and its consumption was around 250 mA.

More specifically, the consumption of a bare node, equipped only with a Raspberry Pi
Pico unit was 27 mA, approximately, with the water flow metering unit to absorb 3–4 mA of
this quantity. When activating the radio modules on the system and letting them transmit
information, further data were collected. For debugging purposes, apart from the standard
settings where only the water usage decision was reported, the analytical flow data could
also be transmitted toward the gateway, limited only by the maximum data rate being
supported by the selected radio modules.

Referring to the Wi-Fi communication case, Figure 9 provides characteristic details of
the short time dynamics of the scanning and connection establishment stages that were
mandatory before the utilization of the radio modules. The inspection of the results revealed
that the scanning process was extremely energy-consuming, reaching the level of 90 mA (in
total) with additional and non-negligible sporadic spikes exceeding that level. The whole
scanning process lasted for 2 to 3 s, and after that, the overall consumption was stabilized
to the 40 mA level, with peaks of additional 50 mA corresponding to the water flow event
reports toward the gateway. The high cost for the Wi-Fi initialization link (especially in
optimized radio sleep/wakeup scenarios), along with its limited range coverage were
favoring the assessment of other communication alternatives, such as LoRa.
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Figure 9. Short time dynamics of the mandatory scanning and connection establishment stages,
following the activation of the Wi-Fi radio module that smart sensors were equipped with.

Similarly, Figure 10 depicts characteristic short-time dynamics for the LoRa commu-
nication alternative. Namely, from the LoRa module activation (left) to the energy peaks
reflecting the water usage notification packet transmission events (top right) and to the
corresponding textual information content as intercepted by the gateway (bottom right).
The LoRa32u4 LoRa board consumed 12–13 mA, approximately, at idling, with the radio
enabled, while the transmission events at the standard radio parameter settings (i.e., having
Coding Rate—CR set to 4/5, Bandwidth—BW to 128 kHz, Spreading Factor—SF set to 7)
and with the transmit power at 15 dBm, resulted in spikes of 70 mA (at 3.3 V), having an
approximate duration of 50 ms, thus requiring around 12 mJ each. It must be noted that
the whole process lacked the high connection establishment cost (in both time and energy)
characterizing the Wi-Fi case. The tradeoff of LoRa was the far lower communication rate,
which was not an issue for the specific application case that only a few bytes had to be
transmitted per sensor unit, every 2 to 3 min, at the fastest utilization activity scenario.
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According to the overall performance description presented herein, it can be inferred
that typically, the benefits of the pilot implementation being discussed were maximized in
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application cases where many water consumption check points were needed, spread into
an area of a few kilometres.

4.3. Node Cost Issues

The total cost of each of the discussed nodes, after adding the 6€ for the Raspberry
Pi Pico unit, the 15€ for the LoRa equipped module, the 8€ for the YF-S201 flow sensor,
the 8€ for LiPo batteries and the 5€ needed for a good-quality plastic enclosure box, was
around 42€. The utilization of a LoRa transceiver instead of a typical Wi-Fi radio saved
energy and offered improved distance coverage. The decision of using the LoRa32u4
board added some extra cost (of about 5€, compared with a bare LoRa chip) but provided
further GPIO pins and connectivity options, as well as fast programming and testing of
the diverse communication and arithmetic processing variants, thus counterbalancing the
almost 15 min of time required for the compilation of the code containing the trained neural
network model destined for the Raspberry Pi Pico unit. The gateway node needed 30€ for
a Raspberry Pi Model 3 A+, 15€ for the LoRa32u4 board, 5€ for a plastic enclosure box, and
5€ for a power supply, resulting in cost below 60€.

4.4. Further Discussion

This work presented a pilot implementation targeted at intercepting water usage
events and characterizing them properly, with the emphasis to be put on misuse cases,
such as leakages or wastes. The rapid growth of electronics and of the pairing software
allowed for very cost-effective but efficient solutions, with cutting-edge features. Indeed,
the adoption of machine learning techniques at the edge points (i.e., where the water
sensors are) was drastically reducing the amount of information that needed to travel
from the peripheral nodes to the central node and the cloud. This fact resulted in reduced
communication load and energy consumption, while it increased autonomy and privacy.
The focus was put on the in situ processing and the pairing with simple, long-range and low-
energy radios, e.g., the LoRa technology ones. The water usage episodes the experimental
system was trained to intercept were of comparatively short duration, but the software
and hardware methods being used, and the accuracy being achieved, make the proposed
arrangements, only with minor configuration modifications, to be applicable for supporting
a wide variety of water preservation/misuse detection scenarios. Apparently, several issues
are still open, requiring more elaboration for the delivery of an out-of-the-box solution.

The time interval between the fixed, in number (e.g., 200), consecutive flow data
required for a characterization decision, was set to 1 s during the training. The same trained
model, can still be valid considering intervals of much longer value (e.g., of 30 s instead
of 1 s), provided that the proper normalization in flow values will be made and that the
activity will be classified in following the same pattern. Nevertheless, gathering richer
data sets, reflecting further realistic use cases, can train the model more accurately, and
is an apparent priority for wider applicability. This training can follow the same generic
principles and methods described herein.

The option of using a bare LoRa chip with the Raspberry Pi Pico unit is amongst the
future priorities toward a more commercially-friendly version of the prototype presented
herein. While the adoption of the LoRa protocol allows for better flexibility, the LoRaWAN
solution is also feasible, either via implementing the necessary protocol stack, via software
on the 32u4 LoRa board, or by utilizing native LoRaWAN chips. Furthermore, these
processes can become more efficient by introducing a sleep/wakeup energy management
schema which will allow the Raspberry Pi Pico to wake up (via interrupts) whenever water
flow activity is intercepted by the flow sensor. The task of the efficient powering the system
at the absence of permanent power supply nearby is also quite challenging. Indeed, more
than one alternative can be adopted, from using solar panels or a tiny wind generator, to
pairing the rotating blades of the flow sensor unit with a tiny electric generator [50]. Finally,
as the adoption of a Raspberry Pi Model 3 A+ as a central/gateway node was providing
an adequate but poor level of functionality, via elementary web and archiving or database
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services, linking with well-known and more user-friendly cloud services is also a case
worth investigating in the future.

5. Conclusions

In this paper, the synergy between several innovative and low-cost electronic compo-
nents and software was exploited, in order to monitor and remotely report characteristic
water consumption/misuse events. The whole approach introduces modern Edge AI
techniques (i.e., combining IoT, ML and Edge Computing principles) that up until recently
was not possible to be executed with traditional low-cost microcontrollers. The challenges
for the delivery of a generally applicable and inexpensive alerting system for either urban
or rural water resource usage were further highlighted. The system being presented can
work in a decentralized manner as the amount of information that has to travel from the
edges to the cloud is drastically reduced, or becomes practically unnecessary, thus result-
ing in energy requirement minimization and increased privacy. Only the final decision
(water usage characterization) information has to be transmitted to the final user (e.g., the
farmer), and the cloud is necessary only in case that the latter user is not nearby or asks for
sophisticated information post processing.

As for the future, more optimized variants of the proposed system will be assessed, in
terms of hardware selection (e.g., of flow sensor units), neural network model accuracy,
networking options and energy autonomy. Great companies, such as Arduino, Raspberry,
ESP or Adafruit, during their noble competition, will continue to produce excellent parts
with leveraged application support potential. Finally, an out-of-the box version of the
functionality being presented, of commercial standards, exploiting additional well-known
services, and thus exhibiting increased user-friendliness, will be a significant future priority.
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