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ABSTRACT
In many situations it can be enormously helpful to archive the
raw contents of a network traffic stream to disk, to enable later
inspection of activity that becomes interesting only in retrospect.
We present a Time Machine (TM) for network traffic that provides
such a capability. The TM leverages the heavy-tailed nature of
network flows to capture nearly all of the likely-interesting traffic
while storing only a small fraction of the total volume. An initial
proof-of-principle prototype established the forensic value of such
an approach, contributing to the investigation of numerous attacks
at a site with thousands of users. Based on these experiences, a
rearchitected implementation of the system provides flexible, high-
performance traffic stream capture, indexing and retrieval, includ-
ing an interface between the TM and a real-time network intrusion
detection system (NIDS). The NIDS controls the TM by dynami-
cally adjusting recording parameters, instructing it to permanently
store suspicious activity for offline forensics, and fetching traffic
from the past for retrospective analysis. We present a detailed per-
formance evaluation of both stand-alone and joint setups, and re-
port on experiences with running the system live in high-volume
environments.

Categories and Subject Descriptors:
C.2.3 [Computer-Communication Networks]: Network Operations
– Network monitoring

General Terms:
Measurement, Performance, Security

Keywords:
Forensics, Packet Capture, Intrusion Detection

1. INTRODUCTION
When investigating security incidents or trouble-shooting per-

formance problems, network packet traces—especially those with
full payload content—can prove invaluable. Yet in many opera-
tional environments, wholesale recording and retention of entire
data streams is infeasible. Even keeping small subsets for extended
time periods has grown increasingly difficult due to ever-increasing
traffic volumes. However, almost always only a very small subset
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of the traffic turns out to be relevant for later analysis. The key
difficulty is how to decide a priori what data will be crucial when
subsequently investigating an incident retrospectively.

For example, consider the Lawrence Berkeley National Labo-
ratory (LBNL), a security-conscious research lab (≈ 10,000 hosts,
10 Gbps Internet connectivity). The operational cybersecurity staff
at LBNL has traditionally used bulk-recording with tcpdump to an-
alyze security incidents retrospectively. However, due to the high
volume of network traffic, the operators cannot record the full traf-
fic volume, which averages 1.5 TB/day. Rather, the operators con-
figure the tracing to omit 10 key services, including HTTP and FTP
data transfers, as well as myriad high-volume hosts. Indeed, as
of this writing the tcpdump filter contains 72 different constraints.
Each of these omissions constitutes a blind spot when performing
incident analysis, one very large one being the lack of records for
any HTTP activity.

In this work we develop a system that uses dynamic packet
filtering and buffering to enable effective bulk-recording of large
traffic streams, coupled with interfaces that facilitate both manual
(operator-driven) and automated (NIDS-driven) retrospective anal-
ysis. As this system allows us to conveniently “travel back in time,”
we term the capability it provides Time Travel, and the correspond-
ing system a Time Machine (TM)1. The key insight is that due to
the “heavy-tailed” nature of Internet traffic [17, 19], one can record
most connections in their entirety, yet skip the bulk of the total vol-
ume, by only storing up to a (customizable) cutoff limit of bytes for
each connection. We show that due to this property it is possible
to buffer several days of raw high-volume traffic using commod-
ity hardware and a few hundred GB of disk space, by employing
a cutoff of 10–20 KB per connection—which enables retaining a
complete record of the vast majority of connections.

Preliminary work of ours explored the feasibility of this ap-
proach and presented a prototype system that included a simple
command-line interface for queries [15]. In this paper we build
upon experiences derived from ongoing operational use at LBNL
of that prototype, which led to a complete reimplementation of the
system for much higher performance and support for a rich query-
interface. This operational use has also proven the TM approach
as an invaluable tool for network forensics: the security staff of
LBNL now has access to a comprehensive view of the network’s
activity that has proven particularly helpful with tracking down the
ever-increasing number of attacks carried out over HTTP.

At LBNL, the site’s security team uses the original TM system
on a daily basis to verify reports of illegitimate activity as reported
by the local NIDS installation or received via communications from

1For what it’s worth, we came up with this name well before its use
by Apple for their backup system, and it appeared in our 2005 IMC
short paper [15].
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external sites. Depending on the type of activity under investiga-
tion, an analyst needs access to traffic from the past few hours or
past few days. For example, the TM has enabled assessment of ille-
gitimate downloads of sensitive information, web site defacements,
and configuration holes exploited to spam local Wiki installations.
The TM also proved crucial in illuminating a high-profile case of
compromised user credentials [5] by providing evidence from the
past that was otherwise unavailable.

Over the course of operating the original TM system within
LBNL’s production setup (and at experimental installations in two
large university networks), several important limitations of the first
prototype became apparent and led us to develop a new, much more
efficient and feature-enhanced TM implementation that is currently
running there in a prototype setup. First, while manual, analyst-
driven queries to the TM for retrieving historic traffic are a cru-
cial TM feature, the great majority of these queries are triggered
by external events such as NIDS alerts. These alerts occur in sig-
nificant volume, and in the original implementation each required
the analyst to manually interact with the TM to extract the corre-
sponding traffic prior to inspecting it to assess the significance of
the event. This process becomes wearisome for the analyst, leading
to a greater likelihood of overlooking serious incidents; the analyst
chooses to focus on a small subset of alerts that appear to be the
most relevant ones. In response to this problem, our current system
offers a direct interface between the NIDS and the TM: once the
NIDS reports an alert, it can ask the TM to automatically extract
the relevant traffic, freeing the analyst of the need to translate the
notification into a corresponding query.

In addition, we observed that the LBNL operators still perform
their traditional bulk-recording in parallel to the TM setup,2 as a
means of enabling occasional access to more details associated with
problematic connections. Our current system addresses this con-
cern by making the TM’s parameterization dynamically adaptable:
for example, the NIDS can automatically instruct the redesigned
TM to suspend the cutoff for hosts deemed to be malicious.

We also found that the operators often extract traffic from the TM
for additional processing. For example, LBNL’s analysts do this
to assess the validity of NIDS notifications indicating that a con-
nection may have leaked personally identifiable information (PII).
Such an approach reflects a two-tiered strategy: first use cheap,
preliminary heuristics to find a pool of possibly problematic con-
nections, and then perform much more expensive analysis on just
that pool. This becomes tenable since the volume is much smaller
than that of the full traffic stream. Our current system supports such
an approach by providing the means to redirect the relevant traffic
back to the NIDS, so that the NIDS can further inspect it automati-
cally. By coupling the two systems, we enable the NIDS to perform
retrospective analysis.

Finally, analysis of our initial TM prototype in operation un-
covered a key performance challenge in structuring such a system,
namely the interactions of indexing and recording packets to disk
while simultaneously handling random access queries for historic
traffic. Unless we carefully structure the system’s implementation
to accommodate these interactions, the rigorous real-time require-
ments of high-volume packet capture can lead to packet drops even
during small processing spikes.

Our contributions are: (i) the notion of efficient, high-volume
bulk traffic recording by exploiting the heavy-tailed nature of net-
work traffic, and (ii) the development of a system that both supports
such capture and provides the capabilities required to use it effec-
tively in operational practice, namely dynamic configuration, and

2One unfortunate side-effect of this parallel setup is a significantly
reduced disk budget available to the TM.

Time

V
ol

um
e 

[G
B

]

0
50

0
10

00
15

00

T
ue

W
ed

T
hu F

ri

S
at

S
un

M
on

T
ue

W
ed

T
hu F

ri

S
at

S
un

M
on

MWN
UCB
LBNL

Figure 1: Required buffer size with tr = 4d, 10 KB cutoff.

automated querying for retrospective analysis. We provide the lat-
ter in the context of interfacing the TM with the open-source “Bro”
NIDS, and present and evaluate several scenarios for leveraging the
new capability to improve the detection process.

The remainder of this paper is structured as follows. In §2 we in-
troduce the basic filtering structure underlying the TM. We present
a design overview of the TM, including its architecture and remote
control capabilities, in §3. In §4 we evaluate the performance of the
TM when deployed in high-volume network environments. In §5
we couple the TM with a NIDS. We discuss deployment trade-offs
in §6 and related work in §7. We finish with a summary in §8.

2. EXPLOITING HEAVY-TAILS
The key strategy for efficiently recording the contents of a high-

volume network traffic stream comes from exploiting the heavy-
tailed nature of network traffic: most network connections are quite
short, with a small number of large connections (the heavy tail) ac-
counting for the bulk of total volume [17, 19]. Thus, by record-
ing only the first N bytes of each connection (the cutoff ), we can
record most connections in their entirety, while still greatly reduc-
ing the volume of data we must retain. For large connections, we
keep only the beginning; however, for many uses the beginning of
such connections is the most interesting part (containing protocol
handshakes, authentication dialogs, data items names, etc.). Faced
with the choice of recording some connections completely versus
recording the beginning of all connections, we generally prefer the
latter. (We discuss the evasion risk this trade-off faces, as well as
mitigation strategies, in §6.)

To directly manage the resources consumed by the TM, we con-
figure the system with disk and memory budgets, which set upper
bounds on the volume of data retained. The TM first stores packets
in a memory buffer. When the budgeted buffer fills up, the TM mi-
grates the oldest buffered packets to disk, where they reside until
the TM’s total disk consumption reaches its budgeted limit. After
this point, the TM begins discarding the oldest stored packets in
order to stay within the budget. Thus, in steady-state the TM will
consume a fixed amount of memory and disk space, operating con-
tinually (months at a time) in this fashion, with always the most
recent packets available, subject to the budget constraints.

As described above, the cutoff and memory/disk budgets apply
to all connections equally. However, the TM also supports defining
storage classes, each characterized by a BPF filter expression, and
applying different sets of parameters to each of these. Such classes
allow, for example, traffic associated with known-suspicious hosts
to be captured with a larger cutoff and retained longer (by isolating
its budgeted disk space from that consumed by other traffic).
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We now turn to validating the effectiveness of the cutoff-based
approach in reducing the amount of data we have to store. To as-
sess this, we use a simulation driven off connection-level traces.
The traces record the start time, duration, and volume of each TCP
connection seen at a given site. Such traces capture the nature of
their environment in terms of traffic volume, but with much less
volume than would full packet-level data, which can be difficult to
record for extended periods of time.

Since we have only connection-level information for the simula-
tion, we approximate individual packet arrivals by modeling each
connection as generating packets at a constant rate over its duration,
such that the total number of (maximum-sized) packets sums to the
volume transferred by the connection. Clearly, this is an oversim-
plification in terms of packet dynamics; but because we consider
traffic at very large aggregation, and at time scales of hours/days,
the inaccuracies it introduces are negligible [27].

For any given cutoff N, the simulation allows us to compute the
volume of packet data currently stored. We can further refine the
analysis by considering a specific retention time tr, defining how
long we store packet data. While the TM does not itself provide
direct control over retention time, with our simulation we can com-
pute the storage the system would require (i.e., what budget we
would have to give it) to achieve a retention time of at least tr.

For our assessment, we used a set of connection-level logs gath-
ered between November 5–18, 2007, at three institutions: The
Münchner Wissenschaftsnetz (Munich Scientific Research Network,
MWN) connects two major universities and affiliated research in-
stitutes to the Internet (roughly 50,000 hosts). MWN has a 10 Gbps
uplink, and its traffic totals 3–6 TB/day. Since our monitoring
comes from a 1 Gbps SPAN port, data rates can reach this limit
during peak hours, leading to truncation. The Lawrence Berke-
ley National Laboratory (LBNL) is a large research institute with
about 10,000 hosts connected to the Internet by a 10 Gbps uplink.
LBNL’s traffic amounts to 1–2 TB/day. Our monitoring link here
is a 10 Gbps tap into the upstream traffic. Finally, UC Berkeley
(UCB) has about 45,000 hosts. It is connected to the Internet by
two 1 Gbps links and has 3–5 TB of traffic per day. As SPAN ports
of the two upstream routers are aggregated into one 1 Gbps moni-
toring link, we can again reach capacity limits during peak times.

The connections logs contain 3120M (UCB), 1898M (MWN),
and 218M (LBNL) entries respectively. The logs reveal that indeed
91–94% of all connections at the three sites are shorter than a cutoff
value of N = 10 KB. With a cutoff of 20 KB, we can record 94–
96% of all connections in their entirety. (Of all connections, only
44–48% have any payload. Of those, a cutoff value of N = 10 KB
truncates 14–19%; N = 20 KB truncates 9–13%.)

Fig. 1 plots the disk budget required for a target retention time
tr = 4 days, when employing a 10 KB cutoff. During the first 4 days
we see a ramp-up phase, during which no data is evicted because
the retention time tr has not yet passed. After the ramp-up, the
amount of buffer space required stabilizes, with variations stem-
ming from diurnal patterns. For LBNL, a quite modest buffer
of 100 GB suffices to retain 4 days of network packets. MWN
and UCB have higher buffer requirements, but even in these high-
volume environments buffer sizes of 1–1.5 TB suffice to provide
days of historic network traffic, volumes within reach of commod-
ity disk systems, and an order of magnitude less than required for
the complete traffic stream.

3. THE TIME MACHINE DESIGN
In this section we give an overview of the design of the TM’s in-

ternals, and its query and remote-control interface, which enables
coupling the TM with a real-time NIDS (§5). What we present re-
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Figure 2: Architecture of the Time Machine.

flects a complete reworking of the original approach framed in [15],
which, with experience, we found significantly lacking in both nec-
essary performance and operational flexibility.

3.1 Architecture
While in some ways the TM can be viewed as a database, it dif-

fers from conventional databases in that (i) data continually streams
both into the system and out of it (expiration), (ii) it suffices to
support a limited query language rather than full SQL, and (iii) it
needs to observe real-time constraints in order to avoid failing to
adequately process the incoming stream.

Consequently, we base the TM on the multi-threaded architec-
ture shown in Fig. 2. This structure can leverage multiple CPU
cores to separate recording and indexing operations as well as ex-
ternal control interactions. The Capture Thread is responsible for:
capturing packets off of the network tap; classifying packets; mon-
itoring the cutoff; and assigning packets to the appropriate storage
class. Index Threads maintain the index data to provide the Query
Threads with the ability to efficiently locate and retrieve buffered
packets, whether they reside in memory or on disk. The Index Ag-
gregation Thread does additional bookkeeping on index files stored
on disk (merging smaller index files into larger ones), and User In-
terface Threads handle interaction between the TM and users or
remote applications like a NIDS.
Packet Capture: The Capture Thread uses libpcap to access the
packets on the monitored link and potentially prefilter them. It
passes the packets on to Classification.
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# Query. Results are sent via network connection.
query feed nids-61367-0 tag t35654 index conn4

"tcp 1.2.3.4:42 5.6.7.8:80" subscribe

# In-memory query. Results are stored in a file.
query to_file "x.pcap" index ip "1.2.3.4" mem_only

start 1200253074 end 1200255474 subscribe

# Dynamic class assignment.
set_dyn_class 5.6.7.8 alarm

Figure 3: Example query and control commands.

Classification: The classification stage maps packets to connec-
tions by maintaining a table of all currently active flows, as iden-
tified by the usual 5-tuple. For each connection, the TM stores
the number of bytes already seen. Leveraging these counters, the
classification component enforces the cutoff by discarding all fur-
ther packets once a connection has reached its limit. In addition to
cutoff management, the classification assigns every connection to a
storage class. A storage class defines which TM parameters (cutoff
limit and budgets of in-memory and on-disk buffers) apply to the
connection’s data.
Storage Classes: Each storage class consists of two buffers orga-
nized as FIFOs. One buffer is located within the main memory;
the other is located on disk. The TM fills the memory buffer first.
Once it becomes full, the TM migrates the oldest packets to the
disk buffer. Buffering packets in main memory first allows the TM
(i) to better tolerate bandwidth peaks by absorbing them in mem-
ory before writing data to disk, and (ii) to rapidly access the most
recent packets for short-term queries, as we demonstrate in §5.4.
Indexing: The TM builds indexes of buffered packets to facilitate
quick access to them. However, rather than referencing individual
packets, the TM indexes all time intervals in which the associated
index key has been seen on the network. Indexes can be configured
for any subset of a packet’s header fields, depending on what kind
of queries are required. For example, setting up an index for the
2-tuple of source and destination addresses allows efficient queries
for all traffic between two hosts. Indexes are stored in either main
memory or on disk, depending on whether the indexed data has
already been migrated to disk.

3.2 Control and Query Interface
The TM provides three different types of interfaces that support

both queries requesting retrieval of stored packets matching certain
criteria, and control of the TM’s operation by changing parameters
like the cutoff limit. For interactive usage, it provides a command-
line console into which an operator can directly type queries and
commands. For interaction with other applications, the TM com-
municates via remote network connections, accepting statements
in its language and returning query results. Finally, combining the
two, we developed a stand-alone client-program that allows users
to issue the most common kinds of queries (e.g, all traffic of a given
host) by specifying them in higher-level terms.

Processing of queries proceeds as follows. Queries must relate to
one of the indexes that the TM maintains. The system then looks up
the query key in the appropriate index, retrieves the corresponding
packet data, and delivers it to the querying application. Our sys-
tem supports two delivery methods: writing requested packets to
an output file and sending them via a network connection to the re-
quester. In both cases, the TM returns the data in libpcap format.
By default, queries span all data managed by the system, which can
be quite time-consuming if the referenced packets reside on disk.
The query interface thus also supports queries confined to either
specific time intervals or memory-only (no disk search).

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data rate [Mbps]

C
D

F

MWN before cutoff
LBNL before cutoff
MWN after cutoff
LBNL after cutoff

Figure 4: Bandwidth before/after applying a 15 KB cutoff.

In addition to supporting queries for already-captured packets,
the query issuer can also express interest in receiving future pack-
ets matching the search criteria (for example because the query was
issued in the middle of a connection for which the remainder of the
connection has now become interesting too). To handle these situa-
tions, the TM supports query subscriptions, which are implemented
at a per-connection granularity.

Queries and control commands are both specified in the syntax
of the TM’s interaction language; Fig. 3 shows several examples.
The first query requests packets for the TCP connection between
the specified endpoints, found using the connection four-tuple in-
dex conn4. The TM sends the packet stream to the receiving system
nids-61367-0 (“feed”), and includes with each packet the opaque
tag t35654 so that the recipient knows with which query to asso-
ciate the packets. Finally, subscribe indicates that this query is a
subscription for future packets relating to this connection, too.

The next example asks for all packets associated with the IP ad-
dress 1.2.3.4 that reside in memory, instructing the TM to copy
them to the local file x.pcap. The time interval is restricted via the
start and end options. The final example changes the traffic class
for any activity involving 5.6.7.8 to now be in the “alarm” class.

4. PERFORMANCE EVALUATION
We evaluate the performance of the TM in both controlled envi-

ronments and live deployments at MWN and LBNL (see §2). The
MWN deployment uses a 15 KB cutoff, a memory buffer size of
750 MB, a disk buffer size of 2.1 TB, and four different indexes
(conn4, conn3, conn2, ip).3 The TM runs on a dual-CPU AMD
Opteron 244 (1.8 GHz) with 4 GB of RAM, running a 64-bit Gen-
too Linux kernel (version 2.6.15.1) with a 1 Gbps Endace DAG net-
work monitoring card [12] for traffic capture. At LBNL we use
a 15 KB cutoff, 150 MB of memory, and 500 GB of disk storage,
with three indexes (conn4, conn3, ip). The TM runs on a system
with FreeBSD 6.2, two dual-core Intel Pentium D 3.7 GHz CPUs,
a 3.5 TB RAID-storage system, and a Neterion 10 Gbps NIC.

4.1 Recording
We began operation at MWN at 7 PM local time, Jan. 11, 2008,

and continued for 19 days. At LBNL the measurement started at
Dec. 13, 2007 at 7 AM local time and ran for 26 days. While the
setup at MWN ran stand-alone, the TM at LBNL is coupled with
a NIDS that sends queries and controls the TM’s operation as out-

3conn4 uses the tuple (transport protocol, ip1, ip2, port1, port2);
conn3 drops one port; conn2 uses just the IP address pair; and ip
a single ip address. Note, each packet leads to two conn3 keys and
two ip keys.
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lined in §5.1.4 During the measurement period, the TM setup expe-
rienced only rare packet drops. At MWN the total packet loss was
less than 0.04% and at LBNL less than 0.03%. Our investigation
shows that during our measurement periods these drops are most
likely caused by computation spikes and scheduling artifacts, and
do not in fact correlate to bandwidth peaks or variations in connec-
tion arrival rates.

We start by examining whether the cutoff indeed reduces the data
volume sufficiently, as our simulation predicted. Fig. 4 plots the
original input data rates, averaged over 10 sec intervals, and the
data rates after applying the cutoff for MWN and LBNL. (One can
clearly see that at MWN the maximum is limited by the 1 Gbps
monitoring link.) Fig. 5 shows the fraction of traffic, the reduction
rate, that remains after applying the cutoff, again averaged over
10 sec intervals. While the original data rate reaches several hun-
dred Mbps, after the cutoff less than 6% of the original traffic re-
mains at both sites. Hereby, the reduction rate at LBNL exhibits a
higher variability. The reduction ratio shows a diurnal variation: it
decreases less during daytime than during nighttime. Most likely
this is due to the prevalence of interactive traffic during the day
which causes short connections while bulk-transfer traffic is more
prevalent during the night due to backups and mirroring.

Next, we turn to the question whether the TM has sufficient re-
sources to leave head-room for query processing. We observe that
the CPU utilization (aggregated over all CPU cores, i.e., 100% re-
flects saturation of all cores) measured in 10 sec intervals, shown
in Fig. 6, averages 25% (maximum ≈ 85%) for MWN indicating

4During two time periods (one lasting 21 h, the other 4 days) the
NIDS was not connected to the TM and therefore did not send any
queries.
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Figure 7: Retention time with 2.1 TB disk buffer at MWN.
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that there is enough head room for query processing even at peak
times. For LBNL, the CPU utilization is even lower, with an aver-
age of 5% (maximum ≈ 50%). (The two local maxima for MWN
in Fig. 6 are due to the diurnal effects.)

Fig. 7 shows how the retention time changes during the run at
MWN. The 2.1 TB disk buffer provides ≈ 4 days during a normal
work week, as one would expect given a ≈ 90% reduction in cap-
ture volume starting from 3–6 TB/day. After an initial ramp-up
phase, the system retains an average of 4.3 days of network pack-
ets. As depicted in Fig. 8, the retention time in the memory buffer is
significantly shorter: 169 sec of network traffic on average (41 sec
minimum) for MWN. The local maxima are at 84 sec, and 126 sec
respectively, due to the diurnal effects. At LBNL we achieve larger
retention times. The 500 GB disk buffer retained a maximum of
more than 15 days, and the 150 MB memory buffer (Fig. 8) was
able to provide 421 sec on average (local maxima at 173 sec, and
475 sec).

Overall, our experience from these deployments is that the
TM can satisfy queries for packets observed within the last days
(weeks), providing that these are within the connection’s cutoff.
Moreover, the TM can answer queries for packets within the past
couple of minutes very quickly as it stores these in memory.

4.2 Querying
As we plan to couple the TM with other applications, e.g., an

intrusion detection system, that automatically generates queries it
is important to understand how much load the TM can handle. Ac-
cordingly, we now examine the query performance of the TM with
respect to (i) the number of queries it can handle, and (ii) the latency
between issuing queries and receiving the corresponding replies.
For these benchmarks, we ran the TM at LBNL on the same sys-
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tem as described above. For all experiments, we configured the TM
with a memory buffer of 150 MB and a cutoff of 15 KB.

We focus our experiments on in-memory queries, since accord-
ing to our experience these are the ones that are issued both at
high rates and with the timeliness requirements for delivering the
replies. In contrast, the execution of disk-based queries is heavily
dominated by the I/O time it takes to scan the disk. They can take
seconds to minutes to complete and therefore need to be limited to
a very small number in any setup; we discuss this further in §6.
Load: We first examine the number of queries the TM can support.
To this end, we measure the TM’s ability to respond to queries that
a simple benchmark client issues at increasing rates. All queries
request connections for which the TM has data, so it can extract
the appropriate packets and send them back in the same way as it
would for an actual application.

To facilitate reproducible results, we add an offline mode to the
TM: rather than reading live input, we preload the TM with a pre-
viously captured trace. In this mode, the TM processes the packets
in the trace just as if it had seen them live, i.e., it builds up all of
its internal data structures in the same manner. Once it finishes
reading the trace, it only has to respond to the queries. Thus, its
performance in this scenario may exceed its performance in a live
setting during which it continues to capture data thus increasing its
head-room for queries. (We verified that a TM operating on live
traffic has head-room to sustain a reasonable query load in realistic
settings, see §5.3.)

We use a 5.3 GB full trace captured at LBNL’s uplink, spanning
an interval of 3 min. After preloading the TM, the cutoff reduces
the buffered traffic volume to 117 MB, which fits comfortably into
the configured memory buffer. We configure the benchmark client
to issue queries from a separate system at increasing rates: starting
from one query every two seconds, the client increases the rate by
0.5 queries/sec every 10 seconds. To ensure that the client only
issues requests for packets in the TM’s memory buffer, we supplied
it with a sample of 1% of the connections from the input trace. Each
time the client requests a connection, it randomly picks one from
this list to ensure that we are not unfairly benefiting from caching.

On the TM, we log the number of queries processed per second.
As long as the TM can keep up, this matches the client’s query rate.
Fig. 9 plots the outcome of the experiment. Triangles show the rate
at which queries were issued, and circles reflect the rate at which
the TM responded, including sending the packets back to the client.
We see that the TM can sustain about 120 queries/secs. Above that
point, it fails to keep up. Overall, we find that the TM can handle
a high query rate. Moreover, according to our experience the TM’s
performance suffices to cope with the number of automated queries
generated by applications such as those discussed in §5.
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Figure 10: Latency between queries and replies.

Latency: Our next experiment examines query latency, i.e., the
time between when a client issues a query and its reception of the
first packet of the TM’s reply. Naturally, we wish to keep the la-
tency low, both to provide timely responses and to ensure accessi-
bility of the data (i.e., to avoid that the TM has expunged the data
from its in-memory buffer).

To assess query latency in a realistic setting, we use the following
measurement with live LBNL traffic. We configure a benchmark
client (the Bro NIDS) on a separate system to request packets from
one of every n fully-established TCP connections. For each query,
we log when the client sends it and when it receives the first packet
in response. We run this setup for about 100 minutes in the early af-
ternoon of a work-day. During this period the TM processes 73 GB
of network traffic of which 5.5 GB are buffered on disk at termi-
nation. The TM does not report any dropped packets. We choose
n = 100, which results in an average of 1.3 connections being re-
quested per second (σ= 0.47). Fig. 10 shows the probability density
of the observed query latencies. The mean latency is 125 ms, with
σ= 51 ms and a maximum of 539 ms (median 143 ms). Of the 7881
queries, 1205 are answered within less than 100 ms, leading to the
notable peak “(a)” in Fig. 10. We speculate that these queries are
most likely processed while the TM’s capture thread is not perform-
ing any significant disk I/O (indeed, most of them occur during the
initial ramp-up phase when the TM is still able to buffer the net-
work data completely in memory). The second peak “(b)” would
then indicate typical query latencies during times of disk I/O once
the TM has reached a steady-state.

Overall, we conclude that the query interface is sufficiently re-
sponsive to support automatic Time Travel applications.

5. COUPLING TM WITH A NIDS
Network intrusion detection systems analyze network traffic in

real-time to monitor for possible attacks. While the real-time nature
of such analysis provides major benefits in terms of timely detec-
tion and response, it also induces a significant constraint: the NIDS
must immediately decide when it sees a network packet whether it
might constitute part of an attack.

This constraint can have major implications, in that while at the
time a NIDS encounters a packet its content may appear benign,
future activity can cast a different light upon it. For example, con-
sider a host scanning the network. Once the NIDS has detected the
scanning activity, it may want to look more closely at connections
originating from that source—including those that occurred in the
past. However, any connection that took place prior to the time of
detection has now been lost; the NIDS cannot afford to remember
the details of everything it has ever seen, on the off chance that at
some future point it might wish to re-inspect the activity.
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The TM, on the other hand, effectively provides a very large
buffer that stores network traffic in its most detailed form, i.e., as
packets. By coupling the two systems, we allow the NIDS to access
this resource pool. The NIDS can then tell the TM about the traffic
it deems interesting, and in turn the TM can provide the NIDS with
historic traffic for further analysis.

Given the TM capabilities developed in the previous section, we
now explore the operational gains achievable by closely coupling
the TM with a NIDS. We structure the discussion in five parts:
(i) our prototype deployment at LBNL; (ii) experiences with en-
abling the NIDS to control the operation of the TM; (iii) the addi-
tional advantages gained if the NIDS can retrieve historic data from
the TM; (iv) the benefits of tightly coupling the two systems; and
(v) how we implemented these different types of functionality.

5.1 Prototype Deployment
Fig. 11 shows the high-level structure of coupling the TM with

a NIDS. Both systems tap into the monitored traffic stream (here, a
site’s border) and therefore see the same traffic. The NIDS drives
communication between the two, controlling the operation of the
TM and issuing queries for past traffic. The TM then sends data
back to the NIDS for it to analyze.

We install such a dual setup in the LBNL environment, using
the open-source Bro NIDS [18]. Bro has been a primary compo-
nent of LBNL’s network monitoring infrastructure for many years,
so using Bro for our study as well allows us to closely match the
operational configuration.

The TM uses the same setup as described in §4: 15 KB cutoff,
500 GB disk budget, running on a system with two dual-core Pen-
tium Ds and 4 GB of main memory. We interface the TM to the
site’s experimental “Bro Cluster” [26], a set of commodity PCs
jointly monitoring the institute’s full border traffic in a configu-
ration that shadows the operational monitoring (along with run-
ning some additional forms of analysis). The cluster consists of
12 nodes in total, each a 3.6 GHz dual-CPU Intel Pentium D with
2 GB RAM.

We conducted initial experiments with this setup over a number
of months, and in Dec. 2007 ran it continuously through early Jan.
2008 (see §4.1). The experiences reported here reflect a subsequent
two-week run in Jan. 2008. During this latter period, the systems
processed 22.7 TB of network data, corresponding to an average
bitrate of 155 Mbps. The TM’s cutoff reduced the total volume to
0.6 TB. It took a bit over 11 days until the TM exhausted its 500 GB
disk budget for the first time and started to expire data. The NIDS
reported 66,000 operator-level notifications according to the con-
figured policy, with 98% of them referring to scanning activity.

5.2 NIDS Controls The TM
The TM provides a network-accessible control interface that the

NIDS can use to dynamically change operating parameters based
on its analysis results such as cutoffs, buffer budgets, and timeouts.
In our installation, we instrument the NIDS so that for every op-
erator notification5, it instructs the TM to (i) disable the cutoff for
the affected connection for non-scan notifications, and (ii) change
the storage class of the IP address the attacker is coming from to
a more conservative set of parameters (higher cutoffs, longer time-
outs), and also assign it to separate memory and buffer pools. The
latter significantly increases the retention time for the host’s activ-

5We note that the specifics of what constitutes an operator notifica-
tion vary from site to site, but because we cannot report details of
LBNL’s operational policy we will refer only to broad classes of
notifications such as “scans”.
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Figure 11: Coupling TM and NIDS at LBNL.

ity, as it now no longer shares its buffer space with the much more
populous benign traffic.

In concrete terms, we introduce two new TM storage classes:
scanners, for hosts identified as scanners, and alarms, for hosts
triggering operator notifications other than scan reports. The mo-
tivation for this separation is the predominance of Internet-wide
scanning: in many environments, scanning alerts heavily dominate
the reporting. By creating a separate buffer for scanners, we in-
crease the retention time for notifications not related to such activ-
ity, which are likely to be more valuable. The classes scanners and
alarms are provided with a memory budget of 75 MB and a disk
budget of 50 GB each. For scanners, we increase the cutoff from
15 KB to 50 KB; for all other offenders we disable the cutoff alto-
gether. Now, whenever the NIDS reports an operator notification,
it first sends a suspend_cutoff command for the triggering con-
nection to the TM. It then issues a set_class command for the
offending host, putting the address into either scanners or alarms.

Examining the commands issued by the NIDS during the two-
week period, we find that it sent 427 commands to suspend the
cutoff for individual connections. Moreover, it moved 12,532 IP
addresses into the scanners storage class and 592 into the alarms
storage class.6

5.3 NIDS Retrieves Data From TM
Another building block for better forensics support is automatic

preservation of incident-related traffic. For all operator notifica-
tions in our installation, the NIDS queries the TM for the relevant
packets, which are then permanently stored for later inspection.
Storage: The NIDS issues up to three queries for each major (non-
scan) notification. Two to_file queries instruct the TM to store
(i) all packets of the relevant connection and (ii) all packets in-
volving the offender’s IP address within the preceding hour. For
TCP traffic, the NIDS issues a feed query asking it to also return
the connection’s packets to the NIDS. The NIDS then stores the
reassembled payload stream on disk. For many application proto-
cols, this eases subsequent manual inspection of the activity. We
restrict connection queries to in-memory data, while host queries
include disk-buffered traffic as well. Our motivation is that con-
nection queries are time-critical while host queries are related to
forensics.

During the examined two-week period, the NIDS issued queries
for 427 connections (after duplicate elimination) and 376 individual
hosts. As queries for connections were limited to in-memory data,
their mean processing time was 210 ms (σ= 510 ms). Among the
queries, there was one strong outlier that took 10.74 sec to com-

6We note that the number of issued commands does not directly
correspond to the number of operator notifications generated by
the NIDS. The NIDS often reports hosts and connections multiple
times, but only sends the corresponding command once. Further-
more, the NIDS sometimes issues commands to change the storage
class for activity which does not generate a notification.
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Figure 12: Web-interface to notifications and their correspond-
ing network traffic (packets and payload).

plete: it yielded 299,002 packets in response. Manual inspection of
the extracted traffic showed that this was a large DNS session. Ex-
cluding this query, the mean time was 190 ms (σ= 100 ms). Queries
for individual hosts included on-disk data as well, and therefore
took significantly longer; 25.7 sec on average. Their processing
times also varied more (median 10.2 sec, σ= 54.1 sec).
Interactive Access: To further reduce the turnaround time between
receiving a NIDS notification and inspecting the relevant traffic,
we developed a Web-based interface that enables browsing of the
data associated with each notification; Fig. 12 shows a snapshot.
The prototype interface presents the list of notifications and indi-
cates which kind of automatically extracted TM traffic is available.
The operator can then inspect relevant packets and payload using a
browser, including traffic that occurred prior to the notification.
Experiences: We have been running the joint TM/NIDS setup at
LBNL for two months, and have used the system to both analyze
packet traces and reassembled payload streams for more detailed
analysis. During this time, the TM has proven to be extremely use-
ful. First, one often just cannot reliably tell the impact of a specific
notification without having the actual traffic at hand. Second, it
turns out to be an enormous timesaver to always have the traffic
related to a notification available for immediate analysis. This al-
lows the operator to inspect a significantly larger number of cases
in depth than would otherwise be possible, even those that appear
to be minor on first sight. Since with the TM/NIDS setup double-
checking even likely false-positives comes nearly for free, the over-
all quality of the security monitoring can be significantly improved.

Our experience from the deployment confirms the utility of such
a setup in several ways. First, the TM enables us to assess whether
an attack succeeded. For example, a still very common attack
includes probing web servers for vulnerabilities. Consider Web
requests of the form foo.php?arg=../../../etc/passwd with
which the attacker tries to trick a CGI script into returning a list
of passwords. Since many attackers scan the Internet for vulnera-
ble servers, simply flagging such requests generates a large number
false positives, since they very rarely succeed. If the NIDS reports
the server’s response code, the operator can quickly weed out the
cases where the server just returned an error message. However,
even when the server returns an 200 OK, this does not necessarily
indicate a successful attack. Often the response is instead a generic,
harmless page (e.g., nicely formatted HTML explaining that the re-
quest was invalid). Since the TM provides the served web page in

XXX.XXX.XXX.XXX/57340 > XXX.XXX.XXX.XXX/smtp same gap on
link/time-machine (> 124/6296)

XXX.XXX.XXX.XXX/55529 > XXX.XXX.XXX.XXX/spop same gap on
link/time-machine (> 275/165)

XXX.XXX.XXX.XXX/2050 > XXX.XXX.XXX.XXX/pop-3 same gap on
link/time-machine (> 17/14)

Figure 13: Example of drops confirmed by the TM.

its raw form, we can now quickly eliminate these as well. To fur-
ther automate this analysis, we plan to extend the setup so that the
NIDS itself checks the TM’s response for signs of an actual pass-
word list, and suppresses the notification unless it sees one. Similar
approaches are applicable to a wide range of probing attacks.

For applications running on non-standard ports the TM has the
potential to significantly help with weeding out false-positives.
Bro, for example, flags outgoing packets with a destination port
69/udp as potential “Outbound TFTP” (it does not currently include
a TFTP protocol analyzer). Assessing the significance of this notifi-
cation requires looking at the payload. With the TM recordings we
were able to quickly identify in several instances that the reported
connection reflected BitTorrent traffic rather than TFTP. In another
case, Bro reported parsing errors for IRC traffic on 6667/tcp; in-
spection of the payload quickly revealed that a custom protocol
was using the port.

The information captured by the TM can also shed light on how
attacks work. In one instance, a local client downloaded a trojan
via HTTP. The NIDS reported the fact and instructed the TM to re-
turn the corresponding traffic. Once the NIDS had reassembled the
payload stream, the trojan’s binary code was available on disk for
further manual inspection (though truncated at the 15 KB cutoff).

Finally, the TM facilitates the extraction of packet traces for var-
ious interesting network situations, even those not necessarily re-
flecting attacks. Among others, we collected traces of TCP con-
nections opened simultaneously by both sides; sudden FIN storms
of apparently misconfigured clients; and packets that triggered in-
accuracies in Bro’s protocol processing.

5.4 Retrospective Analysis
In the following, we demonstrate the potential of a tighter in-

tegration of TM and NIDS by examining forms of retrospective
analysis this enables.
Recovering from Packet Drops: Under heavy load, a NIDS can
lack the processing power to capture and analyze the full packet
stream, in which case it will incur measurement drops [10]. Work-
ing in conjunction with the TM, however, a NIDS can query for
connections that are missing packets and reprocess them. If the
same gap also occurs in the response received from the TM, the
NIDS knows that most likely the problem arose external to the
NIDS device (e.g., in an optical tap shared by the two systems,
or due to asymmetric routing).

We implemented this recovery scheme for the Bro NIDS. With
TCP connections, Bro infers a packet missing if it observes a se-
quence gap purportedly covered by a TCP acknowledgment. In
such cases we modified Bro to request the affected connection from
the TM. If the TM connection is complete, Bro has recovered from
the gap and proceeds with its analysis. If the TM connection is
however also missing the packet, Bro generates a notification (see
Fig. 13). In addition to allowing Bro to correctly analyze the traffic
that it missed, this also enables Bro to differentiate between drops
due to overload and packets indeed missing on the link.
Offloading the NIDS: NIDS face fundamental trade-offs between
depth of analysis and resource usage [24]. In a high-volume envi-
ronment, the operator must often choose to forego classes of anal-
ysis due to limited processing power. However, by drawing upon
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Figure 14: CPU load with and without Time Travel.

the TM, a NIDS can make fine-grained exceptions to what would
otherwise be analysis omissions. It does so by requesting initially
excluded data once the NIDS recognizes its relevance because of
some related analysis that is still enabled.

For example, the bulk of HTTP traffic volume in general orig-
inates from HTTP servers, rather than clients. Thus, we can sig-
nificantly offload a NIDS by restricting its analysis to client-side
traffic, i.e., only examine URLs and headers in browser requests,
but not the headers and items in server replies. However, once
the NIDS observes a suspicious request, it can query the TM for
the complete HTTP connection, which it then analyzes with full
server-side analysis. The benefit of this setup is that the NIDS can
now save significant CPU time as compared to analyzing all HTTP
connections, yet sacrificing little in the way of detection quality.

FTP data transfers and portmapper activity provide similar
examples. Both of these involve dynamically negotiated sec-
ondary connections, which the NIDS can discern by analyzing the
(lightweight) setup activity. However, because these connections
can appear on arbitrary ports, the NIDS can only inspect them di-
rectly if it foregoes port-level packet filtering. With the TM, how-
ever, the NIDS can request subscriptions (§3.2) to the secondary
connections and inspect them in full, optionally also removing the
cutoff if it wishes to ensure that it sees the entire contents.

We explore the HTTP scenario in more detail to understand the
degree to which a NIDS benefits from offloading some of its pro-
cessing to the TM. For our assessment, we need to compare two
different NIDS configurations (with and without the TM) while
processing the same input. Thus, we employ a trace-based eval-
uation using a 75 min full-HTTP trace captured on LBNL’s up-
stream link (21 GB; 900,000 HTTP sessions), using a two-machine
setup similar to that in §4.2. The evaluation requires care since
the setup involves communication with the TM: when working of-
fline on a trace, both the NIDS and the TM can process their input
more quickly than real-time, i.e., they can consume 1 sec worth of
measured traffic in less than 1 sec of execution time. However, the
NIDS and the TM differ in the rate at which they outpace network-
time, which can lead to a desynchronization between them.

To address these issues, the Bro system provides a pseudo-
realtime mode [25]: when enabled, it inserts delays into its exe-
cution to match the inter-packet gaps observed in a trace. When
using this mode, Bro issues queries at the same time intervals as
it would during live execution. Our TM implementation does not
provide a similar facility. However, for this evaluation we wish to
assess the NIDS’s operation, rather than the TM’s, and it therefore
suffices to ensure that the TM correctly replies to all queries. To
achieve this, we preload the TM with just the relevant subset of the

trace, i.e., the small fraction of the traffic that the Bro NIDS will
request from the TM. The key for preloading the TM is predicting
which connections the NIDS will request. While in practice the
NIDS would trigger HTTP-related queries based on URL patterns,
for our evaluation we use an approach independent of a specific
detection mechanism: Bro requests each HTTP connection with a
small, fixed probability p.

Our first experiment measures the performance of a stand-alone
NIDS. We configure Bro to perform full HTTP processing. To
achieve a fair comparison, we modify Bro to ignore all server pay-
load after the first 15 KB of each connection, simulating the TM’s
cutoff. We then run Bro in pseudo-realtime mode on the trace and
log the CPU usage for each 1 sec interval. Fig. 14 shows the result-
ing probability density.

With the baseline established, we then examine the TM/NIDS
hybrid. We configure Bro to use the same configuration as in the
previous experiment, except with HTTP response processing dis-
abled. Instead, we configure Bro to issue queries to the TM for a
pre-computed subset of the HTTP sessions for complete analysis.
We choose p = 0.01, a value that from our experience requests full
analysis for many more connections than a scheme based on pat-
terns of suspicious URLs would. We supply Bro with a prefiltered
version of the full HTTP trace with all server-side HTTP payload
packets excluded.7 As described above, we provide the TM with
the traffic which Bro will request.

We verify that the TM/NIDS system matches the results of the
stand-alone setup. However, Fig. 14 shows a significant reduction
in CPU load. In the stand-alone setup, the mean per-second CPU
load runs around 40% (σ= 9%). With TM offloading, the mean
CPU load decreases to 28%, (σ= 7%). We conclude that offloading
indeed achieves a significant reduction in CPU utilization.
Broadening the analysis context: Finally, with a TM a NIDS can
request historic network traffic, allowing it to perform analysis on
past traffic within a context not available when the traffic originally
appeared. For example, once the NIDS identifies a source as a scan-
ner, it is prudent to examine all of its traffic in-depth, including its
previous activity. The same holds for a local host that shows signs
of a possible compromise. Such an in-depth analysis may for ex-
ample include analyzers that were previously disabled due to their
performance overhead. In this way the NIDS can construct for the
analyst a detailed application-level record of the offender, or the
NIDS might itself assess this broader record against a meta-policy
to determine whether the larger view merits an operator notifica-
tion.

5.5 Implementing Retrospective Analysis
Implementing the TM/NIDS interface for the above experiments

requires solving a number of problems. The main challenge lies
in that processing traffic from the past, rather than freshly cap-
tured, violates a number of assumptions a NIDS typically makes
about packets appearing in real-time with a causal order reflecting
a monotonic passage of time.

A simple option is to special-case the analysis of resurrected
packets by introducing a second data path into the NIDS exclu-
sively dedicated to examining TM responses. However, such an
approach severely limits the power of the hybrid system, as we in
this case cannot leverage the extensive set of tools the NIDS already
provides for live processing. For example, offloading applications,
as described in §5.4, would be impossible to realize without dupli-
cating much of the existing code. Therefore, our main design ob-
7We prefilter the trace, rather than installing a Bro-level BPF filter,
because in a live setting the filtering is done by the kernel, and thus
not accounted towards the CPU usage of the Bro process.
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jective for our Bro implementation is to process all TM-provided
traffic inside the NIDS’s standard processing path, the same as for
any live traffic—and in parallel with live traffic. In the remainder
of this section, we discuss the issues that arose when adding such a
TM interface to the Bro NIDS.
Bro Implementation: Bro provides an extensive, domain-specific
scripting language. We extend the language with a set of predefined
functions to control and query the TM, mirroring the functionality
accessible via the TM’s remote interface (see §3.2), such as chang-
ing the TM class associated with a suspect IP address, or querying
for packets based on IP addresses or connection 4-tuples. One basic
requirement for this is that the interface to the TM operates asyn-
chronously, i.e., Bro must not block waiting for a response.

Sending commands to the TM is straight-forward and thus omit-
ted. Receiving packets from the TM for processing, however, raises
subtle implementation issues: the timestamp to associate with re-
ceived query packets, and how to process them if they are replicates
of ones the NIDS has already processed due to direct capture from
the network, or because the same packet matches multiple streams
returned for several different concurrent queries.

Regarding timestamps, retrieved packets include the time when
the TM recorded them. However, this time is in the past and if
the NIDS uses it directly, confusion arises due to its assumptions
regarding time monotonicity. For example, Bro derives its measure
of time from the timestamps of the captured packets. For example it
uses these timestamps to compute timer expirations and to manage
state. The simple solution of rewriting the timestamps to reflect the
current time confounds any analysis that relies on either absolute
time or on relative time between multiple connections. Such an
approach also has the potential to confuse the analyst that inspects
any timestamped or logged information.

The key insight for our solution, which enables us to integrate
the TM interface into Bro with minimal surgery, is to restrict Bro
to always request complete connections from the TM rather than
individual packets. Such a constraint is tenable because, like all
major NIDS, connections form Bro’s main unit of analysis.

We implement this constraint by ensuring that Bro only issues
queries in one of two forms: (i) for all packets with the same 4-tuple
(address1,port1,address2,port2), or (ii) for all packets involving a
particular address. In addition, to ensure that Bro receives all pack-
ets for these connections, including future ones, it subscribes to the
query (see §3.2).

Relying on complete connections simplifies the problem of time-
stamps by allowing us to introduce the use of per-query network
times: for each TM query, Bro tracks the most recently received
packet in response to the query and then maintains separate per-
query timelines to drive the management of any timer whose in-
stantiation stems from a retrieved packet. Thus, TM packets do not
perturb Bro’s global timeline (which it continues to derive from the
timestamps of packets in its direct input stream).

We also rely on complete connections to address the issue of
replicated input. When retrieved packets for a connection begin
to arrive while Bro is processing the same connection via its live
feed, it discards the live version and starts afresh with the TM ver-
sion. (It also discards any future live packets for such connections,
since these will arrive via its TM subscription.) Moreover, if Bro
is processing packets of a connection via the TM and then receives
packets for this same connection via its live feed (unlikely, but not
impossible if the system’s packet capturing uses large buffers), then
Bro again ignores the live version. Finally, if Bro receives a connec-
tion multiple times from the TM (e.g., because of multiple match-
ing queries), it only analyzes the first instance.

Our modifications to Bro provide the NIDS with a powerful in-

terface to the TM that supports forensics as well as automatic, retro-
spective analysis. The additions introduce minimal overhead, and
have no impact on Bro’s performance when it runs without a TM.

6. DEPLOYMENT TRADE-OFFS
In an actual deployment, the TM operator faces several trade-

offs in terms of CPU, memory, and disk requirements. The most
obvious trade-off is the design decision of foregoing complete stor-
age of high-volume connections in order to reduce memory/disk
consumption. There are others as well, however.
Risk of Evasion: The TM’s cutoff mechanism faces an obvious
risk for evasion: if an attacker delays his attack to occur after the
cutoff, the TM will not record the malicious actions. This is a fun-
damental limitation of our approach. However, short of compre-
hensively storing all packets, any volume reduction heuristic faces
such a blind spot.

The cutoff evasion problem is similar in risks to the problem
NIDS face when relying on timeouts for state management. If a
multi-step attack is stretched over a long enough time period such
that the NIDS is forced to expire its state in the interim the attack
can go undetected. Yet, to avoid memory exhaustion state must
be expired eventually. Therefore, NIDS rely on the fact that an
attacker cannot predict when exactly a timeout will take place [10].

Similarly, the TM has several ways for reducing the risk of eva-
sion by making the cutoff mechanism less predictable. One ap-
proach is to use different storage classes (see §3.1) with different
cutoffs for different types of traffic, e.g., based on applications (for
some services, delaying an attack to later stages of a session is
harder than for others). As discussed in §5.2, we can also lever-
age a NIDS’s risk assessment to dynamically adjust the cutoff for
traffic found more likely to pose a threat. Finally, we plan to exam-
ine randomizing the cutoff so that (i) an attacker cannot predict at
which point it will go into effect, and (ii) even when the cutoff has
been triggered, the TM may continue recording a random subset of
subsequent packets.
Network Load: When running in high-volume 10 Gbps environ-
ments, the TM can exceed the limits of what commodity hardware
can support in terms of packet-capture and disk utilization. We can
alleviate this impact with use of more expensive, special-purpose
hardware (such as the Endace monitoring card at MWN), but at
added cost and for limited benefit. We note, however, that the TM
is well-suited for clustering in the same way as a NIDS [26]: we
can deploy a set of PCs, each running a separate TM on a slice of
the total traffic. In such a distributed setting, an additional front-
end system can create the impression to the user of interacting with
a single TM by relaying to/from all backend TMs.
Floods: Another trade-off concerns packet floods, such as encoun-
tered during high-volume DoS attacks. Distributed floods stress
the TM’s connection-handling, and can thus undermine the cap-
ture of useful traffic. For example, during normal operation at
MWN an average of 500,000 connections are active and stored in
the TM’s connection table. However, we have experienced floods
during which the number of connections increased to 3–4 million
within 30 seconds. Tracking these induced massive packet drops
and eventually exhausted the machine’s physical memory.

In addition, adversaries could attack the TM directly by exploit-
ing its specific mechanisms. They could for example generate large
numbers of small connections in order to significantly reduce re-
tention time. However, such attacks require the attacker to commit
significant resources, which, like other floods, will render them vul-
nerable to detection.

To mitigate the impact of floods on the TM’s processing, we plan
to augment the TM with a flood detection and mitigation mech-
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anism. For example, the system can probabilistically track per-
source thresholds of connection attempts and resort to address-
specific packet sampling once a source exceeds these. Alterna-
tively, when operating in conjunction with a NIDS that includes
a flood detection mechanism, the TM can rely upon the NIDS to
decide when and how the TM should react.
Retrieval Time: When running a joint TM/NIDS setup, we need
to consider a trade-off between the response time for answering
a query versus the time range that the TM examines to find the
relevant packets. As discussed in §4.2, the TM can answer queries
quite quickly as long as it restricts its retrieval to in-memory data.
However, once the TM needs to search its disk, queries can take
seconds to minutes, even if they include a time interval to limit
the scope of the search. Thus, the NIDS must issue such queries
carefully so as to not exhaust the TM’s resources. We do not yet
have enough long-term operational experience to have determined
good rules for how to manage such queries, but this is part of the
near-term focus of our future work.
NIDS and Cutoff: A final issue concerns the impact of the TM’s
cutoff on the NIDS processing. In our NIDS implementation, we
minimize the limitations resulting from the cutoff by combining
each NIDS query with a request to remove the cutoff for the asso-
ciated connections or addresses. This takes care of future activity
via the TM. But there is little we can do about flows curtailed in the
past—those for which the TM already applied the cutoff. Recall
that the general premise of the TM is that we usually can operate
the TM with a sufficiently large cutoff that information of interest
is captured. To further reduce this problem the TM always stores
all TCP control packets (SYN/FIN/RST), thus enabling a NIDS to
perform its connection-level analysis.

7. RELATED WORK
In this paper we develop a “Time Machine” for efficient network

packet recording and retrieval, and couple the resulting system with
a NIDS. The basic approach is to leverage the heavy-tailed nature
of Internet traffic [17, 19] to significantly reduce the volume of
bulk traffic recording. Our work builds extensively on the proof-
of-principle prototype we describe in [15], greatly increasing its
performance and coupling it to external systems to support auto-
mated querying, live connections to a NIDS, and “subscriptions”
to future packets satisfying a given query. These features have en-
abled us to then use the system in conjunction with the Bro NIDS
in an operational high-volume setting.

Different approaches have been suggested in the literature to
record high-volume network traffic. First, several systems aim to
record full packet traces: Anderson et al. [1] records at kernel-level
to provide bulk capture at high rates, and Antonelli et al. [2] focuses
on long-term archive and stores traffic on tapes. However, these
systems do not provide automated and efficient real-time query in-
terfaces. Hyperion [9] employs a dedicated stream file system to
store high-volume data streams, indexing stream data using Bloom
filters. Hyperion bulk-records entire traffic streams, and does not
a provide features for automatic or semi-automatic forensics nor
coupling with a NIDS. Gigascope [8], on the other hand, supports
SQL-like queries on a packet stream, but no long-term archiving.

Another approach is to store higher-level abstractions of the net-
work traffic to reduce the data volume: Reiss et al. [21] record
flows and provide real-time query facilities; Shanmugasundaram
et al. [23] record key events of activity such as connections and
scans; and [3, 16] both provide frameworks suitable for performing
different data reduction techniques. ([16] is based on the CoMo
platform [6]). Cooke et al. [7] aggregate data as it ages: first pack-
ets are stored; these are than transformed into flows. They focus on

storage management algorithms to divide storage between the dif-
ferent aggregation levels. Ponec et al. [20] store traffic digests for
payload attribution; the queries do not yield the actual content. Any
data reduction decreases the amount of information available. We
argue that for security applications, the TM’s approach of archiving
the head of connections at the packet-level provides an attractive
degree of detail compared to such abstractions.

Reducing traffic volume by omitting parts of the traffic is em-
ployed by the Shunt [13]. The Shunt is a programmable NIC that
an associated NIDS/NIPS instructs to forward, drop, or divert pack-
ets at a per-connection granularity. The drop functionality supports
intrusion prevention; the forward functionality supports offloading
the NIDS for streams it has determined it will forego analyzing; and
the divert functionality allows the NIDS to inspect and potentially
intercede any traffic it wishes. The TM could leverage the Shunt to
impose the cutoff directly on the NIC.

While intrusion detection systems such as Snort [22] and
Bro [18] can record traffic, they typically keep only a small sub-
set of the network’s packets; for Snort, just those that triggered an
alert, and for Bro just those that the system selected for analysis.
Neither system—nor any other of which we are aware—can incor-
porate network traffic recorded in the past into their live analysis.
We added this capability to the Bro system.

Commercial vendors, e.g., [4, 14, 12], offer a number of packet
recorders. Due to their closed nature, it is difficult to construct a
clear picture of their capabilities and performances. As far as we
can tell, none of these has been coupled with a NIDS.

Finally, the notion of “time travel” has been discussed in other
contexts of computer forensics. For instance, ReVirt [11] can re-
construct past states of a virtual machine at the instruction-level.

8. CONCLUSION
In this work we explore the significant capabilities attainable for

network security analysis via Time Travel, i.e., the ability to quickly
access past network traffic for network analysis and security foren-
sics. This approach is particular powerful when integrating traffic
from the past with a real-time NIDS’s analysis. We support Time
Travel via the Time Machine (TM) system, which stores network
traffic in its most detailed form, i.e., as packets. The TM provides a
remote control-and-query interface to automatically request stored
packets and to dynamically adapt the TM’s operation parameters.
To reduce the amount of traffic stored, the TM leverages a simple
but effective “cutoff” heuristic: it only stores the first N bytes of
each connection (typically, N = 10–20 KB). This approach lever-
ages the heavy-tailed nature of network traffic to capture the great
majority of connections in their entirety, while omitting storage of
the vast majority of the bytes in a traffic stream.

We show that the TM allows us to buffer most connections
completely for minutes in memory, and on disk for days, even in
10 Gbps network environments, using only commodity hardware.
The cutoff heuristic reduces the amount of data to store to less than
10% of the original traffic. We add TM support to the open-source
Bro NIDS, and examined a number of applications (controlling the
TM, correlating NIDS alarms with associated packet data, and ret-
rospective analysis) that such integration enables. In addition, we
explore the technical subtleties that arise when injecting recorded
network traffic into a NIDS that is simultaneously analyzing live
traffic. Our evaluation using traces as well as live traffic from two
large sites finds that the combined system can process up to 120 ret-
rospective queries per second, and can potentially analyze traffic
seen 4–15 days in the past, using affordable memory and disk re-
sources.
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Our previous proof-of-principle TM implementation has been
in operational use for several years at LBNL. The new, joint
TM/NIDS installation is now running there continuously in a pro-
totype setup, and the site’s operators are planning to integrate it into
their operational security monitoring.

To further improve performance in high-volume environments,
we plan to develop a version of the system that implements cutoff
processing in dedicated hardware (such as the Shunt FPGA [13])
or in the kernel, in order to reduce the traffic volume as early as
possible. Using ideas from [7], we also plan to further extend the
period we can “travel back in time” by aggregating packet data
into higher level representations (e.g., flows) once evicted from the
TM’s buffers.

Overall, we have found that retrospective analysis requires a
great deal of experience with a TM/NIDS setup in operational
environments to identify the most useful applications, especially
considering the trade-offs discussed in §6. Now that we have the
TM/NIDS hybrid in place, the next step is to pursue a study of these
possibilities.
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